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Abstract: Landslide is a common natural hazard and responsible fanstxtedamage and losses in mountainous
areas. In this study, Longju in the Three Gorges Reservoirirai@hina was taken as a case study for landslide
susceptibility assessment in order to develop effectile pigvention and mitigation strategies. To begin, 202
landslides were identified, including 95 colluvial landslides andr&®ifalls. Twelve landslide causal factor maps
were prepared initially, and the relationship between tfeeders and each landslide type was analyzed using the
information value model. Later, the unimportant factors werecgsl and eliminated using the information gain
ratio technique. The landslide locations were randomly dividedtimb groups: 70% for training and 30% for
verifying. Two machine learning models: the support vector macdsix&1) and artificial neural network (ANN),
and a multivariate statistical model: the logistic regogsd_R), were applied for landslide susceptibility modeling
(LSM) for each type. The LSM index maps, obtained from combitiiegassessment results of the two landslide
types, were classified into five levels. The performamicthe LSMs was evaluated using the receiver operating
characteristics curve and Friedman test. Results show hteaglimination of noise-generating factors and the
separated modeling of each landslide type have significanttgased the prediction accuracy. The machine
learning models outperformed the multivariate statistical inaie SVM model was found ideal for the case study
area.

Keywords: Landslide susceptibility modeling; Machine learning; Support veatwhine (SVM); Artificial neural

network (ANN); Logistic regression (LR)

1. Introduction

Landslide is a common natural hazard in the mountainous or hijign® Every year, extensive economic

losses and casualties are caused by landslide disasters RRGH. The Three Gorges Reservoir A(@&RA) in
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China is highly vulnerable to landslides, and the number of laledshas further increased since the construction
of the Three Gorges Dam (Yin et al., 2016). Together, the demarahtl is increasing due to rapid urbanization.
However, the uncertainty of landslide has restricted the langHasming in this area. Landslide susceptibility
modeling (LSM) is considered as the initial step towardsi@sléde hazard and risk assessment, and it can also be
used for land-use planning and environmental impact assessmdnet(gél 2008). The decision-makers and

engineers value it for developing strategies vis-a-vis landslidstdisrisk reduction.

Landslides can be divided into many types according to diffedeformation mechanisms and failure
patterns, and their development laws are often varied (Hetnglr, 2013). Landslide susceptibility assessment is
performed based on the assumption that future landslides are kedyedioccur under the similar conditions with
present landslides. It is obvious that the occurrence conditions of varidsidartypes are different. For example,
the rockfall always occurs in steep rock, while the creepdslide always occurs in soil with a gentle slope.
Hereatfter, in the area threatened by more than one landgbeleittis essential to conduct landslide susceptibility

assessment considering the differefedween landslide types.

In recent years, LSM has become a popular research topiegianal scale, the susceptibility models can be
divided into qualitative assessment (inventory-based and knowtkdger methods) and quantitative assessment
(data-driven methods and physically based models). With the impemteof data quality through innovative
techniques, the data-driven models are adopted for regional in8Mding the weights-of-evidence (van Westen,
1993; Hussin et al., 2016), artificial neural network (Pradhad Lee, 2010a; Gorsevski et al., 2016), random
forest (Catani et al., 2013; Youssef et al., 2016), support veaohine (Yao et al., 2008; Pradhan, 2013) models
and so on. In the data-driven models, the machine learning modé&snpt better, and are considered more
efficient than other approaches such as expert opinion bageddsend analytic methods (Goetz et al., 2015;
Pham et al., 2016a). The support vector machine (SVM) and iattifieural network (ANN) models were widely
used in LSM and often achieved high prediction accuracy. Howawegeneral agreement about the landslide

susceptibility model exists yet, as the performance of the models requaresomparison in different cases.

Although the machine learning models have shown better perforntamathematics, the occurrence of

landslides is considered as an engineering geological problem. Before taumnd&adM, it is essential to understand
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the mechanism of landslides and analyze the relationship betwesai factors and landslide occurrences (Guo et
al., 2015), especially in an area that is threatened byeftféandslide types. The bivariate statistical and featur
selection methods can quantitatively analyze the relationshipebetfandslide occurrence and causal factors,
which provide powerful techniques to analyze the landslide develapraws and select the important causal

factors for LSM.

In the TGRA, the impoundment and rapid urbanization caused manyiablandslides and rockfalls (Yin et
al., 2016). The previous studies did not consider the landslide types conducting landslide susceptibility
mapping (Bai et al., 2010; Wu et al., 2013). This is the originality novel approach of this research and the
authors hope that it would generate landslide susceptibilitywitaphigher accuracy and better spatial agreement

for the study area.

2. Study area

2.1 General characteristics

The study area is located in the southwest of China, the midaihea® of the TGRA, within longitude
108°30~108°45 east and latitude 30°3€B0°40 north. It belongs to Chongging and Hubei, and the total area is
about 440krh (Fig. 1). The region is surrounded by middle and low mountains. Téxages annual rainfall is
1,100~1,400mm, and the monsoon season is from April to September, wheaxthreim monthly rainfall reaches

up to 300 mm.

The strata in this study area are mainly Mesozoic, theslanasl layer covers most of the region, except the
Triassic limestone exposed in the anticline core. The wmaticropping strata in this area include the Penglaizhen
Formation and the Suining Formation of upper Jurassic (J3p andhiBs)pper and lower Shaximiao Formation
and the Xintiangou Formation of middle Jurassic (J2s, J2xs, and J2x), aratitregB-ormation of middle Triassic

(T2b).

The completion of the Three Gorges Dam increased the engigeactivities, such as the highway
construction and urban reconstruction. The geological environment evasisty damaged by large-scale

excavations in the construction site and indiscriminate slopiegutc. The main human engineering activities in



81 this area contain the new urbanization in rural areas and the construdt@ffiofoutes, such as the G318 national

82  highway and so on.

— | National boundary
— | Provincial boundary
— | Yangtze River O

260000 264000 268000 272000 276000 280000 284000
1 1 | 1 1 1

[l j=}
[l jd
(=} =4
<t =<t
[N [N
on o
on on
[l j=d
S j=)
[l jel
O .
[N [N
on o
on on
(=] o
[l j=3
(e =3
\O = = \O
0 0
on o
on on
[l j=}
(] j)
S =}
A =
0 0
on on
on on

260000 264l000 268I000 2721000 2761000 280'000 284'()00
* Colluvial landslide + Rockfall 1485m JlF &  300m

83
84 Fig. 1 (a) Site map of the TGRA in Chinép) Location of the study area in the TGRA, dogthe
85 digital elevation model (DEM) showing the landslideations

86 2.2 Landdidetypes

87 The occurrence of landslide is affected by various condition® © regional setup and local context,
88 different landslide types always developed. Two landslide typestean identified in the study area:

89 Coalluvial landdide: The colluvial landslides (Varnes, 1978; Hungr et al., 2014) withllsor medium-size

90 developed a lot in the study area (Fig. 2a). The rainfallragervoir level fluctuation provided external triggering
91 factors for the occurrence of colluvial landslide. The rainfedteases the sliding force of landslide mass, while the

92  reservoir level fluctuation reduces the sliding resistanazfdhe combined effort of which may decrease landslide



93  stability and improve the occurrence probability.

94 Rockfall: The rockfall (Varnes, 1978; Hungr et al., 2014) is another naaidslide type and often developed
95 in a multi-stage pattern (Fig. 2b). In the abrupt cliff, becafsthe developed large structural joints, large-scale
96  rockfall often occur. In the gentle slope, there are many huengineering activities, such as road construction.
97  The slope may lose the original equilibrium state under theeinée of artificial cutting slope, which could induce

98 the occurrence of small-scale rockfall.

100 Fig. 2 Landslide typeg(a) Colluvial landslide(b) Multi-stage rockfall

101 3. Methodology

102 3.1 Landslide causal factorsanalysis

103  3.1.1 Information value model

104 The information value model (Yin and Yan, 1988) is based on the cotiwpiandslide occurrenceg)(is
105 affected by various factorsg), and their influences to landslides are different. According toonditional

106  probability, the formula for the information value can be written as:

Py X )
PY) 1)

108 Where I(y,x,) is the information value under the causal fackors P(y)is the probability of landslide

107 I(y,x) =Log,

109 occurrencep(y x )is the probability of the occurrence of landslide under the téasarx, . The probability can

110 pe calculated using the area ratio as well. The formula (1) can hessagras:

y /'S

111 I(y,x) =Log, % 2
AT A

112 Where S is the total area of the landslid&, is the landslide area under the factor, A is the total area

113 of the study area;A, is the area under the factog. It is worth to highlight that a positive value ofy,x,)
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indicates factorx, plays a promotion influence for landslide occurrence. In conasegative value of(y,x,)

indicates factorx; plays an inhibitive effect on landslide occurrence.

3.1.2 Information gain ratio

Information gain ratio (IGR) is one of the most efficient feagelection methods (Quinlan, 1993; Tien Bui et
al., 2016). The factors with a higher value of IGR indicate hdrigrediction ability of the models. Assuming that
the training data T consists di samples, and belongs to the clasglandslide, non landslide). Then, the

information entropy can be calculated as:

£ n(Ci.T) o N(CLT)

Info(T) = - 3)
Zl“ ITl ITl
The amount of information(T,,T,---T,,) split from Tregarding the causal factdf is estimated as:
m TJ
Info(T, F) ==Y —log, Info(T) (4)
= T
Then, the IGR of the landslide causal facter can be written as follows:
Info(T) — Info(T, F
IGR(T, F) = ~oT) ~ Info(T, F) (5)

Slitinfo(T, F)
Where Splitinfo represents the potential information generated by dividingtrdieing dataT into M

subsets. The formula ofplitinfo  was shown as follows:

Slitinfo(T, F) = —imlog AUl (6)
= [Tl [Tl
3.2 Landslide susceptibility modding
3.2.1 Support vector machine
Support vector machine (Vapnik, 1995) is a nonlinear classificatitmoghewhich is based on the principle of
Vapnik-Chervonenkis Dimension and structural risk minimizatidme fnput variables in the original space are

mapped into a high-dimensional linear feature space by nonlineefdmnamation. Then, in order to split the

positive from the negative, SVM model operates by attemptirfindoan optimal surface in the feature space

between the two types (Zhou et al., 2016). Assuming san{pleg):i =1,2--n, the optimal hyperplane can be
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solved by the following function:

Min(%||\7\,||2 +Ci{i)

y (WX +b)=1+& =0
& 20,i =1,20n

()

Where W is the weight vector that determines the orientation of thperdmane, b is the bias, ¢ is the

positive slack variables for the data points that allow genalized constraint violationC is the penalty
parameter that controls the trade-off between the compleikityeodecision function and the number of training
examples misclassified. The function can be converted inemaivalent dual problem based on the Wolf duality
theory:
1 -
Max(zi:ai _E;aiajyiyj ()QDXJ'))

8
> ayy,=0,0sa,<C

Where a; are Lagrange multipliersC is the penalty. Then, the decision function, which will be used for

the classification of new data, can be written:

f(x)=sgn(} y.a K(x,x;)+b) 9)
i=1
Where K(x,x) is the kernel function. The radial basis kernel was adogselernel function for SVM

model in this study.
3.2.2 Artificial neural networks

Artificial neural network is a reasoning model establisbadthe imitation of human brain function and
nervous system. Back propagation neural network (BPNN) (Hé¢iellden, 1988) is one of the most effective
ANNSs, it is a multilayer neural network consisting of an inlpyer, hidden layers, and an output layer (Fig. 3). In
signal propagation, the input signal is processed layer by fey@rthe input to the output. If the result of the
output layer is not expected, it would be transferred to theseywopagation, and adjust to the network weights

and thresholds according to the prediction error to approximate the despat out
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Fig. 3 The architecture of a three layers BPNN

The learning rate is an important parameter of ANN modelgchvimay affect its performance. In this study,

the learning rate will be automatically calculated using the followongpdila:
’7(”) :q(n_l)*exp(log@min /qmax)/d ) (10)
Where 77(n) is the learning rate in themtimes training; 77, is the minimum value of the learning rate;

Nmax 1S the maximum value of the learning rate, alldis the delay rate. In this study, the initial rate, the

maximum and minimum learning rate, and the delay rate are 0.3, 0.1, 0.01 and 3@yedgpec
3.2.3 Logistic regression

Logistic regression (LR) (Cox, 1958) is a multivariateistiaal method for landslide susceptibility mapping
(Budimir et al., 2015). LR can reveal the relationship betwaetarget variable and multiple predictor variables,
and predict the occurring probability of a certain event.dtasistical analysis of LR, the predictor variables can be
either continuous or discrete, and there is no need to meet the nornialtitist. The formula of LR is as follows:

1

y= 1+ e_(a+ﬁ.l.xl+ﬁzx2+"'+:3nxn) (11)

Where a is a constant,nis the number of independent variables(i =1,2,--,n) is the predictor

variables andZ (i =1,2,-- n) is the coefficient of the LR.

4. Data preparation and analysis

4.1 Landdlideinventory
Landslide inventory is the basis for landslide susceptibilitypitay. An accurate and reliable landslide
inventory data is crucial for LSM (Corominas et al., 2013; Zhal.et2014). According to the Chinese National

Standard of Specification for landslide survey and risk aswsgs (http://www.caghp.org/standard.php), the
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landslide inventory map was prepared by incorporating and analjighegresolution remote sensing images of
Pleiades-1 (9/22/2014) and GF-1 (3/30/2015), through field investigatnd the historical landslide data. A total
of 202 landslides were identified which contains 95 colluvial laddsland 107 rockfalls (Fig. 1c). The total area
of the colluvial landslides was calculated as 3.35kmtile the area of individual colluvial landslide rangesnf

7.1nt to 0.24km. The total area of rockfall is 0.28 krand the area of individual rockfall ranges from 1.93m

0.04knt. The colluvial landslide and rockfall are dominant in the staa. Both types are sensitive to different
engineering geology conditions, which causes the differences ptithelopment laws. In this study, the colluvial
landslide and rockfall were analyzed and assessed separaiglyhe final landslide susceptibility map was

obtained by combining them (Fig. 4).
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187 Fig. 4 The flowchart of the landslide susceptibility assesnt
188 4.2 Landslide causal factors
189 Landslide hazard is caused by the interaction between the inggolagical conditions of slope and the

190  external environmental factors. Based on field investigation, dataséand previous researches (Wu et al., 2013;

191 Peng et al., 2014), twelve factors were prepared initfaliylandslide susceptibility assessment: altitude, slope,
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aspect, plan curvature, profile curvature, stream power i(@BX, topographic wetness index (TWI), lithology,
bedding structure, and distance to faults, rivers, and roadstelimnship between landslide occurrences and
causal factors was analyzed quantitatively using the infosmatlue model. Moreover, in order to classify the
continuous causal factors (altitude, slope, and so on) reasonaplwerediscretized into small intervals first, and
then three kinds of curves were obtained by statistiosielyathe distribution curve of the whole area, the
distribution curve of the landslide area, and the curve of infiomaalue. Finally, the continuous causal factors

were classified by the breakpoints of the three kinds of cuBresu(et al., 2015).

Topographic factors

The topographic factors used in this study were prepared usiggal elevation model (DEM) with a spatial
resolution of 25m, which was collected from China Geological SurBubsequently, six topographic factors
(altitude, slope, aspect, plan curvature, profile curvature aB&ITWI) were extracted in ArcGIS 10.0 using the
mentioned DEM.
Altitude

The altitude range in this area is 300m~1,300m, which was diudedive classes: [300~450), [450~700),
[700~950), [950~1,100), [1,100~1,500) (Fig.5a). The colluvial landslide magdyrred in the altitude range of
450~700m and 700m~950m, and their information values are 0.086 and 0.30&jvelsp@able 1). The rockfall
mainly occurred in the altitude from 300m to 950m, the altitude raof§g300, 450) and [450, 750) have the
largest information values of 1.196 and 0.741, respectively.
Slope

The slope was divided into five classes: very gentle (Ogéfjtle (6~18°), moderate (18~30°), steep (30~39°),
and very steep (>39°) (Fig. 5b). The colluvial landslide nyagdcur in the gentle and moderate slope, and the
moderate slope shows the highest promotion influence on it, whasmation value is 0.911 (Table 1). Different
effect shows on rockfall, which is more prone to occur in thepstand very steep slopes, and their information

values are 0.970 and 1.432, respectively.
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Table 1 Spatial relationship between causal factors andslides

Causal factor  Category Percentgge Percentage IV of CL Normalized Percentage IV of Normalized clas
of domain of CL class of CL  of rockfall rockfall of rockfall
Altitude (m) <450 6.39 4.03 -1.231 0.010 14.64 1.196 0.990
450-700  23.38 28.11 0.086 0.745 39.07 0.741 .75
700-950  30.33 48.11 0.303 0.990 23.40 -0.374 0.500
950-1100  20.24 16.03 -0.214 0.500 15.15 -0.418 0.260
>1100 19.66 3.73 -0.799 0.255 7.73 1346 10.0
Slope (%) <6 9.46 10.14 0.666 0.745 2.07 -2.190 0.010
6-18 26.47 43.95 0.911 0.990 7.37 -1.844 258.
18-30  38.99 23.25 -0.383 0.255 36.64 -0.090 0.500
30-39 1859 20.36 0.008 0.500 36.41 0.970 .74%
> 39 6.49 2.30 -3.007 0.010 17.51 1.432 0.990
Aspect Flat 3.10 0.56 -2.463 0.010 0.23 -3.777 0.010
N 11.86 13.08 0.142 0.745 14.93 0.333 0.623
NE 8.38 3.57 -1.231 0.133 18.78 1.164 0.990
E 9.25 5.55 -0.735 0.255 6.33 -0.546 0.255
SE 14.90 21.76 0.547 0.990 3.17 2.234 0.133
S 11.22 8.21 -0.451 0.500 14.48 0.368 0.745
SW 9.22 5.57 -0.727 0.378 14.03 0.605 0.868
w 16.91 19.34 0.193 0.868 14.93 -0.179 0.500
NW 15.17 15.68 0.048 0.623 13.12 -0.209 0.378
Plan Concave  26.71 21.08 -0.342 0.010 32.58 0.287 0.500
curvatre gy 45.60 44.07 -0.049 0.500 29.64 -0.622  010.
Convex  27.69 28.18 0.025 0.990 37.78 0.448  99M.
Profile Concave  26.42 26.24 -0.010 0.500 31.22 0.241 0.500
curvatre gy 41.82 43.00 0.040 0.990 31.00 0432 100
Convex 3176 24.08 -0.399 0.010 37.78 0.251 .99®
SPI 0-2 32.40 22.99 -0.495 0.010 38.01 0.230  990.
2-4 42.81 41.84 -0.033 0.663 40.27 -0.088 .33D
4-8 12.39 19.18 0.631 0.990 12.22 -0.020  663.
>8 12.41 9.32 -0.414 0.337 9.50 -0.385 0.010
TWI 0-45 6117 42.89 -0.512 0.010 42.76 -0.517 0.010
45-65 14.62 17.72 0.277 0.337 21.72 0.571 0.663
6.5-8 10.88 15.26 0.488 0.990 10.41 -0.064 0.337
>8 13.32 17.45 0.390 0.663 25.11 0.914 0.990
Distanceto  0-200  27.55 38.19 0.470 0.990 31.24 0.182 .99®
rivers/m 200-500 32.20 29.47 -0.130 0.663 32.28 0.003 0.663
500-1000  35.29 30.00 -0.240 0.337 33.88 -0.059 0.337
>1100  4.97 2.34 -1.090 0.010 2.60 -0.934 100
Distanceto 0 -50 30.91 43.14 0.480 0.990 67.32 1123 990.
roads/m 50-150  35.90 34.92 -0.040 0.663 27.42 -0.388 0.663
150 - 400  25.27 19.04 -0.410 0.337 2.68 -3.237 0.010
> 400 7.93 2.90 -1.450 0.010 2.58 1622 D33




Percentage Percentage Normalized = Percentage IV of Normalized clas

Gausalfactort=Category of domain of CL Iviaf el class of CL  of rockfall  rockfall of rockfall
Distance to 0 - 200 5.81 11.40 0.970 0.990 12.47 1102 99®.
faults/m 200-400 5.71 7.99 0.480 0.663 6.70 0230 663.
400-800 11.33 12.81 0.180 0.337 753 -0.590 0.337
> 800 77.15 67.79 -0.190 0.010 73.30 -0.074 .01@
Lithology A 9.78 15.49 0.663 0.794 8.80 -0.151 0.598
B 6.62 4.43 -0.581 0.206 0.23 -4.875 0.010
C 14.22 17.21 0.275 0.598 2.93 2.277 0.206
D 24.36 25.65 0.074 0.402 6.32 -1.946 0.402
E 39.01 19.34 -1.012 0.010 73.14 0.907 0.990
F 6.01 11.21 0.899 0.990 8.58 0.513 0.794
Bedding BS1 57.14 27.07 -1.080 0.010 83.61 0.549 ®.99
stucture g5 071 0.95 0.420 0.500 0.01 6.105  0.010
BS3 7.93 26.98 1.770 0.990 1.13 -2.806 0.173
BS4 5.86 7.49 0.360 0.337 1.13 -2.369 0.337
BS5 9.31 9.52 0.030 0.173 4.23 -1.139 0.663
BS6 6.90 9.90 0.520 0.663 1.44 -2.258 0.500
BS7 12.16 18.09 0.570 0.827 8.45 -0.524 0.827
219 Note: CL means Colluvial landslide, and IV mearfsrimation value.
220  Aspect
221 The aspect was divided into nine categories (Fig. 5c). THeva@l landslides on the southeast aspect

222 represent the highest occurrence probability with an infdomavalue of 0.547. The rockfalls on the northeast
223  aspect are the easiest to occur, its information valueeidighest of 1.164. Because of the inhibition effect on
224  slope movement, the information value of flat terrain are theileasth the landslide types (Table 1).

225  Plan curvature

226 The plan curvature varies within the range of -14.0~7.9, and tpe plattern was divided into convex, flat,
227  and concave (Fig. 5d). The convex slope has slightly promotion efiemlluvial landslide; its information value
228 is 0.025 (Table 1). For rockfall, the flat curvature shovightlly inhibition effect and the information value is
229  -0.662. The information values of concave and convex curvature are 0.287 and Op&tBivedg.

230  Profilecurvature

231 The profile curvature varies within the range of -12.9~13.3.Sltyge pattern was divided into convex, flat,
232 and concave as well (Fig. 5e). As shown in Table 1, the prfiteature has slight influence on the occurrence of
233 both colluvial landslide and rockfall. The flat slope has thédsg information value of 0.004 for the colluvial

234  landslide, while the convex slope has the highest information value of 0.2%tkéalk.
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239 Fig. 5 (continued).
240  SPl and TWI

241 The SPI and TWI are commonly used to quantify topographic influenchydrological processes (Moore et
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al., 1991). In this study, the value of SPI was classified mto ¢ategories: 0-2, 2-4, 4-8, and >8 (Fig. 5f), while
the value of TWI was divided into four classes of 0-4.5, 4.5-6.5, G@&eB>8 (Fig. 59). The positive and negative

influence of SPI and TWI are slight, all the information valueselegively smaller (Table 1).

Lithology

The main outcropping strata of the study area include Badonmgakion, the upper and lower Shaximiao
Formation of middle Jurassic and so on. The lithology was ¢attadfcom the geological map (Fig. 5h) and
grouped into six categories (Table 2). The category F shows timgast positive influence on colluvial landslide
with the largest information value of 0.899. More than 70% of rdiskéecurred in category E, and its information
value is the largest of 0.907 (Table 1).

Table 2 Lithological classification in the study area

Category Main lithology Geologic group
A Muddy limestone !, T.b®
B Lithic sandstone Xj
C Sandstone, mudstone (shale) 1Z, IX
D Mudstone, pelitic siltstone with sandstone ,xsl 3, ks
E Lithic sandstone with mudstone xg, 38°
F Interbeds of mudstone and sandstone S

Bedding structure

Bedding structure indicates the intersection relationship betstesta and slope, its classification is shown in
Table 3, In this study area, the colluvial landslide mostly oedurnr the under-dip slope and horizontal strata slope
(Fig. 5i), and the under-dip slope got the maximum information sadtid.770. Because of rock outcropping and
its developed vertical fissure (Fig. 2b), more than 80% of atiskére distributed in the horizontal strata slope,
whose information value is the highest of 0.549 (Table 1).

Table 3 Classification of bedding structure

Category Type of Bedding Structure Definition(Slope:6 ,Aspect:0 ,bed dip angle@ ,bed dip directionﬁ)

BD1 Horizontal strata slope a <10°

BD2 Over-dip slope ((Jo-Ao(o.30])o(|o-p o[ 330.360))) &&la> 10) &&lo>a)
BD3 Under-dip slope ((o-Ao(o.30])0(lo-g 0l 330 .360))) &&la> 10) &&lo<a)
BD4 Dip-oblique slope (lo-Alolse.60)) (o -4 o[ 300 ,330))

BD5 Transverse slope (lo-gloler.120)) 0 (Jo -pl o[ 240 ,300))

BD6 Anaclinal oblique slope  (|o- 5| n[120°,150)) 0 (|o -4 O[ 210 , 240))

BD?7 Anaclinal slope (lo- Al o[as0,180)) 0 (o -8 0 180 , 219)
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Distance to faults

The proximity parameters (distance to faults, rivers andisjoavere calculated using geological and
geomorphologymaps based on the Euclidean distance method in ArcGIS 10.0.atlike ih the study area is
relatively simple (Fig. 5j), most of the landslides occuffil@daway from the faults. Within the influence area, the
faults show a more positive effect on landslide occurrence. Wisedistance to faults is smaller than 200m, the

information values for colluvial landslide and rockfall are the&imam of 0.970 and 1.102, respectively (Table 1).

Distancetorivers

The distance to rivers was divided into four classes, na@e€200m, 200~500m, 500~1,100m, and >1,100m
(Fig. 5k). In the study area, 38% of the colluvial landslidesdsstributed within the range of 200m from rivers, its
information value is the maximum of 0.471. There are few colldaraslides when the distance is greater than
1,100m, whose information value is the minimum of -1.090. The rivers ahglight effect on rockfall, when the

distance to rivers is less than 200m, the information value is the hajl®482 (Table 1).

Distance to roads

The distance to roads was classified into four categoriesielga0~50m, 50m~150m, 150m~300m,
and >300m (Fig. 5I). In the study area, 43% of colluvial landslate distributed within the range of 50m from
roads and the information value is the highest of 0.480. The roaal $tasng influence on rockfall, because the
cutting slope was caused by road construction (Fig. 2b), 67%ckfatls are distributed within the range of 50m
from roads and the information value is the maximum of 1.123. Only 2&8#6ckfalls occurred when the

distance to roads is more than 400m, its information value is the minorhtind51.

5. Resultsand analysis

5.1 Landslides susceptibility mapping
5.1.1 Data prepar ation and multicollinearity analysis

The machine learning models are more sensitive to dateeindesired range. Consequently, the landslide
causal factors were normalized into the range of [0.01, @&&)rding to the information values (Table 1). The
normalized data of the factors were taken as input daththe landslide susceptibility index (landslide:1, non

landslide:0) was taken as output data. 70% of colluvial ladelsind rockfall locations were randomly selected as



285

286

287

288

289
290

291

292

293

294

295

296

297

298

299

the training samples, and the remaining 30% were used to evéheaperformance of the models. Furthermore,
the negative data (non colluvial landslide, non rockfall) and ipesdata (colluvial landslide, rockfall) were
considered equally important in LSM. The same number of neghdteewas randomly selected from the landslide

free area (Felicisimo et al., 2013), its distribution is showngn@ci

e non colluvial landslide e non rockfall (\’_._1

Fig. 6 The distribution of non landslide samples
Multicollinearity among the factors may influence the accyraf the susceptibility models. The Variance
inflation factors (VIF) and Tolerances were applied to thet multicollinearity among the twelve factors, a
Tolerance of less than 0.2 or a VIF of 5 and above indicatedteolinearity problem Q’Brien, 2003. As shown
in Table 4, the smallest tolerance in the colluvial landshde rockfall assessment are 0.741 and 0.702,
respectively, the highest VIF of them are 1.350 and 1.425, respectively. Neottinkarity was found between the

causal factors.

Table 4 Multicollinearity of the causal factors

Fact Colluvial landslide Rockfall

actor VIF Tolerances VIF Tolerances
Altitude 1.406 0.711 1.235 0.810
Slope 1.097 0.912 1.112 0.899
Aspect 1.024 0.977 1.054 0.949
Plan curvature 1.097 0.911 1.055 0.948
Profile curvature 1.152 0.868 1.180 0.847
SPI 1.315 0.761 1.276 0.783
TWI 1.452 0.702 1.350 0.741
Lithology 1.114 0.898 1.107 0.903
Bedding structure 1.122 0.891 1.094 0.914
Distance to faults 1.040 0.961 1.045 0.957
Distance to rivers 1.390 0.720 1.290 0.775
Distance to roads 1.063 0.940 1.158 0.864

5.1.2 Selection and elimination of the lessimportant causal factors

Twelve factors were initially prepared and considered asslaledcausal factors, the factors often show
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different contribution for susceptibility modeling. The IGR techniquas used to quantitatively assess the

importance of each factor. The average merit of eaclrfastshown in Fig. 7. The causal factors with higher

average merit values are more important. The results indltatehe distance to roads is the dominant factor for

rockfall with an highest average merit value of 0.109. @hitude with the average merit of 0.023 is the most

important factor for colluvial landslide (Fig. 7).

]
Slope 1
I

Plan curvature {_] ( a) TWI {1
Profile curveture 1] Profile curveture 4]
Distance to roads +—~-1 | Distance to faults -ﬁ o
Bedding structure | Plan curvature 1]
Distance to faults 1| Aspect ]

TWI{ ] Altitude {1

SPI{ ] SPI 11
Aspect ] Bedding structure -
Slope 7]
Lithology ] Lithology -
Distance to rivers - ] Distance to rivers -
Altitude A | Distance to roads -
0.000 .005 .010 015 .020 .025 0.00

Average merit

.02 .04 .06 .08 .10 A2

Average merit

Fig. 7 The average merit of each causal factor in (aue@l landslide (b) rockfall

Although all the selected factors are relevant to landsliést is proved that the less important factors may

cause noise and reduce the prediction accuracy (Pradhareengd10b; Pham et al., 2016a). In order to find the

most effective combination of the causal factors, theofacivere eliminated one by one starting from the least

important factor, and the SVM was used to test their prediction agcésshown in Table 5, the accuracy of both

the colluvial landslide and rockfall modeling increased whenleése important factors were eliminated. The

highest performance was achieved when the two least impoataotd were removed. Thus, the plan and profile

curvatures were removed in colluvial landslide modeling, whigeTWI and profile curvature were eliminated in

rockfall modeling (Table 5).

Table 5 The prediction accuracy with elimination of thedemportant factors

Model

Eliminating unimportant factors

AUC

Colluvial landslide
Model-1
Model-2
Model-3
Model-4

Rockfall
Model-5
Model-6
Model-7
Model-8

Without eliminating any factor

Plan curvature

Plan curvature, Profile curvature

Plan curvature, Profile curvature, Distateweoads

without eliminating any factor

TWI

TWI, Profile curvature

TWI, Profile curvature, Distance to faults

0.893
0.901
0.912

0.902

0.902
0.911
0.932
0.906
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5.1.3 Landsdlide susceptibility modeling

The machine learning models of SVM and ANN and the multivasgdtistical model of LR were applied to
assess the susceptibility of colluvial landslide and rockfall, reseégtthe modeling processing was carried out in
Clementine 12. As stated in Section 5.1.2, ten important factors,nalikeide, slope, aspect, TWI, SPI, lithology,
bedding structure, distance to rivers, faults and roads vedeetesd to establish the colluvial landslide model.
Meanwhile, altitude, slope, aspect, plan curvature, SPI, lithpolmedding structure, distance to rivers, faults and

roads were selected as inputs of rockfall modeling.

In this study, the parameters of SVM and ANN were obtained loy and trial method, which is shown in
Table 6. Regarding ANN, the four layers ANN was adopted, arldatsing rate was calculated automatically by
formula (10). In the modeling of LR, the logistic regression equati@olluvial landslide index (CLI) and rockfall
index (RI) are shown as follows:

CLI = ((-4.843) + (Distance to roads *(-0.3p8- (Lithology *1.553)
+ (SP1*0.249) + (Aspect *1.407) + (Biance to faults *0.09€

+ (Bedding structure *(-0.180)) Bistance to rivers *1.384) (12)
+ (TWI*0.704) + (Altitude *0.696) + (Slope *1.0%6
RI = ((-7.628) + (Distance to roads * 2.544)R&n curvature *0.20(
+ (Bedding structure *0.855) + (Asqt *1.124) + (SP1*0.642) (13)

+ (Distance to faults *(-2.247)) + (Distanoeivers *1.494)
+ (Lithology *2.979) + (Slope *1.200) + (Altitud®.628))

Table 6 The parameters of SVM and ANN models

Models Parameters Notes

SVM of colluvial landslide c =20, y=15 C is the penalty factor,)/ is the parameter of the
SVM of rockfall c=20y=15 kernej\jdnction;

ANN of colluvial landslide n, =80,n, = 30a = 0.€ Ny, Nyare the neurons number of the 1st and 2nd
ANN of rockfall n,=70,n, = 30 = 0.¢ hidden layers respectively@ is the momentum.

The colluvial landslide and rockfall susceptibility indexere calculated applying the SVM, ANN and LR
models respectively, the results are shown in Fig. 8. Then, @iddimdslide susceptibility index was obtained by
selecting the larger value of each pixel between thendalllandslide and rockfall susceptibility index. At last, the
landslide susceptibility index was divided into five levalery High (10%), High (20%), Moderate (20%), Low
(20%) and Very Low (30%), which is shown in Fig. 9. Furthermarerder to verify the significance of landslide
classification, the susceptibility modeling without landshitbssification was conducted using the three models as

well, and the parameters of machine learning models are same tdlukmkckandslide modeling (Table 6).
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5.2 Validation and comparison

5.2.1 Using accur acy statistic

Validation is an essential component in landslide susceptiliitgeling to attest the effectiveness and

scientific significance of the used method (Frattini et al., 20l@e landslide distribution in different susceptibility

T
260000

T
264000

T
26aRO00

Landslide susceptibility mapping using LR

levels was statistically analyzed. The results are shown in Taie Fig. 10:

(@ In case of the SVM model, 87.79% of the landslides wereildigtid in the High and Very High

T
272000

T
276000

T
2RO000

T
>R4000

susceptibility groups, while the results of the ANN and LR models W&£1% and 57.07%, respectively.

(b) The area of the Very High level of SVM model accounted for 9.284% abtaledomain with a proportion

of landslide in the total landslide of 65.13%. The frequency @tiISVM model in the Very High level was the

largest (7.015), while the ANN and LR models were much smaller i.e. &ri2#12.233, respectively.



353 Table 7 Accuracy statistics of the SVM, ANN, and LR models
- . ) . ) . Proportion of Proportion of Proportion of
Susceptibility  Probability of Pixels in Pixels in L L . Frequency
Level landslide landslidef) domaing) landslide in landslide in total ~ domain in total ratios C/D)
domain@/B) landslideC) domain)
SVM
Very Low 0.000 ~ 0.023 31 197837 0.016% 0.550% 8.2 0.018
Low 0.023 ~ 0.082 191 144568 0.132% 3.390% 22.13% 153
Moderate 0.082 ~ 0.240 466 129432 0.360% 8.269% 819M. 0.417
High 0.240 ~ 0.824 1277 120875 1.056% 22.66% 18.50% 1.225
Very High 0.824 ~ 1.000 3670 60657 6.050% 65.13% 283% 7.015
ANN
Very Low 0.000 ~0.169 228 199042 0.115% 4.046% .6G% 0.132
Low 0.169 ~ 0.275 364 133837 0.272% 6.459% 20.58% 0.314
Moderate 0.275 ~ 0.400 619 129085 0.480% 10.98% 8498 0.553
High 0.400 ~ 0.620 1671 127778 1.308% 29.65% 28.65 1.509
Very High 0.620 ~ 1.000 2753 60627 4.541% 48.85% .322% 5.241
LR
Very Low 0.000 ~0.151 462 198051 0.233% 8.198% 45 0.269
Low 0.151 ~0.234 702 131161 0.535% 12.45% 20.17% 0.618
Moderate 0.234 ~ 0.343 1255 129462 0.969% 22.27% 9199 1.119
High 0.343 ~0.532 1988 128235 1.550% 35.28% 19.72% 1.789
Very High 0.532 ~ 1.000 1228 63460 1.935% 21.79% 758% 2.233
354 (c) As for the level of Very Low, the area of SVM model acdedrfor 30.28% of the total domain, while its
355 landslide only accounted for 0.550% of the total landslide. The fneguatio of SVM model in the Very Low
356 level was the lowest of 0.018; and the ANN and LR models @&@? and 0.269, respectively, which were much
357 larger than the SVM model.
70 8
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359 Fig. 10 Landslide proportion and frequency ratio of eactceptibility level
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5.2.2 Using ROC curve

The statistical method is effective to evaluate the moddbimeance. However, it is a cutoff-dependent
approach that requires reclassification of landslide subdéptindex. The evaluation results may vary with the
breakpoints of reclassification. The receiver operating chexiatics (ROC) curve (Hanley and McNeil, 1983) is
cutoff-independent. The area under the ROC curve (AUC) can begauisssess the performance of models, and

the model with a larger AUC is considered better.

The ROC curves in Fig. 11 and 12 show the training and verifyarbrmance of the used models in the
colluvial landslide and rockfall modeling, respectively. The mrae learning models of SVM and ANN achieved
excellent performance in both of the colluvial landslide and rdcaésessment. The SVM model outperformed
ANN, its AUC of training and verifying are 0.937 and 0.912, respeigtiin colluvial landslide assessment, 0.967
and 0.932, respectively in rockfall assessment. The SVM mobvad higher prediction accuracy, because it is
based on the principle of structural risk minimization, instgfagtaditional experience risk minimization, and its
solution is globally optimal. On the contrary, the ANN is basedhenprinciple of experience risk minimization

which often leads to locally optimal solution.

100 100
(a) (b)
80 80
B 60 %\ 60 —
E 5
‘a = 4
5 5
U 40 Logistic Regression @ 40 — Logistic Regression
AUC = 0.757 AUC = 0.748
Support Vector Machine 7 Support Vector Machine
& AUC : 0.937 20 - AUC =0.912
— Artificial Neural Networks —— Artificial Neural Networks
AUC = 0.868 | AUC =0.852
0 I | I I 0 T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
100 - Specificity 100 - Specificity

Fig. 11 The ROC curves of the SVM, ANN and LR models inwdaghl landslide susceptibility assessmea):
training and(b) verifying

The LR model shows the worst performance in both cases witlettiging AUC value of 0.748 and 0.884,

respectively. The colluvial landslide development is stroagly jointly affected by many factors, which is a more
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complex nonlinear problem than the rockfall (Fig. 7). The LR mode lisear combinations of variables, which

is not adept at modeling grossly complex nonlinear problem. Thiseiseason why LR model showed worse

performance in colluvial landslide modeling but better in rockfglshown in Fig. 9, the Yangchengzhi landslide

was predicted accurately by the two machine learning models, bpteticted accurately by LR model. Overall,

the machine learning models of SVM and ANN achieved betteonpesihce than the multivariable statistics model

of LR, and the SVM performed the best.
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Fig. 12 The ROC curves of the SVM, ANN and LR models inkfatt susceptibility assessmei#) training and
(b) verifying

As shown in Table 8, the prediction AUC of SVM, ANN, and LR in spsb#ity assessment without

landslide classification are 0.881, 0.836 and 0.697, respectively. All of theesarén the prediction AUC of the

separate colluvial landslide and rockfall assessment. Dutbetcseparation of landslide type, the prediction

accuracy of the three models were improved 0.041, 0.043 and 0.119, kedpddable 8). The susceptibility

assessment with landslide classification can achieve morgate prediction than the susceptibility assessment

without landslide classification, especially for the model without stréagsification capacity.

Table 8 The prediction performance comparison
AUC of prediction

Accuracy

Models Landslide without - ooy vial landslide ~ Rockfall — improvement
classification

SUM 0.881 0.912 0.932 0.041

ANN 0.836 0.852 0.906 0.043

LR 0.697 0.748 0.884 0.119

Note: Accuracy improvement = (Colluvial landslid&Reckfall) / 2 - Landslide without classification



396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

5.2.3 Statistical significance test

It is important to check if the performance among the used md@e a statistically significant difference
when comparing their performance (Pham et al., 2016b; Tien Buj 204b). The Friedman test (Friedman, 1937)
is an effective non-parametric method and widely used int&tatisignificance test. In this study, the Friedman
test at 95% significant level was carried out to chedkefe are statistically significant differences betwéhe
three susceptibility models. All the p-values of the colluaaldklide and rockfall modeling were extremely low (<
0.000) and less than 0.005. It indicates the null hypothesis (i.e., neddés between the performance of the test

models) is rejected. Consequently, the performance of the three maglgtsfisantly different and comparable.

6. Discussion

In this study area, the landslides were divided into two typelfavial landslide and rockfall. The causal
factors had different significances on landslide occurrena@seXample, the distance to roads was the dominant
factor for rockfall, while the colluvial landslide was stron@ffected by the distance to rivers, altitude, and
lithology (Fig. 7). Various levels of causal factor influeddandslides types inversely. As shown in Table 1, the
slope of 6~18° had the most positive effect on colluvial landslitide the slope > 39° showed the most positive
effect on rockfall. Taking all these issues into accour, development law of each landslide type was found
different, it was suggested that each LSM should be conduepsdagely when the study area is threatened by

more than one landslide type, then a more accurate prediction can be achae®).

The LR performed well in rockfall with the predicted AUC of 0.8Bd{ not good in the colluvial landslide
with the predicted AUC of 0.748. It indicates that the LR model is ntatdaifor complex nonlinear problem. The
machine learning models (SVM and ANN) are excellent in bathctiluvial landslide and rockfall susceptibility
assessment. It demonstrates that the machine learning moel@lls@applicative in complex nonlinear problem,
and the SVM model has a better performance because of its gloptithal solution. Moreover, one issue should
be noticed that the model performance is data dependent, it maywithr different cases. For instance, the
Random Forest model performed well in Arno River basin (deltaty) (Catani et al., 2013), but not well in
Lianhua County (China) (Hong et al., 2016). In this study, the SVM shetate prediction performance in both

the colluvial landslide and rockfall assessment. Furthermsregported in previous literatures, the SVM model
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achieved accurate prediction in almost all the casesll{Bna 2013; Peng et al., 2014; Pham et al., 2016a; Lee et
al., 2017), which stated that the performance of SVM has a stoingtness. Hence, the SVM model can be

recommended before reaching a consensus on the model of landslide lsiliscapiessment.

The error of landslide susceptibility assessment is compoghe ¢dise positive part and false negative part.
Statistically, the two parts have the same influence on hp®ié&rmance, but their cost of misclassification is
totally different. To a certain extent, the false positive resujt mastrict the use of land, leading to economic losses
slightly. But if the landslide or landslide-prone areas are eouste identified as stable slopes, such as the
Yangchenzhi landslide in the susceptibility map of LR (Fig. i proceed with land planning and utilization
without any risk control measures, it may lead to catastragmnsequences. In the future study of susceptibility

assessment, we should pay more attention to reduce the false negative er

7. Conclusions

Landslide susceptibility assessment is crucial for stdod-use planning and disaster risk reduction in
landslide-prone areas. In this study, Longju in the TGRA was takancase study where two types of landslide
were observed, the colluvial landslide and rockfall, and timeichanisms were different. Altitude (450m-950m),
distance to rivers (<200m), and lithology (Interbeds of mudstone amds®ne) were dominant in colluvial
landslide, while the crucial factors of rockfall were idiged] as distance to roads (<50m), distance to rivers
(<200m) and lithology (Lithic sandstone with mudstone). Due to tharagon of landslide type, the prediction
AUC values of SVM, ANN and LR models were improved 0.041, 0.043 and 0.119¢treslye It indicates that
the LSM with landslide classification can achieve more éxgeperformance. It is recommended to separately

analyze and assess each landslide type, and combine separate sitscetiibib obtain better results.

The causal factors have different influences on landslide @armas, which lead to different contributions of
each factor to the modeling and assessment of landslide susitgptitidrmation gain ratio is an effective method,
which can quantify the importance of causal factors. The meafoce comparison of the eight models with
different eliminated factors indicates that the less ingmbrfactors may have a negative effect in LSM and those

noise-producing factors should be eliminated to achieve greatertpmedtiecision.
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Two machine learning models (i.e. SVM and ANN) and a multiterstatistical model (namely LR) were
applied to carry out the colluvial landslide and rockfallcepsibility assessment. The performance was evaluated
by the ROC curves and Friedman test. The comparison results deateorisat the machine learning models
outperform the multivariate statistical method. The SVM matielwed the best performance with AUC value for
training and verifying of 0.937 and 0.912 respectively in colluviadi&ide assessment. The training and verifying
AUC value was found 0.967 and 0.932, respectively in rockfall aseess8VM model are highly recommended

to conduct landslide susceptibility assessment in the TGRA and athlar siontext.
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Highlights:
1. The development laws of the colluvial landslide and rockfall were analyzed.
2. The model performance was improved by eliminating less important factors.

3. The separated modeling of each landslide type has significantly increased the
prediction accuracy.

4. The performance of three models was compared and the SVM model performed the
best.



