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Abstract: Landslide is a common natural hazard and responsible for extensive damage and losses in mountainous 10 

areas. In this study, Longju in the Three Gorges Reservoir area in China was taken as a case study for landslide 11 

susceptibility assessment in order to develop effective risk prevention and mitigation strategies. To begin, 202 12 

landslides were identified, including 95 colluvial landslides and 107 rockfalls. Twelve landslide causal factor maps 13 

were prepared initially, and the relationship between these factors and each landslide type was analyzed using the 14 

information value model. Later, the unimportant factors were selected and eliminated using the information gain 15 

ratio technique. The landslide locations were randomly divided into two groups: 70% for training and 30% for 16 

verifying. Two machine learning models: the support vector machine (SVM) and artificial neural network (ANN), 17 

and a multivariate statistical model: the logistic regression (LR), were applied for landslide susceptibility modeling 18 

(LSM) for each type. The LSM index maps, obtained from combining the assessment results of the two landslide 19 

types, were classified into five levels. The performance of the LSMs was evaluated using the receiver operating 20 

characteristics curve and Friedman test. Results show that the elimination of noise-generating factors and the 21 

separated modeling of each landslide type have significantly increased the prediction accuracy. The machine 22 

learning models outperformed the multivariate statistical model and SVM model was found ideal for the case study 23 

area. 24 

Keywords: Landslide susceptibility modeling; Machine learning; Support vector machine (SVM); Artificial neural 25 

network (ANN); Logistic regression (LR) 26 

1. Introduction 27 

Landslide is a common natural hazard in the mountainous or hilly regions. Every year, extensive economic 28 

losses and casualties are caused by landslide disasters (AGU, 2017). The Three Gorges Reservoir Area (TGRA) in 29 
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of the Three Gorges Dam (Yin et al., 2016). Together, the demand for land is increasing due to rapid urbanization. 31 

However, the uncertainty of landslide has restricted the land-use planning in this area. Landslide susceptibility 32 

modeling (LSM) is considered as the initial step towards a landslide hazard and risk assessment, and it can also be 33 

used for land-use planning and environmental impact assessment (Fell et al., 2008). The decision-makers and 34 

engineers value it for developing strategies vis-à-vis landslide disaster risk reduction. 35 

Landslides can be divided into many types according to different deformation mechanisms and failure 36 

patterns, and their development laws are often varied (Hungr et al., 2013). Landslide susceptibility assessment is 37 

performed based on the assumption that future landslides are more likely to occur under the similar conditions with 38 

present landslides. It is obvious that the occurrence conditions of various landslide types are different. For example, 39 

the rockfall always occurs in steep rock, while the creep landslide always occurs in soil with a gentle slope. 40 

Hereafter, in the area threatened by more than one landslide type, it is essential to conduct landslide susceptibility 41 

assessment considering the difference between landslide types. 42 

In recent years, LSM has become a popular research topic. At regional scale, the susceptibility models can be 43 

divided into qualitative assessment (inventory-based and knowledge-driven methods) and quantitative assessment 44 

(data-driven methods and physically based models). With the improvement of data quality through innovative 45 

techniques, the data-driven models are adopted for regional LSM, including the weights-of-evidence (van Westen, 46 

1993; Hussin et al., 2016), artificial neural network (Pradhan and Lee, 2010a; Gorsevski et al., 2016), random 47 

forest (Catani et al., 2013; Youssef et al., 2016), support vector machine (Yao et al., 2008; Pradhan, 2013) models 48 

and so on. In the data-driven models, the machine learning models performed better, and are considered more 49 

efficient than other approaches such as expert opinion based methods and analytic methods (Goetz et al., 2015; 50 

Pham et al., 2016a). The support vector machine (SVM) and artificial neural network (ANN) models were widely 51 

used in LSM and often achieved high prediction accuracy. However, no general agreement about the landslide 52 

susceptibility model exists yet, as the performance of the models requires more comparison in different cases.  53 

Although the machine learning models have shown better performance in mathematics, the occurrence of 54 

landslides is considered as an engineering geological problem. Before conducting LSM, it is essential to understand 55 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPTthe mechanism of landslides and analyze the relationship between causal factors and landslide occurrences (Guo et 56 

al., 2015), especially in an area that is threatened by different landslide types. The bivariate statistical and feature 57 

selection methods can quantitatively analyze the relationship between landslide occurrence and causal factors, 58 

which provide powerful techniques to analyze the landslide development laws and select the important causal 59 

factors for LSM. 60 

In the TGRA, the impoundment and rapid urbanization caused many colluvial landslides and rockfalls (Yin et 61 

al., 2016). The previous studies did not consider the landslide types when conducting landslide susceptibility 62 

mapping (Bai et al., 2010; Wu et al., 2013). This is the originality and novel approach of this research and the 63 

authors hope that it would generate landslide susceptibility map with higher accuracy and better spatial agreement 64 

for the study area. 65 

2. Study area 66 

2.1 General characteristics 67 

The study area is located in the southwest of China, the middle reaches of the TGRA, within longitude 68 

108°30′~108°45′ east and latitude 30°30′~30°40′ north. It belongs to Chongqing and Hubei, and the total area is 69 

about 440km2 (Fig. 1). The region is surrounded by middle and low mountains. The average annual rainfall is 70 

1,100~1,400mm, and the monsoon season is from April to September, when the maximum monthly rainfall reaches 71 

up to 300 mm. 72 

The strata in this study area are mainly Mesozoic, the Jurassic red layer covers most of the region, except the 73 

Triassic limestone exposed in the anticline core. The main outcropping strata in this area include the Penglaizhen 74 

Formation and the Suining Formation of upper Jurassic (J3p and J3s), the upper and lower Shaximiao Formation 75 

and the Xintiangou Formation of middle Jurassic (J2s, J2xs, and J2x), and the Badong Formation of middle Triassic 76 

(T2b). 77 

The completion of the Three Gorges Dam increased the engineering activities, such as the highway 78 

construction and urban reconstruction. The geological environment was seriously damaged by large-scale 79 

excavations in the construction site and indiscriminate slope cutting etc. The main human engineering activities in 80 
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highway and so on. 82 

 83 

Fig. 1 (a) Site map of the TGRA in China, (b) Location of the study area in the TGRA, and (c) the 84 

digital elevation model (DEM) showing the landslide locations 85 

2.2 Landslide types 86 

The occurrence of landslide is affected by various conditions. Due to regional setup and local context, 87 

different landslide types always developed. Two landslide types have been identified in the study area: 88 

 Colluvial landslide: The colluvial landslides (Varnes, 1978; Hungr et al., 2014) with small or medium-size 89 

developed a lot in the study area (Fig. 2a). The rainfall and reservoir level fluctuation provided external triggering 90 

factors for the occurrence of colluvial landslide. The rainfall increases the sliding force of landslide mass, while the 91 

reservoir level fluctuation reduces the sliding resistance force, the combined effort of which may decrease landslide 92 
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 Rockfall: The rockfall (Varnes, 1978; Hungr et al., 2014) is another main landslide type and often developed 94 

in a multi-stage pattern (Fig. 2b). In the abrupt cliff, because of the developed large structural joints, large-scale 95 

rockfall often occur. In the gentle slope, there are many human engineering activities, such as road construction. 96 

The slope may lose the original equilibrium state under the influence of artificial cutting slope, which could induce 97 

the occurrence of small-scale rockfall. 98 

 99 

Fig. 2 Landslide types: (a) Colluvial landslide, (b) Multi-stage rockfall 100 

3. Methodology 101 

3.1 Landslide causal factors analysis 102 

3.1.1 Information value model 103 

The information value model (Yin and Yan, 1988) is based on the concept that landslide occurrence (y) is 104 

affected by various factors (xi), and their influences to landslides are different. According to a conditional 105 

probability, the formula for the information value can be written as: 106 

2
P( , )

I( , ) Log
P( )

i
i

y x
y x

y
=                                      (1) 107 

Where I( , )iy x is the information value under the causal factorsix ; P( )y is the probability of landslide 108 

occurrence;P( , )iy x is the probability of the occurrence of landslide under the causal factor ix . The probability can 109 

be calculated using the area ratio as well. The formula (1) can be expressed as: 110 

i

0

2 i

0

S / S
I( , ) Log

A / A
iy x =                                       (2) 111 

Where S  is the total area of the landslide; 0
iS  is the landslide area under the factor ix ; A  is the total area 112 

of the study area; 0
iA  is the area under the factor ix . It is worth to highlight that a positive value of I( , )iy x  113 
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indicates factor ix  plays an inhibitive effect on landslide occurrence.  115 

3.1.2 Information gain ratio 116 

Information gain ratio (IGR) is one of the most efficient feature selection methods (Quinlan, 1993; Tien Bui et 117 

al., 2016). The factors with a higher value of IGR indicate a higher prediction ability of the models. Assuming that 118 

the training data T consists of n  samples, and belongs to the class Ci (landslide, non landslide). Then, the 119 

information entropy can be calculated as: 120 

2

2

1

( , ) ( , )
( ) log

i

n Ci T n Ci T
Info T

T T=
= −∑                                  (3) 121 

The amount of information 1 2( , )mT T TL  split from T regarding the causal factor F  is estimated as: 122 

2

1

( , ) log ( )
m

j

jT
Info T F Info T

T=

= −∑                                    (4) 123 

Then, the IGR of the landslide causal factor F  can be written as follows: 124 

( ) ( , )
( , )

( , )

Info T Info T F
IGR T F

SplitInfo T F

−
=                                     (5) 125 

Where SplitInfo  represents the potential information generated by dividing the training data T  into m 126 

subsets. The formula of SplitInfo  was shown as follows: 127 

1

( , ) log 2
m

j

Tj Tj
SplitInfo T F

T T=

= −∑                                    (6) 128 

3.2 Landslide susceptibility modeling 129 

3.2.1 Support vector machine 130 

Support vector machine (Vapnik, 1995) is a nonlinear classification method, which is based on the principle of 131 

Vapnik-Chervonenkis Dimension and structural risk minimization. The input variables in the original space are 132 

mapped into a high-dimensional linear feature space by nonlinear transformation. Then, in order to split the 133 

positive from the negative, SVM model operates by attempting to find an optimal surface in the feature space 134 

between the two types (Zhou et al., 2016). Assuming samples ( , ) : 1,2
i i

x y i n= L , the optimal hyperplane can be 135 
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137 

Where w  is the weight vector that determines the orientation of the hyperplane, b  is the bias, iξ
 is the 138 

positive slack variables for the data points that allow for penalized constraint violation, C  is the penalty 139 

parameter that controls the trade-off between the complexity of the decision function and the number of training 140 

examples misclassified. The function can be converted into an equivalent dual problem based on the Wolf duality 141 

theory: 142 
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(8) 143 

Where iα  are Lagrange multipliers, C  is the penalty. Then, the decision function, which will be used for 144 

the classification of new data, can be written: 145 

1

( ) ( ( , ) )
n

i i i j
i

f x y x x bα
=

= +∑sgn K                             (9) 

146 

Where ( , )
i j

x xK  is the kernel function. The radial basis kernel was adopted as kernel function for SVM 147 

model in this study.  148 

3.2.2 Artificial neural networks 149 

 Artificial neural network is a reasoning model established on the imitation of human brain function and 150 

nervous system. Back propagation neural network (BPNN) (Hecht-Nielsen, 1988) is one of the most effective 151 

ANNs, it is a multilayer neural network consisting of an input layer, hidden layers, and an output layer (Fig. 3). In 152 

signal propagation, the input signal is processed layer by layer from the input to the output. If the result of the 153 

output layer is not expected, it would be transferred to the reverse propagation, and adjust to the network weights 154 

and thresholds according to the prediction error to approximate the desired output. 155 
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 156 

Fig. 3 The architecture of a three layers BPNN 157 

The learning rate is an important parameter of ANN model, which may affect its performance. In this study, 158 

the learning rate will be automatically calculated using the following formula: 159 

min max( ) ( 1)*exp(log( / ) / )n n dη η η η= −                          (10) 160 

Where ( )nη  is the learning rate in the nth times training; minη  is the minimum value of the learning rate; 161 

maxη  is the maximum value of the learning rate, and d  is the delay rate. In this study, the initial rate, the 162 

maximum and minimum learning rate, and the delay rate are 0.3, 0.1, 0.01 and 30, respectively. 163 

3.2.3 Logistic regression 164 

 Logistic regression (LR) (Cox, 1958) is a multivariate statistical method for landslide susceptibility mapping 165 

(Budimir et al., 2015). LR can reveal the relationship between a target variable and multiple predictor variables, 166 

and predict the occurring probability of a certain event. In a statistical analysis of LR, the predictor variables can be 167 

either continuous or discrete, and there is no need to meet the normal distribution. The formula of LR is as follows: 168 

1 1 2 2( )
1

1 n nx x xy
e α β β β− + + + +=

+ L
                               (11)

 169 

 Where α  is a constant, n is the number of independent variables, ( 1,2, , )ix i n= L  is the predictor 170 

variables and ( 1,2, , )
i

i nβ = L  is the coefficient of the LR. 171 

4. Data preparation and analysis 172 

4.1 Landslide inventory 173 

Landslide inventory is the basis for landslide susceptibility mapping. An accurate and reliable landslide 174 

inventory data is crucial for LSM (Corominas et al., 2013; Zhu et al., 2014). According to the Chinese National 175 

Standard of Specification for landslide survey and risk assessment (http://www.caghp.org/standard.php), the 176 
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Pleiades-1 (9/22/2014) and GF-1 (3/30/2015), through field investigation, and the historical landslide data. A total 178 

of 202 landslides were identified which contains 95 colluvial landslides and 107 rockfalls (Fig. 1c). The total area 179 

of the colluvial landslides was calculated as 3.35km2, while the area of individual colluvial landslide ranges from 180 

7.1m2 to 0.24km2. The total area of rockfall is 0.28 km2 and the area of individual rockfall ranges from 1.93m2 to 181 

0.04km2. The colluvial landslide and rockfall are dominant in the study area. Both types are sensitive to different 182 

engineering geology conditions, which causes the differences of their development laws. In this study, the colluvial 183 

landslide and rockfall were analyzed and assessed separately, and the final landslide susceptibility map was 184 

obtained by combining them (Fig. 4). 185 
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186 

Fig. 4 The flowchart of the landslide susceptibility assessment 187 

4.2 Landslide causal factors 188 

Landslide hazard is caused by the interaction between the internal geological conditions of slope and the 189 

external environmental factors. Based on field investigation, data analysis, and previous researches (Wu et al., 2013; 190 

Peng et al., 2014), twelve factors were prepared initially for landslide susceptibility assessment: altitude, slope, 191 
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bedding structure, and distance to faults, rivers, and roads. The relationship between landslide occurrences and 193 

causal factors was analyzed quantitatively using the information value model. Moreover, in order to classify the 194 

continuous causal factors (altitude, slope, and so on) reasonably, they were discretized into small intervals first, and 195 

then three kinds of curves were obtained by statistics, namely the distribution curve of the whole area, the 196 

distribution curve of the landslide area, and the curve of information value. Finally, the continuous causal factors 197 

were classified by the breakpoints of the three kinds of curves (Zhou et al., 2015). 198 

Topographic factors 199 

The topographic factors used in this study were prepared using a digital elevation model (DEM) with a spatial 200 

resolution of 25m, which was collected from China Geological Survey. Subsequently, six topographic factors 201 

(altitude, slope, aspect, plan curvature, profile curvature, SPI and TWI) were extracted in ArcGIS 10.0 using the 202 

mentioned DEM. 203 

Altitude 204 

The altitude range in this area is 300m~1,300m, which was divided into five classes: [300~450), [450~700), 205 

[700~950), [950~1,100), [1,100~1,500) (Fig.5a). The colluvial landslide mainly occurred in the altitude range of 206 

450~700m and 700m~950m, and their information values are 0.086 and 0.303, respectively (Table 1). The rockfall 207 

mainly occurred in the altitude from 300m to 950m, the altitude ranges of [300, 450) and [450, 750) have the 208 

largest information values of 1.196 and 0.741, respectively. 209 

Slope 210 

The slope was divided into five classes: very gentle (0~6°), gentle (6~18°), moderate (18~30°), steep (30~39°), 211 

and very steep (>39°) (Fig. 5b). The colluvial landslide mainly occur in the gentle and moderate slope, and the 212 

moderate slope shows the highest promotion influence on it, whose information value is 0.911 (Table 1). Different 213 

effect shows on rockfall, which is more prone to occur in the steep and very steep slopes, and their information 214 

values are 0.970 and 1.432, respectively. 215 

 216 

 217 
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Causal factor Category 
Percentage   

of domain 

Percentage 

of CL 
IV of CL 

Normalized  

class of CL 

Percentage  

of rockfall 

IV of 

rockfall 

Normalized class 

of rockfall 

Altitude (m) <450 6.39  4.03  -1.231  0.010  14.64  1.196  0.990  

450-700 23.38  28.11  0.086  0.745  39.07  0.741  0.750  

700-950 30.33  48.11  0.303  0.990  23.40  -0.374  0.500  

950-1100 20.24  16.03  -0.214  0.500  15.15  -0.418  0.260  

>1100 19.66  3.73  -0.799  0.255  7.73  -1.346  0.010  

Slope (°) < 6 9.46  10.14  0.666  0.745  2.07  -2.190  0.010  

6 - 18 26.47  43.95  0.911  0.990  7.37  -1.844  0.255  

18 - 30 38.99  23.25  -0.383  0.255  36.64  -0.090  0.500  

30 - 39 18.59  20.36  0.008  0.500  36.41  0.970  0.745  

> 39 6.49  2.30  -3.097  0.010  17.51  1.432  0.990  

Aspect Flat 3.10  0.56  -2.463  0.010  0.23  -3.777  0.010  

N 11.86  13.08  0.142  0.745  14.93  0.333  0.623  

NE 8.38  3.57  -1.231  0.133  18.78  1.164  0.990  

E 9.25  5.55  -0.735  0.255  6.33  -0.546  0.255  

SE 14.90  21.76  0.547  0.990  3.17  -2.234  0.133  

S 11.22  8.21  -0.451  0.500  14.48  0.368  0.745  

SW 9.22  5.57  -0.727  0.378  14.03  0.605  0.868  

W 16.91  19.34  0.193  0.868  14.93  -0.179  0.500  

NW 15.17  15.68  0.048  0.623  13.12  -0.209  0.378  

Plan 

curvature 
Concave 26.71  21.08  -0.342  0.010  32.58  0.287  0.500  

Flat 45.60  44.07  -0.049  0.500  29.64  -0.622  0.010  

Convex 27.69  28.18  0.025  0.990  37.78  0.448  0.990  

Profile 

curvature 
Concave 26.42  26.24  -0.010  0.500  31.22  0.241  0.500  

Flat 41.82  43.00  0.040  0.990  31.00  -0.432  0.010  

Convex 31.76  24.08  -0.399  0.010  37.78  0.251  0.990  

SPI 0 - 2 32.40  22.99  -0.495  0.010  38.01  0.230  0.990  

2 - 4 42.81  41.84  -0.033  0.663  40.27  -0.088  0.337  

4 - 8 12.39  19.18  0.631  0.990  12.22  -0.020  0.663  

> 8 12.41  9.32  -0.414  0.337  9.50  -0.385  0.010  

TWI 0 - 4.5 61.17  42.89  -0.512  0.010  42.76  -0.517  0.010  

4.5 - 6.5 14.62  17.72  0.277  0.337  21.72  0.571  0.663  

6.5 - 8 10.88  15.26  0.488  0.990  10.41  -0.064  0.337  

> 8 13.32  17.45  0.390  0.663  25.11  0.914  0.990  

Distance to 

rivers/m 
0 - 200 27.55  38.19  0.470  0.990  31.24  0.182  0.990  

200 - 500 32.20  29.47  -0.130  0.663  32.28  0.003  0.663  

500-1000 35.29  30.00  -0.240  0.337  33.88  -0.059  0.337  

> 1100 4.97  2.34  -1.090  0.010  2.60  -0.934  0.010  

Distance to 

roads/m 
0 - 50 30.91  43.14  0.480  0.990  67.32  1.123  0.990  

50 - 150 35.90  34.92  -0.040  0.663  27.42  -0.388  0.663  

150 - 400 25.27  19.04  -0.410  0.337  2.68  -3.237  0.010  

> 400 7.93  2.90  -1.450  0.010  2.58  -1.622  0.337  
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Percentage   
of domain 

Percentage 
of CL 

IV of CL 
Normalized 
class of CL 

Percentage 
of rockfall 

IV of 
rockfall 

Normalized class 
of rockfall 

Distance to 

faults/m 
0 - 200 5.81  11.40  0.970  0.990  12.47  1.102  0.990  

200 - 400 5.71  7.99  0.480  0.663  6.70  0.230  0.663  

400 - 800 11.33  12.81  0.180  0.337  7.53  -0.590  0.337  

> 800 77.15  67.79  -0.190  0.010  73.30  -0.074  0.010  

Lithology A 9.78  15.49  0.663  0.794  8.80  -0.151  0.598  

B 6.62  4.43  -0.581  0.206  0.23  -4.875  0.010  

C 14.22  17.21  0.275  0.598  2.93  -2.277  0.206  

D 24.36  25.65  0.074  0.402  6.32  -1.946  0.402  

E 39.01  19.34  -1.012  0.010  73.14  0.907  0.990  

F 6.01  11.21  0.899  0.990  8.58  0.513  0.794  

Bedding 

structure 
BS1 57.14  27.07  -1.080  0.010  83.61  0.549  0.990  

BS2 0.71  0.95  0.420  0.500  0.01  -6.105  0.010  

BS3 7.93  26.98  1.770  0.990  1.13  -2.806  0.173  

BS4 5.86  7.49  0.360  0.337  1.13  -2.369  0.337  

BS5 9.31  9.52  0.030  0.173  4.23  -1.139  0.663  

BS6 6.90  9.90  0.520  0.663  1.44  -2.258  0.500  

BS7 12.16  18.09  0.570  0.827  8.45  -0.524  0.827  

Note: CL means Colluvial landslide, and IV means Information value. 219 

Aspect 220 

The aspect was divided into nine categories (Fig. 5c). The colluvial landslides on the southeast aspect 221 

represent the highest occurrence probability with an information value of 0.547. The rockfalls on the northeast 222 

aspect are the easiest to occur, its information value is the highest of 1.164. Because of the inhibition effect on 223 

slope movement, the information value of flat terrain are the least in both the landslide types (Table 1). 224 

Plan curvature 225 

The plan curvature varies within the range of -14.0~7.9, and the slope pattern was divided into convex, flat, 226 

and concave (Fig. 5d). The convex slope has slightly promotion effect on colluvial landslide; its information value 227 

is 0.025 (Table 1). For rockfall, the flat curvature shows slightly inhibition effect and the information value is 228 

-0.662. The information values of concave and convex curvature are 0.287 and 0.448, respectively. 229 

Profile curvature 230 

The profile curvature varies within the range of -12.9~13.3. The slope pattern was divided into convex, flat, 231 

and concave as well (Fig. 5e). As shown in Table 1, the profile curvature has slight influence on the occurrence of 232 

both colluvial landslide and rockfall. The flat slope has the highest information value of 0.004 for the colluvial 233 

landslide, while the convex slope has the highest information value of 0.251 for rockfall. 234 
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 235 

Fig. 5 Landslide causal factors of the study area: a altitude, b slope, c aspect, d plan curvature, e profile curvature, f SPI, g 236 

TWI, h lithology, i bedding structure, j distance to faults, k distance to rivers and l distance to roads. 237 
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 238 

Fig. 5 (continued). 239 

SPI and TWI 240 

The SPI and TWI are commonly used to quantify topographic influence on hydrological processes (Moore et 241 
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the value of TWI was divided into four classes of 0-4.5, 4.5-6.5, 6.5-8, and >8 (Fig. 5g). The positive and negative 243 

influence of SPI and TWI are slight, all the information values are relatively smaller (Table 1). 244 

Lithology 245 

The main outcropping strata of the study area include Badong Formation, the upper and lower Shaximiao 246 

Formation of middle Jurassic and so on. The lithology was extracted from the geological map (Fig. 5h) and 247 

grouped into six categories (Table 2). The category F shows the strongest positive influence on colluvial landslide 248 

with the largest information value of 0.899. More than 70% of rockfalls occurred in category E, and its information 249 

value is the largest of 0.907 (Table 1). 250 

Table 2 Lithological classification in the study area 251 

Category Main lithology Geologic group 

A Muddy limestone T2b1, T2b3 

B Lithic sandstone T3xj 

C Sandstone, mudstone (shale) J1z, J2x 

D Mudstone, pelitic siltstone with sandstone  J2xs1, J2s2, J3s 

E Lithic sandstone with mudstone  J2xs2, J2s3 

F Interbeds of mudstone and sandstone   J2s1 

Bedding structure 252 

Bedding structure indicates the intersection relationship between strata and slope, its classification is shown in 253 

Table 3, In this study area, the colluvial landslide mostly occurred in the under-dip slope and horizontal strata slope 254 

(Fig. 5i), and the under-dip slope got the maximum information values of 1.770. Because of rock outcropping and 255 

its developed vertical fissure (Fig. 2b), more than 80% of rockfalls are distributed in the horizontal strata slope, 256 

whose information value is the highest of 0.549 (Table 1).  257 

Table 3 Classification of bedding structure 258 

Category Type of Bedding Structure Definition(Slope:θ ,Aspect:σ ,bed dip angle:α ,bed dip direction:β ) 

BD1 Horizontal strata slope 10α ≤ °  

BD2 Over-dip slope ( ]( ) [ )( )( ) ( ) ( )- 0, 30 - 330 , 360 & & 10 & &σ β σ β α θ α∈ ° ∈ ° ° > ° >  

BD3 Under-dip slope ( ]( ) [ )( )( ) ( ) ( )- 0, 30 - 330 , 360 & & 10 & &σ β σ β α θ α∈ ° ∈ ° ° > ° <  

BD4 Dip-oblique slope [ )( ) [ )( )- 30 , 60 - 300 , 330σ β σ β∈ ° ° ∈ ° °  

BD5 Transverse slope [ )( ) [ )( )- 60 ,120 - 240 , 300σ β σ β∈ ° ° ∈ ° °  

BD6 Anaclinal oblique slope [ )( ) [ )( )- 120 ,150 - 210 , 240σ β σ β∈ ° ° ∈ ° °  

BD7 Anaclinal slope [ )( ) [ )( )- 150 ,180 - 180 , 210σ β σ β∈ ° ° ∈ ° °  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPTDistance to faults 259 

The proximity parameters (distance to faults, rivers and roads) were calculated using geological and 260 

geomorphology maps based on the Euclidean distance method in ArcGIS 10.0. The faults in the study area is 261 

relatively simple (Fig. 5j), most of the landslides occurred far away from the faults. Within the influence area, the 262 

faults show a more positive effect on landslide occurrence. When the distance to faults is smaller than 200m, the 263 

information values for colluvial landslide and rockfall are the maximum of 0.970 and 1.102, respectively (Table 1). 264 

Distance to rivers 265 

The distance to rivers was divided into four classes, namely 0~200m, 200~500m, 500~1,100m, and >1,100m 266 

(Fig. 5k). In the study area, 38% of the colluvial landslides are distributed within the range of 200m from rivers, its 267 

information value is the maximum of 0.471. There are few colluvial landslides when the distance is greater than 268 

1,100m, whose information value is the minimum of -1.090. The rivers show a slight effect on rockfall, when the 269 

distance to rivers is less than 200m, the information value is the highest of 0.182 (Table 1). 270 

Distance to roads 271 

The distance to roads was classified into four categories, namely 0~50m, 50m~150m, 150m~300m, 272 

and >300m (Fig. 5l). In the study area, 43% of colluvial landslides are distributed within the range of 50m from 273 

roads and the information value is the highest of 0.480. The road has a strong influence on rockfall, because the 274 

cutting slope was caused by road construction (Fig. 2b), 67% of rockfalls are distributed within the range of 50m 275 

from roads and the information value is the maximum of 1.123. Only 2.58% of rockfalls occurred when the 276 

distance to roads is more than 400m, its information value is the minimum of -1.451. 277 

5. Results and analysis 278 

5.1 Landslides susceptibility mapping 279 

5.1.1 Data preparation and multicollinearity analysis 280 

The machine learning models are more sensitive to data in their desired range. Consequently, the landslide 281 

causal factors were normalized into the range of [0.01, 0.99] according to the information values (Table 1). The 282 

normalized data of the factors were taken as input data, and the landslide susceptibility index (landslide:1, non 283 

landslide:0) was taken as output data. 70% of colluvial landslide and rockfall locations were randomly selected as 284 
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the negative data (non colluvial landslide, non rockfall) and positive data (colluvial landslide, rockfall) were 286 

considered equally important in LSM. The same number of negative data was randomly selected from the landslide 287 

free area (Felicísimo et al., 2013), its distribution is shown in Fig. 6. 288 

 289 

Fig. 6 The distribution of non landslide samples 290 

Multicollinearity among the factors may influence the accuracy of the susceptibility models. The Variance 291 

inflation factors (VIF) and Tolerances were applied to test the multicollinearity among the twelve factors, a 292 

Tolerance of less than 0.2 or a VIF of 5 and above indicates a multicollinearity problem (O’Brien, 2007). As shown 293 

in Table 4, the smallest tolerance in the colluvial landslide and rockfall assessment are 0.741 and 0.702, 294 

respectively, the highest VIF of them are 1.350 and 1.425, respectively. No multicollinearity was found between the 295 

causal factors. 296 

Table 4 Multicollinearity of the causal factors 297 

Factor 
Colluvial landslide Rockfall 

VIF Tolerances VIF Tolerances 
Altitude 1.406 0.711 1.235 0.810 
Slope 1.097 0.912 1.112 0.899 
Aspect 1.024 0.977 1.054 0.949 
Plan curvature 1.097 0.911 1.055 0.948 
Profile curvature 1.152 0.868 1.180 0.847 
SPI 1.315 0.761 1.276 0.783 
TWI 1.452 0.702 1.350 0.741 
Lithology 1.114 0.898 1.107 0.903 
Bedding structure 1.122 0.891 1.094 0.914 
Distance to faults 1.040 0.961 1.045 0.957 
Distance to rivers 1.390 0.720 1.290 0.775 
Distance to roads 1.063 0.940 1.158 0.864 

5.1.2 Selection and elimination of the less important causal factors 298 

Twelve factors were initially prepared and considered as landslide causal factors, the factors often show 299 
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importance of each factor. The average merit of each factor is shown in Fig. 7. The causal factors with higher 301 

average merit values are more important. The results indicate that the distance to roads is the dominant factor for 302 

rockfall with an highest average merit value of 0.109. The altitude with the average merit of 0.023 is the most 303 

important factor for colluvial landslide (Fig. 7). 304 

 305 

Fig. 7 The average merit of each causal factor in (a) colluvial landslide (b) rockfall 306 

Although all the selected factors are relevant to landslides, but it is proved that the less important factors may 307 

cause noise and reduce the prediction accuracy (Pradhan and Lee, 2010b; Pham et al., 2016a). In order to find the 308 

most effective combination of the causal factors, the factors were eliminated one by one starting from the least 309 

important factor, and the SVM was used to test their prediction accuracy. As shown in Table 5, the accuracy of both 310 

the colluvial landslide and rockfall modeling increased when the less important factors were eliminated. The 311 

highest performance was achieved when the two least important factors were removed. Thus, the plan and profile 312 

curvatures were removed in colluvial landslide modeling, while the TWI and profile curvature were eliminated in 313 

rockfall modeling (Table 5). 314 

Table 5 The prediction accuracy with elimination of the less important factors 315 

Model Eliminating unimportant factors AUC 

Colluvial landslide   
Model-1 Without eliminating any factor 0.893 
Model-2 Plan curvature 0.901 
Model-3 Plan curvature, Profile curvature 0.912 
Model-4 Plan curvature, Profile curvature, Distance to roads 0.902 

Rockfall   
Model-5 without eliminating any factor 0.902 
Model-6 TWI 0.911 
Model-7 TWI, Profile curvature 0.932 
Model-8 TWI, Profile curvature, Distance to faults 0.906 
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The machine learning models of SVM and ANN and the multivariate statistical model of LR were applied to 317 

assess the susceptibility of colluvial landslide and rockfall, respectively; the modeling processing was carried out in 318 

Clementine 12. As stated in Section 5.1.2, ten important factors, namely altitude, slope, aspect, TWI, SPI, lithology, 319 

bedding structure, distance to rivers, faults and roads were selected to establish the colluvial landslide model. 320 

Meanwhile, altitude, slope, aspect, plan curvature, SPI, lithology, bedding structure, distance to rivers, faults and 321 

roads were selected as inputs of rockfall modeling. 322 

In this study, the parameters of SVM and ANN were obtained by error and trial method, which is shown in 323 

Table 6. Regarding ANN, the four layers ANN was adopted, and its learning rate was calculated automatically by 324 

formula (10). In the modeling of LR, the logistic regression equation of colluvial landslide index (CLI) and rockfall 325 

index (RI) are shown as follows: 326 

CLI = ((-4.843) + (Distance to roads * (-0.398)) + (Lithology *1.553)

         + (SPI*0.249) + (Aspect *1.407) + (Distance to faults *0.096)

         + (Bedding structure * (-0.180)) + (Distance to rivers *1.384)

         + (TWI*0.704) + (Altitude*0.696) + (Slope*1.056)

                 (12) 327 

RI = ((-7.628) + (Distance to roads*2.544) + (Plan curvature*0.200)

         + (Bedding structure*0.855) + (Aspect *1.124) + (SPI *0.642)

         + (Distance to faults * (-2.247)) + (Distance to rivers *1.494)

         + (Lithology*2.979) + (Slope*1.200) + (Altitude*0.628))

               (13) 328 

Table 6 The parameters of SVM and ANN models 329 

Models Parameters Notes 

SVM of colluvial landslide 20 1.5,c γ= =  c  is the penalty factor, γ  is the parameter of the 

kernel function; 
SVM of rockfall 20 1.5,c γ= =  

ANN of colluvial landslide 
1 280, 30, 0.9n n α= = =  1 2,n n are the neurons number of the 1st and 2nd 

hidden layers respectively, α  is the momentum. ANN of rockfall 
1 270, 30, 0.9n n α= = =  

The colluvial landslide and rockfall susceptibility index were calculated applying the SVM, ANN and LR 330 

models respectively, the results are shown in Fig. 8. Then, the final landslide susceptibility index was obtained by 331 

selecting the larger value of each pixel between the colluvial landslide and rockfall susceptibility index. At last, the 332 

landslide susceptibility index was divided into five levels: Very High (10%), High (20%), Moderate (20%), Low 333 

(20%) and Very Low (30%), which is shown in Fig. 9. Furthermore, in order to verify the significance of landslide 334 

classification, the susceptibility modeling without landslide classification was conducted using the three models as 335 

well, and the parameters of machine learning models are same to the colluvial landslide modeling (Table 6). 336 
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 337 

Fig. 8 Susceptibility index of (a) colluvial landslide using SVM, (b) rockfall using SVM, (c) colluvial landslide 338 

using ANN, (d) rockfall using ANN, (e) colluvial landslide using LR and (f) rockfall using LR 339 
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 340 

Fig. 9 (a) Landslide susceptibility mapping using SVM, (b) Landslide susceptibility mapping using ANN and (c) 341 

Landslide susceptibility mapping using LR 342 

5.2 Validation and comparison 343 

5.2.1 Using accuracy statistic 344 

Validation is an essential component in landslide susceptibility modeling to attest the effectiveness and 345 

scientific significance of the used method (Frattini et al., 2010). The landslide distribution in different susceptibility 346 

levels was statistically analyzed. The results are shown in Table 7 and Fig. 10: 347 

(a) In case of the SVM model, 87.79% of the landslides were distributed in the High and Very High 348 

susceptibility groups, while the results of the ANN and LR models were 78.51% and 57.07%, respectively. 349 

(b) The area of the Very High level of SVM model accounted for 9.284% of the total domain with a proportion 350 

of landslide in the total landslide of 65.13%. The frequency ratio of SVM model in the Very High level was the 351 

largest (7.015), while the ANN and LR models were much smaller i.e. 5.241 and 2.233, respectively. 352 
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Susceptibility 

Level 

Probability of 

landslide 

Pixels in 

landslide(A) 

Pixels in 

domain(B) 

Proportion of 

landslide in 

domain(A/B) 

Proportion  of 

landslide in total 

landslide(C) 

Proportion of 

domain in total 

domain(D) 

Frequency 

ratios (C/D) 

SVM 

Very Low 0.000 ~ 0.023 31 197837 0.016% 0.550% 30.28% 0.018  

Low 0.023 ~ 0.082 191 144568 0.132% 3.390% 22.13% 0.153  

Moderate 0.082 ~ 0.240 466 129432 0.360% 8.269% 19.81% 0.417  

High 0.240 ~ 0.824 1277 120875 1.056% 22.66% 18.50% 1.225  

Very High 0.824 ~ 1.000 3670 60657 6.050% 65.13% 9.283% 7.015  

ANN 

Very Low 0.000 ~ 0.169 228 199042  0.115% 4.046% 30.60%  0.132  

Low 0.169 ~ 0.275 364 133837  0.272% 6.459% 20.58%  0.314  

Moderate 0.275 ~ 0.400 619 129085  0.480% 10.98% 19.84%  0.553  

High 0.400 ~ 0.620 1671 127778  1.308% 29.65% 19.65%  1.509  

Very High 0.620 ~ 1.000 2753 60627  4.541% 48.85% 9.322%  5.241  

LR 

Very Low 0.000 ~ 0.151 462 198051 0.233% 8.198% 30.45%  0.269  

Low 0.151 ~ 0.234 702 131161 0.535% 12.45% 20.17%  0.618  

Moderate 0.234 ~ 0.343 1255 129462 0.969% 22.27% 19.91%  1.119  

High 0.343 ~ 0.532 1988 128235 1.550% 35.28% 19.72%  1.789  

Very High 0.532 ~ 1.000 1228 63460 1.935% 21.79% 9.758%  2.233  

(c) As for the level of Very Low, the area of SVM model accounted for 30.28% of the total domain, while its 354 

landslide only accounted for 0.550% of the total landslide. The frequency ratio of SVM model in the Very Low 355 

level was the lowest of 0.018; and the ANN and LR models were 0.132 and 0.269, respectively, which were much 356 

larger than the SVM model. 357 

 358 

Fig. 10 Landslide proportion and frequency ratio of each susceptibility level 359 
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The statistical method is effective to evaluate the model performance. However, it is a cutoff-dependent 361 

approach that requires reclassification of landslide susceptibility index. The evaluation results may vary with the 362 

breakpoints of reclassification. The receiver operating characteristics (ROC) curve (Hanley and McNeil, 1983) is 363 

cutoff-independent. The area under the ROC curve (AUC) can be used to assess the performance of models, and 364 

the model with a larger AUC is considered better. 365 

The ROC curves in Fig. 11 and 12 show the training and verifying performance of the used models in the 366 

colluvial landslide and rockfall modeling, respectively. The machine learning models of SVM and ANN achieved 367 

excellent performance in both of the colluvial landslide and rockfall assessment. The SVM model outperformed 368 

ANN, its AUC of training and verifying are 0.937 and 0.912, respectively in colluvial landslide assessment, 0.967 369 

and 0.932, respectively in rockfall assessment. The SVM model achieved higher prediction accuracy, because it is 370 

based on the principle of structural risk minimization, instead of traditional experience risk minimization, and its 371 

solution is globally optimal. On the contrary, the ANN is based on the principle of experience risk minimization 372 

which often leads to locally optimal solution. 373 

 374 

Fig. 11 The ROC curves of the SVM, ANN and LR models in colluvial landslide susceptibility assessment: (a) 375 

training and (b) verifying 376 

The LR model shows the worst performance in both cases with the verifying AUC value of 0.748 and 0.884, 377 

respectively. The colluvial landslide development is strongly and jointly affected by many factors, which is a more 378 
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is not adept at modeling grossly complex nonlinear problem. This is the reason why LR model showed worse 380 

performance in colluvial landslide modeling but better in rockfall. As shown in Fig. 9, the Yangchengzhi landslide 381 

was predicted accurately by the two machine learning models, but not predicted accurately by LR model. Overall, 382 

the machine learning models of SVM and ANN achieved better performance than the multivariable statistics model 383 

of LR, and the SVM performed the best. 384 

 385 

Fig. 12 The ROC curves of the SVM, ANN and LR models in rockfall susceptibility assessment: (a) training and 386 

(b) verifying 387 

As shown in Table 8, the prediction AUC of SVM, ANN, and LR in susceptibility assessment without 388 

landslide classification are 0.881, 0.836 and 0.697, respectively. All of them are less than the prediction AUC of the 389 

separate colluvial landslide and rockfall assessment. Due to the separation of landslide type, the prediction 390 

accuracy of the three models were improved 0.041, 0.043 and 0.119, respectively (Table 8). The susceptibility 391 

assessment with landslide classification can achieve more accurate prediction than the susceptibility assessment 392 

without landslide classification, especially for the model without strong classification capacity. 393 

Table 8 The prediction performance comparison 394 

Models 

AUC of prediction 
Accuracy 

improvement  
Landslide without 

classification 
Colluvial landslide Rockfall 

SVM 0.881 0.912 0.932 0.041 
ANN 0.836 0.852 0.906 0.043 
LR 0.697 0.748 0.884 0.119 

Note: Accuracy improvement = (Colluvial landslide + Rockfall) / 2 - Landslide without classification 395 
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It is important to check if the performance among the used models has a statistically significant difference 397 

when comparing their performance (Pham et al., 2016b; Tien Bui et al., 2016). The Friedman test (Friedman, 1937) 398 

is an effective non-parametric method and widely used in statistical significance test. In this study, the Friedman 399 

test at 95% significant level was carried out to check if there are statistically significant differences between the 400 

three susceptibility models. All the p-values of the colluvial landslide and rockfall modeling were extremely low (< 401 

0.000) and less than 0.005. It indicates the null hypothesis (i.e., no differences between the performance of the test 402 

models) is rejected. Consequently, the performance of the three models is significantly different and comparable. 403 

6. Discussion 404 

In this study area, the landslides were divided into two types: colluvial landslide and rockfall. The causal 405 

factors had different significances on landslide occurrences. For example, the distance to roads was the dominant 406 

factor for rockfall, while the colluvial landslide was strongly affected by the distance to rivers, altitude, and 407 

lithology (Fig. 7). Various levels of causal factor influenced landslides types inversely. As shown in Table 1, the 408 

slope of 6~18° had the most positive effect on colluvial landslide, while the slope > 39° showed the most positive 409 

effect on rockfall. Taking all these issues into account, the development law of each landslide type was found 410 

different, it was suggested that each LSM should be conducted separately when the study area is threatened by 411 

more than one landslide type, then a more accurate prediction can be achieved (Table 8). 412 

The LR performed well in rockfall with the predicted AUC of 0.884, but not good in the colluvial landslide 413 

with the predicted AUC of 0.748. It indicates that the LR model is not suitable for complex nonlinear problem. The 414 

machine learning models (SVM and ANN) are excellent in both the colluvial landslide and rockfall susceptibility 415 

assessment. It demonstrates that the machine learning models are also applicative in complex nonlinear problem, 416 

and the SVM model has a better performance because of its globally optimal solution. Moreover, one issue should 417 

be noticed that the model performance is data dependent, it may vary with different cases. For instance, the 418 

Random Forest model performed well in Arno River basin (central Italy) (Catani et al., 2013), but not well in 419 

Lianhua County (China) (Hong et al., 2016). In this study, the SVM showed stable prediction performance in both 420 

the colluvial landslide and rockfall assessment. Furthermore, as reported in previous literatures, the SVM model 421 
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al., 2017), which stated that the performance of SVM has a strong robustness. Hence, the SVM model can be 423 

recommended before reaching a consensus on the model of landslide susceptibility assessment. 424 

The error of landslide susceptibility assessment is composed of the false positive part and false negative part. 425 

Statistically, the two parts have the same influence on model performance, but their cost of misclassification is 426 

totally different. To a certain extent, the false positive result may restrict the use of land, leading to economic losses 427 

slightly. But if the landslide or landslide-prone areas are erroneously identified as stable slopes, such as the 428 

Yangchenzhi landslide in the susceptibility map of LR (Fig. 9), and proceed with land planning and utilization 429 

without any risk control measures, it may lead to catastrophic consequences. In the future study of susceptibility 430 

assessment, we should pay more attention to reduce the false negative error. 431 

7. Conclusions 432 

Landslide susceptibility assessment is crucial for strict land-use planning and disaster risk reduction in 433 

landslide-prone areas. In this study, Longju in the TGRA was taken as a case study where two types of landslide 434 

were observed, the colluvial landslide and rockfall, and their mechanisms were different. Altitude (450m-950m), 435 

distance to rivers (<200m), and lithology (Interbeds of mudstone and sandstone) were dominant in colluvial 436 

landslide, while the crucial factors of rockfall were identified as distance to roads (<50m), distance to rivers 437 

(<200m) and lithology (Lithic sandstone with mudstone). Due to the separation of landslide type, the prediction 438 

AUC values of SVM, ANN and LR models were improved 0.041, 0.043 and 0.119, respectively. It indicates that 439 

the LSM with landslide classification can achieve more excellent performance. It is recommended to separately 440 

analyze and assess each landslide type, and combine separate susceptibility map to obtain better results. 441 

The causal factors have different influences on landslide occurrences, which lead to different contributions of 442 

each factor to the modeling and assessment of landslide susceptibility. Information gain ratio is an effective method, 443 

which can quantify the importance of causal factors. The performance comparison of the eight models with 444 

different eliminated factors indicates that the less important factors may have a negative effect in LSM and those 445 

noise-producing factors should be eliminated to achieve greater prediction precision. 446 
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applied to carry out the colluvial landslide and rockfall susceptibility assessment. The performance was evaluated 448 

by the ROC curves and Friedman test. The comparison results demonstrate that the machine learning models 449 

outperform the multivariate statistical method. The SVM model showed the best performance with AUC value for 450 

training and verifying of 0.937 and 0.912 respectively in colluvial landslide assessment. The training and verifying 451 

AUC value was found 0.967 and 0.932, respectively in rockfall assessment. SVM model are highly recommended 452 

to conduct landslide susceptibility assessment in the TGRA and other similar context. 453 
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Highlights: 

1. The development laws of the colluvial landslide and rockfall were analyzed. 

2. The model performance was improved by eliminating less important factors. 

3. The separated modeling of each landslide type has significantly increased the 
prediction accuracy. 

4. The performance of three models was compared and the SVM model performed the 
best.  


