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Model-based investigations of transneuronal spreading mechanisms in neurodegener-
ative diseases relate the pattern of pathology severity to the brain’s connectivity matrix, 
which reveals information about how pathology propagates through the connectivity 
network. Such network models typically use networks based on functional or structural 
connectivity in young and healthy individuals, and only end-stage patterns of pathology, 
thereby ignoring/excluding the effects of normal aging and disease progression. Here, 
we examine the sequence of changes in the elderly brain’s anatomical connectivity over 
the course of a neurodegenerative disease. We do this in a data-driven manner that is 
not dependent upon clinical disease stage, by using event-based disease progression 
modeling. Using data from the Alzheimer’s Disease Neuroimaging Initiative dataset, 
we sequence the progressive decline of anatomical connectivity, as quantified by 
graph-theory metrics, in the Alzheimer’s disease brain. Ours is the first single model to 
contribute to understanding all three of the nature, the location, and the sequence of 
changes to anatomical connectivity in the human brain due to Alzheimer’s disease. Our 
experimental results reveal new insights into Alzheimer’s disease: that degeneration of 
anatomical connectivity in the brain may be a viable, even early, biomarker and should 
be considered when studying such neurodegenerative diseases.

Keywords: brain connectivity analysis, data-driven, alzheimer’s disease, disease progression modeling, graph 
theory analysis, computational model

1. inTrODUcTiOn

There is a growing body of literature using advanced computational and statistical modeling to 
understand progressive disorders. The majority of these has been applied to the most common neu-
rodegenerative disorder of the brain, Alzheimer’s disease (AD)—see Ref. (1), for a review of the field. 
Discriminative models range from simple diagnosis using supervised machine-learning classifiers 
(2–4) to unsupervised clustering of disease subtypes (5–7). Such discriminative models typically 
do not directly include a notion of disease progression. By contrast, generative data-driven models 
(8–11) estimate disease progression signatures that can aid disease understanding from start to end. 
Such an understanding is vital for the early identification of individuals who are likely to be respon-
sive to a particular therapy, and also for identifying the earliest pathological changes for designing 
such therapies. The protracted duration of AD, and especially the decades-long presymptomatic 
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FigUre 1 | Schematic of the image analysis pipeline, per individual: DWI 
preprocessing → DWI normalization → rigid registration of T1 MRI to 
DWI → T1 parcelation → anatomically constrained 
tractography → connectomes based on density of WM neuronal connections 
between GM regions of interest. Abbreviations: DWI, diffusion-weighted 
image; MRI, magnetic resonance image; ACT, anatomically constrained 
tractography; WM/GM, white/gray matter.
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phase, makes this a challenging disorder to study in the general 
population. Dominantly inherited variants of AD, e.g., Ref. (12)., 
can be used to alleviate this problem to some extent, but the open 
question of whether dominantly inherited AD is a suitable model 
for sporadic late-onset AD remains unanswered.

Alzheimer’s disease has been widely described as a disconnec-
tion syndrome (13–16). This has contributed to the motivation 
behind the relatively recent emergence of network models of 
neurodegeneration. The motivation is to understand mechanisms 
of disease propagation by relating models of brain networks to 
observed pathology. The networks are abstract representations 
of “connections” between brain regions and can be constructed 
from (1) functional correlations during rest or activity (usually 
estimated using blood-oxygen-level-dependent contrast MRI 
(17)), (2) gray-matter covariance (estimated from structural 
MRI), or (3) anatomical connections (estimated using neuronal 
tractography from diffusion-weighted MRI).

Network spreading models attempt to explain neurodegen-
eration in terms of the transneuronal spread of prion-like (18) 
pathogens such as abnormal proteins. Anatomical connectivity 
networks are a natural choice for such models as they estimate 
physical connections between brain regions, rather than the 
correlations estimated in functional and gray-matter structural 
covariance networks. Previous work in network spreading 
models of neurodegenerative diseases has considered how 
well these models can predict end-stage disease by: correlat-
ing patterns of healthy intrinsic (functional) connectivity and 
gray-matter volume (14); using healthy functional connectivity 
to compare network-based mechanistic hypotheses of AD 
progression (19); and using healthy anatomical connectivity to 
predict atrophy (20), amyloid load (21), or metabolism (22). 
All of these network spreading models used static connectiv-
ity of healthy, young individuals to build networks with which 
to predict end-stage AD pathology. This ignores the effects of 
aging and disease progression on the network substrate being 
used to predict pathology.

In contrast to previous network spreading models, we con-
sider elderly connectivity networks, and we explicitly model the 
course of disease progression. This enables us to investigate how 
the brain’s anatomical connectivity changes with AD progression. 
We do this in a novel manner by analyzing regional network 
(graph-theoretic (23, 24)) measures of brain connectivity in 
groups of healthy and diseased individuals, within the context 
of an event-based model (8, 10) of disease progression. The 
model produces a data-driven, fine-grained signature of the 
sequence of disease-related changes in anatomical connectivity 
of the human brain, including uncertainty in the sequence. Our 
innovations beyond earlier event-based models (8, 10) include 
analyzing biomarkers of brain connectivity and employing a new 
nonparametric mixture modeling technique (25) for estimating 
biomarker abnormality that is built upon kernel density estima-
tion (26, 27).

2. MaTerials anD MeThODs

Our analysis can be summarized as three steps. First, we used 
probabilistic anatomically constrained tractography to construct 

individual whole-brain connectomes for imaging data from 
168 participants from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) study, across four age-matched and education-
matched clinical categories (4 × 42 per category, the maximum 
available in one of the categories). The image analysis pipeline 
is visualized in the schematic of Figure  1. Second, from each 
connectome, we computed various local network measures 
(graph-theory metrics) representing the topology of anatomical 
connectivity in regions of each participant’s brain. Finally, we 
estimated the ordered sequence in which these measures become 
abnormal using an event-based model (8, 10).

2.1. Data
Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database.1 The ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. Weiner, 
M.D. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD).

In February 2017, we remotely accessed the Laboratory of 
NeuroImaging’s Image Data Archive at the University of Southern 
California and searched for suitable participants to include in our 
anatomical connectome cohort: ADNI participants whose brains 
were imaged with both structural magnetic resonance imaging 
(MRI) and diffusion-weighted imaging (DWI) at a single study 
visit. We sought age-matched groups across the four diagnoses 
of Cognitively Normal (CN), Early Mild Cognitive Impairment 
(EMCI), Late Mild Cognitive Impairment (LMCI), and prob-
able AD (AD). This resulted in 42 participants per group. We 

1 http://adni.loni.usc.edu.
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TaBle 2 | Demographics by diagnosis for all ADNI2 participants at initial visit.

cn eMci lMci aD

n (Females) 336 (174) 277 (124) 450 (183) 276 (121)
n APOE+ (APOE−) 94 (240) 116 (157) 236 (212) 184 (89)
n AV45+ (AV45−) 52 (106) 105 (100) 98 (42) 122 (15)
Age mean (SD) 75 (6) 71 (7) 74 (7) 75 (8)
Edu mean (SD) 16 (3) 16 (3) 16 (3) 15 (3)

As in Table 1, amyloid positivity was set at cortical mean AV45 SUVR ≥ 1.10 (28), prior 
to adjustment for covariates. Numbers in bold font indicate controls and patients (see 
text for details) used in our disease progression modeling.

TaBle 1 | Demographics by diagnosis for our anatomical connectome cohort, 
The168: 168 ADNI2 participants included in this study.

cn eMci lMci aD

n (Females) 42 (23) 42 (17) 42 (16) 42 (17)
n APOE+ (APOE−) 14 (27) 20 (21) 31 (10) 28 (13)
n AV45+ (AV45−) 15 (26) 22 (17) 29 (6) 38 (4)
Age mean (SD) 73 (6) 73 (7) 73 (7) 73 (7)
Edu mean (SD) 16 (3) 16 (3) 16 (3) 16 (3)

One-way ANOVA implies that the groups do not differ significantly by age (p > 0.97), 
nor education (p > 0.45). Amyloid positivity was set at cortical mean AV45 
SUVR ≥ 1.10 (28), prior to adjustment for covariates. Numbers in bold font indicate 
controls and patients (see text for details) used in our disease progression modeling.
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downloaded the unprocessed structural MRI (3.0T, T1-weighted, 
non-accelerated IR-SPGR; GE Medical Systems) and DWI (Axial 
diffusion tensor imaging; GE Medical Systems) for the first 
available suitable visit of these 168 participants from the ADNI2 
phase of ADNI (including: 5 rollovers from the first ADNI phase, 
ADNI1; and a single rollover from the ADNI Grand Opportunity 
phase, ADNIGO). Herein, we refer to our anatomical connectome 
cohort as The168. We also downloaded associated demographics 
data and metadata in CSV format. Demographics for The168 are 
summarized in Table 1, and for all ADNI2 (at ADNI2 baseline) 
in Table 2.

Our disease progression modeling requires both a control 
and a patient group, which we defined as amyloid-negative CN 
participants and amyloid-positive AD participants, respectively 
(see bold figures in Table 1). The threshold for amyloid positivity 
was chosen as an amyloid PET (Florbetapir 18F-AV-45, hereafter 
AV45) cut-point from the literature (28): AV45 Standardized 
Uptake Value Ratio SUVR ≥ 1.10, which was based on the upper 
95% confidence interval for young healthy subjects. Using this 
criteria, in The168, we identified 26 controls and 38 patients out 
of a possible maximum of 42 each. For the wider ADNI2 cohort 
(including rollovers from ADNI1 and ADNIGO), we found 106 
controls and 122 patients—see the bold figures in Table 2.

2.2. connectomics
Structural connectomes were generated using tools provided 
in the MRtrix3 software package,2 customized to work with the 
Geodesic Information Flows algorithm (29) for segmentation 
and parcelation. The pipeline included DWI denoising (30), 

2 http://mrtrix.org.

preprocessing (31, 32), and bias field correction (33); inter-modal 
registration (34); T1 tissue segmentation (29); spherical deconvo-
lution (35, 36); probabilistic tractography (37) utilizing anatomi-
cally constrained tractography (38) and dynamic seeding (39); 
spherical deconvolution informed filtering of tractograms (SIFT) 
(40); T1 parcelation (29); and robust structural connectome 
construction (41). We used the dwiintensitynorm script in 
MRtrix3 during DWI preprocessing, but found it necessary to 
modify the subsequent usage of the population_template 
script such that DWI masks were not used to create the template 
(the DWI were pre-masked). Note that we use SIFT to produce 
biologically plausible tractograms where the streamline density in 
each voxel matches the fiber orientation distributions estimated 
from the DWI, instead of simply thresholding the number of 
fibers connecting two regions.

Our anatomical connectome for each participant is a weighted 
adjacency matrix that includes only inter-node connections 
across 130 regions of interest consisting of cortical and subcorti-
cal gray-matter regions (including striatal), plus the cerebellum 
and brain stem. Weights, or connection strengths, are normalized 
to [0, 1], and so represent within-participant anatomical connec-
tion density. The image analysis pipeline is visualized in Figure 1. 
The 130 regions of interest are a subset of those in the labeling 
protocol used by Geodesic Information Flows (29, 42), which is 
a modified version of the Desikan–Killiany–Tourville protocol 
(43).

2.3. anatomical connectivity Metrics
For each participant and region of interest, we calculated 12 
brain connectivity metrics from the anatomical connectomes, 
using the Brain Connectivity Toolbox (24) in MATLAB, after 
appropriate normalization using the weight_conversion 
function. The local network metrics fall into the following broad 
categories:

 1. Hubs (basic centrality): degree, strength, degree z-score;
 2. Importance (advanced centrality and shortest paths): effi-

ciency, characteristic path length, participation coefficient, 
betweenness centrality, eigenvector centrality, PageRank 
centrality (44);

 3. Segregation/integration: clustering coefficient, eccentricity.

For each region of interest, the medians of the controls and 
patients distributions for each network measure were statistically 
compared using a Mann–Whitney–Wilcoxon rank-sum test. 
Only measures where p < 0.05/12 (Bonferroni-corrected within 
region) were retained for further analysis within the event-based 
model of disease progression—we refer to such biomarkers as 
having “disease signal.”

Note that local efficiency and local clustering coefficient return 
similar information to each other, as do eigenvector centrality and 
PageRank centrality, and so one may ask whether we are includ-
ing redundant information in our models. We argue that we are 
not, as seen in our results where: (1) local efficiency contained 
disease signal, whereas local clustering coefficient did not and (2) 
the centrality measures appear in different positions within the 
model sequences.
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2.4. event-Based Model of Disease 
Progression
The event-based model (EBM) (8, 10) is a data-driven 
approach for probabilistically sequencing a cross-sectional set 
of scalar measurements (“biomarkers”) in the order in which 
they become observably abnormal. In this context, an “event” 
constitutes a biomarker appearing more abnormal/diseased 
than normal/healthy. The EBM is able to estimate an average 
sequence of disease progression events from cross-sectional 
data because the proportion of abnormal measurements within 
a cohort will decline in concert with the average ordering. That 
is, the biomarker that changes earliest (the first disease event) 
will contain the highest proportion of abnormal measurements 
(from affected and presymptomatic individuals), and so on. The 
EBM fuses multiple biomarker measurements across individu-
als, with the simplest versions assuming a single disease pro-
gression sequence for all individuals, as done here. Determining 
biomarker abnormality in a data-driven manner necessitates 
mixture modeling within biomarkers, for which we use a new 
method (25), described below in Section 2.4.1. For convenience, 
we normalize all biomarkers to “c-scores” (standardized z-scores 
relative to controls) that increase with abnormality. Otherwise, 
we used the same fitting procedures as in Ref. (10). Cross-
validation of our EBMs was estimated by refitting the sequence 
(but not the event measures) to 100 separate bootstrap samples 
from the data.

We planned to build four EBMs of network connectivity 
changes, corresponding to the three broad categories of connec-
tivity in Section 2.3, plus all biomarkers together:

•	 “EBM0”—non-network biomarkers.
•	 “EBM1”—EBM0 markers, plus biomarkers of anatomical 

brain network hubs.
•	 “EBM2”—EBM0 markers, plus biomarkers of anatomical 

brain network importance: centrality and shortest paths.
•	 “EBM3”—EBM0 markers, plus biomarkers of segregation/

integration in the anatomical brain network.
•	 “EBM4”—all biomarkers.

EBM0 acts as a reference point and for investigating consist-
ency with previous EBMs of AD (10, 45) and includes only 
non-network biomarkers: average cortical level of amyloid (from 
AV45 PET) and hypometabolism (from fludeoxyglucose (FDG) 
PET), test score on the Mini-Mental State Examination (MMSE) 
(46), and structural MRI volumes of the hippocampus, entorhinal 
area, ventricles, and whole brain. Biomarkers were adjusted for 
healthy age, education, and gender using regression (residuals 
method, controls only). Brain volumes were also adjusted for 
intracranial volume. We did not fit EBM3 because there was no 
disease signal (see Section 2.3) in regional clustering coefficients 
nor eccentricity.

2.4.1. Biomarker Event Measures
The probability of a biomarker event is fundamental for sequenc-
ing the biomarker events into a pathological cascade of disease 
progression. Since not all patients will have experienced later 
events, and indeed some controls will have already experienced 

the earliest events in the cascade, it is necessary to fit a mixture 
model in order to discover the event probability. Previous EBM 
analyses (8, 10, 45, 47–49) used mixtures of parametric prob-
ability distributions such as Gaussian and uniform. Here, we use 
a new method (25) that fits a mixture of nonparametric kernel 
density estimate (KDE) distributions.

3. resUlTs

3.1. global connectivity
Figure 2 shows that global network connectivity in health and 
disease did not differ significantly in our cohort, The168. That 
is, we found no significant group-level difference between the 
26 controls (AV45-positive CN) and 38 patients (AV45-negative 
AD) across four global brain network metrics: density (con-
nectedness), efficiency (segregation), transitivity (segregation), 
and assortativity (resilience). The null hypothesis in each 
Mann–Whitney–Wilcoxon rank-sum test was accepted using a 
Bonferroni-corrected significance level of p = 0.05/4 = 0.0125: 
density p = 0.0147; transitivity p = 1; efficiency p = 0.145; assor-
tativity p = 0.363.

3.2. event-Based Models
3.2.1. Biomarkers
Figure  3 is a visualization of disease signal in the full set of 
38 biomarkers included in the EBMs. The vertical axis is the 
standardized “c-score” for each biomarker along the horizontal 
axis: c-score is biomarker value standardized to controls (c.f., 
z-scores). Group-average lines are shown with individual data 
points as green crosses for controls and red dots for patients.

3.2.2. Disease Progression Sequences
The EBM estimates a data-driven probabilistic sequence of 
biomarker abnormality, which we visualize as plots of grayscale 
positional variance (horizontal axis) around the maximum-
likelihood ordering (vertical axis). The strongest possible ranking 
of biomarker abnormality would appear as a black diagonal.

Our first experiment was to build “EBM00”—an EBM includ-
ing only non-network biomarkers, and using available ADNI2 
baseline data (summarized in Table 2). The results are shown in 
Figure  4, with positional variance estimated from the MCMC 
fitting procedure (8) shown in the left of the figure, and from 
bootstrapping shown in the right of the figure (cross-validation). 
The EBM00 sequence is consistent with current understanding 
of AD progression (and previous EBMs (10)): early amyloidosis 
and hippocampal volume loss, followed by cognitive decline, then 
hypometabolism and broader neurodegeneration.

In our next experiment, we built “EBM0”—the same bio-
markers as EBM00, but using only data from our anatomical 
connectome cohort, The168 (Table 1). The results are shown in 
Figure  5, with the positional variance diagram from fitting on 
the left, and from bootstrapping on the right. Like EBM00, the 
EBM0 sequence is consistent with current understanding of AD 
progression, with only one exception: the apparent late appear-
ance of hypometabolism (FDG). We attribute this to the relatively 
small number of probable AD patients in The168 with abnormally 
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FigUre 3 | Standardized “c-scores” for all biomarkers included in our 
analyses. Non-network markers are to the left, denoted EBM0. Network 
metrics are to the right, delineated by EBM1 (hubs, i.e., basic measures of 
centrality) and EBM2 (importance, i.e., advanced measures of centrality and 
shortest paths). EBM3 was not generated since no segregation/integration-
based network measures contained disease signal. EBM4 includes all 
biomarkers.

FigUre 2 | Group comparison of dimensionless global network measures between controls (amyloid-negative CN, green) and patients (amyloid-positive probable 
AD, red). There were no significant differences between groups.
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high metabolism, compared to the full ADNI2 cohort (Figure S1 
in Supplementary Material). We also note that the positional vari-
ance is larger in EBM0 than in EBM00, probably due to the lower 
numbers of individuals.

Next, we report results from experiments on brain connectivity 
changes in AD. Figure 6 shows “EBM1,” which includes network 
biomarkers that measure hubs in the brain network through 
node degree or strength. Figure 7 shows “EBM2,” which includes 
biomarkers of network importance as measured by centrality 
and shortest path metrics. Figure  8 is “EBM4” which includes 
both hubs and centrality. (“EBM3” does not exist because no 
biomarkers of segregation/integration passed the test for disease 
signal—see Section 2.3.). The network biomarker event measures 
are presented in Figure S2 in the Supplementary Material.

From Figure  6 we can infer the ordering the network bio-
marker event measures (from mixture modeling) are presented 
in Figure S2 in the Supplementary Material. In which certain 
anatomical network hubs of the brain deteriorate. We note early 
involvement of regions in the temporal lobe: the left transverse 
temporal gyrus (TTG; a.k.a. Heschl’s gyrus; auditory cortex) and 
the left temporal pole (TMP; anterior of the temporal lobe); and 
a region in the frontal lobe: the right lateral orbital gyrus (LOrG). 
The model suggests that the later hubs to deteriorate include 
the middle occipital gyrus (MOG), subcallosal area (SCA), left 
occipital fusiform gyrus (OFuG), and right middle cingulate 
gyrus (MCgG). Many, but not all, of these regions are involved 
in the default mode network (DMN), see, e.g., Ref. (50), and 
references within.

From Figure  7 we infer the sequential deterioration of 
regional importance in the anatomical network of the brain, as 
measured by local centrality and efficiency. The model suggests 
that centrality declines first in memory-related parts of the 
DMN in the temporal and prefrontal lobes: left temporal pole 

http://www.frontiersin.org/Neurology/
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FigUre 5 | EBM for selected standard (non-network) biomarkers, built on data from our anatomical connectome cohort, The168. Left panel: left-right positional 
variance of the maximum-likelihood sequence. Right panel: cross-validation of the sequence from bootstrapping.

FigUre 4 | EBM for selected standard (non-network) biomarkers, built on available ADNI2 baseline data. Left panel: left-right positional variance of the maximum-
likelihood sequence. Right panel: cross-validation of the sequence from bootstrapping.
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(TMP), left triangular part of the inferior frontal gyrus (TrIFG), 
bilateral hippocampus; and last in regions from the occipital (and 
anterior limbic) lobe(s): right lingual gyrus (LiG; visual cortex), 
left middle occipital gyrus (MOG), right middle cingulate gyrus 
(MCgG), and right angular gyrus (AnG).

Finally, Figure  8 (“EBM4”) contains all biomarkers of 
anatomical connectivity included in this study. The ordering of 
abnormality in hubs and centrality biomarkers is consistent with 
EBM1 and EBM2, respectively. Figure 8 enables comparison of 
the relative sequential decline among hubs and regional centrality 
in the AD brain’s anatomical connectivity network. We observe 

that the clearest and earliest decline in anatomical connectivity 
in the AD brain is both hubs and centrality in the left temporal 
lobe, all of which are DMN regions known to have memory-
related storage and functions. Memory dysfunction is the clinical 
phenotype of typical AD dementia.

4. DiscUssiOn

4.1. Findings in context
Brain network hubs are thought to experience increased 
susceptibility to AD pathology due to higher activity and 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FigUre 7 | EBM for regional centrality in the brain’s anatomical network, along with selected standard (non-network) biomarkers, built on data from our 
anatomical connectome cohort, The168. Left panel: left-right positional variance of the maximum-likelihood sequence. Right panel: cross-validation of the 
sequence from bootstrapping. Abbreviations: CentrPR, PageRank centrality; CentrE, eigenvector centrality; PartiCoef, participation coefficient; EdgeBC, edge 
betweenness centrality; NodeBC, node betweenness centrality; L, left; R, right; TMP, temporal pole; TrIFG, triangular inferior frontal gyrus; Hippo, 
hippocampus; PCgG, posterior cingulate gyrus; MCgG, middle cingulate gyrus; LOrG, lateral orbital gyrus; LiG, lingual gyrus; MOG, middle occipital gyrus; 
AnG, angular gyrus.

FigUre 6 | EBM for hubs in the brain’s anatomical network, along with selected standard (non-network) biomarkers, built on data from our anatomical 
connectome cohort, The168. Left panel: left-right positional variance of the maximum-likelihood sequence. Right panel: cross-validation of the sequence from 
bootstrapping. Abbreviations: DegreeZ, degree z-score; L, left; R, right; TTG, transtemporal gyrus; TMP, temporal pole; LOrG, lateral orbital gyrus; TrIFG, triangular 
inferior frontal gyrus; MCgG, middle cingulate gyrus; IOG, inferior occipital gyrus; MOG, middle occipital gyrus; SCA, subcallosal area; OFuG, occipital fusiform 
gyrus.
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metabolism, such as regions within the DMN, e.g., Ref. (50), 
and references within. Our experimental results are consist-
ent with this idea, suggesting that the earliest abnormality in 
AD occurs in hubs (Figure 6) and other centrally important 
regions (Figure 7) in the left temporal lobe, and bilaterally in 
the hippocampus—see Figure  8. Specific left temporal lobe 

regions include the transverse temporal gyrus (part of the 
auditory cortex), the temporal pole (which may be involved 
in social and emotional cognition, e.g., because it has been 
shown to be affected in frontotemporal dementia (51)), and 
the triangular part of the inferior frontal gyrus (which may be 
involved in semantic memory (52)).

http://www.frontiersin.org/Neurology/
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FigUre 8 | EBM for all biomarkers considered, including hubs and centrality in the brain’s anatomical network, along with selected standard (non-network) 
biomarkers, built on data from our anatomical connectome cohort, The168. Left panel: left-right positional variance of the maximum-likelihood sequence. Right 
panel: cross-validation of the sequence from bootstrapping. Abbreviations as in Figures 6 and 7.
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Our finding of early connectivity changes involving the 
auditory cortex is potentially of particular clinical relevance to 
Alzheimer’s disease: hearing impairment has recently emerged as 
a major risk factor for cognitive decline and a focus of intense epi-
demiological interest (53), while functional alterations in central 
auditory processing have been identified in both presymptomatic 
and established Alzheimer’s disease (54, 55). Our findings suggest 
how such alterations may fit within the pathogenic cascade of 
Alzheimer’s evolution.

Our results also suggest that this deterioration of anatomical 
connectivity in the brain network may be detectable prior to 
bulk estimates of amyloidosis, such as the mean SUVR across the 
cortex in AV45 PET. However, prior to claiming that network-
based biomarkers may form sensitive early biomarkers of AD, we 
would seek confirmation using larger anatomical connectivity 
cohorts (see future work in Section 4.3).

Our experiments also identified that the anatomical con-
nectivity of some DMN regions is not affected until later in the 
pathological cascade of AD. These included hubs in the angular 
gyrus, and hubs and centrality in the medial cingulate gyrus—see 
Figure 8.

We note that the ordering of brain regions involved in our 
sequence of anatomical connectivity changes to the Alzheimer’s 
disease brain (Figure 8) does not follow the ordering of regions 
in the neuropathological sequence identified by Braak and Braak 
(56). This suggests that changes in anatomical connectivity may 
not occur in sync with deposition of abnormal protein in brain 
tissue. Indeed, our results suggest that connectivity changes may 
appear before bulk deposition of amyloid across the cortex is 
detectable in vivo.

The brain’s anatomical connectivity network is altered by 
AD. These disease-related connectivity changes may be due 

to neurodegeneration in gray matter, alterations in deep white 
matter, or alterations in superficial white matter (57) located 
near the gray-matter/white-matter boundary. We designed our 
pipeline to be sensitive to these disease-related alterations by 
employing anatomically constrained tractography (38) and the 
SIFT method (40), which should improve the biological accuracy 
of the tractography-based connectivity estimates.

We have studied the late onset, typical variant of Alzheimer’s 
disease. It will be of interest to apply our technique to explore 
genetic factors that might influence the progression of Alzheimer’s 
disease; and to young onset Alzheimer’s disease where different 
phenotypic presentations are more commonly seen.

4.2. novelty of This Work
Our approach differs from previous network spreading models 
in two very important ways. We investigated dynamic patho-
logical disruption of the elderly brain’s anatomical connectivity 
network as a function of AD progression. Previous network 
models of AD (14, 19–22) used static connectivity patterns 
estimated from young and healthy individuals, then employed 
only end-stage patterns of pathology, such as atrophy, to study 
network spreading mechanisms. Thus, the previous approaches 
ignore both the effects of normal aging and the effect of disease 
progression on the network substrate being used to predict 
pathology.

Our approach provides utility beyond contributing to our 
understanding of the AD pathological cascade. These include the 
ability to estimate a longitudinal disease progression signature 
that is useful for patient staging (10), and for identification of 
candidate biomarkers for early diagnosis.

In this respect, we believe that our work may be the first 
data-driven quantification of the widely held idea that AD 

http://www.frontiersin.org/Neurology/
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progression reflects specific anatomical network disruption, not 
just neurodegeneration.

4.3. Future Work
Future work will include seeking a separate, larger anatomical 
connectivity cohort upon which to validate our results. While 
our own cross-validation experiments reported above provide 
some level of confidence in our conclusions, external validation 
on a larger cohort would be all the more convincing. Validation 
on animal models of AD is a related idea that might be worth 
pursuing.

Our analyses could be applied to other neurodegenerative dis-
eases. We will actively seek suitable cohorts from other diseases 
upon which to examine pathological changes in the connectivity 
of the human brain. This would subsequently extend quite natu-
rally to include application of the models to differential diagnosis, 
and to the related problem of within-disease subtyping (7, 58).

On the highest level, our work involved comparison of graphs 
(59). There are subtle challenges to comparing graphs and metrics 
derived from them, even when the number of nodes is constant 
and the average number of connections is the same (60), as was 
the case in our study. In the future, we will consider normalizing 
our connectivity metrics with those derived from random graphs 
or by looking at distances between graphs (60).

4.4. conclusion
We have sequenced the progressive deterioration of anatomical 
connectivity in the Alzheimer’s disease brain. We believe that 
this is the first attempt to do so in a data-driven manner that 
incorporates the effects of both aging and disease progression. 
Aging is accounted for by using healthy elderly brains as controls. 
Disease progression is estimated using event-based modeling.

Our experimental results reveal new insights into Alzheimer’s 
disease progression: that degeneration of anatomical connec-
tivity in the brain may be a viable, even early, biomarker and 
should be considered when studying such neurodegenerative 
diseases.
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