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Abstract

Learning a causal effect from observational data requires strong assumptions. One possi-
ble method is to use instrumental variables, which are typically justified by background
knowledge. It is possible, under further assumptions, to discover whether a variable is
structurally instrumental to a target causal effect X → Y . However, the few existing ap-
proaches are lacking on how general these assumptions can be, and how to express possible
equivalence classes of solutions. We present instrumental variable discovery methods that
systematically characterize which set of causal effects can and cannot be discovered un-
der local graphical criteria that define instrumental variables, without reconstructing full
causal graphs. We also introduce the first methods to exploit non-Gaussianity assumptions,
highlighting identifiability problems and solutions. Due to the difficulty of estimating such
models from finite data, we investigate how to strengthen assumptions in order to make
the statistical problem more manageable.

Keywords: causality, causal discovery, instrumental variables

1. Contribution

Given observational data for a treatment variable X, an outcome Y , and a set of observed
covariates O that precede X an Y causally, we present methods to estimate the causal effect
of X on Y when hidden common causes between X and Y cannot be blocked by condi-
tioning on observed variables. The main methodology consists of discovering instrumental
variables among O, which informally can be described as surrogate experiments on X that
do not affect Y directly. This complements approaches where hidden common causes can be
blocked. We will assume that the model is linear, although this assumption can be relaxed
to some extent, as discussed in the conclusion. Much of the contribution is theoretical, and
intended to describe what to the best of our knowledge is the first graphical account of
the limits of what can be discovered about instrumental variables from constraints in the
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observational distribution. We also discuss a pragmatic implementation of such ideas and
clarify their practical limitations.

Consider a linear graphical causal model (Spirtes et al., 2000; Pearl, 2000) where, given
a directed acyclic graph (DAG) G with vertex set V, we define a joint distribution in terms
of conditional relationships between each variable Vi and its given parents in G:

Vi =
∑

Vj∈parG(i)

λijVj + ei. (1)

That is, each random variable Vi corresponds to a vertex in G, where parG(i) are the parents
of Vi in G and ei is an independent error term. Equation (1) is called a structural equation
in the sense that it encodes a relationship that remains stable under a perfect intervention
on other variables. Following the notation of Pearl (2000), we use the index “do(Vk = vk)”
to denote the regime under which variable Vk is fixed to some level vk by an external agent.
If Vk is a parent of Vi, the (differential) causal effect of Vk on Vi is defined as:

∂E[Vi | do(Vk = vk)]

∂vk
= λik. (2)

Each λik will be referred to as a structural coefficient. Our goal is to estimate the differential
causal effect of some treatment X on some outcome Y from observational data. If the
common hidden causes of these two variables can be blocked by other observable variables,
a formula such as the back-door adjustment of Pearl (2000) or the Prediction Algorithm of
Spirtes et al. (2000) can be used to infer it. In general, unmeasured confounders of X and
Y might remain unblocked.

When unmeasured confounding remains, and where it is reasonable to assume the linear
structure (1), a possibility is to exploit an instrumental variable (or instrument, or IV ;
Morgan and Winship, 2015): some observable variable W that is not an effect of either X
and Y , it is unconfounded with Y , and has no direct effect on Y .

Figure 1 illustrates one possible DAG containing an instrument. Let σab represent the
covariance of two variables A and B. The parameterization in (1) implies σwx = λxwσww

and σwy = λyxλxwσww. It follows that λyx = σwy/σwx. We can estimate σwy and σwx from
observations, allowing for a consistent estimate of λyx. Notice that σwx 6= 0 is required. W
in this case is called an instrumental variable for the causal relationship X → Y .

It is not possible to test whether some observable variable is an IV from its joint dis-
tribution with X and Y alone. IV assumptions can nevertheless be falsified by exploiting
constraints in the joint distribution of multiple observable variables (Chu et al., 2001; Brito
and Pearl, 2002; Kuroki and Cai, 2005), where such constraints are necessary but not suffi-
cient to identify IVs and the corresponding causal effects. Our contribution are IV discovery
algorithms for causal effect estimation. We characterize in which ways such algorithms can
find the correct causal effect, and in which sense they will fail. We also introduce variations
of the assumptions that are needed for practical reasons, complementing existing methods
that rely on other sets of assumptions. Some of the ideas used in our methods are based on
principles from causal discovery in linear non-Gaussian models (Shimizu et al., 2006).

The structure of the paper is as follows. In Section 2, we discuss the challenges of inferring
causal effects when treatment and outcome are confounded by unobserved variables, and
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Figure 1: A graph illustrating a possible IV structure. X and Y have an unmeasured con-
founder U . W is an instrument as it is unconfounded with Y , has no direct
effect on it, and causes X. In this paper, variables named “U ” will denote hidden
variables.

provide an overview of our approach. In Section 3, we discuss the theory behind two classes
of testable constraints that can be detected from data. The resulting algorithm has several
practical issues, and a more realistic alternative is provided in Section 4, which is then
validated experimentally in Section 5. Other related approaches are discussed in Section 6.

2. Outline of Methodology: Learning under Unmeasured Confounding

We assume that the system of interest is a linear causal model which is Markov with respect
to an unknown DAG G with vertices V ≡ O ∪U ∪ {X,Y }. Set O is the set of observable
variables besides treatment variable X and outcome variable Y . Set U is the set of unob-
servable (also called latent, or hidden) variables. X and Y do not precede any element of
V\{X,Y }. Y does not precede X. The task is to estimate the differential causal effect
of X on Y . Our problems of interest are formulated so that all have a target causal effect
λyx corresponding to edge X → Y . To avoid constant repetition, in several results that ap-
pear in this paper, we will often refer to vertices and edges of a (possibly unnamed) causal
graph G while implicitly assuming the structural assumptions and notation introduced in
this paragraph.

Focusing on a single λyx is common in applied sciences: in particular, scenarios where we
have a target causal effectX → Y to be estimated, and a setO of covariates precedingX and
Y is available. Morgan and Winship (2015) provide several examples. This is in contrast to
the more familiar causal structure discovery tasks in the machine learning literature, where
an equivalence class of a whole causal system is learned from data, and where some causal
queries may or may not be identifiable (Spirtes et al., 2000). The focus here in on quantifying
the strength of a particular causal effect λyx, as opposed to unveiling the directionalities and
connections of a causal graph. This allows more focused algorithms that bypass a full graph
estimation. This philosophy was exploited by Entner et al. (2012) in the task of finding
possible sets of observable variables that can block the effect of any hidden common cause
of X and Y .

However, the approach by Entner et al. will not provide a causal effect estimate if such
a set does not exist. For instance, in Figure 1, if U is a latent variable, their algorithm
will provide no answer concerning the causal effect of X on Y . Our goal is to cover this
scenario, which complements approaches that require unmeasured confounding to be blocked.
The methodological framework to accomplish this task is by discovering candidate instru-
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Figure 2: (a) VariableW is an instrument for the relation X → Y conditioning on {Z1, Z2}.
This can be verified by noticing that W is d-separated from Y given {Z1, Z2} in
the graph obtained by removing edge X → Y from the given figure. (b) Both
W1 and W2 are instruments conditioning on the empty set ∅. (c) The typical
covariance constraints (“tetrads”) that are implied by instrumental variables also
happen in the case where no instruments exist, implying that rank constraints in
the covariance matrix are not enough information to discover IVs. (d) A case that
is difficult even when considering information from non-Gaussian distributions.

mental variables without prior knowledge of the causal structure, besides the stated ordering
assumptions about {X,Y }. The challenge is that we cannot guarantee which candidate in-
strumental variables are actual instruments without further assumptions.

We will make use of structural characterizations of causality using graphical models
(Pearl, 2000; Spirtes et al., 2000). Prior exposure to causal graphical models is assumed,
with key definitions summarized in Section 2.1. In Section 2.2, we outline the challenges and
explain the general concept of equivalence class of causal effects, a concept adapted from
the work of Maathuis et al. (2009) to the instrumental variable case. Finally, in Section 2.3
we provide a road map of the steps used in our approach.

2.1 Graphical Terminology

Directed acyclic graphs (DAGs) encode independencies among vertices, which correspond to
independencies among random variables. This follows from the usual one-to-one relationship
between vertices in a graph and random variables in a distribution. In a DAG, any two
vertices {Vi, Vj} can be connected by up to one directed edge. Given an edge Vi → Vj , we
say that Vi is the tail and Vj is the head of the edge. We also say that Vi and Vj are endpoints
of edge Vi → Vj where Vi is a parent of Vj and Vj is a child or Vi.

A path in a graph is a sequence of edges, where any two consecutive edges in the sequence
share a common endpoint. Paths are simple if no vertex appears twice, and non-simple
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otherwise. For instance, W → X ← U → Y is a path in Figure 1. An example of a non-
simple path is W → X ← U → X ← U → Y . For most of our presentation, it is sufficient
to just assume that the paths referred to are simple unless stated otherwise. A collider in a
path is a vertex that is common to two consecutive edges such that this vertex is the head
of both edges. For instance, X is a collider in the path given in the previous example, while
U is not. A vertex V is an endpoint of a path P if it is one of the endpoints of the first or
last edge E in the path, and V is not shared with the (possible) edge next to E in P . For
instance, W and Y are the endpoints of W → X ← U → Y .

A path P is between vertices Vi and Vj if Vi and Vj are the endpoints of P . A trek is a
path with no colliders. For instance, W → X ← U → Y is not a trek, but X ← U → Y
and W → X → Y are. A trek P must have an unique source, the vertex in P that is not
the head of any edge in P . A special case of a trek is a directed path, which is a trek where
the source is one of the endpoints. For instance, W → X → Y is a directed path between
W and Y where W is the source. We also say that this path is from source (W ) into the
other endpoint (Y ). The source Vi in a directed path P is an ancestor of all elements Vj
in P , while Vj is a descendant of Vi. It is possible that Vi = Vj , so Vi is an ancestor and
descendant of itself. A non-directed path is a path that is not directed.

A back-door (path) between Vi and Vj is a trek that is into Vi and Vj . For instance,
X ← U → Y is a back-door between X and Y .

A vertex V is active on a path with respect to some vertex set S if it is either (i) a
collider in this path and itself or one of its descendants is in S; or (ii) not a collider and not
in S. A path is active if all of its vertices are active, blocked otherwise. The notion of active
and blocked paths will be important in the sequel, as activation has implications on which
variables can be considered to be an instrument with respect to which conditioning sets.

These definitions lead to the concept of d-separation (Pearl, 2000). A vertex Vi is d-
separated from a vertex Vj given a set S if and only if every path between Vi and Vj is
blocked by S. The interpretation of this definition is explained at length in the graphical
modeling literature and we will assume familiarity with it. We say a probabilistic modelM
is Markov with respect to a DAG G if every d-separation in G corresponds to a conditional
independence constraint in M. A model M is faithful to G if every d-separation in G
corresponds to a conditional independence constraint inM and vice-versa. We sometimes
use the notation Vi ⊥⊥ Vj | S (Dawid, 1979) to denote conditional independence of Vi and
Vj given S in a distribution, and also to denote d-separation when applied to vertex sets in
a graph.

2.2 Scope and Fundamental Challenges

The identification of structural coefficients from given causal graphs is a classical problem in
the structural equation modeling literature (Bollen, 1989). Much progress has been achieved
on describing increasingly intricate combinations of structural features that lead to the
identification of such coefficients (Brito and Pearl, 2002; Foygel et al., 2011; Chen et al.,
2014). As these sophisticated criteria also lead to constraints which are hard to detect from
data, we focus instead on the class of structures that corresponds to classical accounts of
instrumental variables (Angrist and Pischke, 2009) as described by Brito and Pearl (2002).
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Brito and Pearl’s criteria are as follows. Given the causal graph G of a system that
includes an edge X → Y , a vertex W is a (conditional) instrument variable for X → Y
given Z if and only if:

1. Z does not d-separate W from X in G, and

2. Z d-separates W from Y in the graph obtained by removing the edge X → Y from G,
and

3. Z are non-descendants of X and Y in G.

For the rest of the paper, we will call the above conditions the graphical criteria for
instrumental variable validity, or simply “Graphical Criteria.” Notice that the validity of
a vertex as an IV is dependent on which set Z we condition on. That is, if in the corre-
sponding causal graph we find some set Z that blocks all and only the paths relevant to
the Graphical Criteria, then we can identify λyx as σwy.z/σwx.z, where σab.s represents the
partial covariance1 of two variables A and B given some set S. Figure 2(a) illustrates a case.

Unless strong background knowledge is available, the relevant structure needs to be
learned from the data. As an example, consider Figure 1. When U is unobserved and the
distribution is faithful to the graph, the absence of the edge W → Y is not testable (Chu
et al., 2001). However, in a situation such as Figure 2(b), the simultaneous lack of edges
W1 → Y and W2 → Y has a testable implication, as the absence of each edge implies
λyx = σw1y/σw1x and λyx = σw2y/σw2x, respectively. This leads to a tetrad constraint,

σw1yσw2x − σw1xσw2y = 0, (3)

which can be tested using observable data. Unfortunately, the tetrad constraint is necessary,
but not sufficient, to establish that both elements in this pair of variables are instrumental.
As an example, consider Figure 2(c). It is not hard to show that σw1y.zσw2x.z−σw1x.zσw2y.z =
0. However, the Graphical Criteria for IVs are not satisfied as W1 is not d-separated from
Y given Z if we remove edge X → Y . This is because path W1 ← U1 → U2 → Y is active.
Indeed, in this case λyx can be much different from σw1y.z/σw1x.z. A major component of
our contribution is to characterize graphically in which ways the solution is not unique.

We can summarize the main identification challenge as follows. In the Graphical Criteria,
the challenging condition is the second, as the first is easily testable by faithfulness and
the third is given by assumption. Another way of phrasing condition 2, with respect to
conditioning set Z, is as follows:

2a. there is no active non-directed path between W and Y that does not include X (that
is, no active back-door path nor any active path that includes a collider), and

2b. there is no active directed path from W to Y that does not include X.

While we will be able to check 2a, we will not be able to verify 2b, learning to multiple
candidate causal effects.

1. Analogous to the (more widely used) notion of partial correlation, we define partial covariance as the
covariance between the residuals of the least-squares regression of A and B on S, given by σab.s ≡
σab − Σab,sΣ

−1
ss Σs,ba, where Σ is the joint covariance matrix and σij ≡ Σij for scalars i, j.
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Figure 3: In this model, variables W1, . . .Wp are instrumental variables conditioning on the
empty set. However, conditioning on Z0 will introduce an active path from each
Wi to Y via U , destroying their validity. This is particularly an issue for algo-
rithms such as sisVIVE (Kang et al., 2016) and IV-BY-MAJORITY∞ (Section
3), where each variable is either deemed an IV or a conditioning variable. An algo-
rithm such as IV-TETRAD∞ (Section 3) is able to avoid this mistake, although
the computational cost can be high.

2.3 Roadmap

In general, the best we can do is to provide a set of candidate causal effects, one of which
will be correct if at least two instrumental variables (under the same conditioning set) are
present in the true graph. In this case, the set can be used, for instance, to provide lower
and upper bounds on the causal effect. We will discuss our methods in the context of
different assumptions about the existence of instruments, particularly about the number of
instruments that exist in the true unknown graph.

That is, we propose algorithms that in theory return equivalence classes of causal effects.
Such a class of algorithms will be sound in this equivalence class sense of returning a set of
candidate effects that includes the true effect if there are instrumental variables, but will be
incorrect otherwise. Following Cooper (1997), Mani et al. (2006) and Entner et al. (2012),
we will not need to discover full graphs in order to identify the causal effect, but we will not
also find all causal effects that are identifiable from faithfulness assumptions. In particular,
we will consider in which sense our algorithms are complete: that is, if there are instrumental
variables satisfying the Graphical Criteria, we will characterize under which conditions we
will find them. Computational considerations are relevant here.

In the next section, we introduce algorithms that return an equivalence class of causal
effects using tetrad constraints, which are complemented by non-Gaussianity assumptions.
Motivated by simplicity of presentation, all approaches in Section 3 assume that the distri-
bution of the population is known and that computational resources are unbounded. We
do not claim these algorithms are practical —the goal is to use them as a theoretical basis
to choose and justify stronger assumptions that achieve practical learning. In Section 4, we
discuss practical methods for learning from data and the computational and identification
compromises we adopt.

A roadmap for all algorithms introduced in this paper is shown in Table 1. In the table,
we provide the main assumptions used by each method and whether or not the algorithm
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Algorithm Main Assumptions Tractable
1: IV-BY-MAJORITY∞ there exists a set W ⊆ O, of size larger than Yes

|O|/2, such that each W ∈W is a valid IV
given O\{W}.

2: IV-TETRAD∞ there exists a set W ⊆ O, of size at least 2, No
and a set Z ⊆ O\W, such that each W ∈W
is a valid IV given Z.

3: IV-TETRAD+
∞ the assumptions of IV-TETRAD∞, plus the No

assumption that no non-directed paths between
each W and Y are active given Z ∪W\{W},
and that the distribution is non-Gaussian.

4: IV-TETRAD+ the assumptions of IV-TETRAD+
∞, plus the Yes

assumptions that Z = O\W and |W| ≥ K
for some given K ≥ 2.

5: IV-TETRAD++ the assumptions of IV-TETRAD+. Yes
(by MCMC)

Table 1: All algorithms introduced in this paper, along with their main assumptions and
whether they are computationally tractable. Algorithms 2-5 assume also a form
of faithfulness discussed in Section 3. Further assumptions can be added on top
of the assumptions listed below in order to reduce the size of the equivalence class
returned, as discussed in Sections 3 and 4.

is tractable as a function of |O|, the number of observed variables other than treatment X
and outcome Y . The relationship among these algorithms is a follows.

Algorithm 1, introduced at the beginning of Section 3, is inspired by current approaches
for learning instrumental variables. One of its main requirements is the existence of a
large number of valid instruments, which grows with |O|. It does not, however, require
faithfulness.

Algorithms 2 and 3, introduced in Sections 3.1 and 3.3 respectively, are motivated by
the requirement of only two valid instruments. Also, there is no requirement concerning a
special choice for the respective conditioning set: it can be a strict subset of the remaining
variables. The two algorithms, however, assume a variant of faithfulness explained in the
next section. Algorithm 3 requires stronger assumptions than Algorithm 2, but as it will
be shown, it will return an equivalence class no larger than Algorithm 2 while sometimes
guaranteeing a strictly smaller equivalence class.

Unlike the previous algorithms, Algorithm 4, introduced in Section 4, is aimed at prac-
tical learning with finite sample sizes and limited computational resources. That is, here
computational tractability and the handling of statistical variability are important issues
to be considered. We achieve a reduction on statistical variability by enforcing a stronger
constraint: the unknown true model must contain a set of valid IVs no smaller than K,
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Algorithm 1 IV-BY-MAJORITY∞
1: Input: set of random variables O ∪ {X,Y } with known joint distribution
2: Output: the causal effect of X on Y , or a value (NA) indicating lack of knowledge
3: for each Wi ∈ O do
4: Zi ← O\{Wi}
5: βi ← σwiy.zi/σwix.zi

6: end for
7: if more than half of set {βi} is equal to the same finite value β then
8: return β
9: end if

10: return NA

a user-defined parameter. We achieve tractability, and also a further reduction on statis-
tical variability, by requiring the conditioning set to be automatically determined given a
candidate choice of IVs, as in Algorithm 1.

Finally, Algorithm 5 is introduced late in Section 5.3.2 as an example of a Bayesian
variation of Algorithm 4. The goal is to illustrate how variations of Algorithm 4 can be
created to respond to particular needs of an individual application, such as the provision of
Bayesian measures of uncertainty of our estimates. The algorithm is still tractable assuming
Markov chain Monte Carlo (MCMC) can be reliably run on an acceptable amount of time.

Although it seems that we take a step backwards in Algorithm 4, by enforcing back
assumptions about Z that are similar to Algorithm 1, we will explain in Section 4 that these
are not fundamental. However, practical learning with finite sample sizes is hard to achieve
otherwise.

3. From Structural Constraints to Instruments and Causal Effects

Consider Algorithm 1 as a method for learning causal effects given the distribution of the
population (hence, the “∞” symbol in the name of the algorithm, indicating that this is
equivalent to having infinite sample sizes). If Wi is an IV conditioned on Zi ≡ O\Wi,
then βi ≡ σwiy.zi/σwix.zi = λyx, the true causal effect. Without knowing whether Wi is a
conditional IV with respect to Zi, we cannot make claims about the causal effect.

However, if more than half of the elements Wi ∈ O are conditional IVs given the re-
spective Zi, then it follows that more than half of the elements in set {βi} will be equal,
and equal to λyx. This is the same core assumption introduced by Kang et al. (2016). It
sidesteps the problems introduced by models such as the one in Figure 2(c) by assuming that
more than half of O are “valid” IVs. That is, we can partition O into two sets, O = W∪Z,
such that each W ∈W is a conditional IV given Z∪W\{W}. This is done without knowl-
edge of which variables are valid and which are not. As discussed by Kang et al. (2016),
there are situations where this assumption is plausible, or at least weaker than in standard
approaches, as in some genetic studies where O are genetic features of a cell and X, Y are
phenotypes. Kang et al. (2016) introduced the sisVIVE algorithm (“some invalid, some
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Algorithm 2 IV-TETRAD∞
1: Input: set of random variables O ∪ {X,Y } with known joint distribution
2: Output: C, a set of candidate differential causal effects of X on Y
3: Initialize C ← ∅
4: for each pair {Wi,Wj} ⊆ O do
5: for every set Z ⊆ O\{Wi,Wj} do
6: if σwix.z = 0 or σwjx.z = 0 then
7: next
8: end if
9: if σwix.zσwjy.z 6= σwiy.zσwjx.z then

10: next
11: end if
12: C ← C ∪ {σwiy.z/σwix.z}
13: end for
14: end for
15: return C

valid IV estimator”) which, although very different2 from Algorithm 1, relies on the same
fundamental assumptions and as such will be used in our benchmark methods in Section 5.

However, this assumption can be false even when nearly all of O are possibly valid
instruments. Consider Figure 3 where we have an arbitrary number of IVs W1, . . . ,Wp that
are valid by conditioning on the empty set. None of them are valid by conditioning on Z0.
In this situation, IV-BY-MAJORITY∞ will return NA and sisVIVE loses its guarantees,
potentially performing badly. We will characterize how this happens by using faithfulness.

3.1 Structural Signatures of Tetrad Constraints and the Graphical Criteria

Consider Algorithm 2 as a method for learning causal effects, disregarding for now its compu-
tational complexity. The idea is to find triplets (Wi,Wj ,Z) such that (Wi,Z) and (Wj ,Z)
both satisfy the Graphical Criteria. Under the assumption of linear faithfulness (Spirtes
et al., 2000), Line 6 of the algorithm is equivalent to item 1 of the Graphical Criteria. To
characterize what Algorithm 2 can say about item 2 of the Graphical Criteria, we will need
other, less usual, graphical definitions introduced in the next section.

Algorithm 2 is simple, but to the best of our knowledge is has not been described in
the literature. A possible reason for the absence of this algorithm in the literature is that
characterizing its limitations is not straightforward. One of the main contributions of this
paper is the analysis of IV-TETRAD∞ in Section 3.2, for which we will first need the
following theory.

2. sisVIVE uses a modified sparse regression method that is arguably more statistically elegant than
using, for instance, hypothesis testing to decide which estimated λi are statistically the same. The
method remains computationally efficient. We introduced Algorithm 1 because it is closely related to
the other algorithms discussed in this paper and hence provides more direct insights on the interplay
between different assumptions and identification issues. Notice, however, that sisVIVE never returns
NA as it assumes there is always a majority.
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3.1.1 t-Separation and Rank Constraints

In this section, we describe the notion of t-separation (Sullivant et al., 2010), the most
important graphical concept in our approach. Readers familiar with this concept can skip
this section.

Recall the basic definition of a trek from Section 2.1. Another way of describing a trek
T is by ordering its endpoints (such that a trek is “from” Vi “to” Vj), implying an ordered
pair of (possibly empty) directed paths (P1;P2) where: P1 has sink (vertex without children
in T ) Vi; P2 has sink Vj ; and P1, P2 have the same source (vertex in T without parents in
T ).

Definition 1 (t-separation) The ordered pair of vertex sets (CA;CB) t-separates vertex
set A from vertex set B if, for every trek (P1;P2) from a vertex in A to a vertex in B, either
P1 contains a vertex in CA or P2 contains a vertex in CB.

Spirtes (2013) and Sullivant et al. (2010) discuss a generalization of this notion and
further examples. As the definition is somewhat complex, later in this section we provide
some basic examples of this concept in the context of instrumental variables.

Like d-separation, t-separation is relevant if it implies testable implications that decrease
the set of graphical structures compatible with the data (Spirtes et al., 2000). While we will
see that t-separation can also imply independence constraints among observable variables,
this would be of limited interest as d-separation can also imply such constraints. The
importance of t-separation is the possibility of implying testable consequence of d-separations
given unobserved variables. This is done under the assumption of linearity, which will lead
to rank constraints (Spirtes, 2013).

Definition 2 (rank constraint) A rank constraint in a matrix M is any constraint of the
type rank(M) ≤ r, where r is some constant and rank(M) is the rank of matrix M .

IfM is the cross-covariance submatrix given by variables {Vi, Vj} indexing the rows, and
by {Vk, Vl} indexing the columns, then the rank constraint rank(M) ≤ 1 implies σikσjl −
σilσjk = 0. That is, the determinant of M is zero, and a corresponding tetrad constraint
holds.

Let ΣAB be the cross-covariance matrix of set A (rows) and set B (columns). The DAG
Trek Separation Theorem of Sullivant et al. (2010) says:

Theorem 3 (Trek Separation for DAGs) Let G be a DAG with vertex set V. Let A
and B be subsets of V. We have rank(ΣAB) ≤ r in all linear structural equation models
with graph G if and only if there exist subsets CA and CB of V with |CA|+ |CB| ≤ r such
that (CA;CB) t-separates A from B.

To jump from (testable) rank constraints to (unobservable) structural constraints in G,
we assume our model distribution P is rank-faithful to a DAG G (Spirtes, 2013):

Definition 4 ((linear) rank-faithfulness) Distribution P is rank-faithful to a DAG G
if every rank constraint holding on a covariance (sub)matrix derived from P is entailed by
every linear structural equation model Markov with respect to G.

11
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One implication of rank-faithfulness is that |ΣZZ| > 0 for any set Z of vertices in G, a
fact which we will make use of in some proofs.

Unlike d-separation, t-separation is defined by a pair of conditioning sets. Moreover,
when we say that Vi is t-separated from Vj given some ordered pair (CI ;CJ), the order of
the sets in the conditioning pair matters. These two sets do not need to be disjoint and can
also contain Vi and Vj .

Example 1 Consider Figure 1 again. In this example, X alone cannot d-separate W from
Y , due to the active path W → X ← U → Y . We need also to condition on U , but we
cannot directly test the respective conditional independence if U is a latent variable. It is
however the case that if A ≡ {W} and B ≡ {Y }, then (∅; {X}) t-separates A from B: using
the notation of Definition 1, the only trek between W and Y is (∅;W → X → Y ). CA = ∅
and CB = {X} will suffice to imply the t-separation.

Moreover, by Theorem 3, cross-covariance matrix ΣAB has rank at most |∅|+ |{X}| = 1.
Notice, however, that this is true regardless or not this t-separation holds. Therefore, without
knowing the graph, we still cannot exclude edge W → Y .

If we try to redefine the problem such that A ≡ {W,X} and B ≡ {X,Y }, hoping to
show that ΣAB will not be full rank, then this will not work either. This is because (∅, X)
does not imply the t-separation anymore, as there is now the trek (X ← U ;U → Y ) between
A and B. Pair (∅; {X}) does not block this trek. We need the conditioning set pair to be
({X}, {X}). By the notation of Theorem 3, this means CA = CB = {X} and all the
theorem implies is that ΣAB has rank at most |{X}|+ |{X}| = 2. Once again, this is true
regardless of the absence of the edge W → Y . �

Example 2 Consider Figure 2(b) again. Pair A ≡ {W1,W2} is t-separated from B ≡
{X,Y } by (∅, {X}).

To check this, enumerate all simple treks (P1;P2) such that path P1 has its sink in
{W1,W2} and path P2 has its sink in {X,Y }. We obtain:

• (P
[1]
1 ;P

[1]
2 ) ≡ (∅;W1 → X),

• (P
[2]
1 ;P

[2]
2 ) ≡ (∅;W1 → X → Y ),

• (P
[3]
1 ;P

[3]
2 ) ≡ (∅;W1 →W2 → X),

• (P
[4]
1 ;P

[4]
2 ) ≡ (∅;W1 →W2 → X → Y ),

• (P
[5]
1 ;P

[5]
2 ) ≡ (∅;W2 → X),

• (P
[6]
1 ;P

[6]
2 ) ≡ (∅;W2 → X → Y ),

• (P
[7]
1 ;P

[7]
2 ) ≡ (W2 ←W1;W1 → X),

• (P
[8]
1 ;P

[8]
2 ) ≡ (W2 ←W1;W1 → X → Y ).

12
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We can then verify that, for each case, it is indeed true that {X} blocks all paths P [1]
2 , . . . , P

[8]
2 ,.

Since |∅|+ |{X}| = 1, then |ΣAB| has rank at most 1. This constraint is not satisfied under
rank-faithfulness if, for instance, edge W1 → Y were to be present. That is, even though
X does not d-separate {W1,W2} from Y , it alone is responsible for a t-separation and no
hidden variable is evoked in its testable claim of rank(ΣAB) ≤ 1. �

Example 3 Consider Figure 2(c) again. Using standard d-separation, we can verify that
Z alone does not d-separate {W1,W2} from {X,Y }. Instead, {U1, Z}, or {U2, Z}, should
be used instead. In the absence of the causal graph, we cannot discover this d-separation by
directly testing the corresponding conditional independence given a latent variable. We need
indirect evidence for this d-separation that uses observable variables only.

That is where conditional tetrad constraints play a role. Assuming Z is observable,
we could de-activate all directed paths from {W1,W2} to {X,Y } that go through Z and
consider the partial cross-covariance matrix of {W1,W2} against {X,Y } given Z. The
Trek Separation Theorem for DAGs, however, says nothing explicit about conditional cross-
covariances. The independence model given by conditioning on a variable is sometimes a
DAG itself, but this is not true in general (Richardson and Spirtes, 2002). Sullivant et al.
(2010) present versions of the theorem for some classes of DAGs under conditioning, but
not in a completely general way, as further explained in Appendix A.

Fortunately, for our purposes, conditioning can be easily dealt with: let us simply in-
troduce the conditioning variables in both sets A and B. In this example, define A ≡
{W1,W2, Z} and B ≡ {X,Y, Z}. Then it is not hard to verify that (∅; {U1, Z}) t-separates
A from B: this follows by first verifying that all treks between {W1,W2, Z} and {X,Y, Z}
include U1 or Z.3 Cross-covariance ΣAB is now rank-deficient since |∅| + |{U1, Z}| =
2 < 3, which means its determinant is zero. Because its determinant can be written as
σzz(σw1x.zσw2y.z − σw1y.zσw2x.z) and we assume σzz 6= 0, the (conditional) tetrad constraint
will hold. This means that without observing U1 we can make claims about the conditional
structure between {W1,W2} and {X,Y }. �

Like d-separation, it is possible that more than one conditioning set pair implies t-
separation between two setsA andB. In the last example, it is also the case that (∅; {U2, Z})
implies t-separation.

In Appendix A, we provide further examples of t-separation. Linear faithfulness, the
assumption that vanishing partial correlations hold in the distribution if and only if a cor-
responding d-separation also holds in G (Spirtes et al., 2000), is a special case of rank faith-
fulness since t-separation subsumes d-separation (Sullivant et al., 2010), as also discussed in
Appendix A.

3.2 Analysis of Algorithm 2

The algorithm searches for rank constraints among quartets {Wi,Wj} × {X,Y } where X
is the treatment and Y is the outcome.4 We need to characterize which structures are
3. The “trivial trek Z,” composed of the single vertex Z and no edges, does not violate this statement, as
Z is t-separated from itself by (∅; {U1, Z}) if we define this trivial trek to be (∅;Z).

4. For simplicity, we assume that there is an edge X → Y corresponding to a non-zero coefficient λyx.
Otherwise, ifWi satisfies the Graphical Criteria for X → Y given Z, then under unmeasured confounding
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compatible with the Trek Separation Theorem and, among those, which satisfy the Graphical
Criteria. We start with the following observation.

Proposition 5 In Line 9 of Algorithm 2, under rank-faithfulness the conditional tetrad
constraint is equivalent to

rank(ΣAB) ≤ |Z|+ 1, (4)

for A = {Wi,Wj} ∪ Z and B = {X,Y } ∪ Z.

Proof of Proposition 5. As in Example 2, the determinant |ΣAB| = |ΣZZ|(σwix.zσwjy.z−
σwiy.zσwjx.z) is zero if and only if the conditional tetrad constraint σwix.zσwjy.z = σwiy.zσwjx.z

holds, as |ΣZZ| > 0 by rank-faithfulness. Hence, ΣAB is not full rank, that is, its rank is
strictly less than min(|A|, |B|) = |Z|+ 2. �

If the constraint holds, by Theorem 3 it follows that there is some pair (CA;CB) that
t-separates {Wi,Wj} ∪ Z from {X,Y } ∪ Z. It is required that Z ⊆ CA ∪ CB, since Z is
contained in both A and B. This implies the lower bound |CA| + |CB| ≥ |Z| so that at
most one element of Z belongs to CA∩CB, and at most one element not in Z can belong to
CA ∪CB. The main result of this section is a characterization of the ways this may happen
such that we fail to discover the correct causal effect.

Consider the case where there exists a trek T , containing no element of Z, which is
between some W ∈ {Wi,Wj} and {X,Y }. CA ∪CB must contain an element of T for the
t-separation to hold. Since by (4) and Theorem 3 we have that |CA|+ |CB| ≤ |Z|+ 1, then
we can use exactly one (possibly latent) element out of Z but in CA ∪CB to explain this
t-separation. Moreover, since Z ⊆ CA ∪CB, no vertex can appear in both CA and CB, or
otherwise |CA|+ |CB| > |Z|+ 1. That is, the existence of T implies CA ∩CB = ∅.

We call any vertex in T satisfying the definition below a conditional choke point. A
conditional choke point can be a “left” or “right” choke point:

Definition 6 (left conditional choke point) In a causal DAG G with vertex set V, V0 is
a left conditional choke point for pairs {Wi,Wj}×{X,Y } given Z, where {V0,Wi,Wj , X, Y }∪
Z ⊆ V, if

1. some (CA;CB) t-separates {Wi,Wj} from {X,Y } in G, such that V0 ∈ CA\{Z∪CB},
CA ∪CB = Z ∪ {V0}, CA ∩CB = ∅, and

2. for any trek (P1;P2) from a vertex in {Wi,Wj} to a vertex in {X,Y } in G that contains
no member of Z, P1 contains V0, and

3. there exists at least one such a trek.

between treatment and outcome we have that the lack of an edge X → Y implies Wi ⊥⊥ Y | Z and
Wi 6⊥⊥ Y | Z∪{X}. This corresponds to the collider orientation rule of the FCI algorithm (Spirtes et al.,
2000) that implies λyx = 0. If on top of the lack of edge X → Y we have that there is no unblocked
unmeasured confounding between X and Y , then X ⊥⊥ Y | Z, which again by faithfulness will allow us
to infer λyx = 0 (Spirtes et al., 2000). Algorithm 2 is assumed to be invoked only if the FCI algorithm
and the method of Entner et al. (2012) do not provide any results.
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A “right conditional choke point” follows an equivalent definition with respect to CB

and P2. The literature has characterizations of unconditional choke points (Shafer et al.,
1993; Sullivant et al., 2010), relating them to unconditional tetrad constraints. To the best
of our knowledge, this is the first time that conditional choke points are explicitly defined
and used. The reason for the name “choke point” is explained later in this section.

A second category of choke point, now for vertices in Z, will be defined as follows:

Definition 7 (collider choke point) In a causal DAG G with vertex set V, Z0 is a col-
lider choke point for pairs {Wi,Wj} × {X,Y } given Z, where {Wi,Wj , X, Y } ∪ Z ⊆ V,
if

1. some (CA;CB) t-separates {Wi,Wj} from {X,Y } in G, such that Z0 ∈ Z, CA∪CB =
Z, CA ∩CB = Z0, and

2. for any (possibly non-simple) path P from a vertex in {Wi,Wj} to a vertex in {X,Y }
in G that contains a collider in Z, P contains Z0, and

3. there exists at least one such a path.

The same vertex can be a conditional and a collider choke point depending on the
conditioning set. For instance, Z0 is a (right) conditional choke point in Figure 3 for each
{Wi,Wj}×{X,Y } given the empty set, since (∅;Z0) t-separates each pair in {W1, . . .Wp}×
{X,Y } and it lies on all of such treks. The tetrad constraint σwixσwjy = σwiyσwjx holds, and
we can recover the correct causal effect from σwiy/σwix as the Graphical Criteria is satisfied.
On the other hand, if we take the conditioning set to be Z0 itself, then the conditional
tetrad constraint σwix.z0σwjy.z0 = σwiy.z0σwjx.z0 also holds, as well as the corresponding t-
separation. However, there is no conditional choke point as all treks in {Wi,Wj} × {X,Y }
contain an element of the conditioning set, Z0 itself. Z0 is now a collider choke point, as
it lies as a collider on all active paths between {W1, . . . ,Wp} and {X,Y }. Notice that the
Graphical Criteria does not hold as W1 is not d-separated from Y given Z0 in the graph
that modifies Figure 3 by removing edge X → Y .

Choke points do not need to be unique, in the same way that t-separation between sets
may be implied by more than one conditioning pair. For instance, both U1 and U2 are
right conditional choke points in Figure 2(c), corresponding to the different choices of CB

discussed in Example 3.
We are now ready to characterize when Algorithm 2 may provide an incorrect value for

the target causal effect. The proof of this result is given in Appendix B.

Theorem 8 Let C be the outcome of Algorithm 2 as applied to a distribution which is rank-
faithful to some causal DAG G. Let βi ∈ C, and let (Wi,Wj ,Z) be the respective triplet that
generated βi by passing the check in Line 9. Then (Wi,Wj ,Z) fails to satisfy the Graphical
Criteria if and only if exactly one of these is true:

(i) there is at least one trek between {Wi,Wj} and Y that do not contain any member of
Z ∪ {X}, and all of those treks intersect at the same conditional choke point V0;

(ii) there is at least one (possibly non-simple) active path between {Wi,Wj} and Y that
contains a collider in Z and does not contain X, and all of those paths intersect at the
same collider choke point Z0.
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Moreover, it is not possible that for (Wi,Wj ,Z) both a conditional choke point and a collider
choke point exist in G regardless of whether the Graphical Criteria hold.

That is, if a candidate triplet (Wi,Wj ,Z) does not correspond to valid (conditional)
instrumental variables, then all offending paths that avoid X and connect the candidate
instruments to Y must pass through a single variable V ∈ V\{X}. If V is in the conditioning
set Z, then this variable must be a collider in all of the offending paths. For instance, U is
a conditional choke point with respect to Z = ∅ in Figure 2(d) and Z0 is a collider choke
point for Z = {Z0} in Figure 3. The difference between valid and invalid instruments that
imply tetrad constraints is that, in the former, X is a conditional choke point. Although
this is not used by Algorithm 2, if conditional tetrad constraints hold for all pairs in some
set W ≡ {W1, . . . ,Wp} given Z, it follows that all offending paths from W to Y go through
a common variable V . As a matter of fact, the name “choke point,” originally coined by
Spirtes et al. (2000) for the special case Z = ∅, comes from this idea of having all connecting
paths (treks only, in the original case) between two sets passing through a single variable.

We can formalize a sufficient assumption that guarantees that Algorithm 2 does not
return a incorrect causal effect as follows:

Corollary 9 Let G be a causal DAG with observable vertices O, treatment vertex X and
outcome vertex Y . For all {Wi,Wj} ∪ Z ⊂ O where a tetrad constraint σwix.zσwjy.z =
σwiy.zσwjx.z holds, if X is a corresponding conditional choke point in G, then the output set
of Algorithm TETRAD-IV∞ will not contain an incorrect causal effect.

The result above allows for an empty output set C, which will happen if no valid pair
of instrumental variables exists. However, even if all elements of C are equal to some λC , it
does not mean that λC = λyx in case the assumptions of Corollary 9 fail. It is impossible to
distinguish, based on tetrad relations, the graph in Figure 2(b) from the one in 2(d). In the
former, X can take the role of a conditional choke point explaining the tetrad constraint. In
the latter, X cannot take this role because of the active trek W1 → U → Y , but vertex U
can, resulting on a tetrad constraint but on invalid IVs. In general, we will have problems
in a graph which includes an intermediate latent variable that is a common ancestor of X
and Y and blocks all treks from W1 and W2 to X. As another example, vertex U1 takes
the role of a conditional choke point given Z in Figure 2(c), while X cannot take this role
because of the active trek W1 ← U1 → U2 → Y .

One might argue that the assumptions of Corollary 9 are not too restrictive, as failing
them require that all offending paths intersect at an unique vertex. If two disjoint paths
from W1 to Y via latent variables exist, for instance, then no tetrad constraint will hold
and at worst we would be conservative and not return any causal effect. However, we argue
that these assumptions should not be taken lightly. The whole motivation for including a
conditioning set Z is to block paths such that a “desirable” choke point emerges: treatment
X. The assumptions that make the presence of an instrumental variable possible are the
same that make the presence of undesirable choke points plausible.

Instead, the output of IV-TETRAD∞ is better interpreted as an equivalence class of
causal effects, differing from the usual output of causal discovery algorithms such as the PC
algorithm (Spirtes et al., 2000): the PC algorithm returns a set of graphs of which some
graphical features might be the same (for instance, they all share the same directed edge),
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X Y

U

W1a

W1b

W2a

W2b

Wpa

Wpb
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U1
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U0

Figure 4: Vertices named U? are latent variables, with X being the treatment and Y being
the outcome. When given as input to algorithms for finding locally covariance
equivalent solutions, the result will include a (potentially different) causal effect
candidate for each of the pairwise groupings {Wia,Wib}, i = 1, 2, . . . , p, where
p = |O|/2.

and where some causal effects might be identified based on the common features. That is,
the PC algorithm either gives (in the limit of infinite data) the correct answer, or it answers
“I don’t know.” The same is true of the method introduced by Entner et al. (2012).

In contrast, IV-TETRAD∞ may return an empty set of solutions, but at the same time
all solutions in a non-empty output set C may be wrong in case the assumptions of Corollary
9 do not hold. The need to report an equivalence class is illustrated by the following result.

Proposition 10 There exist problems where the output of IV-TETRAD∞ will contain
O(|O|) different elements, none of which is the correct solution λyx.

Proof of Proposition 10. This is illustrated by Figure 4: given O = {W1a,W1b,W2a,
. . . ,Wpb}, p = |O|/2, the structure shown in the Figure will generate solutions for all pairs
{Wia,Wib} × {X,Y } with corresponding conditioning set Zi ≡ O\{Wia,Wib}. For parame-
ters generated randomly and independently, it is clear each resulting λi will be unique. The
corresponding choke point in each case is Ui, and none of the returned causal effects will in
general be correct. �

For practical purposes, one should be willing to to assume that at least one solution
exists, that is, there exists at least one pair of IVs conditioned on the same set Z. Under
this condition, we obtain the following guarantee:

Corollary 11 Let C be the output of IV-TETRAD∞ as applied to a distribution which is
rank-faithful to a causal DAG G with observable vertices O∪{X,Y } and target edge X → Y .
Let λyx be the corresponding true causal effect. Assuming that there exists at least one set
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{Wi,Wj} ∪ Z ⊆ O where {Wi,Wj} satisfies the Graphical Criteria conditioned on Z, then
the minimum and maximum elements of C will provide lower and upper bounds on λyx.

The proof of this Corollary is immediate from the previous discussions. Summaries other
than lower bounds and upper bounds are possible: for instance, if the maximum of C is much
larger than the second largest element, and background knowledge says that such a large
value is unlikely, we may opt to exclude it or to reweight elements of C according to some
prior. More of that is discussed in Section 5.

Assuming that one solution exists is a much weaker assumption than the one in IV-BY-
MAJORITY / sisVIVE. However, it does require rank-faithfulness and it can only provide
bounds and other summaries of an equivalence class. If in the application of the algorithm
we have that all elements of C are the same, then from the assumption that there is at least
one valid tuple it follows that we found the true causal effect. A discussion of what further
assumptions are necessary in practical learning is postponed to Section 4.

The soundness of Algorithm IV-TETRAD∞ can be defined in terms of the bounds
given by Corollary 11, or other summaries of interest, provably capturing the true λyx.
Soundness is however of limited value if the equivalence class is too large or trivial (that is,
if there is a lack of specificity in the constraints chosen to distinguish possible models), or
if the algorithm cannot find all elements of the equivalence class (a lack of completeness).
While soundness and completeness are a matter of mathematical proof, specificity must be
argued in the context of the scientific plausibility of assumptions and practical matters of
computational and statistical tractability.

The Markov equivalence class used by various causal discovery algorithms has a natural
specificity, as independence constraints are nonparametric restrictions that require no further
assumptions about the probability distribution underlying the causal model. The motivation
for the specificity of our method is less clear and discussed by first formally defining the
following concept:

Definition 12 (locally covariance equivalent causal effect) We say that two ratios βi(z)
≡ σwiy.z/σwix.z and βj(z′) ≡ σwjy.z

′/σwjx.z
′ are locally covariance equivalent causal effects

if there is some pair {Wk,Wl}, Wi 6= Wk, Wj 6= Wl, where βi(z) = βk(z) and βj(z′) = βl(z′).

IV-TETRAD∞ is sound and complete in the sense that by construction it returns all
and only locally covariance equivalent causal effects. The effects are “local” in the sense that
it does not use covariance information from the joint distribution of {Wi,Wj ,Wk,Wl}∪Z∪Z′
beyond what is found in the marginals {Wi,Wk} ∪Z and {Wj ,Wl} ∪Z′. This is motivated
by the following desiderata:

Desiderata 1 (Local Covariance Discovery) We say that an algorithm obeys the local
covariance discovery desiderata if it follows these conditions:

1. only substructures where two or more variables follow the Graphical Criteria condi-
tioned on a common set Z ⊂ O can be used to select conditional instrumental variables;

2. only covariance information is used.
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Algorithm 3 IV-TETRAD+
∞

1: Input: set of zero-mean random variables O ∪ {X,Y } with known joint distribution
2: Output: C, a set of candidate differential causal effects of X on Y
3: Initialize C ← ∅
4: for each pair {Wi,Wj} ⊆ O do
5: for every set Z ⊆ O\{Wi,Wj} do
6: if σwix.z = 0 or σwjx.z = 0 then
7: next
8: end if
9: if σwix.zσwjy.z 6= σwiy.zσwjx.z then

10: next
11: end if
12: rWi ← resProj(Wi,Z ∪ {Wj})
13: rWj ← resProj(Wj ,Z ∪ {Wi}})
14: rY ← resProj(Y,Z ∪ {Wi,Wj})
15: if rWi ⊥⊥ rY and rWj ⊥⊥ rY then
16: C ← C ∪ {σwiy.z/σwix.z}
17: end if
18: end for
19: end for
20: return C

The requirement for covariance information only allows us to use only second moments,
which is relatively statistically efficient. This will be relaxed in the next section. The need
for “two or more” variables in condition 1 is necessary, since the Graphical Criteria provides
no testable implications for a single instrument, as discussed in the introduction. It is also
desirable, as it considers variables that are jointly instrumental by conditioning on the same
set Z. To drop this criterion is to require a search space where different conditioning sets
are required for each IV, resulting in an algorithm that effectively reconstructs a “non-local”
graphical substructure that will require the identification of structural coefficients other than
λyx. This is what is done, for instance, in one of the first published extensions of the Graph-
ical Criteria (Brito and Pearl, 2002). However, identification of causal effects using given
IVs is an easier problem than discovering IVs from limited structure information. Inferring
structure from data is statistically challenging, and we claim that restricting a method to
the desiderata above provides a baseline where stronger assumptions, and computational
and statistical costs, can be exchanged for greater specificity of the solutions returned.

3.3 Exploiting Non-Gaussianity Assumptions

This Section introduces a variant of IV-TETRAD∞ that can verify the validity of item
2a of the Graphical Criteria, as discussed in Section 2.3. We assume our causal model is a
LiNGAM model, a linear structural equation model with independent, non-Gaussian error
terms, which may include latent variables (Shimizu et al., 2006). We call this Algorithm IV-
TETRAD+

∞, which is shown in Algorithm 3. We will also discuss the difficulties posed by
2b even under the assumption of non-Gaussianity. The motivation is to reduce the size of the
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equivalence class by trading it off with the addition of more assumptions (non-Gaussianity)
and a weakening of completeness (some solutions might be missed, as we will characterize).

In Algorithm 3, function resProj(V,S) is a function that returns the residual of the
least-squares projection of V into the set of random variables S rearranged as a column
vector,

resProj(V,S) ≡ V − E[SᵀV ]E[SSᵀ]−1S,

which is itself a random variable. We assume that V and S have zero mean.

3.3.1 Main Result

The validity of Algorithm 3 holds “almost everywhere,” in the sense it holds for all but a
(Lebesgue) measure zero subset of the set of possible structural coefficients λij and variances5

ωi of each respective error term ei, θG ≡ {λij | Vj ∈ parG(i)}∪{ωi}. The motivation for this
concept is analogous to the different variations of faithfulness, see the discussion on generic
identifiability by Foygel et al. (2011) and Sullivant et al. (2010).

The main result of this section is the following:

Theorem 13 Let O ∪ {Y } be a subset of the variables in a zero-mean LiNGAM model
with graph G, where Y has no descendants in G. Let Oi ∈ O and Z ⊆ O\{Oi}, and let
ri ≡ Oi − aᵀZ be the residual of the least-squares regression of Oi on Z, with a being the
corresponding least-squares coefficients. Analogously, let ry ≡ Y −biOi−bᵀZ be the residual
of the corresponding least-squares regression. Then, almost everywhere, ri ⊥⊥ ry if and only
if there are no active non-directed paths between Oi and Y conditioned on Z

The proof is given in Appendix B. This generalizes the main result of Entner et al.
(2012), which considers the case where Z contains no descendant of Oi.

Even under non-Gaussianity, we will see that it is still possible for conditional choke
points in the true graph to add incorrect causal effect estimates to the output of Algorithm
3. However, only the following special case can occur:

Definition 14 (downstream conditional choke point) In a causal DAG G with vertex
set V, V0 is a downstream conditional choke point for pairs {Wi,Wj} × {X,Y } given Z,
where {V0,Wi,Wj , X, Y } ∪ Z ⊆ V, if V0 is a conditional choke point which is a descendant
of {Wi,Wj} in G, an ancestor of both X and Y , such that no active back-door paths between
V0 and {Wi,Wj} exist in G.

This implies that collider choke points are now ruled out, as shown in the following result
proved in Appendix B:

Theorem 15 Let C be the outcome of Algorithm 3 as applied to a distribution which is rank-
faithful to some causal DAG G. Let βi ∈ C, and let (Wi,Wj ,Z) be the respective triplet that
generated βi by passing the check in Line 15. Then (Wi,Wj ,Z) fails to satisfy the Graphical
Criteria if and only if: there is at least one directed path between {Wi,Wj} and Y that does
not contain any member of Z ∪ {X}, and all of those directed paths intersect at the same
downstream conditional choke point V0.

5. As error terms are non-Gaussian, other parameters are expected to exist, but our results are agnostic
with respect to them.
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By further restricting the set of possible choke points, we refine the explanation of
possible disparities obtained by Algorithm 3 compared to Algorithm 2. By knowing that
there is a single choke point per pair which is unconfounded with the candidate IVs, and
which lies on all unblocked directed paths from {Wi,Wj} to Y , the output of the algorithm,
combined with background knowledge, can be analyzed to exploit this piece of information.
For example, any downstream conditional choke point must be a latent confounder of X
and Y , which is itself caused by {Wi,Wj}: efforts might be directed to try to interpret
and measure such confounders as possible explanations for the disparities in the output of
Algorithm 3.

Examples of advantages and remaining limitations of IV-TETRAD+
∞ are as follows.

Example 4 Consider Figure 2(c) again. As discussed before, t-separation between {W1,W2,
Z} and {X,Y, Z} holds given (∅; {U1, Z}). However, there is an active path between W1 and
Y that does not include X. Algorithm 2 will include the candidate causal effect corresponding
the invalid IV triplet (W1,W2, Z) in its output. In contrast, Algorithm 3 will detect the active
back-door path W1 ← U1 → U2 → Y by the residual test of Line 15 and reject (W1,W2, Z).
�

Example 5 Consider Figure 2(d) again. T-separation between {W1,W2} and {X,Y } holds
given (∅;U). However, there are active paths between {W1,W2} and Y that do not include
X and intersect at the downstream conditional choke point U . Algorithm 3 will not detect
these offending paths and will incorrectly include a value different from λyx in its output set.
�

Example 6 Consider Figure 3 again. T-separation between {W1,W2, Z0} and {X,Y, Z0}
holds given (∅; {Z0}). Algorithm 2 will include the candidate causal effect corresponding the
invalid IV triplet (Wi,Wj , Z0) in its output. In contrast, Algorithm 3 will detect the active
non-directed paths Wi → Z0 ← U → Y by the residual test of Line 15. �

Example 7 Figure 5 shows a more complex example where a latent variable U invalidates
one particular set of candidate IVs ({V1, V2} given V6). Meanwhile, in the same graph,
conditioning on V2 is essential to validate another set of candidate IVs. These two cases
cannot be distinguished by Algorithm 2 but can be by Algorithm 3. �

Notice that Lines 12-14 in IV-TETRAD+
∞ include Wj in the conditioning set for Wi

and vice-versa. Including Wj in the conditioning set for Wi is acceptable, given that if Wi

andWj each satisfy the Graphical Criteria with respect to X → Y given Z, thenWi satisfies
the Graphical Criteria with respect to X → Y given Z ∪ {Wj}:

Proposition 16 If Wi and Wj each satisfy the Graphical Criteria with respect to X → Y
given Z, then Wi satisfies the Graphical Criteria with respect to X → Y given Z ∪ {Wj}.

Proof of Proposition 16. Given Z, both Wi and Wj are d-separated from Y in the graph
where edge X → Y has been removed. If Z ∪ {Wj} d-connected Wi to Y in this mutilated
graph, then there should be an active path from Wi to Y where Wj is a collider. But this
would imply an active path from Wj to Y given Z, contrary to our assumption. �

21



Silva and Shimizu

X Y

U

V3 V4

V5
2V

1V

V6

Figure 5: In this system, W ≡ {V1, V2} satisfies the conditional tetrad constraints {V1, V2}×
{X,Y } given Z ≡ {V3, V6}. The same is true for W′ ≡ {V3, V4} for Z′ ≡ {V2, V5}.
OnlyW′ represents a set of (conditionally) valid IVs. The non-Gaussianity criteria
of IV-TETRAD+

∞ helps to rule out the former.

The motivation for includingWj in the conditioning set ofWi is that, ifWi andWj share
a hidden common cause that is independent of X and Y and Wj is an unblocked ancestor
of X, then not conditioning on Wj will induce an active back-door between Wi and X that
will make the algorithm unnecessarily remove σwiy.z./σwix.z. from the output.

3.3.2 Implications to Completeness

The following result is a direct consequence of the assumptions and the exhaustive search
done by IV-TETRAD+

∞. The proof of this result follows immediately from Theorem 13
and the existence of edge X → Y :

Proposition 17 If there is a pair of observable variables {Wi,Wj} which are IVs condi-
tioned on some Z according to the Graphical Criteria, and some W ∈ {Wi,Wj} has an
active non-directed path with X given Z, and X is a parent of Y , then Algorithm 3 will not
include {Wi,Wj} in its output.

The implication of this is as follows. A positive property of IV-TETRAD+
∞ is that it

will exclude from the equivalence class some candidate IVs that do not obey the Graph-
ical Criteria but which are returned by IV-TETRAD∞. However, IV-TETRAD∞ was
complete in the sense of always including in its output the correct causal effect, under the
assumption that at least one pair of valid IVs existed given a common conditioning set. This
assumption is not strong enough in the case of IV-TETRAD+

∞. As an example, suppose
that there exists only one pair {Wi,Wj} of valid IVs, and its conditioning set Z does not
block all back-doors into X. IV-TETRAD+

∞ may return a non-empty set but it will not
include the correct causal effect.

Example 8 W is a valid IV in the model with paths W → X → Y , W ← U1 → X ← U2 →
Y , but W will be discarded due to the back-door path between W and Y that is unblocked by
not conditioning on X. �

As a result, the following is a modification of Corollary 11 to the alternative algorithm
IV-TETRAD+

∞. The proof follows immediately from the previous results.
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Algorithm 4 IV-TETRAD+

1: Input: D, a sample from the joint distribution of random variables O ∪ {X,Y }; K,
number of instruments to consider

2: Output: two sets of estimates of the differential causal effect of X on Y
3: Remove from O any element that is not in the Markov blanket of either X or Y , and

also any element which is marginally uncorrelated with X or Y
4: Let λ̂i ← σ̂wiy.o\i/σ̂wix.o\i for each Wi ∈ O
5: Initialize C and CR as empty sets, and W as O
6: while |W| ≥ K do
7: Sort W as W (1), . . . ,W (|W|) according to the corresponding {λ̂}
8: Find j ∈ {1, 2, . . . , |W|} that minimizes ScoreTetrads(W (j:j+K−1),O, X, Y,D)
9: Wj ← ExpandTetrads(j,K,W,O, X, Y,D)

10: if TestTetrads(Wj ,O, X, Y,D) then
11: λ̂TSLS ← TSLS(Wj ,O\Wj , X, Y,D)
12: if TestResiduals(Wj ,O, X, Y,D) then
13: C ← C ∪ λ̂TSLS

14: else
15: CR ← CR ∪ λ̂TSLS

16: end if
17: end if
18: W←W\Wj

19: end while
20: return (C, CR)

Corollary 18 Let C be the output of IV-TETRAD+
∞ as applied to a distribution which is

rank-faithful to a causal DAG G with observable vertices O∪{X,Y } and target edge X → Y .
Let λyx be the corresponding true causal effect. Assuming that there exists at least one set
{Wi,Wj} ∪ Z ⊆ O where {Wi,Wj} satisfies the Graphical Criteria conditioned on Z, and
that no non-directed path between {Wi,Wj} and X is active given Z, then the minimum and
maximum elements of C will provide lower and upper bounds on λyx.

The trade-off between IV-TETRAD∞ and IV-TETRAD+
∞ can be implemented in

different ways within a practical algorithm, as we shall see next.

4. Practical Learning from Data

Testing tetrad constraints from data is difficult in practice, particularly without assuming
Gaussianity and under conditioning. In order to search for candidate IVs, we will first adopt
the stronger (but falsifiable) assumption that, if any set of valid conditional IVs exist, then
there is at least one such set W of size K, which remains valid by conditioning on O\W.
One motivation is to avoid a combinatorial search for conditioning sets, while still having
the option of rejecting a solution if confounding or collider biases remain by doing a test at
the end. The other motivation is the statistical unreliability of candidate sets of small size:
in a large system where the treatment may have many observed causes, instruments will in
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general be weakly associated with the treatment, leading to high variance estimates. This
issue of “weak instruments” is pervasive in real problems and one mitigation is to consider
instrument sets of a minimum size.

The algorithm, IV-TETRAD+, is shown in Algorithm 4. Its implementation diverges
from a direct adaptation of IV-TETRAD+

∞ where hypothesis testing would be used to
to check the required constraints. This is because we found that, in simulations, directly
testing conditional tetrad constraints is not a very robust strategy. Instead, IV-TETRAD+

includes intermediate steps along the lines of a “score-based approach” (Cooper, 1999) for
causal discovery. In the algorithm, we search for a window of K estimated causal effects
{λ̂} within a sorted list, scoring this set according to a particular measure of variability of
its elements. Ideally, a perfect score of 0 is obtained when all λ̂ in this window are equal.
This corresponds to an alternative view of Line 9 of IV-TETRAD+

∞, where we find a set of
K variables Wi with corresponding ratios σ̂wiy.o\i/σ̂wix.o\i as close as possible to each other,
in a formal sense defined below.

The algorithm makes use of TSLS(W,Z, X, Y,D), the two-stage least squares (TSLS)
estimator for some set of conditional instruments W and conditioning set Z, given a data
set D. The TSLS estimator6 λ̂TSLS is motivated by the redundant ways of estimating λyx if
we have more than one instrument. For instance, we could have used either σwiy.z/σwix.z or
σwjy.z/σwjx.z in the previous algorithms without any difference. When finite sample covari-
ance matrices are used instead of population covariance matrices, differences will appear.
The TSLS is a classic way of combining all postulated instruments into a single estimator
(Angrist and Pischke, 2009). This is particularly relevant in IV-TETRAD+, where we use
more than two instruments in each causal effect estimate inside function ScoreTetrads,
as explained in the next paragraphs.

The output of the algorithm is a pair of two sets, C and CR, where the latter excludes
from C all elements that correspond to each Wi detected to be connected to Y via an active
non-directed path, as in IV-TETRAD+

∞.

4.1 Interpretation

The details of the algorithm are as follows:

• In Line 3, we remove variables from O that are considered to be conditionally indepen-
dent of X or Y . The deletion of variables outside the Markov blanket of X correspond
to Line 6 in IV-TETRAD+

∞. As discussed in the beginning of this section, we assume
that if valid IVs exist, then O can be partitioned into instrument set W and condition-
ing set Z ≡ O\W. By Proposition 16, Wi ∈W remains a valid IV if the conditioning
set is Oi ≡ O\{Wi}. We remove also variables which are statistically independent of
Y given the remaining variables in O. This is motivated by the instability of the ratio
of estimates σ̂wiy.z/σ̂wix.z when both are close to zero. If W is d-connected to X and
edge X → Y exists, then in theory we will not remove any valid IV by doing this test.

6. Assuming D is centered to have zero empirical mean, this is defined as follows: let RW , RX , RY denote
the corresponding empirical residuals of the least-squares regression of W, X and Y on Z. The projection
matrix PW is defined as RW (R>WRW )−1R>W . Let R̂X denote the predicted value R̂X ≡ PWRX . The
two-stage least squares coefficient is then given by the least-squares regression of RY on R̂X , resulting
in λ̂TSLS ≡ (R>XPWRX)−1R>XPWRY .
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In our experiments in the next Section, Line 3 is implemented by running LARS
(Efron et al., 2004), regressing separately X on O and Y on O. We then remove from
O any element that is given a coefficient of value zero in either regression.

Moreover, we also remove from O any element marginally uncorrelated with X or Y
by a test of vanishing Spearman correlations at a 0.05 level;7

• In Line 4, each σ̂ab.z is an estimated partial covariance as given by the empirical
covariance matrix derived from D, and O\i ≡ O\{Wi}.

• The loop that starts in Line 6 will search for a subset of W of size at least K that
respects desirable tetrad and residual independence constraints. Every time a set of
minimum size is found, it is removed from W and the process repeats;

• In Line 8, function ScoreTetrads(W (j:j+K−1),V, X, Y,D) returns the median of
the absolute differences between λ̂TSLS and each λ̂(j), . . . λ̂(j+K−1), where λ̂TSLS ≡
TSLS ({W (j), . . . ,W (j+K−1)},V\{W (j), . . . ,W (j+K−1)}, X, Y,D);

• In Line 9, function ExpandTetrads performs a greedy search to optimize ScoreTe-
trads by expanding the current set {W (j), . . . ,W (j+K−1)} as either {W (j−1), . . . ,
W (j+K−1)} or {W (j),. . . ,W (j+K)}. This is done until a local maximum for ScoreTe-
trads is found;

• At the end of Line 9, we have a set of proposed instrumental variables which are
found to approximately imply the same causal effect, as defined by Line 4. This also
implies approximately satisfying the corresponding tetrad constraints. In Line 10,
we formally check the validity of this candidate set by performing Wishart tests of
conditional tetrad constraints (Wishart, 1928; Spirtes et al., 2000) for every possible
pair in Wj against pair {X,Y }.8 Function TestTetrads returns true if and only
if more than half of the tested pairs return a test p-value greater than a particular
pre-defined level. In our experiments in the next section, this level was set at 0.05.
This step has therefore a direct correspondence to the tetrad checks in IV-TETRAD+

∞,
augmented with a pre-selection of pairs;

• Finally, in Line 12, for each W ∈Wj , function TestResiduals is defined such that
we first obtain the residual rW of the least-squares regression ofW on O\W , as well as
the residual rX of the regression ofX onO (alternatively we could calculate rY , but we
expect X to be more strongly associated withW as in theory there is no edge between
W and Y ). We perform a marginal independence test of these two residuals using
HSIC (Gretton et al., 2007). As with the tetrad tests, TestResiduals will return
true if and only if more than half of the p-values are above a particular threshold
(again 0.05 in our experiments).

7. Although this rules out possible IVs which are dependent on X only if we condition in some other
observed variable (for instance, if the only path between Wi and X is Wi → Z ← Uz → X for some
Z ∈ Z and Uz ∈ U), in preliminary runs we found this to provide more stable outputs.

8. We ignore that the test distribution in Wishart’s test assumes Gaussianity and marginal covariances. As
discussed by Spirtes (2013), there is evidence that tests without Gaussianity assumptions (Bollen, 1990)
have no clear advantage compared to Wishart’s.
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The rationale for Algorithm 4 is as follows. In the limit of infinite data, any set of K
variables which satisfies the corresponding tetrad constraints will return a value of zero for
ScoreTetrads, which will then be expanded by ExpandTetrads to include any remain-
ing candidate IVs that imply the same ratio λ. Sets of size K that satisfy the Graphical
Criteria will contribute with the true causal effect to C, as will also sets of size K or larger
corresponding to locally covariance equivalent causal effects. The algorithm can fail to pro-
duce information that a more exhaustive algorithm would produce if subsets of conditioning
setsO\Wi were considered instead (for instance, in the limit of infinite data, IV-TETRAD+

will return an empty CR for data generated by the model in Figure 3, which is in theory
avoidable).

The separation between C and CR is due to the fact that full automation of effect discovery
is not recommended, as there are unidentifiability trade-offs. Recall that in the graph where
W1 and W2 are valid IVs, but where W1 and X share an unmeasured confounder, that the
residual test will asymptotically reject this candidate pair. It is to remind the user of this
possibility that the algorithm separates, in a second set, the outcomes filtered by a more
stringent criteria. The price to be paid is the stronger assumption concerning the existence
of a partition (W,Z) of O such that W are valid IVs given Z and that |W| ≥ K. If this
existence criteria also includes that no elements in W has an active non-directed path with
Y given Z, then CR will be no larger and sometimes smaller than C. Both sets can be
summarized in many ways, including using them to provide lower and upper bounds to λyx
in a way analogous to Corollaries 11 and 18.

4.2 Further Comments

IV-TETRAD+ can in principle be expanded to include a greedy search over sets Z which
are strict subsets ofO\{Wi}. Some non-trivial theory on how to do it with formal guarantees
and non-trivial assumptions is left as future work. The most immediate modification of IV-
TETRAD+ would be to include a further outer loop, where other conditioning sets are
used instead of O\i, starting from the empty set. The outer loop would increase this set by
one element at a time, optimizing ScoreTetrads. As this is a relatively straightforward
heuristic without any insightful theory behind it, and the statistical variance of the final
result will just increase considerably, we do not discuss it further. Our preferred solution
is to let the algorithm return an empty set if no tetrad constraints and residual tests are
satisfied, ignoring the search for a more specific conditioning set. The theory behind IV-
TETRAD+

∞ is used in IV-TETRAD+ to provide guarantees about CR. It also provides
the explanation of what can go wrong by improperly conditioning on a covariate. This
theory can be combined with background knowledge to manually select a pre-defined set
of conditioning sets that are believed to be adequate for finding instruments, in case the
default O\i is deemed insufficient.

The choice of K is not a straightforward question. This decision is a bias-variance
trade-off: smaller K means weaker assumptions but higher variance. We do not provide a
domain-free rule of thumb: our recommendation is to set K as high as possible according
to knowledge from the domain of interest. Notice that, unlike sisVIVE, this number does
not need to grow with |O|. Sensitivity analysis, where different values of K are attempted,
can be a valuable tool to diagnose the impact of this choice.
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Figure 6: Example of a synthetic graph generated by the template used in Section 5.
Wbest1 ,Wbest2 and Wpossible are valid IVs conditioned on ZD and ZS only, as con-
ditioning on ZC activates the path Wpossible → ZC ← U1 → Y , which invalidates
that instrument. However, Wbest1 and Wbest2 remain valid even after conditioning
on all other observed variables.

5. Experiments

We assess how IV-TETRAD+ compares to other methods in a series of simulations. We
then provide an example on how the method can be used in an empirical study and assess
its robustness.

5.1 Synthetic Studies for Finding a Single Causal Effect Assuming IVs Exist

We generate synthetic models of particular structures, intended to capture features such as
confounding and collider bias that should be avoided by proper conditioning. In order to
allow for a direct a comparison of IV-TETRAD+ against alternative methods that return
a single causal effect estimate, we pragmatically force our algorithm to choose a single
element in each output C ∪ CR for the sake of simplifying comparisons.9 The choice is the
effect estimate corresponding to the set Wj that minimizes ScoreTetrads at the end of
Line 9, which is then contrasted against the true effect.10

Simulations are performed as follows. Treatment X and outcome Y have two latent
parents, U1 and U2. U1 is connected to observed covariates as described below, so its
variance decreases by conditioning. U2 is not directly connected to the observed covariates.
We then generate synthetic graphs by splitting the observed covariates in different groups.

9. Also, in this setup, the non-Gaussianity test of Line 12 does not play a role in the final output.
10. It is theoretically possible that this criterion will make IV-TETRAD+ return the wrong causal effect in

the limit of infinite data, as by design we introduce locally covariance equivalent causal effects. However,
with finite data this criterion typically chooses solutions corresponding to correct IVs: in our setup,
the non-IV vertices that imply locally covariance equivalent effects tend to be more weakly associated
with outcome Y than the true IVs, as paths from such vertices to outcome Y pass through latent choke
points. This inflates the variance of the corresponding λ̂i, leading to higher disparity compared to the
effect estimated by two-stage least squares.
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Confounding λxu = λyu = 0.125 λxu = λyu = 0.25
N 1000 5000 10000 1000 5000 10000

NAIVE1 0.25, 0.79 0.25, 0.81 0.25, 0.81 0.50, 0.58 0.50, 0.58 0.50, 0.59
NAIVE2 0.16, 0.84 0.16, 0.84 0.15, 0.85 0.37, 0.68 0.36, 0.66 0.35, 0.69
NAIVE3 0.54, 0.56 0.54, 0.56 0.54, 0.56 0.78, 0.43 0.78, 0.40 0.78, 0.42
ORACLE 0.04, 0.94 0.02, 0.95 0.01, 0.98 0.13, 0.88 0.04, 0.95 0.02, 0.98

S-ORACLE 0.06, 0.92 0.03, 0.95 0.02, 0.97 0.17, 0.78 0.06, 0.93 0.03, 0.93
W-ORACLE 0.25, 0.80 0.23, 0.79 0.21, 0.77 0.52, 0.58 0.47, 0.60 0.44, 0.63

SISVIVE 0.34, 0.73 0.35, 0.72 0.31, 0.75 0.64, 0.56 0.67, 0.56 0.68, 0.57
IV-TETRAD+ 0.23, 0.78 0.12, 0.86 0.07, 0.86 0.56, 0.61 0.26, 0.77 0.10, 0.79

Table 2: Experimental results for 8 methods as described in the text, including three oracle
competitors that illustrate idealized scenarios where parts of the structure are
known. Two experimental parameters are varied: sample size N and the amount
λxu = λyu of unmeasured confounding between X and Y . For each pair of method
and experimental condition, we report the summarized performance over 100 trials
in two ways: the median absolute difference between the estimated causal effect
and true λyx (the smaller, the better); and the proportion in which the sign of the
estimated effect and the sign of the true effect agree (the higher, the better). IV-
TETRAD+ beats all non-oracle competitors at sample size 10000, with a p-value
p < 0.001 according to a binomial test (in bold). Notice that NAIVE2 is actually
the closer competitor to IV-TETRAD+, while in this particular setup sisVIVE
does not improve even with large sample sizes.

Group W are variables which can be used as conditional IVs. This group has two
subgroups, Wbest and Wpossible. The former remains a set of valid IVs conditioned on all
other observed covariates. The latter will have active collider paths with treatment X that
can be in principle deactivated by a combinatorial search, which is not performed by any
algorithm in our benchmark. Group ZS is a set of covariates with a common latent child
US which is also a parent of X and Y , making US a spurious choke point between ZS and
{X,Y }. Group ZD is a set of covariates which are parents of both X and Y and as such
are not blocked by choke points, latent or not. Group ZC are variables which are children
of Wpossible and U1. Finally, all variables in WZ ≡W ∪ ZS ∪ ZD have a common latent
parent U0, making conditioning on WZ\W required for W ∈Wbest to be a valid IV. Figure
6 shows an example where |Wbest| = 2, |Wpossible| = 1, |ZS | = 2, |ZD| = 1 and |ZC | = 1.

The methods we compare against are:

1. NAIVE1, the least-squares regression coefficient of Y on X;

2. NAIVE2, two-stage least squares (TSLS) of Y on X using all variables O = W ∪
ZS ∪ ZC ∪ ZD as instruments;

3. NAIVE3, least-squares regression of Y on X and O;
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4. ORACLE, TSLS estimation using the correct set of IVs W and correct adjustment
set ZS ∪ ZD;

5. W-ORACLE, TSLS using W as IVs, but conditioning on all of the other variables
ZS ∪ ZD ∪ ZC ;

6. S-ORACLE, the algorithm of Kang et al. (2016) executed by first correctly removing
the set ZC from the input;

7. SISVIVE, the algorithm of Kang et al. (2016) executed in the standard way, by taking
all variables O as input;

8. IV-TETRAD+, our method, using all variables O as input and K = 10.

All error variables and latent variables are zero-mean Laplacian distributed, and coeffi-
cients are sampled from standard Gaussians and re-scaled such that the observed variables
have a variance of 1. A simulation is rejected until |λyx| > 0.05. Coefficients between {X,Y }
and latent variables {U1, U2} are set such that λxu1 = λyu1 = λyu2 = λyu2 , at two levels,
(0.125, 0.25). The difficulty of the problem increases with λxu1 , as this makes unmeasured
confounding stronger. Comparisons are shown in Table 2, with the setup |Wbest| = 15,
|Wpossible| = 10, |ZS | = 10, |ZD| = 5, |ZC | = 10. This satisfies the criterion of |W| being
half the number of remaining variables, although only the 15 variables ZS ∪ ZD should be
used as a conditioning set.

We generate 100 synthetic problems with a data set of 10,000 points each and assess
methods using also subsets of size 1000 and 5000. For λxu = 0.125, the empirical distribution
of effects λyx had a median of 0.34, an upper quartile of 0.55 and a maximum of 1.05.
For λyu = 0.25, a median of 0.35, an upper quartile of 0.75 and a maximum of 1.28. For
assessment, we use two measures that summarize absolute deviance from λyx and agreement
with its sign.

The message in Table 2 is as follows. The parameter estimation problem is easy if
one knows the correct IVs and background variables (ORACLE), but it shows already its
challenges if one has potentially correct IVs but conditions on the wrong set (W-ORACLE).
sisVIVE can work very well if one knows in advance which conditioning variables to discard
(S-ORACLE). In general we will not have this knowledge, and sisVIVE can potentially
behave badly, even worse than a naïve method (compare NAIVE3 to SISVIVE). The
large contrast between S-ORACLE and SISVIVE is a warning against ignoring the effects
of incorrect conditioning. Of all non-oracle methods, IV-TETRAD+ is the clear winner,
although as expected it is a high variance estimator and should be advantageous only for
relatively large sample sizes. In Section 5.3 we illustrate ways in which the uncertainty of
this estimator can be assessed.

5.2 Residual Test Assessment

We assess the robustness of the residual test validations of IV-TETRAD+ in a series of
simulations. We designed three scenarios as illustrated in Figure 7, where {U0, U} are latent
variables:
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Figure 7: The three different configurations used in the assessment performed in Section
5.2.

S1: The graph is given by Figure 7(a). The ideal output is to falsify the null hypothesis
of residual independence between W1 and X given {W2, Z}, and W2 and X given
{W1, Z}.

S2: The graph is given by Figure 7(b). The ideal output is to falsify the null hypothesis
of residual independence between W1 and X given W2, and W2 and X given W1.

S3: The graph is given by Figure 7(c). The ideal output is not to falsify the null hypothesis
of residual independence between W1 and X given W2, and W2 and X given W1.

In each scenario, we simulate 100 synthetic problems and generate a data set of size
10,000 from each. The simulation of parameters is similar to Section 5.1, also including
two levels of confounding by setting λxu = λyu to either 0.125 or 0.25. We also increase
the non-Gaussianity of the error terms: each error term is generated by sampling a Laplace
distributed random variable as before, and then raising it to the power of 1.5, preserving
the sign, and rescaling it back to have the same variance required so that each latent and
observed variable has a marginal variance of 1. We do not claim that the tests proposed are
particularly strong when the sample size is not large or the random variables are not clearly
non-Gaussian. We do illustrate that, according to the theory, we should get better decisions
with increasing sample sizes.

A joint decision is given for the pair of variables {W1,W2}, as in the definition of
TestResiduals used in Algorithm 4. This is done by voting: for each candidate IV
W ∈ {W1,W2}, we test the independence of rW against rX using HSIC (Gretton et al.,
2007) conditioning on the remaining observed variables. If more than half of the candidate
IVs result in a corresponding p-value greater than the chosen level of 0.05 (in our setup,
this means that both W1 and W2 pass the test), then the model passes the test and the IVs
are not falsified. Otherwise, the model is rejected. In our simulation, we are correct in each
simulated instance if we reject the candidate instrument pair in scenarios S1 and S2, or if
we do not reject it in scenario S3.

We use a Shapiro-Wilk test of Gaussianity followed by the HSIC test as implemented in
the R package dHSIC,11 both at a level 0.05. That is, if for candidate instrument W the
Gaussianity assumption cannot be rejected for the residuals rW or rX , then W by default is

11. Available at the Comprehensive R Archive Network, CRAN, https://cran.r-project.org/.
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Confounding N = 1000 N = 5000 N = 10000
S1 S2 S3 S1 S2 S3 S1 S2 S3

λyu = 0.125 0.54 0.28 0.87 0.77 0.85 0.89 0.82 0.93 0.83
λyu = 0.25 0.63 0.59 0.79 0.85 0.98 0.83 0.86 1.00 0.83

Table 3: Experimental results for assessing the detection of invalid instrument candidates
based on the dependencies between least-squares residuals of instruments and treat-
ments on a common pool of covariates. Within each sample size and amount of
confounding, we show the proportion of times we correctly decided whether the
corresponding pair of candidate IVs are indeed valid or not (out of 100 simula-
tions). The three problems S1, S2 and S3 are discussed in the main text. The
correct decisions are to reject the candidates in problems of type S1 and S2, and
not reject them in S3.

not rejected as a plausible instrument.12 Only default dHSIC hyperparameters were used
to make the results more conservative: we believe better results can be obtained by more
sophisticated approaches for hyperparameter selection. Similarly, the p-value threshold of
0.05 should not be seen the level of the test but as a regularization parameter, and should be
adapted as the sample size increases (Kalisch and Bühlmann, 2007). Results are summarized
in Table 3.

As expected, correctly rejecting the model in scenarios S1 and S2 is easier when con-
founding is stronger, which is precisely when we would like to be more conservative regarding
our choice of instruments. Scenario S2 is particularly hard under smaller sample sizes, as
correlations quickly go to zero given a single path of length 3 between candidate instru-
ments and treatment/outcome. The performance in Scenario S3 plateaus, meaning that in
this particular simulated distribution of parameters we still erroneously reject the valid IVs
approximately 17% of the time. The Type I error probability is not that straightforward
to calculate due to the voting mechanism and the dependency of the least-squares rejec-
tion estimates and the residual estimates. However, as it is known, in any constraint-based
search algorithm we should decrease the test level hyperparameter from 0.05 towards zero
as sample size increases if we want consistency. This is analogous to the behavior of other
algorithms such as the PC algorithm (Spirtes et al., 2000).

To conclude, despite the noted shortcomings of requiring detectable non-Gaussianity and
large sample sizes, the tests do provide a validation of proposed instruments as advertised.
Moreover, they are expected to be more effective in discarding possibly invalid IVs as unmea-
sured confounding gets stronger, which is a desired behavior. However, we still recommend
that we output candidate effects both with and without the residual independence tests as
done by IV-TETRAD+, for the reasons explained.

12. In theory the goal is to save computational time. In this cases the independence assumption is likely
not to be rejected anyway, but the HSIC test can be costly if done many times so we want to avoid
performing it whenever possible.
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5.3 Empirical Illustration

We consider the application of our method to the study by Sachs et al. (2005). That
study collected cell activity measurements (concentration of proteins and lipids) for single
cell data under a variety of conditions. While searching for instrumental variables under
a combination of experimental conditions is an interesting topic, we will focus on a single
condition (described in the paper as stimulation with anti-CD3 and anti-CD28). There are
11 variables and 853 data points, of which we selected the manipulation of concentration
levels of molecule Erk as the treatment, and concentration of Akt as the outcome. We use
as background knowledge the model inference result shown as Figure 3A presented by Sachs
et al. (2005), encoding that the other 9 cell products are not causally affected by either Erk
or Akt. Although previously unknown, evidence for this causal link was also given support
by an experiment performed by Sachs et al. (2005).

The data shows some weak correlations, but we will assume for simplicity that no con-
ditional independencies will hold between the treatment variable and the remaining 10 vari-
ables. The motivation for Step 3 in Algorithm 4 was primary as a variance reduction tech-
nique. Instead, here we will be primarily concerned about illustrating how we could assert
uncertainty in our estimates using the modified Bayesian approach introduced by Silva and
Kalaitzis (2015).

Running the standard regression adjustment NAIVE3 on this data, we get a differential
causal effect of 1.36. sisVIVE reports an effect of 1.58, where all variables were chosen
as instruments and as such this estimate here is the same as NAIVE2. This suggests
that unmeasured confounding may be weakening the association between treatment and
outcome, but sampling variability may be high as discussed in the next section. We run IV-
TETRAD+ as in Section 5.1 (and skipping Step 3), where a single effect of 1.43 is returned
by minimizing ScoreTetrads. For this run we chose a window size K = 3, as K = 2
is in general too noisy of a choice since it cannot exploit any redundancies of the tetrad
constraints implied by the candidate instrument sets. TestResiduals does not reject any
candidate set proposed by the tetrad search. For K = 4 and K > 4 the results were 1.38
and 1.58 respectively, illustrating some of the difficulties of working with a relatively small
sample size (853 points) using an algorithm that has been shown to require large samples.
To illustrate what a practitioner should do in this case, we describe ways of assessing the
uncertainty of the output of IV-TETRAD+.

5.3.1 Exploration with the Bootstrap

First, we show a simple comparison based on the bootstrap: we sample the data with
replacement and show the corresponding (bootstrapped) sampling distribution of the esti-
mates obtained by NAIVE3, sisVIVE and the single-output IV-TETRAD+ with K = 3.
A smoothed estimate of the respective bootstrapped outcomes is shown in Figure 8. It is
evident that as the method gets more flexible, the entropy of the respective sampling distri-
bution of the estimates also increases. There is some evidence of bimodality of the sampling
distribution, with IV-TETRAD+ being particularly more extreme.

Bootstrap can in principle be used to find confidence intervals for the corresponding
causal effects. However, it is relevant also to discuss Bayesian approaches for quantifying
uncertainty. This is particularly interesting for a method like IV-TETRAD+, which po-
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Figure 8: Smoothed sampling distribution of the estimated causal effects for the three dis-
cussed methods using 500 bootstrapped samples and kernel density estimation.

tentially returns sets of causal effects of varying sizes. It is not clear what a confidence
interval (or confidence set) would be here. Returning a summary such as the minimum and
maximum elements of the set, and building confidence intervals on bounds of the causal
effect, may be too conservative and not very robust to outliers. In the next section, we will
show a Bayesian solution to that problem. First, let us start by still considering the case
where IV-TETRAD+ returns a single element as chosen by ScoreTetrads.

Obtaining a posterior distribution over the causal effect of interest requires a likelihood
function that includes all observed variables. The usual Bayesian approach for graphical
modeling would require exploring a space of conditional tetrad and residual independence
constraints, where any chosen set of constraints defines a model. We would then evaluate
the marginal likelihood of each model and search for the maximum a posteriori or list several
models of high probability. Alternatively, we in principle could perform Markov chain Monte
Carlo (MCMC) sampling in the space of parameters and model constraints. A very different
algorithm from IV-TETRAD+ would be necessary, as it does not search among complete
models. Such an algorithm would be computationally very intense, and it is not clear how
to parameterize a joint likelihood for any given set of constraints, whether latent variables
are explicitly introduced or not.

5.3.2 Learning by Bayesian Projections

Instead, we adopt the much simpler “Bayesian projections” approach suggested by Silva and
Kalaitzis (2015), which has a relation to several other approaches for model selection that
avoid introducing constraints directly in the likelihood function, such as the one by Goutis
and Robert (1998). We define a black-box non-Gaussian likelihood function for the observed
variables, generate posterior samples from it by MCMC, and perform a causal effect search
algorithm similar to IV-TETRAD+. The main difference here is that instead of performing
statistical tests, we instead reject constraints if they violate a threshold of misfit.

To make it more explicit, we define an algorithm which we will call IV-TETRAD++. In
this algorithm, we are given M posterior samples of the model parameters from a black-box
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mixture of Gaussians likelihood. Within each sample 1 ≤ m ≤ M , we run IV-TETRAD+

with the following modifications:

1. Empirical covariances σ̂ab.s are replaced with the corresponding model covariances
σ
(m)
ab.s, which can be computed analytically for a mixture of Gaussians model;

2. We ignore Line 3 of IV-TETRAD+, the one where we originally estimated Markov
blankets. Instead, we discard every λi such that |λi| > αcut. Hyperparameter αcut

is given as an input, implying the removal from the output of unusually high causal
effects, including some of those resulting from variables Vi such that σvix.v\i ≈ 0.

3. TestTetrads is modified to reject a tetrad constraint if

|ρ(m)
wix.o\iρ

(m)
wjjy.o\j

− ρ(m)
wjiy.o\i

ρ
(m)
wjx.o\j | > τ,

where ρab.s is the partial correlation of A and B given S. Hyperparameter τ is given
as an input, and provides the rule that decides on whether a tetrad constraint fits the
model given by the m-th MCMC sample with model partial correlations ρ(m)

ab.s.

4. For simplicity, we do not perform TestResiduals. It could in principle be imple-
mented by sampling a large synthetic data set from model m, estimating a measure
of dependence between the residuals, and rejecting independence with this measure
is larger than a given hyperparameter. Due to its computational cost and the fact it
does not change the message of this section, we will ignore this step.

A more formal description of the algorithm is given in Appendix C.
Silva and Kalaitzis (2015) discuss the shortcomings of algorithms based on Bayesian

projections compared to a traditional Bayesian approach where the likelihood enforces con-
straints explicitly. However, the computational advantages are major, as sampling from the
posterior of a more standard black-box model is much simpler than searching within a com-
plex likelihood space. As a matter of fact, at the present time it is not known how to define
such a likelihood function. A Bayesian projection approach has some similarities to frequen-
tist bootstrap, where a black-box object (the empirical distribution, in the nonparametric
bootstrap case) provides the source of variability (the sampling distribution, in the bootstrap
case). This allows us to leverage constraint-based algorithms with few modifications.

The most delicate design choices are the choice of αcut and τ . One possibility to assess
its impact is by sampling from the prior and plotting the implied distribution on differential
causal effects. This is done in Figure 9, where the black-box distribution is a mixture of
5 Gaussians with the following priors: the mixing distribution is given a Dirichlet prior
with hyperparameter (2, 2, 2, 2, 2); the covariance matrix Σc of each mixture component c is
given an inverse Wishart prior with ν = 11 + 3 degrees of freedom and a νI scale matrix,
with I being the 11× 11 identity matrix; the mean vector µc of each component is given a
multivariate Gaussian prior with zero mean and covariance matrix Σc.

Given the prior for the base distribution, Figure 9 shows a smoothed depiction of 1000
samples from the priors defined by sampling the mixture model parameters from the base
distribution and passing them through IV-TETRAD++, where we choose the single element
that minimizes ScoreTetrads. To generate the figure, we used the the following config-
urations: i. (αcut = 10, τ = 0.01); ii. (αcut = 3, τ = 0.01) and iii. (αcut = 10, τ = 0.001).
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Figure 9: Examples of the implied prior on the differential causal effect using the Bayesian
projections algorithm IV-TETRAD++ with three choices of hyperparameters
(αcut = 10, τ = 0.01), (αcut = 3, τ = 0.01) and (αcut = 10, τ = 0.001).
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Figure 10: (a) The posterior distribution when a single value is chosen as the output of
IV-TETRAD++. (b) The resulting posterior where we uniformly sample one of
the elements of the equivalence class.

As expected, decreasing these two hyperparameters makes the prior narrower. At the same
time, since the effect is given by the ratio of covariance entries, we expect the implied prior
to be heavy-tailed. For illustration purposes, we proceed to analyze the Sachs et al. data
by choosing (αcut = 10, τ = 0.01) as the prior configuration.

5.3.3 Results

Figure 10(a) shows the resulting posterior after running MCMC for the mixture of Gaussians
for 10,000 iterations and thinning it down to 1000 samples. The evidence that 5 mixture
components is enough is given by the fact that the component of smallest posterior proba-
bility was assigned almost zero mass. The figure illustrates the difficulty of the problem and
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why a single point estimate might not be a good summary of the outcome even in the case
where a single causal effect is returned.

More interestingly, the Bayesian approach allows us to generate posteriors over equiv-
alence classes in a relatively simple way, without resorting to potentially uninformative
summaries based on bounds. This however requires subject matter information, as the
data cannot distinguish the elements in an equivalence class. Following the philosophy of
Richardson et al. (2011), we separate priors for elements which are informed by the data
(equivalence class) from priors for elements which cannot be distinguished (the choice within
the equivalence class, given the equivalence class). Figure 10(b) shows the posterior distri-
bution that, for each sample m of the Markov chain, generates a sample causal effect by
sampling uniformly at random from the elements in the corresponding equivalence class of
sample m. That is, the extra information here is the uniform prior, which may be taken as
a default choice. In principle, another prior can be used. For instance, if it is agreed that
the choice should be made based, for instance, on a distribution that assigns mass in a way
that is inversely proportional to the magnitude of each element in the class (this assumes
that smaller effects are more likely than large effects). In any case, the important lesson
is the understanding that this final component of the posterior is independent of the data
given the equivalence class.13 The conclusion from Figure 10(b) is that the bimodality is
explained not only by the data, but also by the indeterminacy of the solution, in contrast
to the bimodality found in Figure 8, which is an artefact of the sampling distribution of the
corresponding estimators.

6. Related Work

The notion of “equivalence class of causal effects” is not new, even if not previously named
as such. Hoyer et al. (2008) discuss how causal effects in LiNGAM models can be partially
identified if the number of latent confounders is known. Their method also returns sets of
causal effects, but without any need for further covariates and instruments. However, the
size of the equivalence class of causal effects grows rapidly with the number of assumed
latent variables and it is unclear how to determine the number of unmeasured confounders.
Maathuis et al. (2009) present extensions of the PC algorithm which return sets of causal
effects that follow from different members of an equivalence class of DAGs compatible with
the observable independence constraints.

Didelez and Sheehan (2007) present a survey on instrumental variables from the point
of view of applications in Mendelian randomization. A complementary method to sisVIVE
based on similar assumptions, but performing estimation by the reweighted median of co-
variance ratios, is discussed by Bowden et al. (2016). The difficulty of estimating effects
with weak instruments is well-known in the statistics literature. A review that covers some
background on the estimation with weak instruments is provided by Burgess et al. (2017).

A different way of inducing “approximate” instrumental variables was introduced by Silva
and Evans (2016). In that case, only (approximate) independence constraints are exploited.
The same machinery in principle could include approximate tetrad constraints, although

13. This idea could also be adapted to the case where the empty set is returned in some of the MCMC
samples: the posterior would be a mixture model with positive mass on the empty set and the remaining
mass spread over the values found.

36



Learning Instrumental Variables with Structural and Non-Gaussianity Assumptions

further research on that would be necessary. The problem of equivalence class of causal
effects is also present in that approach. In such a scenario, however, there are infinitely
many alternatives, which can be represented as an interval. The width of the interval is
typically large and uninformative in classical bounding methods for instrumental variables
(Didelez and Sheehan, 2007), but the approach introduced by Silva and Evans (2016) allows
for the introduction of stronger assumptions as a way of reducing the size of the equivalence
class. This borrows some concepts from earlier work such as the one Ramsahai (2012).

The use of tetrad constraints for testing the validity of particular edge exclusions in
linear causal models has a long history, dating back at least to Spearman (1904). Although
the generalizations discussed by Sullivant et al. (2010) were presented in the context of
Gaussian models, this distributional assumption is not necessary, with their rank constraint
results exploited even in the context of partially non-linear models by Spirtes (2013). More
recently, tetrad constraints have been used in the discovery of latent variable model structure
(Silva et al., 2006; Spirtes, 2013), where structures such as Figure 2(c) emerge but no direct
relationships among observables (such as X → Y ) are discoverable. The combination of
tetrad constraints and non-Gaussianity assumptions has been exploited by Shimizu et al.
(2009), again with the target being relationships among latent variables. Tetrad tests for
the validity of postulated IVs were discussed by Kuroki and Cai (2005).

The literature on learning algorithms allowing for latent variables has been growing
steadily, including the Fast Causal Inference algorithm of Spirtes et al. (2000) and more
recent methods that exploit constraints other than independence constraints (Tashiro et al.,
2014; Nowzohour et al., 2015), but none of these methods allow for the estimation of the
causal effect of X and Y when there is an unblocked unmeasured confounder between them.
Phiromswad and Hoover (2013) introduced an algorithm for IV discovery, but it does not
take into account unidentifiability issues that can be solved by exploring constraints other
than covariance matrix constraints. It also returns equivalence classes of graphs and requires
searching for multiple causal effects at the same time, contrary to our goal of focusing on a
given causal effect λyx.

7. Conclusion

Finding instrumental variables is one of the most fundamental problems in causal inference.
To the best of our knowledge, this paper provides the first treatment on how this can be
systematically achieved by exploiting rank constraints and clarifying to which extent an
equivalence class of solutions remains. We then proceeded to show how non-Gaussianity
can be exploited in a pragmatic way, by adapting a state-of-the-art algorithm. Finally, we
illustrated how empirical improvement can be obtained.

We expect that theoretical challenges in instrumental variable discovery can be further
tackled by building on the findings shown here. In particular, as also hinted by Kang et al.
(2016), some of the ideas here raised extend to non-linear (additive), heterogeneous effects
and binary models. Methods developed by Peters et al. (2014) can potentially provide a
starting point on how to allow for non-linearities in the context of instrumental variables.
As discussed by Spirtes (2013), linearity is only really needed “downstream” of the choke
point: that is, it would be enough that only the structural equation for outcome Y is
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Figure 11: The graph used in Appendix A for more complex examples of t-separation. We
are interested on making claims about this structure by observing some, but not
all, of its vertices.

linear. Theoretical details need to be sorted out, but IV-TETRAD+ should in principle be
practically applicable to non-linear models with linearity for Y only.

More sophisticated graphical criteria for the identification of causal effects in linear
systems were introduced by Brito and Pearl (2002). Further work has led to rich graphical
criteria to identify causal effects in confounded pairs (Foygel et al., 2011), going beyond
the IV criteria discussed here. This opens up the possibility elaborated discovery algorithms
where back-door blocking (Entner et al., 2012) and the methods in this paper cannot provide
a solution. How to perform this task in a computationally and statistically tractable way
remains an open question.

Code for all experiments is available at http://www.homepages.ucl.ac.uk/~ucgtrbd/
code/iv_discovery.
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Appendix A. More about T-separation

We start with a few more examples of t-separation. Consider Figure 11. Vertex V0 does not
d-separate Vi1 from Vj2. However, pair (V0;V0) t-separates Vi1 from Vj2. To see that, let us
list all three (simple) treks between Vi1 and Vj2:

38

http://www.homepages.ucl.ac.uk/~ucgtrbd/code/iv_discovery
http://www.homepages.ucl.ac.uk/~ucgtrbd/code/iv_discovery


Learning Instrumental Variables with Structural and Non-Gaussianity Assumptions

• (P
[1]
1 ;P

[1]
2 ) ≡ (Vi1 ← V1;V1 → V0 → Vj2)

• (P
[2]
1 ;P

[2]
2 ) ≡ (Vi1 ← V0;V0 → Vj2)

• (P
[3]
1 ;P

[3]
2 ) ≡ (Vi1 ← V0 ← V2;V2 → Vj2)

In the first trek, V0 is contained in P [1]
2 ; in the second case, both paths in the trek satisfy

the criterion of containing V0; in the final trek, P [3]
1 plays this role. Notice that (V0; ∅) does

not t-separate Vi1 from Vj2 (first trek remains “unblocked”) and neither does (∅;V0) (third
trek remains “unblocked”).

That Vi1 is t-separated from Vj2 given (V0;V0), however, brings out no useful implication
about the cross-covariance matrix ΣAB of (A ≡ {Vi1}, B ≡ {Vj2}): all it says is that
rank(Σ{Vi1}{Vj2}) ≤ 2, which is a vacuous claim. We may attempt to introduce V0 in
the two sets A and B, assuming V0 is observable, as this is compatible with the notion
that V0 can t-separate itself from itself. Unfortunately, there is nothing to be gained, as
rank(Σ{Vi1V0}{Vj2V0}) ≤ 2, which is again a vacuous claim.

Pair (∅;V0) does t-separate Vi1 and Vi2 with a testable implication rank(Σ{Vi1V0}{Vi2V0}) ≤
1, but this does not provide anything useful to a structure learning algorithm, as d-separation
of Vi1 and Vi2 given V0 can be tested directly instead.

Consider now A ≡ {Vi1, Vi2}, B ≡ {Vj1, Vj2}. To be useful, we need a conditioning pair
(CA;CB) where |CA|+|CB| ≤ 1. Following the previous examples, it should be clear that no
such a pair will exist out of the given variables. However, we could consider de-activating the
path Vi1 ← V1 → V0 by considering the partial cross-covariance matrix of {Vi1, Vi2} against
{Vj1, Vj2} given V1. The Trek Separation Theorem for DAGs, however, says nothing explicit
about partial cross-covariances. Sullivant et al. (2010) present versions of the theorem for
some classes of DAGs under conditioning, but not in a completely general way. Theorem
2.17 of Sullivant et al. (2010) assumes that conditioning can be encoded by undirected edges
so that no vertices adjacent to an undirected edge can also be at the arrowhead endpoint
of a directed edge. Although one can show this does not affect the Markov properties of
general DAGs under conditioning, as ancestral graphs (Richardson and Spirtes, 2002) are a
special case of this, it is not immediately obvious how this affects parametric constraints.

Fortunately, even in the conditioning case we do not need to consider anything but
DAGs: simply introduce the conditioning variables in both sets A and B. In this example,
define A ≡ {Vi1, Vi2, V1} and B ≡ {Vj1, Vj2, V1}. Then it is not hard to verify that (V0;V1)
t-separates A from B (recall that V1 “t-separates itself from itself” using the conditioning set
pair (∅;V1)). Cross-covariance ΣAB is rank-deficient, which means its determinant is zero.
Because its determinant can be written as σ11(σi1j1.1σi2j2.1 − σi1j2.1σi2j1.1) and we assume
σ11 6= 0, the (conditional) tetrad constraint will hold.

The relationship between t-separation and d-separation is given by Theorem 2.11 of
Sullivant et al. (2010). Namely, d-separation between set A and set B given set C holds
if and only if we can partition C as two sets CA and CB such that (CA;CB) t-separates
A ∪CA from B ∪CB. That is, any d-separation can be cast as some type of t-separation.
However, as t-separation of A ∪ CA from B ∪ CB implies t-separation of A from B, this
allows us to derive rank constraints using the marginal distribution of A∪B only, unlike the
conditional independence constraints directly implied by conditioning on C. If C contains

39



Silva and Shimizu

hidden variables, this is another way of understanding how t-separation implies testable
constraints that cannot be achieved directly by testing for conditional independencies.

Appendix B. Proofs

We being by proving the main result of Section 3.2.

Proof of Theorem 8. If (Wi,Wj ,Z) satisfies the Graphical Criteria, then there should be
no active path between any element of {Wi,Wj} and Y that does not include X. Hence,
neither point (i) nor point (ii) in the theorem statement are possible.

Assume now that (Wi,Wj ,Z) does not satisfy the Graphical Criteria. Then there must
be at least one active path, conditioned on Z, connecting some W ∈ {Wi,Wj} to Y which
does not contain X. Otherwise, if all active paths contained X, then they would all be
interrupted by the removal of edge X → Y , as all other edges adjacent to X are into X,
and X is not in the conditioning set Z.

Suppose one of these active paths is a trek T , which should not contain any member of
Z or otherwise it would not be active. {Wi,Wj ,Z} must be t-separated from {X,Y,Z} by
some (CA;CB), as implied by Theorem 3 and the conditional tetrad constraint detected
in Line 9. As argued in the discussion leading to the definition of conditional choke point,
CA∪CB = Z∪{V0} for some conditional choke point V0 not in Z. If there is some other trek
that is active and contains no member of Z ∪ {V0}, then this would imply the existence of
another element of CA∪CB not in Z∪{V0}, contrary to the fact that |CA|+ |CB| ≤ |Z|+1.
Hence, scenario (i) in the theorem statement will happen if we do not satisfy the Graphical
Criteria and there exists an active trek between {Wi,Wj} and Y .

Assume that there exists a active path C ′ with endpoints W ∈ {Wi,Wj} and Y , and
which contains at least one collider in Z. Allowing this path to be non-simple, we have that
all colliders in this path must be in Z, and no non-colliders are in Z. Let Z1, Z2, . . . , ZK be
the colliders in C ′ as we move from W towards Y . Then the trek (PK

1 ;PK
2 ) linking ZK to

Y is such that ZK is the sink of PK
1 and hence ZK ∈ CA. Likewise, Z1 will be the sink of

P 1
2 in the trek (P 1

1 ;P 1
2 ) between W and Z1, so that Z1 ∈ CB. As we move from Z1 towards

ZK in C ′, we will be forced to make one element of Z to belong to both CA and CB, as
and we cannot have all consecutive treks Zi ← · · · → Zi+1 such that Zi and Zi+1 are both
only in CA or only in CB. This is illustrated in Figure 12. Therefore, there exists some
Z ′ ∈ CA ∩CB. Since |CA| + |CB| ≤ |Z| + 1, we cannot have both (i) and (ii) being true,
as Z ′ must be counted twice and Z ⊆ CA ∪CB (as we have seen, if there is a conditional
choke point then CA ∩CB = ∅). Moreover, we cannot have another path C ′′ satisfying the
properties of C ′ but which does not contain Z ′, as the existence of another Z ′′ 6= Z ′ would
again violate |CA|+ |CB| ≤ |Z|+ 1.

As all active paths connecting {Wi,Wj} to Y must be either treks or paths where all
colliders are ancestors of Z, then these two cases cover all possibilities. �

We now proof the other core result from Section 3.3:
Proof of Theorem 15. By the same reasoning of Theorem 8, passing Line 9 leaves us with
the two possible scenarios of that theorem. However, scenario (ii) cannot take place since,
by Theorem 13 and Line 15, there must be no active non-directed paths between {Wi,Wj}
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Figure 12: Path W1 → Z1 ← U1 → U4 → Z2 ← U4 ← U5 → Y is an example of a (non-
simple) active path from some vertex in {W1,W2} to Y given Z ≡ {Z1, Z2}
where both Z1 and Z2 are colliders in this path. Here, Z2 is on the “left side”
of the trek Z2 ← U4 ← U5 → Y than links an element of A ≡ {W1,W2, Z1, Z2}
to B ≡ {X,Y, Z1, Z2}. Z1 is on the “right side” of the trek W1 → Z1 that links
an element of A to an element of B. Trek Z1 ← U1 → U4 → Z2 also links en
element of A to an element of B. If we use Z1 to block this trek, then Z1 is now
on the “left side” of a trek. If we use Z2, then Z2 is now on the “right side” of
a trek. Hence, in order to t-separate A from B, we need either ({Z2}; {Z1, Z2})
or ({Z1, Z2}; {Z1}), both of size 3 even though only two vertices are used.

and Y . For the same reasons, choke point V0 cannot lie on an active non-directed path
between W ∈ {Wi,Wj} and Y , nor it can be in an active back-door path with endpoints in
W and Y . As Y is not an ancestor of any vertex, V0 must be a descendant of {Wi,Wj} and
an ancestor or Y . What is left is showing that V0 is also an ancestor of X.

There must be an active path between W and X given Z by linear faithfulness and Line
6 of the algorithm. Assume V0 is not an ancestor of X. There must be an active path be-
tween W and X which is not a trek or otherwise it would be blocked by Z∪{V0}. However,
using the same argument as in Theorem 8, this path with colliders in Z would also require
a member of Z to be in both sets of the conditioning set pair (CA;CB), contradicting that
|CA|+ |CB| ≤ |Z|+ 1. Therefore, this makes V0 also an ancestor or X, fulfilling all require-
ments of a downstream choke point. �

The result for Theorem 13 depends on this standard theorem (Darmois, 1953; Skitovitch,
1953):

Theorem 19 (Darmois-Skitovitch Theorem) Let e1, . . . , en be independent random vari-
ables, n ≥ 2. Let v1 =

∑n
i=1 αiei, v2 =

∑n
i=1 βiei for some coefficients {αi}, {βi}. If v1 and

v2 are independent, then those ej for which αj 6= 0, βj 6= 0 are Gaussian.

The idea is that if we assume {ei} are not Gaussian, {V1, V2} share a common source
if and only if they are dependent. Shimizu et al. (2006) and Entner et al. (2012) present a
deeper discussion on how this theorem is used in causal discovery.
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For the main results, we will assume that particular algebraic (polynomial) identities
implied by the model graph do not vanish at the particular parameter values of the given
model (which we called “almost everywhere” results in the theorem). We will in particular
consider ways of “expanding” the structural equations of each vertex according to exogenous
variables, that is, any variable which is either an error term or latent variable (assuming
without loss of generality that latent variables have no parents).

For each vertex Vk in the model, and each exogenous ancestor Em of Vk, let Pkm be the
set of all directed paths from Em to Vk. For each path p ∈ Pkm, define φkmp =

∏
j λjj′ ,

the product of all coefficients along this path for Vj ∈ V ∩ p where Vj′ = p ∩ parG(j)
(that is, Vj′ is the parent of Vj in this path. We multiply coefficients following a sequence
Em → · · · → Vj′ → Vj → · · · → Vk). From this,

Vk =
∑

Em∈AG(k)

∑
p∈Pkm

φkmpEm, (5)

where AG(k) is the set of exogenous ancestors of Vk, where for Em = ek we have φkmp ≡ 1
and path p is given by the single edge ek → Vk. We refer to the idea of expansion a few times
in the proofs as a way of describing how models can be written as polynomial functions of
the parameters θG = {λij | Vj ∈ parG(i)} ∪ {ωi}.

Overall, for a LiNGAM model M with DAG G, we denote by XG the set of exogenous
variables of M, and by the expanded graph of M the graph G augmented with the error
terms and the corresponding edges ei → Vi for all observable vertices Vi in G.

The main result used in the proof of Theorem 13 comes from the following Lemma.
Notice that the non-Gaussianity assumption and the Darmois-Skitovitch Theorem are not
necessary for its proof.

Lemma 20 Let O∪U be the set of variables in a zero-mean LiNGAM modelM with graph
G, where U are the latent variables of the model. Let O\i ≡ O\{Oi} for any Oi ∈ O. Let
ri ≡ Oi − aᵀO\i be the residual of the least-squares regression of Oi on O\i, with a being
the corresponding least-squares coefficients. Then, almost everywhere, ri can be written as a
linear function of the exogenous variables of M, ri =

∑
Em∈XG cmEm, where cm 6= 0 if and

only if Oi is d-connected to Em given O\i in the expanded graph ofM.

Proof of Lemma 20. Without loss of generality, assume that each latent variable in U
has no parents. We will sometimes use Xk as another representation of any particular model
variable (observable, latent or error term), with the index k indicating particular variables
in O ∪U and error terms, depending on the context.

Choose some Oi ∈ O. One way of obtaining ri is by first performing least-squares
regression of each model variable Xk on Oj , for some Oj 6= Oi in O, and calculating residuals
X

(1)
k . Among model variables in O, define O(1) as the set of all residuals {O(1)

k }, k 6= j. That
is, the superscript (1) here denotes that we have regressed all observable variables on one
arbitrary observable Oj 6= Oi, collecting the residuals O(1)

k of the regression of Ok on Oj for
all variables other than Oj . We will repeat the process while incrementing the superscript
and removing one element out of O(m) at a time for m = 2, 3, . . . , n − 1, where n is the
size of O. This is done by the process of picking some O(1)

j′ ∈ O(1)\{O(1)
i } and regressing
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{O(1)
k 6=j′} on O

(1)
j′ to obtain O(2), iterating until we are left with O(n−1) containing the single

element O(n−1)
i , resulting in O(n−1)

i = ri. The elimination sequence can be arbitrary.
Let Oj be a vertex in O\i. Let λkm be the structural coefficient between Ok and any

Xm ∈ O ∪U. We define λkm ≡ 0 if Xm is not a parent of Ok in G. Since

Ok = λkjOj +
∑

Xm∈parG(k)\Oj

λkmXm + ek,

we have
σkj = λkjσjj +

∑
Xm∈parG(k)\Oj

λkmσmj + σekj ,

where σekj is the covariance of ek and Oj and σmj here represents the covariance of Xm and
Oj . Dividing both sides by σjj implies

a
(1)
kj = λkj +

∑
Xm∈parG(k)\Oj

λkma
(1)
mj + a

(1)
ekj
, (6)

where a(1)ekj
is the least-squares regression coefficient of ek on Oj . This means O(1)

k = Ok −
a
(1)
kj Oj can be written as

O
(1)
k =

∑
Xm∈parG(k)\Oj

λkmX
(1)
m + e

(1)
k (7)

with X(1)
m and e(1)k defined analogously.

We can iterate this process until we are left with ri:

ri =
∑

Uk∈parG(i)∩U

λikU
(n−1)
k + e

(n−1)
i . (8)

Variable U (n−1)
k is the residual of the regression of Uk on O\i, similarly for e(n−1)i .

What we will show next is that within (8) each U (n−1)
k and e(n−1)i can be expanded as

polynomial functions of θG and XG , and the end result will contain non-vanishing monomials
that are a (linear) function of only the exogenous variables Em which are d-connected to Oi

given O\Oi in the expanded graph ofM. Since the monomials cannot vanish except for a
strict subset of lower dimensionality than that of the set of possible θG , the result will hold
almost everywhere.

Since we are free to choose the elimination ordering leading to ri, as they all lead to
the same equivalent relation (8), let us define it in a way that a vertex can be eliminated
at stage t only when its has no ancestors in O(t−1) (where O(0) ≡ O\i). We will define the
meaning of the ancestral relationship for elements of O(t) shortly in terms of DAGs G(t), but
for t = 0 it is the one implied by the expanded version of G.

For t = 1, the only exogenous variables which will have a non-zero coefficient multiplying
Oj in the least-squares regression are the parents of Oj in the expanded graph, since Oj has

43



Silva and Shimizu

no other ancestors.14 Let U (1)
k be the residual of some latent parent of Oj ,

U
(1)
k = Uk − akj

 ∑
Em∈AG(j)

∑
p∈Pjm

φjmpEm

 , (9)

where φjmp ≡ λjm if Em is a latent variable, or 1 if Em = ej . Moreover, akj = λjkωkk/σjj ,
where ωkk is the variance parameter of Uk and σjj is a polynomial function of θG . We can
multiply both sides of the equation above by σjj (as well all equations referring to any O(1)

k

or X(1)
m such as (7)) to get a new system of variables that is polynomial in θG . We will

adopt this step implicitly and claim that from (9) we have that U (1)
k can be expanded as

parameters that are polynomial functions of θG . Moreover, it is clear from (9) that there
will be at least one non-vanishing monomial containing each Em. In what follows, we refer
to any expression analogous to (9) as the expansion of U (t)

k for t = 1, 2, . . . , n− 1.
We define a DAG G(1) with vertices {X(1)

m }, where the children of X(1)
m are defined as

all and only the O(1)
k such that Xm is a parent of Ok in the original extended graph of the

model. That is, G(1) is the extended graph over residuals after the first regression. The
respective modelM(1) is given by equations of type (7) with parameters coming from θG .15

For any t > 1, let O(t)
j be the vertex being eliminated. Each U

(t)
k in which U

(t−1)
k is

a parent of O(t−1)
j in G(t−1) will be a polynomial function of θG and a linear function of

the union of the exogenous variables present in the expansion of each parent of O(t−1)
j : the

expansion analogous to (9) in the new model will always introduce new symbols λj? into
existing monomials, or create new monomials with ej , as vertex O(t−1)

j had no eliminated
descendants up to iteration t. As such, no exogenous variable will be eliminated from the
algebraic expansion of the respective U (t)

k .
Finally, the expansion of λikU

(n−1)
k in (8) will not cancel any monomial in the expansion

of some other λik′U
(n−1)
k′ : since Uk and Uk′ are both parents of Oi, no monomial in the

expansion of Uk can differ from a monomial in the expansion of Uk′ by a factor of λikλik′ .
So (8) will depend algebraically on the union of the exogenous terms leading to each U (n−1)

k .
To prove the Lemma, we start by pointing out that U (n−1)

k will have a latent/error
parent of some Oj in its expansion if and only if there is at least one sequence of vertices
(Oc, . . . , Oj) where Oc is an observable child of Uk and any two consecutive elements in this
sequence have at least one common latent parent in G (the sequence can be a singleton,
Oc = Oj). To see this, notice that the different U (t)

k form an equivalence relation: each U (t)
k

with a O(t−1)
j child which is being eliminated at iteration t will include into its expansion the

exogenous variables found in the expansion of the other parents of O(t−1)
j . This partitions

O\i into sets in which each vertex Oj can “reach” some other vertex Ok by first moving to
some Oj′ which shares a latent parent with Oj and which can “reach” Ok. The latent parents
of O are then partitioned according to their observed children.

14. Assuming Oj is not a child of Oi. In this case, without loss of generality we assume that the parents of
Oi are added to the parents of Oj , and remove Oi from the model at any iteration t.

15. To be more precise, polynomial functions of such parameters, as we are implicitly multiplying each
equation by σjj .
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To finalize the proof, suppose Oi is d-separated from a latent/error parent Em of Oj

given O\Oi. This happens if and only if all latent parents of Oi (and ei) are d-separated
from Em given O\Oi. Let Uk be a latent parent of Oi (or its error term). Then U

(n−1)
k

cannot have Em in its expansion. If this was the case, by the previous paragraph Uk would
be d-connected to all latent parents of Oj , meaning Oi would be d-connected to them. This
implies cm = 0. Conversely, suppose Oi is d-connected to the error term or a latent parents
of Oj given O\Oi. Then again by the previous paragraph, for any latent parent Uk of Oi,
U

(n−1)
k will have the latent parents of Oj as terms in its expansion, implying cm 6= 0 almost

everywhere. �

We can now prove Theorem 13.

Proof of Theorem 13. Considering the system for {Oi, Y }∪Z, we can represent the model
in an equivalent way where all other variables are latent variables, and all latent variables
are exogenous. Applying Lemma 20 to both ri and ry, and by Theorem 19, these variables
will be dependent if and only if they are a non-trivial linear function of at least one common
exogenous variable Em in the model. Again by Lemma 20, this happens if and only if Oi is
d-connected to Em given Z, and Y is d-connected to Em given Oi and Z. If Y is d-connected
to Em given Z only, we can create an active non-directed path between Oi and Y given Z
by the concatenation of the (Oi, Em) path with (Y,Em) path: since Em is exogenous, the
path is non-directed as it should include the subpath V ← Em → V ′ for some V , V ′. If Y
is not d-connected to Em given Z only —that is, we must condition on Oi also to d-connect
them— then Y must be d-connected to Oi given Z by a path that is into Oi. This path is
non-directed as Y is not an ancestor of Oi by assumption, and the claim again follows. �

Remarks: The assumptions are stronger than, for instance, the ones used in the proofs of
Tashiro et al. (2014). A closely related result in that paper is its Lemma 2, a result identifying
the dependence between the residual of the regression of a variable on its children. It does
not use any variation of the faithfulness assumption. This is because, in their context, it
is enough to detect the dependence between the residual and some children. So if some
path cancellations take place, some other path cancellations cannot occur. But we need the
dependence of our ri and every relevant error term, because we cannot claim that ri depends
on some error terms or latent variables, while ry depends on some error terms or latent
variables, if these two sets do not overlap. Although some of the ideas by Tashiro et al. (2014)
could be used in our context to build partial models and from them deduce instrumental
variables, it goes against our framework of solving a particular prediction problem (causal
effect of a target treatment-outcome) directly, instead of doing it by recovering parts of a
broader causal graph.

Finally, we have not provided an explicit discussion on how to validate the non-Gaussianity
assumption by testing the non-Gaussianity of the residuals, as done by Entner et al. (2012).
Or, more precisely, showing which assumptions are necessary so that testing non-Gaussianity
of the residuals is equivalent to testing non-Gaussianity of the error terms. This is left as
future work.
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Algorithm 5 IV-TETRAD++

1: Input: D, a sample from the joint distribution of random variables O ∪ {X,Y }; K,
number of instruments to consider; S, the number of mixture components; M , the
number of MCMC iterations; π, a prior for a mixture of Gaussian model for O∪{X,Y }
with M components; αcut and τ , two threshold parameters

2: Output: a distribution over equivalence classes of differential causal effect of X on Y
3: Initialize CBayes as the empty set
4: Run a MCMC algorithm to obtain M samples from the posterior distribution of a

Bayesian mixture of S Gaussians model with data D and prior π
5: for m = 1, 2, . . . ,M do
6: Let Σ(m) be the m-th MCMC sample of the covariance matrix of O ∪ {X,Y }
7: Let λ̂i ← σ

(m)
wiy.o\i/σ

(m)
wix.o\i for each Wi ∈ O

8: Discard all λ̂i such that |λ̂i| > αcut

9: Initialize C(m) as the empty set, and W as O
10: while |W| ≥ K do
11: Sort W as W (1), . . . ,W (|W|) according to the corresponding {λ̂}
12: Find j ∈ {1, 2, . . . , |W|} that minimizes ScoreTetrads?(W (j:j+K−1),O, X, Y,Σ(m))
13: Wj ← ExpandTetrads?(j,K,W,O, X, Y,Σ(m))
14: if TestTetrads?(Wj ,O, X, Y,Σ

(m)) then
15: λ̂TSLS ← TSLS?(Wj ,O\Wj , X, Y,Σ

(m))

16: C ← C ∪ λ̂TSLS

17: end if
18: W←W\Wj

19: end while
20: Add set C(m) as an element of CBayes

21: end for
22: return CBayes

Appendix C. A Bayesian Projections Variation of IV-TETRAD+

Algorithm 5 is a method that relies on substituting hypothesis testing by a thresholding
mechanism over posterior samples of an unconstrained distribution. This algorithm is re-
ferred to in Section 5.3.2.

TestTetrads? takes the correlation matrix implied by Σ(m) and returns false if

|ρ(m)
wix.o\iρ

(m)
wjy.o\j − ρ

(m)
wiy.o\iρ

(m)
wjx.o\j | > τ.

ExpandTetrads? and TSLS? are just the straightforward variations of the original func-
tions that take a covariance matrix instead of a data set as input.
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