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The Anthropogenic Use of Firewood During the European Middle Pleistocene:
Charcoal Evidence from Levels XIII and XI of Bolomor Cave, Eastern Iberia (230–
160 ka)
Paloma Vidal-Matutano a,b, Ruth Blascoc, Pablo Sañudod and Josep Fernández Perise
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València, Valencia, Spain

ABSTRACT
Human control of fire is a widely debated issue in the field of Palaeolithic archaeology, since it
involved significant technological innovations for human subsistence. Although fire evidence
has been the subject of intense debate regarding its natural or anthropogenic nature, most
authors agree that combustion structures represent the most direct evidence of human
control of fire. Wood charcoal fragments from these contexts represent the fuel remains that
result from humans’ collection of firewood, which means they can reveal significant
behavioural and palaeoenvironmental information relevant to our understanding of Middle
Palaeolithic societies. In this work, we present anthracological data derived from combustion
structure 2 (level XIII, ca. 230 ka, MIS 7) and combustion structure 4 (level XI, ca. 160 ka, MIS
6) from Bolomor Cave, which are chronologically among the earliest combustion structures
found in Europe. The present work discusses how the presence of black pine and / or scots
pine in both levels sheds light on the characterisation of the local landscape. Additional
analyses focussing on the pre- and post-depositional processes affecting charcoal
preservation point to biodegradation patterns. The aim of this work is to provide the first
discussion concerning the anthracological data derived from Bolomor Cave in order to
contribute to the general debate regarding the use of fire during the European Middle
Pleistocene.
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Introduction

Pyrotechnology is considered to be one of the most sig-
nificant technological achievements in human evol-
ution (Berna and Goldberg 2007; Brown et al. 2009;
Clark and Harris 1985; Courty et al. 2012; de la Rúa
and Diez Martín 2011; Goldberg et al. 2012; Villa,
Bon, and Castel 2002) although this statement is ques-
tioned by some authors based on the lack of direct evi-
dence for human control of fire in northern latitudes
(Dibble et al. 2017; Sandgathe 2017; Sandgathe et al.
2011a, 2011b; Stahlschmidt et al. 2015). The anthropo-
genic control of fire resulted in substantial changes in
human subsistence, for example, providing a source of
warmth and light, leading to the emergence of cooking
practices (smoking, drying) and providing protection
against predators (Blasco et al. 2016a; Carmody and
Wrangham 2009; Clark and Harris 1985; Goldberg
et al. 2012; Gowlett 2006; Gowlett et al. 1981; James
et al. 1989; Preece et al. 2006; Wrangham 2009; Wrang-
ham et al. 1999), as well as in socialisation and spatial
organisation (Blasco et al. 2016a; Henry et al. 2004; Hie-
tala 2003; Machado and Pérez 2015; Martínez-Moreno
et al. 2016; Sañudo, Blasco, and Fernández Peris 2016;

Vallverdú et al. 2010, 2012; Vaquero and Pastó 2001;
Vaquero, Rando, and Chacón 2004; Vidal-Matutano
2017). The timing of human control of fire is one of
the most widely debated topics in the field of Palaeo-
lithic archaeology (Berna andGoldberg 2007; de Lumley
2006; Gowlett 2006; Gowlett et al. 1981; James et al.
1989; Karkanas et al. 2007; Roebroeks and Villa 2011;
Stahlschmidt et al. 2015; Wrangham 2009), since such
discussion is strongly related to the consideration of
fire evidence as being of either natural or anthropogenic
origin (Bellomo 1994; James et al. 1989; Roebroeks and
Villa 2011). The most common fire evidence consists of
archaeological features showing traces of having been
subjected to heating, i.e. thermo-altered lithic artefacts,
burnt bone fragments and, to a lesser extent, wood char-
coal remains.However, this evidence is not exempt from
controversy, since natural processes, for example, natu-
ral fires caused by lightning strikes, volcanic eruptions
or spontaneous combustion, can also create such find-
ings (Christian et al. 2003; Li 2000). Concerning the
European context, the scientific community generally
proposes that the controlled use of fire occurred from
400 to 300 ka onward and that the archaeological signal
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became well established in sites younger than 100 ka
(e.g. Roebroeks and Villa 2011). Burnt material at
archaeological sites such as Vertesszöllös (Hungry),
Menez-Dregan and Terra Amata (France), Bilzingsle-
ben (Germany), Beeches Pit (England) and/or Maas-
tricht-Belvedere (Netherlands) have often been
reported as the earliest evidence of human control of
fire in Europe; however, some researchers have warned
of different problems relating to the chronological allo-
cation and the taphonomic processes of some of these
sites (e.g. Gowlett et al. 2005; Preece et al. 2006; Roeb-
roeks and Villa 2011; Stahlschmidt et al. 2015). With
this in mind, diagnostic evidence of the controlled use
of fire is based on the presence of well-delimited com-
bustion structures, thermo-altered sediment and burnt
artefacts and ecofacts associated with human activity
(Bellomo 1994; Mentzer 2014). Accordingly, Bolomor
Cave (Eastern Iberia) is perhaps one of only a few Euro-
pean sites to record repeated evidence of fire along its
stratigraphic sequence, with the presence of several
hearths being identified in levels II, IV, XI, XII and
XIII (Blasco et al. 2016b; Fernández Peris et al. 2012).

In light of the abovementioned debate, it is important
to note that the use of firewood and, therefore, wood
charcoal remains have long been an elusive issue.
Whether due to the poor organic preservation at
many sites or a lack of interest, the fact remains that
the available data concerning firewood use for Middle
Pleistocene chronologies is still scarce (e.g. Théry-Pari-
sot, Chabal, and Chrzavzez 2010). In this regard, char-
coal analysis focuses on the botanical identification of
wood charcoal fragments in order to provide meaning-
ful palaeoenvironmental data (Badal and Heinz 1989,
1991; Badal et al. 2012a; Badal, Villaverde, and Zilhão
2012b; Carrión, Ntinou, and Badal 2010; Chabal 1992;
Figueiral and Terral 2002; Ntinou and Kyparissi-Apos-
tolika 2016) and palaeoeconomical evidence regarding
humans’ strategies for collecting firewood (Allué, Solé,
and Burguet-Coca 2016; Carrión and Badal 2004;
Chrzavzez 2006; Chrzazvez et al. 2014; Henry and
Théry-Parisot 2014; Théry-Parisot 2001, 2002; Théry-
Parisot and Texier 2006; Théry-Parisot et al. 1995;
Vidal-Matutano, Henry, and Théry-Parisot 2017).
Indeed, significant archaeobotanical data have been
derived from the Acheulian site of Gesher Benot Ya’a-
qov (Israel), where charcoal analyses have allowed the
botanical identification of six taxa, which evidence the
earliest anthracological data from an anthropogenic
context published thus far (Goren-Inbar et al. 2004).
Additionally, charcoal analyses from the sites of Terra
Amata (Nice, France) and Torralba (Soria, Iberia)
have also provided early data concerning firewood use
among human groups (de Lumley et al. 2016; Postigo-
Mijarra, Gómez-Manzaneque, and Morla 2017). Fol-
lowing anthracological data belonging to the MIS 5-4
chronologies have been conducted, wherein a few
Middle Palaeolithic sites have provided new insights

into past landscapes and human firewood management
(Allué 2016; Arsuaga et al. 2012; Daura et al. 2015; Nti-
nou and Kyparissi-Apostolika 2016; Ronchitelli et al.
2011; Théry-Parisot 2001; Vidal-Matutano 2015;
Vidal-Matutano et al. 2015; Zilhão et al. 2016), with a
wider generalisation of charcoal analyses performed at
MIS 3 sites (Allué, Solé, and Burguet-Coca 2016;
Badal, Villaverde, and Zilhão 2012b; Théry-Parisot
and Meignen 2000; Théry-Parisot and Texier 2006;
Théry-Parisot et al. 1996; Uzquiano et al. 2012; Vidal-
Matutano 2017; Vidal-Matutano, Henry, and Théry-
Parisot 2017; Yravedra and Uzquiano 2013).

In this paper, we present preliminary anthracologi-
cal data derived from Bolomor Cave, specifically from
two combustion structures from levels XIII (MIS 7)
and XI (MIS 6) as well as from the scattered context
of level XIII. Our charcoal analysis results are among
the earliest published data for the European context,
together with those obtained from Gesher Benot Ya’a-
qov, Terra Amata and Torralba. Hence, the aim of this
paper is to provide palaeoecological data concerning
this period in Eastern Iberia based on wood charcoal
remains as well as to discuss the taphonomical pro-
cesses affecting the preservation of this ancient char-
coal assemblage.

Archaeological setting: Bolomor Cave

Bolomor Cave is an archaeological site located 2 km
southeast of the town of Tavernes de la Valldigna,
Valencia, Spain (30N 737919E 4329998N UTM Geo-
location). The stratigraphic sequence is divided into
17 levels, which are numbered from the top of the
deposit and have a maximum thickness of 14 m.
Investigation of the magnetic susceptibility of the sedi-
ment shows a warm period related to MIS 9 (∼
350 ka) at the beginning of the stratigraphic deposit.
For the top sequence, a single thermoluminiscence
(TL) date exists, yielding an age of 121 ± 18 ka for
level II (Figure 1) (Fernández Peris et al. 2012). The
lithic industry found in Bolomor Cave is considered
to be an early Middle Palaeolithic techno-complex,
with the most retouched artefacts being scrapers and
lateral denticulates. It is worth noting that it is charac-
terised by intensive reuse and the recycling of lithics,
especially in the upper levels (Fernández Peris et al.
2008). The Bolomor faunal assemblage shows high
diversity, with more than 30 species belonging to the
categories of Cercopithecinae, Carnivora and Ungu-
lata being identified in addition to small prey such
as Leporidae, Aves, Testudinidae, Amphibia and Sal-
monidae (Blasco et al. 2013a). Further, bone retou-
chers have been identified in several levels (XVII,
XIII and XII) along the stratigraphic sequence (Blasco
et al. 2013b; Rosell et al. 2015).

Currently, 14 hearths from levels II, IV, XI and XIII
have been excavated. Although heat-altered material
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has been recovered from the lowest level of the sequence
(XVII, 350 ka), the oldest combustion structures come
from level XIII, with an age of 230 ka having been deter-
mined by amino acid racemisation (AAR) (Figure 2). The
twohearths documented at this level bothhave a complex
structure; one of them is basin-shaped, while the other
shows preparation prior to ignition in the form of stone
beds used to insulate it from the ground. At level XI, ∼
150 ka, seven simple oval-shaped hearths have been
documented, which were aligned under the start of the
cave’s ledge (Figure 2). Around the hearths, a significant
accumulation of archaeological material was documen-
ted. Levels II and IV, which have chronologies of 120-
100 ka, have also provided evidence of the controlled
use of fire. At level II, only ash accumulations have
been recorded, while at level IV, four hearths were docu-
mented, which were also located under the line of the
overhang on the west side of the cave mouth (Fernández
Peris et al. 2012). Regarding the anthropic origin of the
charcoal remains studied in thiswork,micromorphologi-
cal analysis from combustion structures from levels XI
and XIII allowed the observation of wood ashes and
micro-charcoals with a clear distribution (Fernández
Peris et al. 2012). These previous data led us to consider-
ing the presence of micro-charcoal remains, although
they were not visible during the fieldwork.

Methods: charcoal analysis

The charcoal analysis presented here corresponds to a
sampling from concentrated (combustion structures)
and scattered contexts intended to determine the
anthracological potential of Bolomor Cave. Dry sieving
of the sediments from the hearths and the adjacent
squares was conducted using a column of meshes of
2, 0.5, 0.250, 0.125 and 0.063 mm. Although the stan-
dard limitation of the botanical identification of char-
coal is considered to be a size of 2 mm (Chabal 1988,
1992), extra effort was expended using this column of
meshes to, at least, determine the charcoal remains at
the angiosperms/conifers taxonomical rank. Each
wood charcoal fragment was manually fractured to
provide transversal, tangential and radial sections for
microscopic observation, although the smallest frag-
ments were not suitable for the observation of the
three anatomical sections. The taxonomic identifi-
cation was performed using a Nikon Optiphot-100
bright/dark-field incident light microscope with 50–
500x magnification and by comparing the archaeologi-
cal remains with specialised plant anatomy atlases (Jac-
quiot, Trenard, and Dirol 1973; Schweingruber 1976,
1990) as well as the reference collection of modern
charred woody taxa of the Department of Prehistory,

Figure 1. Location and stratigraphic profile of Bolomor Cave showing radiometric dates and positions of the hearths.
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Archaeology and Ancient History, University of Valen-
cia. Photography and the detailed observation of the
anatomical and taphonomic features were conducted
using a Hitachi S-4100 scanning electron microscope
(SEM) and the ESPRIT 1.8 software. The elemental
analyses were performed using a Brucker 1110 CHNS
X-ray spectroscopy device and the ESPRIT 1.9 software
at the Central Service for the Support of Experimental
Research (SCSIE, University of Valencia) in order to
provide information about the chemical composition
of the samples. For the SEM and energy dispersive X-
ray spectroscopy (EDX) analyses, the samples were
secured on aluminium stubs with adhesive tabs and
then coated with gold/palladium.

Results

Botanical identification and degree of
fragmentation

The charcoal analysis of the combustion structures and
the adjacent squares provided a reduced anthracological
assemblage (Table 1). The botanical identification has

been strongly influenced by the small size of the wood
charcoal remains, with a concentration of fragments
in the 1–2 mm and 0.5–1 mm size classes. Combustion
structure 4 (level XI) yielded a total of 23 charcoal
remains that were dominated by undetermined conifers
andPinus nigra-sylvestris (black pine and / or scots pine)
(Figure 3b). In terms of level XIII, one fragment of Juni-
perus sp. (juniper) (Figure 3a) was identified inside
combustion structure 2, while a total of 30 wood

Figure 2. Hearths from Bolomor Cave during excavation process: hearths from level XI and detail of combustion structure 6 (left);
level XIII during excavation and profile view of the combustion structure 1 (right). Artificial black area in the general view of exca-
vation surface of level XI (top-left) corresponds to the significant shake-up of the cave’s archaeological sediments produced by
mining work in search of the cavity’s thick basal stalagmite deposits during the 1930s.

Table 1. Anthracological data from the combustion structures
4 and 2 and the scattered assemblage.

Level XI XIII

Context
Combustion
feature 4 Scattered

Combustion
feature 2

Taxa n n n

Angiosperm 1 1 7
Angiosperm 2 1
Coniferae 10 6
Juniperus sp. 1 1
Pinus nigra-
sylvestris

12 13

Indeterminable 2
Total remains 23 30 1
Min. taxa 1 2 1
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charcoal remains were obtained from the scattered con-
text, which indicated the presence of Juniperus sp.,Pinus
nigra-sylvestris, undetermined conifers and angios-
perms, and indeterminable fragments. With regards to
the angiosperm fragments, the degree of preservation
hampered the botanical identification. Despite this, at
least two different types of angiosperms are present in
the record which are referred to in Table 1 as Angios-
perm 1 and Angiosperm 2. Angiosperm 1, the most
abundant in the anthracological assemblage, has diffuse
porous wood and solitary vessels or in small clusters
(Figure 3c), simple perforation plates, an absence of
spiral thickenings and opposite inter-vessel pits
(Figure 3d). Angiosperm2, which presentedworse pres-
ervation than Angiosperm 1, was only identified by the
spiral thickenings present in the vessels (Figure 5g). Due
to their degree of preservation and their relatively small
size, it was not possible to distinguish the angiosperm
fragments at the family or genus taxonomical rank.

Taphonomic remarks

The effects of several pre-depositional and post-deposi-
tional processeswereobservedduring the charcoal analy-
sis. In this sense, biogenic alterations caused by fungi,
bacteria and insects are present in the recovered charcoal
fragments, leading to the deterioration of the organic
material. Additionally, mineralised cell walls together

with the presence of mineral precipitates were observed
in some fragments. Both types of degradation features,
that is, the biogenic and the geologic ones, could have
contributed to the degree of preservation of the anthraco-
logical assemblage.

Discussion

Palaeoecological inferences

Although the anthracological assemblage recovered
from Bolomor Cave is quite limited, it constitutes the
earliest known anthracological evidence based on
humans’ use of firewood in Iberia. Thus, the charcoal
analysis presented here sheds light on the characteris-
ation of the local landscape, with the presence of
Pinus nigra-sylvestris in both levels pointing to the
prevalence of meso-supramediterranean conditions
(mean annual temperature [MAT] of 8–17°C) in East-
ern Iberia during MIS 7 and MIS 6.

Pinus nigra-sylvestris constitutes the most abundant
taxon within the wood charcoal remains recovered
from Bolomor Cave. The identification of black pine
and / or scots pine at this site represents the earliest evi-
dence in Iberia of its use as fuel. While cryophilous pines
(Pinus nigra, P. sylvestris, P. mugo, P. uncinata) are easily
distinguishable from thermophilous pines (Schweingru-
ber 1976), difficulties arise when attempting to

Figure 3. SEM images of the taxa identified at Bolomor Cave. A. Level XIII: Juniperus sp., radial section (×600). Note degraded tori
(arrows) within bordered pits. B. Level XI: Pinus nigra-sylvestris, radial section (×350). Note the presence of fungal hyphae within the
tracheids. C. Level XIII: Angiosperm 1, transversal section (×500). D. Level XIII: Angiosperm 1, tangential section (×1000).
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distinguish between the different species of highland
pines (Allué, Solé, and Burguet-Coca 2016; Badal and
Carrión 2001; Badal et al. 2012a; Badal, Villaverde, and
Zilhão 2012b; Postigo-Mijarra, Gómez-Manzaneque,
and Morla 2017; Vidal-Matutano et al. 2015). Taking
into account the anatomyof thewood, thediscrimination
of these four species is barely feasible, although Pinus
mugo and Pinus uncinata can be discarded based on
the location of the site at a low altitude, since these two
species are limited to higher elevations (above 1900–

2000 m a.s.l.). When trying to differentiate Pinus nigra
from Pinus sylvestris, some authors take into account
the distribution of the resin ducts in the growth rings
as well as the characteristics of the ray tracheid walls in
mature specimens (Rubiales et al. 2007), whereas other
researchers believe that current knowledge does not
allow for the unequivocal distinction of these species
(Allué, Solé, and Burguet-Coca 2016; Allué et al., in
press; Badal and Carrión 2001; Roiron et al. 2013;
Schweingruber 1976; Vidal-Matutano 2017; Vidal-

Figure 4. Current distribution of Pinus nigra subsp. salzmanii with Pinus sylvestris and Pinus nigra biogeographical data (after Costa,
Morla, and Sainz 2005). Red star represents current biogeographical location of Bolomor Cave. Gray circle represents the minimal
hypothetical biogeographical location of Bolomor Cave based on anthracological data. Current distribution maps drawn from the
data obtained in www.anthos.es.
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Matutano et al. 2015). This is why ‘approximate’ nomen-
clatures are used by different authors: Pinus nigra-sylves-
tris is favoured by some, while others prefer Pinus type
sylvestris.

Pinus sylvestris mostly occurs in the oromediterra-
nean belt above 800 m a.s.l. (Figure 4), although relict
scots pine woodlands survive at low altitudes (down
to 200 m a.s.l.) in Southern France (Quézel and Médail
2003). Pinus nigra represents a group of pine species
(P. nigra subsp. salzmanii, nigra, laricio, mauritanica,
dalmatica and pallasiana) that occupy a fragmented
area in the mountains around the Mediterranean
Basin. According to the current biogeographical distri-
bution of the Pinus nigra subspecies in Europe, the
P. nigra subsp. salzmanii is likely to be the only native
subspecies found in Southern France and Iberia (Qué-
zel and Médail 2003; Roiron et al. 2013). In Iberia,
black pine is present between 500 and 2200 m a.s.l.
on the supramediterranean or oromediterranean belt
and it can become associated with the scots pine due
to also being contained within the oromediterranean
belt (Figure 4) (Costa, Morla, and Sainz 2005).

According to the available anthracological data,
Pinus nigra-sylvestris previously had a significantly lar-
ger distribution than that seen today in the Mediterra-
nean Basin. Indeed, anthracological data from Terra
Amata and Torralba (ca. 400 ka) and many Middle
Palaeolithic sites belonging to MIS 5-3 show the domi-
nance of this taxon, indicating the widespread presence
of cryophilous pine woodlands during the Middle-
Upper Pleistocene (Allué et al., in press; Allué, Solé,
and Burguet-Coca 2016; Arsuaga et al. 2012; Badal
and Carrión 2001; Badal andMartínez 2017; Badal, Vil-
laverde, and Zilhão 2012b; Daura et al. 2015; Postigo-
Mijarra, Gómez-Manzaneque, and Morla 2017;
Uzquiano et al. 2012, 2008; Vidal-Matutano 2017;
Vidal-Matutano et al. 2015; Vidal-Matutano, Henry,
and Théry-Parisot 2017; Zilhão et al. 2016). While
scarce anthracological data is available for MIS 7-6
chronologies in Iberia, the black pine and / or scots
pine record from Bolomor Cave constitutes the earliest
evidence of its presence in Eastern Iberia based on
humans’ collection of firewood (charcoal fragments).
Regarding this, theAuchelian site of Torralba also docu-
ments the preservation of Pinus cf. sylvestris wood frag-
ments, although these non-charred material have no
evidence of had been anthropically manipulated and,
therefore, are not directly related with human practices
(Postigo-Mijarra, Gómez-Manzaneque, and Morla
2017). According to current ecological and biogeogra-
phical data, Pinus nigra could probably have grown at
low altitudes in coastal areas, as other Mediterranean
sites have shown (Badal and Martínez 2017), while its
presence at this site supports the descent of supramedi-
terranean conditions by about 700–1000 m, since it has
been observed at many laterMediterranean Palaeolithic
sites in Iberia (Allué, Solé, and Burguet-Coca 2016;

Allué et al., in press; Aura et al. 2005; Badal and Carrión
2001; Badal, Villaverde, and Zilhão 2012b; Daura et al.
2015; Esteban et al. 2017; Vidal-Matutano 2017;
Vidal-Matutano et al. 2015; Zilhão et al. 2016), which
implies a general decrease of 5°C in theMAT. Relatedly,
further information obtained from other identified
woody taxa would help to nuance the palaeoecological
data derived from these levels. Unfortunately, the
angiosperm fragments remain undetermined due to
their small size and their degree of preservation. Only
two fragments of Juniperus sp. are present in level
XIII, although the homogenous anatomical structure
of this genus hampers its identification at the species
level (Schweingruber 1976). Thus, these fragments
could be attributed to cryophilous junipers (J. commu-
nis, J. thurifera) or to thermophilous species (J. oxyce-
drus, J. phoenicea), whose present-day range extends
from the thermomediterranean to the supramediterra-
nean belt under dry or semi-arid bioclimatic conditions
(Costa, Morla, and Sainz 2005). Despite this, given the
fact that black pine and / or scots pine is present in
the anthracological record of Bolomor Cave, it seems
likely that the Juniperus wood charcoal fragments
would correspond to cryophilous junipers rather than
thermophilous ones.

Preservation of wood charcoal remains

Different processes affecting the anatomical structure of
wood charcoal have been observed during the charcoal
analysis at Bolomor Cave. These processes have been
separated into those caused by biological agents (pre-
and post-depositional processes) and those resulted
from natural agents (post-depositional processes).

Bacterial and fungal degradation features
Wood can be degraded by fungi as well as bacteria,
which provides distinctive decay patterns. Fungi
expand inside the ligneous structure by producing
spores, which develop into hyphae that degrade the
structure of carbohydrates (cellulose and hemicellu-
lose) and lignin by means of depolymerisation (Bal-
drian and Valášková 2008; Blanchette 1991;
Blanchette et al. 1991; Leonowicz et al. 1999; Tuor,
Winterhalter, and Fiechter 1995). Fungal decay can
be categorised into brown rot, white rot and soft rot
according to the type of degradation affecting the
wood’s cell walls (Blanchette 2000). However, the
identification of these types of fungal decay based on
only micromorphological features remains unclear,
since some studies have shown that there is a much
greater diversity in the way different decay fungi chal-
lenge their hosts and substrates (Schwarze 2007). In
addition, bacteria degrade lignified elements (namely
tracheids, fibres and vessels) by first attaching to the
lumen face of the cell wall and then penetrating into
the wall, thereby producing tunnelling type bacterial
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Figure 5. SEM images of bacterial and fungal decay features on wood charcoal from Bolomor Cave. A. Bacterial chains. Level XIII:
Angiosperm, transversal section (×4500). B. Visible fungal hyphae within a vessel. Level XIII: Angiosperm, transversal section
(×3000). C. Crystal features in a degraded tracheid. Note the lenticular cavities produced by bacterial and/or fungal activity (arrows).
Level XI: Conifer, tangential section (×1500). D. Cubical cracks caused by brown-rot fungi. Level XI: Conifer, tangential section
(×500). E. Degraded cell walls (arrows) and presence of lignin residues. Level XIII: Angiosperm, transversal section (×1000). F. Arthro-
pod fecal pellets within a vessel. Level XIII: Angiosperm, tangential section (×250). G. Bacterial degradation of a vessel. Level XIII:
Angiosperm, tangential section (×1100). H. Cellular deformation and calcium precipitates. Level XIII: Pinus nigra-sylvestris, transver-
sal section (×1000).
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decay (Kim and Singh 2000; Singh 2012). The degra-
dation of the wood’s components by bacterial and fun-
gal activity leads to strength, weight and density losses,
which are often observed in the ‘wavy’ appearance of
the wood and the hyper-fragmentation of the wood’s
charcoal record (Allué, Solé, and Burguet-Coca 2016;
Badal, Villaverde, and Zilhão 2012b; Henry and
Théry-Parisot 2014; Moskal-del Hoyo, Wachowiak,
and Blanchette 2010; Vidal-Matutano et al. 2015;
Vidal-Matutano, Henry, and Théry-Parisot 2017).

The effects of biological activity on wood charcoal,
together with other mechanical processes such as
anthropogenic activities (trampling, re-working, sweep-
ing), weathering, freeze/thaw cycles or dry/humidity
cycles, should also be taken into account because these
phenomena can lead to the fragmentation or even the
disappearance of the material, thereby affecting our per-
ception of the wood that was used as fuel in the past
(Théry-Parisot, Chabal, and Chrzavzez 2010) and caus-
ing us to misinterpret the absence or scarcity of charcoal
at archaeological sites (Chrzazvez et al. 2014; Marquer
et al. 2012). Anthracologists have tried to understand if
species did fragment differentially and how the charcoal
record could be affected by fragmentation. According to
this, the statistical analysis of different size classes from
Le Marduel and Lattara (France) by Chabal (1992,
1997) and from Cova de les Cendres (Spain) by Badal
(1988) indicated similar fragmentation patterns between
all taxa. More recent experimental studies based on
modern Pinus sylvestriswood have shown the important
influence of the state of the wood prior to combustion on
the mechanical properties of the charcoal: carbonised
healthy wood was three to five times more resistant
than carbonised degraded wood (Chrzazvez et al. 2014;
Théry-Parisot 2001; Théry-Parisot, Chabal, andChrzav-
zez 2010). Hence, the hyper-fragmentation and scarcity
of the charcoal record recovered from Bolomor Cave
could be linked to the pre- and post-depositional pro-
cesses affecting its preservation. Indeed, some fungal
degradation patterns have been recorded, i.e. cubical
cracks caused by brown-rot fungi (Figure 5d), perfor-
ation of the cell walls (Figure 5e), degraded tori within
the bordered pits (Figure 3a) or even cellular defor-
mation of the tracheids and the presence of holes near
the lumen surface (Figure 5h). The effect of fungal
decay was especially evident on the angiosperm frag-
ments, which evidenced great distortion of the plant tis-
sue that caused a loss of strength. In addition, the fungal
hyphaewere well preserved and visible within the vessels
and tracheids in all the recovered wood charcoal frag-
ments (Figures 3b and 5b). Yet, the charcoal fragments
obtained from Bolomor Cave were also highly degraded
by bacterial activity, resulting in large losses of strength
associated with the previously mentioned fungal attack.
The features of this kind of decay (minute cavities and
tunnels in the cell walls leaving residual wall material)
are similar to those observed based on microscopic

analysis of the 400 ka BP wooden spears found at Schö-
ningen (Schmitt et al. 2005; Thieme 2000). Indeed, bac-
terial chains have been observed affecting mainly the
angiosperm fragments (Figure 5a), together with chains
of lenticular cavities produced by erosion bacteria or
even soft-rot fungi (Figure 5c) and the presence of lignin
residues mixed with bacterial slime located in degraded
walls (Figure 5c, e and g). In addition, arthropod faecal
pellets within a vessel have also been observed, which
evidences the contribution of xylophagous insects to
wood degradation (Figure 5f).

The anatomical alterations caused by fungal and
insect activity on wood can provide meaningful data
concerning the firewood acquisition strategies
employed by past human groups, e.g. collection of
green and healthy wood vs. dead and degraded wood.
Accordingly, the microscopic characterisation of fungal
decay patterns found on wood charcoal fragments from
Palaeolithic and Mesolithic sites suggests the preferen-
tial use of degraded wood (Allué, Solé, and Burguet-
Coca 2016; Chrzavzez 2006; Henry and Théry-Parisot
2014; Théry-Parisot 2001; Théry-Parisot and Texier
2006) or even half-rotten wood (Vidal-Matutano,
Henry, and Théry-Parisot 2017) by hunter-gatherer
groups. Unfortunately, the available anthracological
assemblage obtained from Bolomor Cave up to now
cannot provide us palaeoeconomical data regarding
firewood selection criteria due to its reduced nature.

Mineralised wood charcoal: calcite precipitation
or oxalate production by wood-rotting fungi?
The charcoal analysis from Bolomor Cave also docu-
mented the high presence of mineralised wood char-
coal fragments (almost 96% of the total fragments
recovered). Mineralised charcoal was evident due to
cell structure deformations (Figure 5g and h) and the
generalised presence of crystalline features within the
wood tissue (Figure 5c and g), which raised a question
regarding the taphonomical agent affecting wood char-
coal fragments. The mineralisation of wood by silica or
calcium precipitation within plant tissues has been
widely studied in relation to the plant fossil record
from petrified forests worldwide (Akahane et al.
2004; Dietrich, Lampke, and Rößler 2013; Hellawell
et al. 2015). Since silica or calcium attraction by plant
tissues prevents decay in an oxygenated environment,
the petrification of wood is one of the most significant
preservation processes in relation to trees (Hellawell
et al. 2015; Mustoe 2015; Nowak et al. 2005). Indeed,
the mineralisation of wood in these geological contexts
involves the replacement of the organic cellular tissue
by calcium, opal, chalcedony, moganite and/or quartz,
thus even preserving the anatomical structure of the
plants (Dietrich, Lampke, and Rößler 2013; Mustoe
2015). Yet, although physicochemical processes play a
significant role in calcite formation and development
(Ehrlich 1998), it is broadly recognised that
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Figure 6. Energy-dispersive X-ray microanalysis on wood charcoal fragments from Bolomor Cave. A. Crystal features in a degraded
tracheid. Level XI: Coniferae, tangential section (×10000). B. Mineralised cross-field. Level XI: Pinus nigra-sylvestris, radial section
(×400). C. Calcium precipitates within the tracheids. Level XIII: Pinus nigra-sylvestris, transversal section (×2000).
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microorganisms (bacteria, fungi and algae) may also
play an important role in these contexts (Goudie
1996). In this sense, the observation of calcified fungal
filaments in limestone and calcareous soils suggests
that fungi may play a crucial role in secondary calcite
precipitation (Burford, Kierans, and Gadd 2003; Bur-
ford, Hillier, and Gadd 2006; Gadd 2007; Jarosz-Wilk-
olazka and Gadd 2003; Mäkelä et al. 2002). This
phenomenon, which is referred to by many authors
as ‘geomycology’ (Gadd 2007), refers to the impact of
fungi on the geological processes that form biogenic
micro-fabrics. Accordingly, calcium oxalates are com-
monly present in association with fungal hyphae and
bacteria in soils and leaf litter (Burford, Kierans, and
Gadd 2003; Burford, Hillier, and Gadd 2006; Gadd
2007), as well as within the wood tissue (Braissant
et al. 2004; Mäkelä et al. 2002), and they play an impor-
tant role in mineral formation through the precipi-
tation of organic and inorganic secondary minerals
and the deposition of crystalline material (mainly oxa-
lates and carbonates) on and within cell walls (Gadd
2006). Indeed, experimental studies have evidenced
the biomineralisation of fungal filaments with calcite
modifying the local microenvironment (Burford, Hil-
lier, and Gadd 2006; Jarosz-Wilkolazka and Gadd
2003; Lowenstam 1981).

At Bolomor Cave, analysis of the crystalline material
and mineralised cells from the wood charcoal frag-
ments using an X-ray microanalysis indicated that
many samples were enriched with calcium (Ca), in
addition to the presence of oxygen (O) and carbon
(C), which is consistent with the chemical composition
of charred wood (Young 1985). Hence, calcium peaks
were detected when analysing the lignin residues and
crystal features located in the degraded cell walls
(Figure 6a and c) or mineralised Pinus nigra-sylvestris
cross-fields (Figure 6b), together with the detection of
some other elements in smaller amounts, including
magnesium (Mg), aluminium (Al), phosphorus (P)
and silicon (Si) (Table 2). Keeping in mind the degree
of preservation of the wood charcoal found at this site
due to both fungal and bacterial decay, the biominera-
lisation could be explained as a result of biogenic
activity within the plant tissues. However, based on
the current state of research, other possible

taphonomical agents should not be overlooked. Indeed,
taking into account the sediment matrix of Bolomor
Cave, where calcite is predominant (Fernández Peris
et al. 2012), the penetrating groundwater could poss-
ibly be saturated in Ca ions from the karst formation
and the buried wood charcoal fragments would hence
be likely penetrated by the Ca solution. Nevertheless,
both taphonomic agents (Ca precipitation from the
geological composition of the cave and the production
of secondary minerals by fungi and bacteria) could
jointly contribute to the mineralisation of plant ana-
tomical elements in Bolomor Cave, thereby affecting,
in many cases, the botanical determination of wood
charcoal fragments.

Conclusions

The results presented here contribute to our under-
standing of Middle Pleistocene hominid subsistence
based on the anthracological record recovered from
Bolomor Cave. This site stands as a significant location
recording archaeological evidence of the repeated use
of fire in early chronologies. Preliminary charcoal
data obtained from this site constitute the earliest
known anthracological evidence based on humans’
use of firewood in Iberia. Despite representing a scarce
wood charcoal assemblage, Bolomor Cave constitutes
an exception when compared to other early Palaeo-
lithic sites, which have documented evidence of the
use of fire, although no charcoal fragments have been
recovered or published. The botanical identification
of the fragments has allowed significant palaeoecologi-
cal data to be obtained concerning the earliest evidence
of Pinus nigra-sylvestris in Eastern Iberia based on
humans’ gathering of firewood. According to current
ecological and biogeographical data, the presence of
black pine and / or scots pine in both levels sheds
light on the characterisation of the landscape during
MIS 7 and MIS 6 (ca. 230-160 ka) occupations at Bolo-
mor Cave. Hence, this charcoal assemblage is associ-
ated with meso-supramediterranean conditions that
imply a considerable descent in the MAT. The hyper-
fragmentation of the charcoal assemblage, together
with the presence of some degradation patterns, has
been taken into consideration in order to extract

Table 2. Chemical composition (SEM-EDX) from wood charcoal fragments. Sample letters correspond to those from Figure 6. The
presence of gold (Au) and palladium (Pd) was not taken into account when drawing up the table of elemental composition as these
elements were used for coating the samples prior to the SEM analysis.
Sample A B C
Element Wt (%) At (%) Wt (%) At (%) Wt (%) At (%)

Carbon (C) 32.69 47.89 49.68 65.78 26.77 43.53
Oxygen (O) 31.65 34.81 23.64 23.50 26.35 32.17
Magnesium (Mg) 1.16 0.84 0.53 0.35
Aluminium (Al) 1.14 0.83
Calcium (Ca) 24.33 10.68 26.15 10.37 38.2 18.62
Phosphorus (P) 10.17 5.78 5.93 3.74
Silicon (Si) 1.61 1.12
Total 100 100 100 100 100 100

ENVIRONMENTAL ARCHAEOLOGY 11

D
ow

nl
oa

de
d 

by
 [

95
.1

23
.1

85
.1

57
] 

at
 0

1:
02

 2
5 

N
ov

em
be

r 
20

17
 



possible inferences about pre- and post-depositional
processes affecting the material. Indeed, fungal and
bacterial degradation features have both been detected.
The microscopic observation of the biodegradation
patterns has been especially noted in relation to the
angiosperm fragments, which remain undetermined
due to their degree of preservation. Additionally, the
chemical characterisation of the crystalline material
and mineralised cells allowed the detection of calcium
peaks, which could correspond to either the geological
composition of the cave or the production of secondary
minerals by fungi and bacteria. Further research on the
charcoal analysis from this and other early Palaeolithic
sites will contribute meaningful insights into past land-
scape dynamics and firewood collecting strategies
among Middle Pleistocene human groups.

Acknowledgements

We thank the Bolomor Cave team members that allowed us
to carry out this work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was carried out with the financial support of a
VALi+d pre-doctoral grant (ACIF/2013/260) to P. Vidal-
Matutano. Archaeological research was funded by the
Museo de Prehistoria de Valencia and the Conselleria de
Cultura of the Generalitat Valenciana. P. Vidal-Matutano
is funded by the Generalitat Valenciana APOSTD Postdoc-
toral grant (APOST/2017/126). R. Blasco develops her
work within the Spanish MINECO/FEDER project
CGL2015-68604-P, the Generalitat de Catalunya-AGAUR
projects 2014 SGR 900 and 2014/100573, and the SÉNECA
Foundation project 19434/PI/14.

ORCID

Paloma Vidal-Matutano http://orcid.org/0000-0002-
5892-149X

Notes on contributor

Paloma Vidal-Matutano is a researcher at the Cultures et
Environnements Préhistoire, Antiquité, Moyen Âge
(CEPAM –UMR 7264), Nice, France, and at the Department
of Prehistory, Archaeology and Ancient History (University
of Valencia), Valencia, Spain. Her research focuses on char-
coal analyses from Middle Palaeolithic sites located in Wes-
tern Europe using experimental tools and spatial distribution
software for a palaeoeconomical approach. She is involved in
several archaeological projects, including El Salt, Abric del
Pastor and Crvena Stijena in Montenegro. She is the
author/co-author of several publications with impact factor
and book chapters.

Ruth Blasco is a researcher at the National Research Centre
on Human Evolution (CENIEH), Burgos, Spain. Her

research focuses on the evolution of human behaviour
during the Middle and early Late Pleistocene using the
taphonomic and zooarchaeologic disciplines. She is involved
in studies and fieldwork at several archaeological sites of
Europe and the Levant, including Bolomor, Atapuerca,
Toll and Teixoneres caves in Spain, Gorham’s and Vanguard
caves in Gibraltar and Qesem Cave in Israel. She is the
author/co-author of 65 publications with impact factor and
15 book chapters. Currently, she is an editorial board mem-
ber of Scientific Reports from the Nature Publishing Group.
Her social and media impact has been discussed on several
news blogs, including Nature News, John Hawks Weblog,
Discovery Channel News and BBC News.

Pablo Sañudo is PhD student at Àrea de Prehistòria, Univer-
sitat Rovira i Virgili (URV), Tarragona, Spain, and Institut
Català de Paleoecologia Humana i Evolució Social
(IPHES), Tarragona, Spain. His research focuses on human
behavior and occupation patterns during Middle and
Upper Pleistocene using spatial analysis, Geographical Infor-
mation Systems and lithic refits. His studies are mainly
focused on Bolomor Cave (Valencia, Spain) and Abric
Romaní (Barcelona, Spain). He is the author/co-author of
several publications with impact factor and book chapters.

Josep Fernández Peris is a researcher associated to the
Museum of Prehistory of Valencia and PhD by the Univer-
sity of Valencia. His professional career has focused on the
study of the Neanderthal ways of life, especially in its techno-
logical aspects of lithics. Since 1989 he has been the director
of the Bolomor Cave project and has participated into differ-
ent projects and fieldwork. He has participated in 46 publi-
cations, including several books and numerous
publications with impact factor.

References

Akahane, H., T. Furuno, H. Miyajima, T. Yoshikawa, and S.
Yamamoto. 2004. “Rapid Wood Silicification in Hot
Spring Water: An Explanation of Silicification of Wood
During the Earth’s History.” Sedimentary Geology 169:
219–228.

Allué, E. 2016. “Carcoal Remains from Azokh 1 Cave:
Preliminary Results.” In Azokh Cave and the
Transcaucasian Corridor, edited by Y. Fernández-Jalvo,
T. King, L. Yepiskoposyan, and P. Andrews, 297–304.
New York: Springer International Publishing.

Allué, E., L. Picornell, J. Daura, and M. Sanz. in press.
“Reconstruction of the Palaeoenvironment and
Anthropogenic Activity from the Upper Pleistocene/
Holocene Anthracological Records of the NE Iberian
Peninsula (Barcelona, Spain).” Quaternary International.
doi:10.1016/j.quaint.2016.10.024.

Allué, E., A. Solé, and A. Burguet-Coca. 2016. “Fuel
Exploitation among Neanderthals Based on the
Anthracological Record from Abric Romaní (Capellades,
NE Spain).” Quaternary International. doi:10.1016/j.
quaint.2015.12.046.

Arsuaga, J. L., E. Baquedano, A. Pérez-González, N. Sala, R.
M. Quam, L. Rodríguez, R. García, et al. 2012.
“Understanding the Ancient Habitats of the Last-
Interglacial (Late MIS 5) Neanderthals of Central Iberia:
Paleoenvironmental and Taphonomic Evidence from the
Cueva del Camino (Spain) Site.” Quaternary
International 275: 55–75.

Aura, J., Y. Carrión, E. Estrelles, and G. Jordà. 2005. “Plant
Economy of Hunter-Gatherer Groups at the End of the

12 P. VIDAL-MATUTANO ET AL.

D
ow

nl
oa

de
d 

by
 [

95
.1

23
.1

85
.1

57
] 

at
 0

1:
02

 2
5 

N
ov

em
be

r 
20

17
 

http://orcid.org/0000-0002-5892-149X
http://orcid.org/0000-0002-5892-149X
https://doi.org/10.1016/j.quaint.2016.10.024
https://doi.org/10.1016/j.quaint.2015.12.046
https://doi.org/10.1016/j.quaint.2015.12.046


Last Ice Age: Plant Macroremains from the Cave of Santa
Maira (Alacant, Spain) ca. 12000–9000 B.P.” Vegetation
History and Archaeobotany 14: 542–550.

Badal, E. 1988. Resultados metodológicos del estudio
antracológico de la Cova de les Cendres (Alicante,
España). Proceedings of the meeting Paleoecologia e
Arqueologia, Vilanova de Familaçao (Portugal), pp. 57–
70.

Badal, E., and Y. Carrión. 2001. “Del Glaciar al Interglaciar:
los paisajes vegetales a partir de los restos carbonizados
hallados en las cuevas de Alicante.” In De Neandertales
a Cromañones: El inicio del poblamiento en las tierras
valencianas, edited by V. Villaverde, 21–40. Valencia:
Servei de Publicacions, Universitat de València.

Badal, E., Y. Carrión, I. Figueiral, and M. Oliva Rodríguez-
Ariza. 2012a. “Pinares y enebrales. El paisaje solutrense
en Iberia.” Espacio, Tiempo y Forma. Serie I. Prehistoria
y Arqueología 5: 259–272.

Badal, E., and C. Heinz. 1989. “L’analyse anthracologique des
dépôts préhistoriques Pléistocène supérieur et Holocène:
prélèvement et analyse des données.” Bulletin Français
Paléobotanique 11: 9–16.

Badal, E., and C. Heinz. 1991. “Méthodes utilisées en
Anthracologie pour l’étude de sites préhistoriques.” BAR
International Series 573: 17–47.

Badal, E., and C. Martínez. 2017. “Different parts of the same
plants. Charcoals and seeds from Cova de les Cendres
(Alicante, Spain).” Quaternary International. doi:10.
1016/j.quaint.2016.12.020.

Badal, E., V. Villaverde, and J. Zilhão. 2012b. “Middle
Palaeolithic Wood Charcoal from Three Sites in South
and West Iberia: Biogeographic Implications.” In Wood
and Charcoal. Evidence for Human and Natural History.
Saguntum-Extra 13, edited by E. Badal, Y. Carrión, M.
Macías, and M. Ntinou, 13–24. Valencia: Universitat de
València.

Baldrian, P., and V. Valášková. 2008. “Degradation of
Cellulose by Basidiomycetous Fungi.” FEMS
Microbiology Reviews 32: 501–521.

Bellomo, R. V. 1994. “Methods of Determining Early
Hominid Behavioral Activities Associated with the
Controlled Use of Fire at FxJj 20 Main, Koobi Fora,
Kenva.” Journal of Human Evolution 27: 173–195.

Berna, F., and P. Goldberg. 2007. “Assessing Paleolithic
Pyrotechnology and Associated Hominin Behavior in
Israel.” Israel Journal of Earth Sciences 56: 107–121.

Blanchette, R. A. 1991. “Delignification by Wood-Decay
Fungi.” Annual Review of Phytopathology 29: 381–403.

Blanchette, R. A. 2000. “A Review of Microbial Deterioration
Found in Archaeological Wood from Different
Environments.” International Biodeterioration &
Biodegradation 46: 189–204.

Blanchette, R. A., K. R. Cease, A. Abad, R. J. Koestler, E.
Simpson, and G. K. Sams. 1991. “An Evaluation of
Different Forms of Deterioration Found in
Archaeological Wood.” International Biodeterioration
28: 3–22.

Blasco, R., J. Rosell, F. Cuartero, J. Fernández Peris, A.
Gopher, R. Barkai, and M. D. Petraglia. 2013b. “Using
Bones to Shape Stones: MIS 9 Bone Retouchers at Both
Edges of the Mediterranean Sea.” Plos One 8 (10): e76780.

Blasco, R., J. Rosell, J. Fernández Peris, J. L. Arsuaga, J. M.
Bermúdez de Castro, and E. Carbonell. 2013a.
“Environmental Availability, Behavioural Diversity and
Diet: A Zooarchaeological Approach from the TD10-1
Sublevel of Gran Dolina (Sierra de Atapuerca, Burgos,

Spain) and Bolomor Cave (Valencia, Spain).”
Quaternary Science Reviews 70: 124–144.

Blasco, R., J. Rosell, P. Sañudo, A. Gopher, and R. Barkai.
2016a. “What Happens Around a Fire: Faunal
Processing Sequences and Spatial Distribution at Qesem
Cave (300 ka), Israel.” Quaternary International 398:
190–209.

Blasco, R., P. Sañudo, V. Barciela, and F. Fernández Peris.
2016b. “Bolomor Cave (Valencia, Spain, MIS 9-5e).” In
Terra Amata : Nice, Alpes-Maritimes, France Tome 5,
Comportement et mode de vie des chasseurs acheuléens
de Terra Amata, edited by H. de Lumley, 434–438.
Paris: CNRS éditions. ISBN 978-2-271-09072-0.

Braissant, O., G. Cailleau, M. Aragno, and E. P. Verrecchia.
2004. “Biologically Induced Mineralization in the Tree
Milicia excelsa (Moraceae): Its Causes and
Consequences to the Environment.” Geobiology 2: 59–66.

Brown, K. S., C. W. Marean, A. I. Herries, Z. Jacobs, C.
Tribolo, D. Braun, D. L. Roberts, M. C. Meyer, and J.
Bernatchez. 2009. “Fire as an Engineering Tool of Early
Modern Humans.” Science 325: 859–862.

Burford, E. P., S. Hillier, and G. M. Gadd. 2006.
“Biomineralization of Fungal Hyphae with Calcite
(CaCO3) and Calcium Oxalate Mono-and Dihydrate in
Carboniferous Limestone Microcosms.” Geomicrobiology
Journal 23: 599–611.

Burford, E. P., M. Kierans, and G. M. Gadd. 2003.
“Geomycology: Fungi in Mineral Substrata.” Mycologist
17: 98–107.

Carmody, R. N., and R. W. Wrangham. 2009. “The Energetic
Significance of Cooking.” Journal of Human Evolution 57:
379–391.

Carrión, Y., and E. Badal. 2004. “La presencia de hongos e
insectos xilófagos en el carbón arqueológico. Propuestas
de interpretación.” In Avances en Arqueometría, edited
by J. Martín Calleja, M. J. Feliu Ortega, and M. del C.
Edreira Sánchez, 98–106. Cádiz: Servicio de
Publicaciones de la Universidad de Cádiz y
Ayuntamiento del Puerto de Santa María.

Carrión, Y., M. Ntinou, and E. Badal. 2010. “ Olea europaea
L. in the North Mediterranean Basin During the
Pleniglacial and the Early–Middle Holocene.”
Quaternary Science Reviews 29: 952–968.

Chabal, L. 1988. “Pourquoi et comment prélever les char-
bons de bois pour la période antique: les méthodes
utilisées sur le site de Lattes (Hérault).” Lattara 1: 187–
222.

Chabal, L. 1992. “La représentativité paléoécologique des
charbons de bois archéologiques issus du bois de feu.”
Bulletin de la Société Botanique Française 139: 213–236.

Chabal, L. 1997. Forêts et sociétés en Languedoc (Néolithique
final, Antiquité tardive): l’anthracologie, méthode et
paléoécologie. Paris: Editions de la Maison des sciences
de l’homme.

Christian, H. J., R. J. Blakeslee, D. J. Boccippio, W. L. Boeck,
D. E. Buechler, K. T. Driscoll, S. J. Goodman, J. M. Hall,
W. J. Koshak, and D. M. Mach. 2003. “Global
Frequency and Distribution of Lightning as Observed
from Space by the Optical Transient Detector.” Journal
of Geophysical Research Atmospheres 108: ACL 4-1–ACL
4-15.

Chrzavzez, J. 2006. Collecte du bois de feu et paleoenvironne-
ments au Paleolithique. Apport méthodologique et étude de
cas: la grotte de Fumane dans les pré-Alpes italiannes.
Paris: Mémoire de Master II. Université de Paris I
Panthéon-Sorbonne.

ENVIRONMENTAL ARCHAEOLOGY 13

D
ow

nl
oa

de
d 

by
 [

95
.1

23
.1

85
.1

57
] 

at
 0

1:
02

 2
5 

N
ov

em
be

r 
20

17
 

https://doi.org/10.1016/j.quaint.2016.12.020
https://doi.org/10.1016/j.quaint.2016.12.020


Chrzazvez, J., I. Théry-Parisot, G. Fiorucci, J.-F. Terral, and
B. Thibaut. 2014. “Impact of Post-Depositional
Processes on Charcoal Fragmentation and
Archaeobotanical Implications: Experimental Approach
Combining Charcoal Analysis and Biomechanics.”
Journal of Archaeological Science 44: 30–42.

Clark, J. D., and J. W. Harris. 1985. “Fire and Its Roles in
Early Hominid Lifeways.” African Archaeological Review
3: 3–27.

Costa, M., C. Morla, and H. Sainz, eds. 2005. Los bosques
ibéricos: Una interpretación geobotánica. Barcelona:
Editorial Planeta.

Courty, M. A., E. Carbonell, J. Vallverdú, and R. Banerjee.
2012. “Microstratigraphic and Multi-Analytical Evidence
for Advanced Neanderthal Pyrotechnology at Abric
Romaní (Capellades, Spain).” Quaternary International
247: 294–312.

Daura, J., M. Sanz, R. Julià, D. García-Fernández, J. Fornós,
M. Vaquero, E. Allué, et al. 2015. “Cova del Rinoceront
(Castelldefels, Barcelona): A Terrestrial Record for the
Last Interglacial Period (MIS 5) in the Mediterranean
Coast of the Iberian Peninsula.” Quaternary Science
Reviews 114: 203–227.

de la Rúa, D. G., and F. Diez Martín. 2011. “La domesticación
del fuego durante el Pleistoceno inferior y medio. Estado
de la cuestión.” Veleia 26: 189–216.

de Lumley, H. 2006. “Il y a 400 000 ans: la domestication du
feu, un formidable moteur d’hominisation.” Comptes
Rendus Palevol 5: 149–154.

de Lumley, H., K. El Guennouni, S. Khatib, V. Michel, G.
Pollet, and T. Saos. 2016. “La maîtrise du feu sur les sols
d’occupation acheuléens de Terra Amata.” In Terra
Amata. Nice, Alpes-Maritimes, France. Tome V.
Comportement et mode de vie des chasseurs acheuléens
de Terra Amata, edited by H. de Lumley, 43–96. Nice:
CNRS éditions. ISBN 978-2-271-09072-0.

Dibble, H. L., A. Abodolahzadeh, V. Aldeias, P. Goldberg, S.
P. McPherron, and D. M. Sandgathe. 2017. “How Did
Hominins Adapt to Ice Age Europe Without Fire?”
Current Anthropology 58 (16): S278–S287.

Dietrich, D., T. Lampke, and R. Rößler. 2013. “A
Microstructure Study on Silicified Wood from the
Permian Petrified Forest of Chemnitz.” Paläontologische
Zeitschrift 87: 397–407.

Ehrlich, H. L. 1998. “Geomicrobiology: Its Significance for
Geology.” Earth-Science Reviews 45: 45–60.

Esteban, I., R. Albert, A. Eixea, J. Zilhão, and V. Villaverde.
2017. “Neanderthal Use of Plants and Past Vegetation
Reconstruction at the Middle Paleolithic Site of
Abrigo de la Quebrada (Chelva, Valencia, Spain).”
Archaeological and Anthropological Sciences 9 (2): 265–
278.

Fernández Peris, J., V. Barciela, R. Blasco, F. Cuartero, H.
Fluck, P. Sañudo, and C. Verdasco. 2012. “The Earliest
Evidence of Hearths in Southern Europe: The Case of
Bolomor Cave (Valencia, Spain).” Quaternary
International 247: 267–277.

Fernández Peris, J., V. Barciela, R. Blasco, F. Cuartero, and P.
Sañudo. 2008. “El Paleolítico medio en el territorio valen-
ciano y la variabilidad tecno-económica de la Cova del
Bolomor.” Treballs d’Arqueologia 14: 141–169.

Figueiral, I., and J.-F. Terral. 2002. “Late Quaternary Refugia
of Mediterranean Taxa in the Portuguese Estremadura:
Charcoal Based Palaeovegetation and Climatic
Reconstruction.”Quaternary Science Reviews 21: 549–558.

Gadd, G. M. 2006. Fungi in Biogeochemical Cycles.
Cambridge: Cambridge University Press.

Gadd, G. M. 2007. “Geomycology: Biogeochemical
Transformations of Rocks, Minerals, Metals and
Radionuclides by Fungi, Bioweathering and
Bioremediation.” Mycological Research 111: 3–49.

Goldberg, P., H. Dibble, F. Berna, D. Sandgathe, S. J.
McPherron, and A. Turq. 2012. “New Evidence on
Neandertal Use of Fire: Examples from Roc de Marsal and
Pech de l’Azé IV.” Quaternary International 247: 325–340.

Goren-Inbar, N., N. Alperson, M. E. Kislev, O. Simchoni, Y.
Melamed, A. Ben-Nun, and E. Werker. 2004. “Evidence of
Hominin Control of Fire at Gesher Benot Ya’aqov, Israel.”
Science 304: 725–727.

Goudie, A. 1996. “Organic Agency in Calcrete
Development.” Journal of Arid Environments 32: 103–110.

Gowlett, J. A. 2006. “The Early Settlement of Northern
Europe: Fire History in the Context of Climate Change
and the Social Brain.” Comptes Rendus Palevol 5: 299–310.

Gowlett, J. A., J. Hallos, S. Hounsell, V. Brant, and N.
Debenham. 2005. “Beeches Pit: Archaeology,
Assemblage Dynamics and Early Fire History of a
Middle Pleistocene Site in East Anglia, UK.” Eurasian
Prehistory 3: 3–38.

Gowlett, J. A., J. W. Harris, D. Walton, and B. A. Wood.
1981. “Early Archaeological Sites, Hominid Remains and
Traces of Fire from Chesowanja, Kenya.” Nature 294:
125–129.

Hellawell, J., C. Ballhaus, C. T. Gee, G. E. Mustoe, T. J. Nagel,
R. Wirth, J. Rethemeyer, F. Tomaschek, T. Geisler, and K.
Greef. 2015. “Incipient Silicification of Recent Conifer
Wood at a Yellowstone Hot Spring.” Geochimica et
Cosmochimica Acta 149: 79–87.

Henry, D. O., H. J. Hietala, A. M. Rosen, Y. E. Demidenko, V.
I. Usik, and T. L. Armagan. 2004. “Human Behavioral
Organization in the Middle Paleolithic: Were
Neanderthals Different?” American Anthropologist 106:
17–31.

Henry, A., and I. Théry-Parisot. 2014. “From Evenk
Campfires to Prehistoric Hearths: Charcoal Analysis as a
Tool for Identifying the Use of Rotten Wood as Fuel.”
Journal of Archaeological Science 52: 321–336.

Hietala, H. 2003. “Site Structure and Material Patterning in
Space on the Tor Faraj Living Floors.” In Neanderthals
in the Levant: Behavioral Organization and the
Beginning of Human Modernity, edited by H. Donald,
198–236. London: Bloomsbury.

Jacquiot, C., Y. Trenard, and D. Dirol. 1973. Atlas d’anato-
mie des bois des angiosperms (Essences feuillues). Paris:
Centre Technique du Bois.

James, S. R., R. Dennell, A. S. Gilbert, H. T. Lewis, J. Gowlett,
T. F. Lynch, W. McGrew, et al. 1989. “Hominid Use of
Fire in the Lower and Middle Pleistocene: A Review of
the Evidence [and Comments and Replies].” Current
Anthropology 30: 1–26.

Jarosz-Wilkolazka, A., and G. M. Gadd. 2003. “Oxalate
Production by Wood-Rotting Fungi Growing in Toxic
Metal-Amended Medium.” Chemosphere 52: 541–547.

Karkanas, P., R. Shahack-Gross, A. Ayalon, M. Bar-
Matthews, R. Barkai, A. Frumkin, A. Gopher, and M. C.
Stiner. 2007. “Evidence for Habitual Use of Fire at the
End of the Lower Paleolithic: Site-Formation Processes
at Qesem Cave, Israel.” Journal of Human Evolution 53:
197–212.

Kim, Y. S., and A. P. Singh. 2000. “Micromorphological
Characteristics of Wood Biodegradation in Wet
Environments: A Review.” IAWA Journal 21: 135–155.

Leonowicz, A., A. Matuszewska, J. Luterek, D. Ziegenhagen,
M. Wojtaś-Wasilewska, N.-S. Cho, M. Hofrichter, and J.

14 P. VIDAL-MATUTANO ET AL.

D
ow

nl
oa

de
d 

by
 [

95
.1

23
.1

85
.1

57
] 

at
 0

1:
02

 2
5 

N
ov

em
be

r 
20

17
 



Rogalski. 1999. “Biodegradation of Lignin by White Rot
Fungi.” Fungal Genetics and Biology 27: 175–185.

Li, C. 2000. “Reconstruction of Natural Fire Regimes
Through Ecological Modelling.” Ecological Modelling
134: 129–144.

Lowenstam, H. A. 1981. “Minerals Formed by Organisms.”
Science 211: 1126–1131.

Machado, J., and L. Pérez. 2015. “Temporal Frameworks to
Approach Human Behavior Concealed in Middle
Palaeolithic Palimpsests: A High-Resolution Example
from El Salt Stratigraphic Unit X (Alicante, Spain).”
Quaternary International. doi:10.1016/j.quaint.2015.11.
050.

Mäkelä, M., S. Galkin, A. Hatakka, and T. Lundell. 2002.
“Production of Organic Acids and Oxalate
Decarboxylase in Lignin-Degrading White Rot Fungi.”
Enzyme and Microbial Technology 30: 542–549.

Marquer, L., V. Lebreton, T. Otto, H. Valladas, P. Haesaerts,
E. Messager, D. Nuzhnyi, and S. Péan. 2012. “Charcoal
Scarcity in Epigravettian Settlements with Mammoth
Bone Dwellings: The Taphonomic Evidence from
Mezhyrich (Ukraine).” Journal of Archaeological Science
39: 109–120.

Martínez-Moreno, J., R. M. Torcal, M. R. Sunyer, and A.
Benito-Calvo. 2016. “From Site Formation Processes to
Human Behaviour: Towards a Constructive Approach to
Depict Palimpsests in Roca dels Bous.” Quaternary
International 417: 82–93.

Mentzer, S. M. 2014. “Microarchaeological Approaches to
the Identification and Interpretation of Combustion
Features in Prehistoric Archaeological Sites.” Journal of
Archaeological Method and Theory 21: 616–668.

Moskal-del Hoyo, M., M. Wachowiak, and R. Blanchette.
2010. “Preservation of Fungi in Archaeological
Charcoal.” Journal of Archaeological Science 37: 2106–
2116.

Mustoe, G. E. 2015. “Late Tertiary Petrified Wood from
Nevada, USA: Evidence of Multiple Silicification
Pathways.” Geosciences 5: 286–309.

Nowak, J., M. Florek, W. Kwiatek, J. Lekki, P. Chevallier, E.
Zięba, N. Mestres, E. Dutkiewicz, and A. Kuczumow.
2005. “Composite Structure of Wood Cells in Petrified
Wood.”Materials Science and Engineering: C 25: 119–130.

Ntinou, M., and N. Kyparissi-Apostolika. 2016. “Local
Vegetation Dynamics and Human Habitation from the
Last Interglacial to the Early Holocene at Theopetra
Cave, Central Greece: The Evidence from Wood
Charcoal Analysis.” Vegetation History and
Archaeobotany 25 (2): 191–206.

Postigo-Mijarra, J. M., F. Gómez-Manzaneque, and C.
Morla. 2017. “Woody Macroremains from the
Acheulian Site of Torralba: Occurrence and
Palaeoecology of Pinus cf. sylvestris in the Middle
Pleistocene of the Iberian Peninsula.” Comptes Rendus
Palevol 16: 225–234.

Preece, R., J. A. Gowlett, S. A. Parfitt, D. Bridgland, and S.
Lewis. 2006. “Humans in the Hoxnian: Habitat, Context
and Fire Use at Beeches Pit, West Stow, Suffolk, UK.”
Journal of Quaternary Science 21: 485–496.

Quézel, P., and F. Médail. 2003. Écologie et biogéographie des
forêts du bassin méditerranéen. Paris: Elsevier.

Roebroeks, W., and P. Villa. 2011. “On the Earliest Evidence
for Habitual Use of Fire in Europe.” Proceedings of the
National Academy of Sciences 108: 5209–5214.

Roiron, P., L. Chabal, I. Figueiral, J.-F. Terral, and A. A. Ali.
2013. “Palaeobiogeography of Pinus nigra Arn. subsp. sal-
zmannii (Dunal) Franco in the North-Western

Mediterranean Basin: A Review Based on
Macroremains.” Review of Palaeobotany and Palynology
194: 1–11.

Ronchitelli, A., P. Boscato, G. Surdi, F. Masini, D. Petruso, C.
A.Accorsi, and P. Torri. 2011. “TheGrotta Grande of Scario
(Salerno, Italy): Archaeology and Environment During the
Last Interglacial (MIS 5) of the Mediterranean Region.”
Quaternary International 231: 95–109.

Rosell, J., R. Blasco, J. Fernández Peris, E. Carbonell, R.
Barkai, and A. Gopher. 2015. “Recycling Bones in the
Middle Pleistocene: Some Reflections from Gran Dolina
TD10-1 (Spain), Bolomor Cave (Spain) and Qesem
Cave (Israel).” Quaternary International 361: 297–312.

Rubiales, J. M., I. Garcia-Amorena, M. Génova, F. Gómez
Manzaneque, and C. Morla. 2007. “The Holocene
History of Highland Pine Forests in a Submediterranean
Mountain: The Case of Gredos Mountain Range
(Iberian Central Range, Spain).” Quaternary Science
Reviews 26: 1759–1770.

Sandgathe, D. M. 2017. “Identifying and Describing Pattern
and Process in the Evolution of Hominin Use of Fire.”
Current Anthropology 58 (16): 278–287.

Sandgathe, D. M., H. L. Dibble, P. Goldberg, S. P.
McPherron, A. Turq, L. Niven, and J. Hodgkins. 2011a.
“On the Role of Fire in Neanderthal Adaptations in
Western Europe: Evidence from Pech de l’Aze IV and
Roc de Marsal, France.” PaleoAnthropology 2011: 216–
242.

Sandgathe, D. M., H. L. Dibble, P. Goldberg, S. P.
McPherron, A. Turq, L. Niven, and J. Hodgkins. 2011b.
“Timing of the Appearance of Habitual Fire Use.”
Proceedings of the National Academy of Sciences 108
(29): E298.

Sañudo, P., R. Blasco, and J. Fernández Peris. 2016. “Site
Formation Dynamics and Human Occupations at
Bolomor Cave (Valencia, Spain): An
Archaeostratigraphic Analysis of Levels I to XII (100–
200 ka).” Quaternary International 417: 94–104.

Schmitt, U., A. Singh, H. Thieme, P. Friedrich, and P.
Hoffmann. 2005. “Electron Microscopic
Characterization of Cell Wall Degradation of the
400,000-Year-Old Wooden Schöningen Spears.” Holz als
Roh- und Werkstoff 63: 118–122.

Schwarze, F. W. 2007. “Wood Decay Under the
Microscope.” Fungal Biology Reviews 21 (4): 133–170.

Schweingruber, F. H. 1976. Mikroskopische holzanatomic,
Anatomie microscopique de bois. Zug: Institut féderal de
recherches forestière, Zurcher AG.

Schweingruber, F. H. 1990. Anatomie europaischer Holzer:
Anatomie of European Woods. Stuttgart: Haupt.

Singh, A. P. 2012. “A Review of Microbial Decay Types
Found in Wooden Objects of Cultural Heritage
Recovered from Buried and Waterlogged
Environments.” Journal of Cultural Heritage 13: S16–S20.

Stahlschmidt, M. C., C. E. Miller, B. Ligouis, U. Hambach, P.
Goldberg, F. Berna, D. Richter, B. Urban, J. Serangeli, and
N. J. Conard. 2015. “On the Evidence for Human Use and
Control of Fire at Schöningen.” Journal of Human
Evolution 89: 181–201.

Théry-Parisot, I. 2001. Économie des combustibles au
Paléolithique. Expérimentation, anthracologie, taphono-
mie. Paris: D.D.A. CNRS-Editions.

Théry-Parisot, I. 2002. “Fuel Management (Bone andWood)
During the Lower Aurignacian in the Pataud Rock Shelter
(Lower Palaeolithic, Les Eyzies de Tayac, Dordogne,
France). Contribution of Experimentation.” Journal of
Archaeological Science 29: 1415–1421.

ENVIRONMENTAL ARCHAEOLOGY 15

D
ow

nl
oa

de
d 

by
 [

95
.1

23
.1

85
.1

57
] 

at
 0

1:
02

 2
5 

N
ov

em
be

r 
20

17
 

https://doi.org/10.1016/j.quaint.2015.11.050
https://doi.org/10.1016/j.quaint.2015.11.050


Théry-Parisot, I., L. Chabal, and J. Chrzavzez. 2010.
“Anthracology and Taphonomy, from Wood Gathering
to Charcoal Analysis. A Review of the Taphonomic
Processes Modifying Charcoal Assemblages in
Archaeological Contexts.” Palaeogeography,
Palaeoclimatology, Palaeoecology 291: 142–153.

Théry-Parisot, I., J. Gril, J. Vernet, L. Meignen, and J. Maury.
1995. “First Use of Coal.” Nature 373: 480–481.

Théry-Parisot, I., J. Gril, J. Vernet, L. Meignen, and J. Maury.
1996. “Coal Used for Fuel at Two Prehistoric Sites in
Southern France: Les Canalettes (Mousterian) and Les
Usclades (Mesolithic).” Journal of Archaeological Science
23: 509–512.

Théry-Parisot, I., and L. Meignen. 2000. “Économie des
combustibles (bois et lignite) dans l’abri moustérien des
Canalettes. De l’expérimentation à la simulation des
besoins énergétiques.” Gallia Préhistoire 42: 45–55.

Théry-Parisot, I., and P. Texier. 2006. “L’utilisation du bois
mort dans le site moustérien de la Combette (Vaucluse).
Apport d’une approche morphométrique des charbons
de bois à la définition des fonctions de site au
Paléolithique.” Bulletin de la Société Préhistorique
Française 103: 453–463.

Thieme, H. 2000. “Lower Paleolithic Hunting Weapons from
Schöningen, Germany. The Oldest Spears in the World.”
Acta Anthropologica Sinica 19: 140–147.

Tuor, U., K. Winterhalter, and A. Fiechter. 1995. “Enzymes
of White-Rot Fungi Involved in Lignin Degradation and
Ecological Determinants for Wood Decay.” Journal of
Biotechnology 41: 1–17.

Uzquiano, P., M. Arbizu, J. L. Arsuaga, G. Adan, A.
Aranburu, and E. Iriarte. 2008. “Datos paleoflorísticos
en la Cuenca media del Nalón entre 40-32 Ka. BP:
Antracoanálisis de la Cueva del Conde (Santo Adriano,
Asturias).” Cuaternario y Geomorfología 22: 121–133.

Uzquiano, P., J. Yravedra, B. R. Zapata, M. J. G. Garcia, C.
Sesé, and J. Baena. 2012. “Human Behaviour and
Adaptations to MIS 3 Environmental Trends (> 53–30
ka BP) at Esquilleu Cave (Cantabria, Northern Spain).”
Quaternary International 252: 82–89.

Vallverdú, J., S. Alonso, A. Bargalló, R. Bartrolí, G. Campeny,
Á Carrancho, I. Expósito, et al. 2012. “Combustion
Structures of Archaeological Level O and Mousterian
Activity Areas with Use of Fire at the Abric Romaní
Rockshelter (NE Iberian Peninsula).” Quaternary
International 247: 313–324.

Vallverdú, J., M. Vaquero, I. Cáceres, E. Allué, J. Rosell, P.
Saladié, G. Chacón, et al. 2010. “Sleeping Activity Area
Within the Site Structure of Archaic Human Groups:

Evidence from Abric Romaní Level N Combustion
Activity Areas.” Current Anthropology 51: 137–145.

Vaquero, M., and I. Pastó. 2001. “The Definition of Spatial
Units in Middle Palaeolithic Sites: The Hearth-Related
Assemblages.” Journal of Archaeological Science 28:
1209–1220.

Vaquero, M., J. Rando, and G. Chacón. 2004. “Neanderthal
Spatial Behaviour and Social Structure: Hearth-Related
Assemblages from the Abric Romaní Middle Palaeolithic
Site.” In Settlement Dynamics of the Middle Paleolithic
and Middle Stone Age II, edited by N. J. Conard, 367–
392. Tubingen: Kerns Verlag.

Vidal-Matutano, P. 2015. “Evidència de recol· lecció de teix
(Taxus baccata L.) pels grups neandertals de l’Abric del
Pastor (Alcoi, Alacant).” Recerques del Museu d’Alcoi 24:
7–20.

Vidal-Matutano, P. 2017. “Firewood and Hearths: Middle
Palaeolithic Woody Taxa Distribution from El Salt,
Stratigraphic Unit Xb (Eastern Iberia).” Quaternary
International 457: 74–84.

Vidal-Matutano, P., A. Henry, and I. Théry-Parisot. 2017.
“Dead Wood Gathering among Neanderthal Groups:
Charcoal Evidence from Abric del Pastor and El Salt
(Eastern Iberia).” Journal of Archaeological Science 80:
109–121.

Vidal-Matutano, P., C. M. Hernández, B. Galván, and C.
Mallol. 2015. “Neanderthal Firewood Management:
Evidence from Stratigraphic Unit IV of Abric del Pastor
(Eastern Iberia).” Quaternary Science Reviews 111: 81–93.

Villa, P., F. Bon, and J.-C. Castel. 2002. “Fuel, Fire and
Fireplaces in the Palaeolithic of Western Europe.” The
Review of Archaeology 23: 33–42.

Wrangham, R. 2009. Catching Fire: How Cooking Made Us
Human. New York: Basic Books.

Wrangham, R. W., J. Jones, G. Laden, D. Pilbeam, and N.
Conklin-Brittain. 1999. “The Raw and the Stolen:
Cooking and the Ecology of Human Origins.” Current
Anthropology 40: 567–594.

Young, R. A. 1985. “The Chemistry of Solid Wood.” Wood
Science and Technology 19: 17–18.

Yravedra, J., and P. Uzquiano. 2013. “Burnt Bone
Assemblages from El Esquilleu Cave (Cantabria,
Northern Spain): Deliberate Use for Fuel or Systematic
Disposal of Organic Waste?” Quaternary Science
Reviews 68: 175–190.

Zilhão, J., A. Ajas, E. Badal, C. Burow, M. Kehl, J. A. López-
Sáez, C. Pimenta, et al. 2016. “Cueva Antón: A Multi-
Proxy MIS 3 to MIS 5a Paleoenvironmental Record for
SE Iberia.” Quaternary Science Reviews 146: 251–273.

16 P. VIDAL-MATUTANO ET AL.

D
ow

nl
oa

de
d 

by
 [

95
.1

23
.1

85
.1

57
] 

at
 0

1:
02

 2
5 

N
ov

em
be

r 
20

17
 


	Abstract
	Introduction
	Archaeological setting: Bolomor Cave
	Methods: charcoal analysis
	Results
	Botanical identification and degree of fragmentation
	Taphonomic remarks

	Discussion
	Palaeoecological inferences
	Preservation of wood charcoal remains
	Bacterial and fungal degradation features
	Mineralised wood charcoal: calcite precipitation or oxalate production by wood-rotting fungi?


	Conclusions
	Acknowledgements
	Disclosure statement
	ORCID
	Notes on contributor
	References



