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i

“Remember that all models are wrong; the practical question is how wrong do
they have to be to not be useful.”

George Box, statistician.

“Applied math pattern: In principle you could just ... but here’s why that won’t
work in practice, and what you need to do instead.”

@AnalysisFact, tweet from Aug. 14th, 2017.



Abstract

In the last years, medical computer simulation has seen a great growth in several
scientific branches, from modelling to numerical methods, going through computer
science. The main goals of this incipient discipline are testing hypotheses before
an intervention, or see what effect could have a drug in the system before actually
taking it, among others.
In this work we deduce from the most basic physical principles a one dimensional
model for the simulation of blood flow in elastic arteries. We will provide some
historical background, as well as a brief state of the art of these models. We will
also study from a calculus point of view the equations of the model obtained,
achieving an original result for the formation of shock waves in compliant vessels.
Afterwards we will make some numerical simulations using Galerkin Discontinuous
Finite Element Method. Since this is actually a family of methods, we will motivate
and detail the elections and the implementation strategies.
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Chapter 1

Introduction and brief historical
background

In the last years, medical computer simulation has seen a great growth in several
scientific branches, from modelling to numerical methods, going through computer
science. The main goals of this incipient discipline are testing hypotheses before
an intervention, or see what effect could have a drug in the system before actually
taking it, among others. In this chapter we will name some of the most important
contributors to this discipline. We will focus on the physics’ (specially mechanics’)
point of view, and for historical reasons, up to 20th century. In subsequent chapters
the most recent computational scientific progress will be presented.

1.1 Historical review

For obvious reasons, one of the most important systems to be simulated is the car-
diovascular system. Here, medicine works together with physics: electrophysiology
(the nerve impulses that stimulates the heart), elasticity theory (in the movement
of the heart, the arteries. . . ) or fluid dynamics (the blood’s behaviour). The first
models are often simplified versions of reality, neglecting some effects or reducing
dimensionality. Taking this into account, the modelling of human arterial system
can be traced back to Euler in 1775, who submitted an essay as an entry in a
prize competition set by the Academy of Sciences in Dijon [35]. He derived a
one-dimensional simplification using partial differential equations, arriving to the
equations of conservation of mass and momentum — they will be explained later
— in a distensible tube. Euler posited some rather unrealistic constitutive laws
(tube laws) for arteries and unsuccessfully tried to solve the equations. He tried
to solve the problem as he had done for rigid tubes: by reducing them to a single
equation that could be solved by integration. Quoting, “In motu igitur sanguinis
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Chapter 1. Introduction 2

explicando easdem offendimus insuperabiles difficultates[. . . ]”, loosely translated
as “On the explanation of the blood motion we stumble upon the same insuperable
difficulties”. This letter was lost over a century, being discovered and published
by the Euler Opera postuma project in 1862.

Now, according to [85], the next major event in the history of quantitative
haemodynamics is the lecture delivered to the Royal Society in 1808 by Young [131].
In the lecture, he stated the correct formula for the wave speed in an artery but
gave no derivation of it. In an associated paper, he does give a derivation based
on an analogy to Newton’s derivation of the speed of sound in a compressible gas,
altogether with some numerical guesses [130].

The development by Poiseuille (1799—1869) of his law of flow in tubes is the
next landmark in arterial mechanics. Because of its simplicity, this law has become
the benchmark against which all other flows in tubes are compared, although in
arteries is quite difficult to observe it. Despite its shortcomings, it is cited by
many medical and physiological textbooks as the law that governs flow in the
whole of vasculature. Poiseuille, who trained as a physician, conducted a very
thorough investigation of flow in capillary tubes motivated by his studies of the
mesenteric microcirculation of the frog. All his experiments and conclusions were
finally approved for publication in 1846 [91]. It seems that Stokes also derived
Poiseuille’s law from the Navier-Stokes equation as early as 1845 but did not
publish the work because he was unsure about the validity of the no-slip condition
at the tube walls [115].

The question of the speed of travel of waves in elastic tubes was studied theo-
retically and experimentally by Weber and Weber and published in 1866 [123,124].

Riemann (1826–1866) did not work on arterial mechanics or waves in elastic
tubes, but he did make an important contribution to the subject when he pub-
lished a general solution for hyperbolic systems of partial differential equations in
1853 [99]. Briefly, his work provides a general solution for a whole class of lin-
ear and nonlinear partial differential equations by observing that along directions
defined by the eigenvalues of the matrix of coefficients of the differential terms,
the partial differential equations reduce to ordinary differential equations. This
method (the method of characteristics) will be explained in a more detailed way
in subsequent chapters. The first application of the theory to arterial flows is
probably the work of Lambert, who applied the theory to arteries using exper-
imental measurements of the radius of the artery as a function of pressure [67].
The approach was developed by Skalak [107] and most completely by Anliker and
his colleagues who mounted a systematic study of the different elements of the
vascular system with the goal of synthesising a complete description of the arterial
system using the method of characteristics [3, 53] [113,114].

In 1877–1878, two more important works on the wave speed in elastic tubes
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were published. Moens (1846–1891) [81] published a very careful experimental
paper on wave speed in arteries and Korteweg (1848–1941) [62] published a theo-
retical study of the wave speed. Korteweg’s analysis showed that the wave speed
was determined both by the elasticity of the tube wall and the compressibility of
the fluid.

Frank (1865–1944) was another important contributor in quantitative phys-
iology. One of his major contributions is a series of three papers. In [43], he
introduces the theory of waves in arteries. In [45], he correctly derives the wave
speed in terms of the elasticity. Finally, in [44], he considers the effect of viscosity,
the motion of the wall and the energy of the pulse wave before turning to a number
of examples of special cases. These examples include the use of Fourier analysis
and probably the first treatment of the reflections of the pulse wave, including the
reflection and transmission coefficients due to a bifurcation.

Many clinical cardiologists in the early twentieth century contributed to our
understanding of the form and function of the cardiovascular system, but relatively
few contributed significantly to our understanding of arterial mechanics (see [85]
and the references therein).

1.2 Objectives and structure of the work

Now that a brief historical background has been introduced we notice that we are
dealing with a non trivial and relevant problem. The main aim of this work is,
therefor, to achieve an efficient simulation of blood flow in compliant arteries. In
order to do that, the physical model will be presented for a further mathematical
analysis. Once the main features of this analysis have been extracted, via an
appropriate numerical method, some simulations will be performed. A review of
some of the most important models, both numerical and theoretical has been made
along the work.

Hence, this document is structured as follow. In chapter 2 we present the
main equations for the modelling of arterial flow. We will present the widely
accepted conservation equations in section 2.1. In the same section, the main
problem of no scientific agreement will be presented, along with a brief state of
the art. When the model is stated, we will try to use some theoretical results
before numerical implementation. This will be done in chapter 3. In this chapter
we present a useful theoretical analysis, based on the method of characteristics
(detailed in section 3.1). The reader can find in this chapter a theorem regarding
shock waves in compliant arteries, genuine of this work. This result was presented
in 2017 in the 4o Congreso de jóvenes investigadores (IV Conference for young
researchers) (see [101]). Afterwards, we will motivate and present the numerical
scheme used for the simulations: Galerkin Discontinuous Finite Element Method.
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All the necessary details for the understanding of this method will be presented in
chapter 4. Thereafter, we can find in chapter 5 and subsequents some numerical
results validating the model and studying its stability, convergence and sensitivity
to the parameters. In the appendix A, the reader can find a list of reasonable
values for the parameters of the model. Some of these values are used through
this work, but for completeness all the possible parameters have been listed and
referenced.



Chapter 2

One-dimensional blood flow
modelling with non-rigid artery

 

𝒙 

𝑺(𝒙) 

Figure 2.1: Artery as a compliant tube.

The object to model is a simplification of an artery as a compliant cylinder,
illustrated in figure 2.1. We will start from a 3D reasoning and we will be making
assumptions and simplifications until we arrive to the one-dimensional version of
the equations. This way of modelling non-rigid arteries was presented in 2003 by
Sherwin et al. in [104] and [103].

The rest of the chapter will consist on motivating and detailing the main as-
sumptions of the model. As we will see, a system of partial differential equations
will appear, and each one of the equations will be detailed in different subsections.
Before presenting them, we start with the notation and the main variables.

5



Chapter 2. 1D modelling 6

2.1 Governing equations

The first simplification will be to assume that the local curvature of the artery is
small enough so we can indeed reduce the problem to one dimension. If we denote
by S(x) a cross section (we can think of it as a slice of the artery) we define

A(x, t) =

∫
S(x)

dσ, (2.1)

as the area of the cross section S;

u(x, t) =
1

A(x, t)

∫
S(x)

û(x, t)dσ, (2.2)

as the average velocity over the cross section where û(x, t) denote the value of
velocity within a constant x-section; and

p(x, t) =
1

A(x, t)

∫
S(x)

p̂(x, t)dσ, (2.3)

as the internal pressure over the cross section where p̂(x, t) denote the value of
pressure within a constant x-section. As it is usual in the literature, x will denote
the spatial coordinate and t the temporal one. We remark that in order to avoid
a cumbersome notation, if no confusion is added, some arguments of the functions
could be avoided. Hence, in some places of this work we could write A, u and p for
the functions previously presented. This will allow us to treat them as variables.
We will also assume that the blood is an incompressible and Newtonian fluid and
so the density ρ and dynamic viscosity µ are constant.

Finally, for the derivation of the dynamics equations we introduce the depen-
dent variable

Q(x, t) = A(x, t)u(x, t), (2.4)

that will represent the volume flux at a given section. Therefor, since we have
three variables, A, u and p, or equivalently A,Q and p, we need three equations to
relate them. The first two will be conservative equations, i.e., equations that ex-
press the conservation of some quantity. The third equation will be the responsible
for modelling the artery as an elastic material.

2.1.1 Continuity equation

Here we use the fluid dynamics’ continuum hypothesis what is an idealisation
of continuum mechanics under which fluids can be treated as continuous, even
though, on a microscopic scale, they are composed of molecules. Under the con-
tinuum assumption, macroscopic properties such as density, pressure, and velocity
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are taken to be well-defined at infinitesimal volume elements — small in compar-
ison to the characteristic length scale of the system, but large in comparison to
molecular length scale. Fluid properties can vary continuously from one volume
element to another and they are averaged values of the molecular properties.

With this, if we take one portion of the artery as our control volume, conserva-
tion of mass requires that, if there are nor sources neither sinks, nothing disappears
spontaneously, i.e., the rate of change of mass within the control volume is only
due to what comes into the artery portion minus what comes out of this portion
(assuming impermeable walls too). If this control volume has length l, we can
write it as

V (t) =

∫ l

0

A(x, t)dx, (2.5)

and hence, due to the reasoning made before, we can write the rate of change
of mass (or volume, actually) as

ρ
∂V (t)

∂t
= ρ(Q(0, t)−Q(l, t)). (2.6)

We have corrected the equation with the density of the blood ρ for complete-
ness, although in our case it will have no effect. If ρ depended on time, for example,
this could not be simplified (we would be dealing with a compressible fluid). Now,
we can rewrite this expression using the definition of V (t) and the fundamental
theorem of Calculus as

ρ
∂

∂t

∫ l

0

A(x, t)dx+ ρ

∫ l

0

∂Q(x, t)

∂x
dx = 0. (2.7)

We have no issues in doing this since all the functions we are considering (am-
plitude A, velocity u and flux Q) are smooth enough due to its physical meaning
to integrate them and take derivatives. If we assume l does not depend on time,
we can take the derivative with respect to t, inside the integral to arrive to∫ l

0

∂A

∂t
+
∂Q

∂x
dx = 0. (2.8)

We have no problems in deriving inside the integral symbol due to the smooth-
ness of the functions involved. Since the control volume is arbitrary, the inte-
grand of the above equation must be zero. We therefor obtain the differential
one-dimensional mass conservation equation

∂A

∂t
+
∂Q

∂x
≡ ∂A

∂t
+
∂(uA)

∂x
= 0. (2.9)
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2.1.2 Momentum equation

The second equation comes from the concept of momentum of Newtonian dy-
namics. Analogously as we have done with the mass-conservation equation (or
continuity equation), the momentum equation states that the rate of change of
momentum within the control volume plus the net flux of momentum out the con-
trol volume is equal to the applied forces on the control volume. Again, we have
to weight with the blood density since the flux is involved. This is,

∂

∂t

∫ l

0

ρQdx+ ρ (Q(l, t)u(l, t)−Q(0, t)u(0, t)) = F, (2.10)

where F is the set of forces acting in the control volume. In this term we have
to take into account the friction with the walls, the pressure of the flow against the
walls and the force at the inlet minus the force at the outlet. Since the pressure is
force per unit area, we can write this term as

F (t) = p(0, t)A(0, t)︸ ︷︷ ︸
Force at the inlet

− p(l, t)A(l, t)︸ ︷︷ ︸
Force at the outlet

+

∫ l

0

∫
∂S

p̂nxdsdx︸ ︷︷ ︸
Pressure against the walls

+

∫ l

0

fdx︸ ︷︷ ︸
Friction

, (2.11)

where ∂S is the boundary of section S, nx is the x-component of the surface
normal and f represents the friction force per unit length. The side wall pressure
force given by the double integral can be simplified if we assume constant sectional
pressure and we treat the tube as axisymmetric:∫ l

0

∫
∂S

p̂nxdsdx =

∫ l

0

p
∂A

∂x
dx. (2.12)

Putting everything altogether we arrive to the control-volume statement of
momentum conservation

∂

∂t

∫ l

0

ρQdx+ ρ(Q(l, t)u(l, t)−Q(0, t)u(0, t))

=p(0, t)A(0, t)− p(l, t)A(l, t) +

∫ l

0

(
p
∂A

∂x
+ f

)
dx.

(2.13)

As we have done before, using the fundamental theorem of Calculus and as-
suming l is independent of time and ρ is constant, we obtain∫ l

0

[
ρ

(
∂Q

∂t
+
∂(Qu)

∂x

)
+
∂(pA)

∂x
− p∂A

∂x
− f

]
dx = 0. (2.14)
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Since this equation is satisfied for an arbitrary control volume, the integrand
must be zero, so the equation has the form

∂Q

∂t
+
∂(Qu)

∂x
= −A

ρ

∂p

∂x
+
f

ρ
. (2.15)

Finally, due to the appearance of u2 in (2.15) (Qu = Au2), it is convenient to
introduce the Coriolis coefficient α as a correction factor for the non-linearity of
the momentum, so as to satisfy

α(x, t) =

∫
S
ûdσ

Au2
, (2.16)

where û stands for velocity within a constant x-section. Although in some
papers such as [104] this coefficient is simplified to α = 1, which means a flat
profile, some others as [119] set them to α = 4/3 for a parabolic profile. With this,
the final conservation of momentum equation reads

∂Q

∂t
+
∂(αQu)

∂x
= −A

ρ

∂p

∂x
+
f

ρ
. (2.17)

2.1.3 The tube laws

We recall that we have three variables, A, u and p (or the combinations using the
volume flux Q) and up to this moment only two equations: mass and momentum
conservation. Consequently, to close the system given by equations (2.9) and (2.17)
either we need one equation more or we have to remove one variable. This is
commonly done defining a relationship, either differential or algebraic, between
pressure and amplitude (known as the local tube law). One could expect one well-
established equation, as is the case of the conservation equations but, to the best
of our knowledge there is no scientific agreement at this point. The reason of this,
is because they are generally simplifications of the physical reality, so depends on
the author which assumptions to make. Other ones leave free parameters in order
to fit them with experimental data and other group of authors uses expressions
purely mathematical. In this part we will make a brief review of some of the most
important ones.

Before exposing them one clarification must be done. Depending on the ref-
erence, we will be using an initial pressure p0(x) = p(x, 0), a reference pressure
pref(x, t), an external pressure pext(x, t) or none of them. These usually appear as a
difference with the current pressure so the idea is that we are in a non-equilibrium
situation. Some authors assume that at the beginning of the simulation we are
in equilibrium so they use p0(x); other models embrace other pressures such as
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atmospheric pressure (to distinguish if the artery is in vertical position or not)
or they treat it as a different term (pext(x, t)) and most of them assume that the
initial/reference pressure is zero in order to simplify. This is not a great issue since
the reasoning is the same and for further simulations we will simplify these terms.

M1) Historically, one of the first approaches has been to assume that the cross-
sectional area is a linear function of pressure and also that changes in area
are relatively small. That is,

A(x, t) = A0(x) + (p(x, t)− p0(x))C(x, t) (2.18)

with
|(p(x, t)− p0(x))C(x, t)| � A0(x) (2.19)

where C(x, t) = ∂A(x,t)
∂p(x,t)

∣∣∣
A0(x)

is the vessel compliance per unit length,

p0(x) = p(x, 0) and A0(x) = A(x, 0). These equations, together with experi-
mental values of C(x, t) (assumed constant) can be found in [96].

M2) We can think of the previous expression as a Taylor expansion neglecting
terms higher than first order. The natural question is if it is possible to get
a higher order and, indeed, this has been studied back in 1986 in [93]. They
presented the equation

A(x, t) = A0(x)
[
1 + C0(p(x, t)− p0(x)) + C1(p(x, t)− p0(x))2

]
, (2.20)

which is particularly convenient for numerical manipulation.

M3) In [104] and [103], Sherwin et al. assumed a thin wall tube where each section
is independent of the others. This model is based on linear elasticity where,
using Hooke’s law (first formulated in [55]) for continuous media we have
that

σ = Eε (2.21)

being σ the stress, ε the strain and E the Young’s modulus. We recall that,
despite they are actually tensors, the stress can be defined as a physical
quantity that expresses the internal forces that neighbouring particles of a
continuous material exert on each other, while strain is the measure of the
deformation of the material. Young’s modulus characterise the stiffness of
an elastic material.

Let us denote the radius of the artery by R(x, t) and R0(x) = R(x, 0). Here
h0(x) will be used to denote the vessel-wall thickness and sectional area at
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the equilibrium state (p, u) = (pref, 0), where pref is the reference pressure.
We assume a cross section of a vessel with a thin wall (h� R), an isotropic,
homogeneous, incompressible arterial wall that it deforms axisymmetrically
with each circular cross-section independently of the others. Making these
assumptions, we can express the strain as

ε =
R−R0

(1− ν2)R0

, (2.22)

where ν(x) is the other elasticity parameter, Poisson’s ratio. It is defined
as the ratio of transverse contraction strain to longitudinal extension strain
in the direction of stretching force, so along with Young’s modulus one can
univocally determine the properties of a (linear) elastic material. By Young-
Laplace’s law1, assuming there is not external pressure we can relate the
pressure with the stress as

p =
h0σ

πR
. (2.23)

Combining the previous equations we arrive to the tube law

p(x, t) = pext + β(x)
(√

A(x, t)−
√
A0(x)

)
, (2.24)

where

β(x) =

√
πh0(x)E(x)

(1− ν(x)2)A0(x)
(2.25)

is the parameter embracing the material properties and pext is the external
pressure. There are no problems with the denominator since in most of the
materials ν(x) ∈ [0, 0.5] and, although in capillaries the amplitude A0 is very
small, the wall thickness h0 is too. Nevertheless, if this is the case, we must
pay attention because of computational issues.

M4) Another approach, similar to the previous model, is to assume a linear
pressure-area constitutive relation, as in [111], and hence the pressure is
proportional to arterial amplitude difference, that is

p(x, t) = γ(x, t)(A(x, t)− A0(x)) (2.26)

where γ is a proportionality coefficient. To the best of our knowledge this
coefficient has no explicit physical meaning.

1We are nor explaining neither deducing this law since it would take us apart from the
objective of this work. We refer the interested reader to [129] and [68].
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M5) All of these models can be found in a more general way in a recent review
(see [119]). Here, Toro wrote the tube law as

p(x, t) = ψ(A;K,A0), (2.27)

where
ψ(A;K,A0) = K(x)φ(A,A0) (2.28)

and

φ(A,A0) =

[(
A(x, t)

A0(x)

)m
−
(
A(x, t)

A0(x)

)n]
, (2.29)

where m,n and K(x) are free parameters and a function. We can recover
equation (2.24) by setting m = 1/2, n = 0 and

K(x) =

√
π

A0(x)

(
h0(x)E(x)

1− ν2(x)

)
. (2.30)

In this case, we would have that β(x) = K(x)/
√
A0(x). If it is not specified,

we can always replace p(x, t) by p(x, t) − pref(x, t) because in most of the
models the reference pressure is set to 0 for simplicity.

Up to this point, the tube laws presented have been based on a purely elastic
behaviour of the artery wall. Another parallel line of work has been to
consider the artery wall as a viscoelastic material. For the arterial wall (or
viscoelastic solids in general), when a fixed stress is loaded, the wall keeps
extending gradually (creeping) after an instantaneous extension. The main
issue for the simulation of viscoelastic materials is the significant increase
of theoretical and computational complexity (both in running time as in
code development) but, for completeness, we present some of the most used
models. We will do it in a more enumerating way, since the deduction of all
the equations is out of the scope of this work.

M6) We can find a complex formulation of viscoelasticity for blood vessels back
in 1970 in [126]. The following tube law of the generalised viscoelastic model
can be derived using knowledge of solid mechanics:

p(x, t) =
1

C(x, t)

[
A(x, t)− A0(x) +

∫ t

0

n∑
i=1

fie
−(t−u)/τi

∂A(x, u)

∂t
du

]
(2.31)

where C(x, t) = ∂A(x,t)
∂p(x,t)

∣∣∣
A0(x)

. The viscoelastic property of the tube wall is

reflected in the dynamic viscoelasticity parameters fi and relaxation time
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parameter τi. It is possible to determine the term number n from the vis-
coelastic characteristics of the material.

M7) A widely used viscoelastic model is Kelvin-Voigt model which writes

σ(t) = Eε(t) + φ
∂ε(t)

∂t
, (2.32)

being φ a coefficient for the viscosity of the material. We note that if φ = 0
we have a linear relationship and hence we recover the elastic model. If we
suddenly apply some constant stress σ0 to a Kelvin–Voigt material, then the
deformations would approach the deformation for the pure elastic material
σ0/E with the difference decaying exponentially:

ε(t) =
σ0

E

(
1− e−λt

)
, (2.33)

where λ can be interpreted as the rate of relaxation

λ =
E

φ
. (2.34)

Hence, it is the description of a elastic material but with some delay. This
is the reason why it is the description of a viscoelastic material.

Using the same reasoning as in the third model we get the tube law

p = β
(√

A−
√
A0

)
+ νs

∂A

∂t
, (2.35)

with stiffness coefficient

β =

√
πEh

(1− ν2)A0

(2.36)

and viscosity coefficient

νs =

√
πφh

2(1− ν2)
√
A0A

. (2.37)

This model was first used in by Čanić et al. in [16] (although in a more
general way).
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M8) Finally, one of the most novel approaches has been to use the concept of
fractional derivative. This branch of calculus consider not only the first,
second... derivatives, but “intermediate” ones. One of the most used defi-
nitions (specially oriented to computational purposes) starts with the basic
definition of derivative:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x)

h
= lim

h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
,

...

f (n)(x) = lim
h→0

∑
0≤m≤n(−1)m

(
n
m

)
f(x+ (m− n)h)

hn
.

(2.38)

In order to achieve real (even complex) values of the derivative’s degree we
replace the factorial with the Euler’s gamma function (which returns the
factorial for integer values). With some algebra we arrive to:

Dαf(x) = lim
h→0

h−α

x−a
h∑

m=0

(−1)mΓ(α + 1)

Γ(m+ 1)Γ(α−m+ 1)
f(x−mh)

= lim
n→∞

(
n

x− a

)α n∑
m=0

(−1)mΓ(α + 1)

Γ(m+ 1)Γ(α−m+ 1)
f

(
x−m

(
x− a
n

))
,

(2.39)

where now α ∈ C and a < x is the point from where the derivative cor-
responding to x will be calculated. This definition is called the Grünwald-
Letnikov formula, first used in [74]. It is not the unique definition, since
there are more than thirty (see [18]) and some of them are not even equiva-
lent. Nevertheless, what all of them have in common is that they have some
“memory”, in the sense that previous values of the derivative’s degree, affect
the current value. Using this idea, Perdikaris et al. modelled arterial vis-
coelasticity with fractional calculus and they run its interaction with blood
flow in [89]. For this, they use the Grünwald-Letnikov formula in a recursive
way:

Dα
t f(t) = lim

∆t→0
∆t−α

∞∑
k=0

GLαkf(t− k∆t), (2.40)

GLαk =
k − α− 1

k
GLαk−1 (2.41)
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with GLα0 = 1 and t − k∆t must be in the domain of f . The fractional
stress-strain relation reads as

σ(t) + τασD
α
t σ(t) = E [ε(t) + ταε D

α
t ε(t)] . (2.42)

And, as before

σ =
R(p− pext)

h0

and ε =
R−R0

(1− ν2)R0

. (2.43)

So, replacing the equations of (2.43) and the expression of fractional deriva-
tive of (2.40) in the stress-strain relationship (2.42) we arrive to

p(x, t) =
1 + ταε ∆t−α

1 + τασ ∆t−α
pE(x, t) +

∆t−α

1 + τασ ∆t−α

×
∞∑
k=0

GLαk
[
ταε p

E(t− k∆t)− τασ p(t− k∆t)
] (2.44)

where pE correspond to the elastic pressure contribution

pE(x, t) =

(
τε
τσ

)α
β
(√

A−
√
A0

)
. (2.45)

The parameters τε, τσ and the fractional exponent α have to be properly
chosen each case. We notice that for the case τασ = 0, ταε = 1/E and α = 1
we recover the Kelvin-Voigt model.

We have provided a briefly overview of several ways of modelling the elastic
or viscoelastic behaviour of the arterial wall, since the seventies up to the most
recent models. We can visually check the appearing of these ideas in figure 2.2.

With this, we have shown in this chapter the statement of our problem with
some of the most important options for the tube law. Although we will remark
it in the following sections, due to its usefulness and because it is not purely phe-
nomenological, we will use the third model, i.e., the purely elastic wall model
where the proportionality constant has a clear physical sense. With this, in the
next chapter we will use the aforementioned Navier-Stokes problem and with the-
ory of partial differential equations (specifically, hyperbolic problems) we will prove
some statements that will be useful for practical cases.
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M7

1970
Westerhof

M1

1974
Raines

M2

1986
Porenta

M3

2003
Sherwin

M5

2016
Toro

M6

2006

Čanić

M8

2014
Capelas de Oliveira

M4

2013
Sochi

Figure 2.2: Chronology of the models presented on the tube law subsection.



Chapter 3

Theoretical analysis applied to
the Navier-Stokes problem

In this chapter we will use some mathematical tools to analyse the system of
partial differential equations presented in the previous chapter. This analysis will
be mainly based on a widely known (specially in engineering areas) method, the
so-called method of characteristics. Although it is sometimes used as a numerical
method, we will use the theoretical background of it (explained in section 3.1) to
prove some useful theorems in the section 3.2.

3.1 Method of characteristics

Since the rest of the chapter is based on the method of characteristics, we will use
this section to explain the main ideas of this method and apply it to our problem.

The method of Riemann characteristics has been used for more than a century
to describe linear and nonlinear waves propagating in a medium [100]. The main
useful properties of this method, as are discussed in [87], are that it may be applied
to both linear and nonlinear systems; that it may be applied equally well to solids,
liquids, and gases; and that it provides a clear picture of the causal relations
governing system behaviour. The method of characteristics was first developed by
Riemann in an article published in 1860. Riemann limits himself to consideration
of gases and begins with a discussion of the ideal gas law. He then progresses to
a development of the method of characteristics and a discussion of applications of
the method.

Riemann’s work is built upon previous work on finite amplitude waves in air.
An important contribution was made by Poisson [92] whose 1808 article showed
that the wave velocity is the sum of the sound speed and the mean flow velocity.
Properties of waves of finite amplitude were discussed in 1860 by Earnshaw [32],

17
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(a) Characteristic curves
with constant slope.

 

(b) (Forward) character-
istic curves with variable
slope.

 

(c) Formation of a shock
wave.

Figure 3.1: Scheme of different types of characteristic curves.

but only for progressive waves.
Very roughly, a characteristic is a propagation path: a path followed by some

entity, such a geometrical form or a physical disturbance when this entity is prop-
agated. Thus, a “gridiron” of roads could be considered as propagation paths, as
is shown in figure 3.1a. With this very intuitive notion of characteristic (extracted
from [1]), the two families of lines correspond to two families of characteristics,
usually named forward characteristic and backward characteristic.

With this method we want to transform a partial differential equation (or a
system of equations) into an ordinary differential equation (or a system of equa-
tions). The usual way of achieving this is making linear combinations of certain
terms choosing properly the multipliers. In the following subsection we will ex-
plain the general procedure for the case of a quasi-linear system with two variables.
The problem with this derivation of the method is that it is based on calculus of
variations where infinitesimal quantities are treated as manipulable entities. This
approach is very common in engineering and physics but, regarding its rigour, it is
not well appreciated in some mathematical fields. Nevertheless, for completeness
and for historical reasons we will show this procedure.

3.1.1 Derivation of the method via calculus of variations

In this subsection we will follow the notation and discussion of the 15th chapter
of [97] written by Lister.

The general form of a quasi-linear system of equations for the case of two
independent variables x, y and two dependent variables u, v can be written as a
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system of two equations, L1 and L2:

L1 : A1ux +B1uy + C1vx +D1vy + E1 = 0 (3.1)

L2 : A2ux +B2uy + C2vx +D2vy + E2 = 0 (3.2)

where A1, A2, . . . , E2 are known functions of x, y, u, v.
In the following considerations, it is assumed that all the functions introduced

above are continuous and possess as many continuous derivatives as may be re-
quired. Consider a linear combination of L1 and L2:

L = λ1L1 + λ2L2 =(λ1A1 + λ2A2)ux + (λ1B1 + λ2B2)uy + (λ1C1 + λ2C2)vx

+ (λ1D1 + λ2D2)vy + (λ1E1 + λ2E2).

(3.3)

Now, if u = u(x, y) and v = v(x, y) are solutions to (3.1) and (3.2) then

du =
∂u

∂x
dx+

∂u

∂y
dy, dv =

∂v

∂x
dx+

∂v

∂y
dy. (3.4)

The differential expression L can be written1 in the form

dxL = (λ1A1 + λ2A2)du+ (λ1C1 + λ2C2)dv + (λ1E1 + λ2E2)dx (3.5)

if the constants λ1 and λ2 are chosen so that

dx

dy
=
λ1A1 + λ2A2

λ1B1 + λ2B2

=
λ1C1 + λ2C2

λ1D1 + λ2C2

. (3.6)

In this case, in the differential expression L, the derivatives of u and those of
v are combined so that their derivatives are in the same direction, namely, dy/dx.
This direction is called a characteristic direction.

From equation (3.6), the ratio λ1/λ2 can be obtained:

− λ1

λ2

=
A2dy −B2dx

A1dy −B1dx
=
C2dy −D2dx

C1dy −D1dx
(3.7)

hence
a(dy)2 − 2b dxdy + c(dx)2 = 0. (3.8)

Here,

a = A1C2 − A2C1, (3.9)

2b = A1D2 − A2D1, (3.10)

c = B1D2 −B2D1. (3.11)

1Supposing that the differentials are “virtual” entities, following the standards of this field.
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For the case of hyperbolic partial differential equations, two distinct roots of
the quadratic equation (3.8) exist. Therefor

b2 − ac > 0. (3.12)

This excludes the exceptional case of all three coefficients vanishing. Moreover,
it is assumed for convenience that

a 6= 0. (3.13)

The latter condition can always be satisfied, if necessary, by introducing new
coordinates instead of x and y. Consequently, dx 6= 0 for a characteristic direction
(dx, dy) as seen from (3.8); thus the slope

ζ =
dy

dx
(3.14)

can be introduced, and ζ satisfies the equation:

aζ2 − 2bζ + c = 0. (3.15)

This equation has two different real solutions ζ+ and ζ−,

ζ+ 6= ζ−. (3.16)

Thus, at the point (x, y), the two different characteristic directions are given
by:

dy

dx
= ζ+,

dy

dx
= ζ−. (3.17)

Since a, b and c are in general functions of u, v, x and y, ζ+ and ζ− will also be
functions of these quantities:

dy

dx
= ζ+(x, y, u, v),

dy

dx
= ζ−(x, y, u, v). (3.18)

Once a solution u(x, y), v(x, y) of (3.1) and (3.2) has been obtained, equations
(3.18) become two separate ordinary differential equations of the first order. These
ODEs define two one-parameter families of characteristic curves (often abbreviated
to characteristics), in the (x, y) plane, belonging to this solution u(x, y), v(x, y).
These two families form a curvilinear coordinate net (as could be figure 3.1b).

If ζ+ and ζ− are functions of x and y only, then

dy

dx
= ζ+(x, y),

dy

dx
= ζ−(x, y), (3.19)
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and it is not necessary to find a solution to (3.1) and (3.2) in order to find the
equations of the characteristics; hence the problem is simplified.

Substituting the solutions (3.17) into the expressions for λ1/λ2 given in (3.7)
yields

λ1

λ2

= −A2ζ+ −B2

A1ζ+ −B1

,
λ1

λ2

= −A2ζ− −B2

A1ζ− −B1

. (3.20)

Finally, combining (3.20) and (3.5) gives

Fdu+ (aζ+ −G)dv + (Kζ+ −H)dx = 0, (3.21)

Fdu+ (aζ− −G)dv + (Kζ− −H)dx = 0, (3.22)

where

F = A1B2 − A2B1, G = B1C2 −B2C1,

(3.23)

K = A1E2 − A2E1, H = B1E2 −B2E1.

Thus, the following four characteristic equations have been obtained:

dy − ζ+dx = 0 (3.24)

Fdu+ (aζ+ −G)dv + (Kζ+ −H)dx = 0 (3.25)

dy − ζ−dx = 0 (3.26)

Fdu+ (aζ− −G)dv + (Kζ− −H)dx = 0 (3.27)

Equations (3.24)–(3.27) are of a particularly simple form, inasmuch as each
equation contains only total derivatives of all the variables.

According to the derivation, every solution of the original system (3.1) and (3.2)
satisfies the system (3.24)–(3.27). Courant and Friedrichs showed that the converse
is also true in [23].

At this point we could apply the previous reasoning to our case (previously
checking the hyperbolicity) but we will avoid this path. The reasoning followed
is more typical in physics’ and engineering areas, but we can provide more rigour
to this method. The method of characteristics can also be achieved by means of
linear algebra and standard calculus: we will dedicate the following subsections to
the derivation of the method in this way. This will also provide the notation and
the tools for a posterior analysis of the problem.



Chapter 3. Theoretical analysis 22

3.1.2 Setting of the Navier-Stokes system

First of all, let us manipulate the expression of the momentum equation (2.17) for
convenience (the left-hand side):

∂Q

∂t
+
∂αQu

∂x
=
uA

∂t
+
∂

(αuA)u︷ ︸︸ ︷
αu2A

∂x
= A

∂u

∂t
+ u

∂A

∂t
+ u

∂αuA

∂x
+ αuA

∂u

∂x

= A
∂u

∂t
+ u

∂A

∂t
+ u

∂αuA

∂x
+ αuA

∂u

∂x
+ u

uA

∂x
− uuA

∂x

= u
∂A

∂t
+ u

∂uA

∂x
+ u

∂αuA

∂x
− u∂αuA

∂x
+ αuA

∂u

∂x

= u

{
∂A

∂t
+
∂uA

∂x

}
+ u

∂(α− 1)uA

∂x
+ A

{
∂u

∂t
+ αu

∂u

∂x

}
.

(3.28)

The first term is the mass conservation equation (2.9) and is therefor zero.
Following the simplifications made by [103] we now assume inviscid flow with a
flat profile, which implies that f = 0 and α = 0.

This will not be a big deal, since it was shown in [15] that the source term
is one order of magnitude smaller than the effects of non-linear advection. Since
the inviscid flow does not generate boundary layer it is physically reasonable to
assume the aforementioned flat velocity profile.

Even though this might seem a crude assumption2, comparison with experi-
mental data [57] has shown that blood velocity profiles are rather flat on average.
Furthermore, this assumption simplifies the analysis. However, we should stress
that the methods to be presented in the following sections may be readily ex-
tended to the case α 6= 1. Moreover, due to its wide use in the literature we will
also assume the model M3) for the pressure of subsection 2.1.3.

Using this and the continuity equation (2.9) we can write the governing equa-
tions in terms of the (A, u) variables as

∂A

∂t
+
∂uA

∂x
= 0, (3.29)

∂uA

∂t
+
∂u2/2

∂x
= −1

ρ

∂p

∂x
. (3.30)

Equivalently, we can write the system in conservative form as

Ut + Fx = 0, (3.31)

2The analytical solution of pulsatile flow in a straight cylindrical elastic tube is given in
reference [128]. Analytical solutions for an initially stressed, anisotropic elastic tube are presented
in reference [120].
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with

U =

[
A
u

]
, F =

[
uA

u2

2
+ p

ρ

]
, (3.32)

denoting the derivatives with subscripts. With this rearrangement of the sys-
tem, we will obtain now the characteristic curves and variables.

3.1.3 Characteristic variables

The first step is to use the chain rule in the equation (2.24). Thus, we have

∂p

∂x
=
∂p

∂A

∂A

∂x
+
∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x
=

β

2
√
A

∂A

∂x
+
∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x
. (3.33)

Hence, we can rewrite system (3.31) in its quasi-linear form as

Ut + HUx =

[
At
ut

]
+

[
u A

c2/A u

] [
Ax
ux

]
=

[
0
g

]
= G, (3.34)

with

c2 =
β
√
A

2ρ
,

g =
1

ρ

(
−∂p
β

∂β

∂x
+

∂p

∂A0

∂A0

∂x

)
.

(3.35)

To see what kind of problem we are dealing with, we look at the eigenvalues of
H. We can diagonalise H as

H = P−1DP (3.36)

with

P =

[
c
A

1
− c
A

1

]
, D =

[
u+ c 0

0 u− c

]
. (3.37)

Now, D11 > 0 and, since β is usually considerably bigger than the typical blood
velocities, we have that D22 < 0. For the typical values of the parameters found
in the literature we refer to appendix A. Hence, we have two real and distinct
eigenvalues for the quasi-linear problem. This means that our problem is strictly
hyperbolic.

We recall that we are looking for the characteristic variables, the Riemann
invariants. This is equivalent to find some variables that satisfy some equation in
conservative form such as equation (3.31). We do this in the following way. With
the decomposition (3.36) (left eigensystem) we can reformulate the system (3.34)
as

Ut + HUx = G ≡ Ut + P−1DPUx = G ≡ PUt + DPUx = PG. (3.38)
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If P were a constant matrix with respect to the solution variables, we could
rename PU =: W so we could get a conservative system. Following this idea, we
are looking for W such that

Wt = PUt, (3.39)

Wx = PUx, (3.40)

where we recall that the matrix P depends on A. On the other hand, by the
chain rule we have

∂W(A, u)

∂t
= WAAt + Wuut = (∇W) Ut, (3.41)

being ∇W the gradient of W (the procedure with Wx is the same). Therefor

PUx = Wx = (∇W)Ux, (3.42)

PUt = Wt = (∇W)Ut (3.43)

which implies that
P = ∇W (3.44)

if and only if

∂W1

∂A
=

c

A
,

∂W1

∂u
= 1, (3.45)

∂W2

∂A
= − c

A
,

∂W2

∂u
= 1. (3.46)

Integrating we arrive to:

W1,2 =

∫ u

uref

du±
∫ A

Aref

c

A
dA = u− uref ±

∫ A

Aref

c

A
dA

= u± 4

√
β

2ρ
A1/4,

(3.47)

where (uref, Aref) = (0, 0) is taken as the reference state. This assumption has
been made previously in [104]. The characteristic variables given by equation (3.47)
are also Riemann invariants of the system (3.29) and (3.30) in terms of the (A, u)
variables. We have achieved an explicit expression for the characteristic curves.
This will allow us to use them and to check some interesting properties for practical
uses. Among others, in section 3.2 we will be able to use these expressions to check
the existence of a global smooth solution.
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Finally, since in a coherent solution β(x, t) is always positive, we can write the
variables (A, u) in terms of (W1,W2) as

A =

(
W1 −W2

4

)4(
ρ

2β

)2

, (3.48)

u =
W1 +W2

2
. (3.49)

The above result has been previously obtained in [103, 104] and with a more
general system in terms of the variables (A,Q) in [39,42].

3.2 Sufficient conditions for smooth flow

In this section we will prove some useful theoretical results of hyperbolic systems.
Theorems 1 and 2 first appeared in [15] and theorem 3 is an adaptation of the one
stated by [15] but using our own problem and assumptions. The proofs are mainly
based on the study of the behaviour of the solution and its derivative along the
characteristics (see [70, 71]).

Let
Ut + F (U)x = 0, x ∈ R, t > 0 (3.50)

be a 2× 2 system of conservation laws where U (x, t) ∈ R2 and F : R2 → R2 is
a smooth function of U. We shall assume that the system is strictly hyperbolic,
that is, there exist two real and distinct eigenvalues λ1 > λ2. Suppose we have the
above system in its characteristic form

∂W1

∂t
+ λ1 (W1,W2)

∂W1

∂x
= 0, (3.51)

∂W2

∂t
+ λ2 (W1,W2)

∂W2

∂x
= 0 (3.52)

where W1,W2, the characteristic variables or Riemann invariants, are the un-
known functions and λ1, λ2 are smooth functions of W1 and W2. We note that due
to the hyperbolicity of the system (3.50) we can always do this at least locally.
We will also assume that the system (3.50) is non-linear in the considered domain,
that is

∂λ1

∂W1

6= 0 and
∂λ2

∂W2

6= 0.

Consider the domain

D = {(x, t) : t ≥ 0, x1 (t) ≤ x < +∞} (3.53)
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with x1 (t) ∈ R. Here we have the initial boundary–value problem

W1 (x, 0) = W 0
1 (x) , W2 (x, 0) = W 0

2 (x) ∀x ∈ [x1(0),+∞[ (3.54)

W2 (x1 (t) , t) = g (W1 (x, t) , t) (3.55)

where we can assume without loss of generality that x1 (0) = 0.
The first important result is if we can assure that the tube does not collapse

spontaneously. If this did not happen, the arterial amplitude could shrink over
time until the vessel gets blocked. Indeed, with the notation and conclusions from
the previous subsection, taking λ1 = D11 and λ2 = D22 we have:

Theorem 1. Suppose that the left boundary x1(t) = 0 is non-characteristic (i.e.
λ1 < x′1 < λ2). Let x2(t) be the forward characteristic emanating from the origin.
If A(x, 0) > 0 and if A(x1(t), t) > 0 on the left boundary, then A(x, t) > 0,
∀(x, t) ∈ DT

2 , and so system (3.29) and (3.30) is strictly hyperbolic in DT
2 where

DT
2 = {(x, t) : 0 ≤ t ≤ T, x1(t) ≤ x ≤ x2(t)} , (3.56)

for every T > 0.

Proof. Let x = x(t) be a solution curve of the ODE

dx

dt
= u(x, t). (3.57)

Mass-conservation equation (3.29) implies that along x = x(t) the cross-sectional
area satisfies

∂A

∂t
+ u

∂A

∂x
= −A∂u

∂x
. (3.58)

Suppose that (x∗, t∗) ∈ DT
2 is such that A(x∗, t∗) = 0 with t∗ > 0, x∗ > x1. This

implies, due to equation (3.37) λ1 = λ2 = u(x∗, t∗). We also see that up to (x∗, t∗)
the integral curve x = x(t) passing through (x∗, t∗) lies between the characteristic
curves through (x∗, t∗). Therefor, it either intersects the t = 0 axis or it intersects
the left boundary. Suppose that x = x(t) intersects the initial line t = 0; denote
that point by (x(t∗, x∗), 0) = (x0, 0). The solution of the ODE satisfied by A along
x = x(t) is given by

A(x∗, t∗) = A(x0, 0)e−
∫ t∗
0 (∂u/∂x)dτ , (3.59)

and we see that A(x∗, t∗) = 0 if and only if A(x0, 0) = 0 which contradicts the
assumption that initially A(x, 0) > 0 for every x. The same reasoning applies to
the case when x = x(t) intersects the left boundary. Hence, by contradiction the
conclusion holds.
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Now that we have assure this, the natural question would be if there is a unique,
smooth solution. For this, we have the following theorem3:

Theorem 2. With the previous notation, let us suppose that the following hypothe-
ses hold:

H1 Initial values W 0
1 ,W

0
2 and the function g are C1 and the boundary x1 ∈ C2.

H2 The boundary x1 satisfies

λ2 (W1,W2) < x′1 (t) < λ1 (W1,W2) (3.60)

on x = x1 (t) and

λ1 (W1,W2)− x′1 (t) ≥M
(
t,W1,W2

)
, (3.61)

∀0 ≤ t ≤ t, ∀|W1| ≤ W1, ∀|W2| ≤ W2 (3.62)

where M
(
t,W1,W2

)
> 0.

H3 ‖ (W 0
1 ,W

0
2 ) ‖C0 is bounded and (W 0

2 )
′
(x) ≤ 0, (W 0

1 )
′
(x) ≥ 0 for 0 ≤ x < +∞.

H4 The dependence of g on W2 is such that ∂g/∂W2 ≥ 0.

H5 The eigenvalues satisfy ∂λ2/∂W2 < 0, ∂λ1/∂W1 > 0.

H6 The following compatibility conditions holds:

W 0
1 (0) = g

(
W 0

2 (0) , 0
)
, (3.63)

x′1 (0)− λ1

(
W 0

1 (0) ,W 0
2 (0)

) (
W 0

1

)′
(0) (3.64)

=
∂g

∂t

(
W 0

2 (0) , 0
)

+
∂g

∂W2

(
W 0

2 (0) , 0
) (
x′1 (0)− λ2

(
W 0

1 (0) ,W 0
2 (0)

)) (
W 0

2

)′
(0) .

(3.65)

If ∂g/∂t ≤ 0 the initial boundary problem (3.51), (3.54) admits a unique global C1

solution (W1 (x, t) ,W2 (x, t)) on the domain D.

Proof. Let x2 (t) be the forward characteristic emanating from the origin (x, t) =
(0, 0). Using the results presented in the book of Li [77] we can assure due to
hypotheses H3, H4 and H5 that there exists a unique, global, C1 solution in the
domain

D1 = {(x, t) : x ≥ x2 (t) , t ≥ 0}. (3.66)

3For compactness we will use the apostrophe for denoting the derivative when there is no
possibility of confussion.
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𝑇  
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𝑇 

  

Figure 3.2: The subdomains D1, D2 and DT
2 .

Furthermore, the behaviour ofW2 along the characteristic x2 (t) passing through
the origin is such that

∂W2

∂t
(x2 (t) , t) ≤ 0. (3.67)

In the rest of the proof we will try to extend the previous solution to the
remaining domain

D2 = {(x, t) : x1 (t) ≤ x ≤ x2 (t) , t ≥ 0}. (3.68)

Let us see that for any fixed t > 0 and 0 < T ≤ t, the C1 norm of the solution
over the domain

DT
2 = {(x, t) : 0 ≤ t ≤ T, x1 (t) ≤ x ≤ x2 (t)} (3.69)

is bounded independently of T , namely, ‖ (W1,W2) ‖C1(DT
2 ) ≤ C

(
t
)
, where

C
(
t
)
> 0 is independent of 0 < T ≤ t. For a scheme of the situation see figure 3.2.

This will be done in two steps. First we will check the boundedness in C0 norm.
Afterwards, we will see the boundedness of the derivative (the spatial derivative).

Let (x, t) ∈ DT
2 . In order to check the boundedness in C0 norm, we will study

the behaviour of the solution and its derivative along the forward and backward
characteristics passing through this point. Using H2, any forward characteristic
(it will have slope λ1 > 0) passing through (x, t) must intersect the boundary x1
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at one (only one) point: let this point be (ξ (x, t) , ω (x, t)). Analogously, due to
the hiperbolicity, any backward characteristic (slope λ2 < 0) must intersect the
characteristic curve x2 at one (only one) point: let this point be (η (x, t) , β (x, t)).
Denote by W 2

2 (t) the value of W2 along the characteristic boundary x2. Then

W2 (x, t) = W 2
2 (β (x, t)) , (3.70)

W1 (x, t) = g (W2 (ξ (x, t) , ω (x, t)) , ω (x, t)) . (3.71)

Since β (x, t) ≤ t we have

‖W2‖C0(DT
2 ) ≤ C

(
t
)
, ∀ (x, t) ∈ DT

2 with 0 < T < t. (3.72)

Now, since ω (x, t) ≤ t, equations (3.71) and estimation (3.72) imply

‖W1‖C0(DT
2 ) ≤ C

(
t
)
, ∀ (x, t) ∈ DT

2 with 0 < T < t. (3.73)

So we have achieved a uniform C0 estimate of the solution.
Let us focus now on its derivatives, starting with the estimation of ∂W2/∂x.

When this is done, we repeat the process with ∂W1/∂x (although a different strat-
egy will be needed). Let

v = ek(W1,W2)∂W2

∂x
(3.74)

where k is defined by means of

∂k

∂W1

= − 1

λ1 − λ2

∂λ2

∂W1

. (3.75)

It is straight-forward to check that the following ordinary differential equation
is satisfied by v along the backward characteristic x′ (t) = λ where W2 is constant:

∂v

∂t
+ λ2 (W1,W2)

∂v

∂x
= −ek(W1,W2) ∂λ2

∂W2

v2 (3.76)

whose initial condition will be given on x2 (t) = λ1 (W 0
1 ,W

2
2 ). In order to see

what form has it we note that, on x2, we have that(
W 2

2

)′
(t) =

∂W2

∂t
+ λ1

∂W2

∂x
. (3.77)

Since
∂W2

∂t
= −λ2

∂W2

∂x
=⇒ ∂W2

∂x
=

(W 2
2 )
′
(t)

λ1 − λ2

(3.78)
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on x2. Therefor, the initial condition can be written as

v|x2 =
ek(W

0
1 ,W

2
2 )

(λ1 (W 0
1 ,W

2
2 )− λ2 (W 0

1 ,W
2
2 ))

(
W 2

2

)′
(t) . (3.79)

The initial-value problem (3.76) and (3.79) has a solution v which is given by

v (x, t) =
ek(W

0
1 ,W

2
2 (β)) (W 2

2 )
′
(β)

B (β (x, t) , t)
(3.80)

where

B (β, t) =λ1

(
W 0

1 ,W
2
2 (β)

)
− λ2

(
W 0

1 ,W
2
2 (β)

)
(3.81)

+
(
W 2

2

)′
(β) ek(W

0
1 ,W

2
2 (β)) (3.82)

×
∫ t

β

[
∂λ2

∂W2

(
W1 (x̃ (β, τ) , τ) ,W 2

2 (β)
)
ek(W1(x̃(β,τ),τ),W 2

2 (β))
]

dτ. (3.83)

Here, x = x̃ (β, τ) denotes the backward characteristic passing through the
point (η, β). Using hypothesis H2 we have that λ1−λ2 is bounded uniformly away
from zero, and using hypotheses H3 and H5 we have that (W 2

2 )
′
∂λ2/∂W2 ≥ 0.

With this, we conclude that B is non-zero and hence we have arrived to a uniform
bound of v, that is, a uniform bound of ∂W2/∂x:∣∣∣∣∂W2

∂x
(x, t)

∣∣∣∣ ≤ C
(
t
)
, ∀ (x, t) ∈ DT

2 , 0 < T ≤ t. (3.84)

Furthermore, we get that the sign of ∂W2/∂x is the same that (W 2
2 )
′
(t) which

is negative.
Finally, we estimate ∂W1/∂x, in turn, in three steps:

Step 1 Let us see the sign of ∂W1/∂x on x = x1 (t). Differentiating W1 = g (W2, t)
along x = x1 (t) we have

∂W1

∂x
=

1

x′1 (t)− λ1

[
∂g

∂W2

· (x′1 (t)− λ2) · ∂W2

∂x

]
. (3.85)

Now, since

• λ2 < x′1 (t) < λ1 by H2;

• ∂W2/∂x < 0 as we said previously;

• ∂g/∂W2 ≥ 0 by H4;
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• ∂g/∂t ≤ 0 by assumption

we obtain that

∂W1

∂x
=

1

x′1 (t)− λ1︸ ︷︷ ︸
<0

 ∂g

∂W2︸ ︷︷ ︸
≥0

·

x′1 (t)− λ2︸ ︷︷ ︸
>0

 · ∂W2

∂x︸ ︷︷ ︸
<0

 . (3.86)

and hence ∂W1/∂x ≥ 0 on x1 (t).

Step 2 Now we check the sign of ∂W1/∂x but now in DT
2 . Since W1 is constant

along the forward characteristic (is a Riemann invariant) we have

W1 (x, t) = W1 (ξ (x, t) , ω (x, t)) , ∀ (x, t) ∈ DT
2 (3.87)

where ξ (x, t) = x1 (ω (x, t)). Therefor,

∂W1

∂x
(x, t) =

∂W1

∂t
(ξ, ω)

∂ω

∂x
(x, t) +

∂W1

∂x
(ξ, ω)

∂ξ

∂x
(x, t) (3.88)

= (x′1 (t)− λ1)
∂W1

∂x
(ξ, ω)

∂ω

∂x
(x, t) . (3.89)

To determine the sign of ∂W1/∂x in DT
2 we first notice that x′1−λ1 < 0 and

∂W1/∂x (ξ, ω) ≥ 0. From the definition of ω, we see that it decreases as x
increases, so ∂ω/∂x ≤ 0. With this, we conclude that ∂W1/∂x ≥ 0 in DT

2 .

Step 3 Finally, let us see the C0-estimate of ∂W1/∂x in DT
2 . Let

u = eh(W2,W1)∂W2

∂x
(3.90)

where
∂h

∂W2

=
1

λ1 − λ2

∂λ1

∂W2

. (3.91)

This function u satisfies the ODE

∂u

∂t
= −e−h(W2,W1) ∂λ1

∂W1

u2 (3.92)

along the characteristic x′ = λ1. The initial condition is given on
x1 (t) = (ξ (x, t) , ω (x, t)) and has the form

u (ξ, ω) = eh(W1(ξ,ω),W2(ξ,ω))∂W1

∂x
(ξ, ω) . (3.93)
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By integration we get

u (x, t) =
eh(W1(ξ,ω),W2(ξ,ω))

A (ω, t)

∂W1

∂x
(ξ, ω) (3.94)

with

A (ω, t) = 1 +
∂W1

∂x
(ξ, ω) eh(W1(ξ,ω),W2(ξ,ω))

×
∫ t

ω

∂λ1

∂W1

(W1 (x̃ (ω, τ) , τ) ,W2 (ξ, ω)) e−h(W1(x̃(ω,τ),τ),W2(ξ,ω))dτ

(3.95)

where x = x̃ (ω, τ) is the forward characteristic passing through the point
(ξ, ω). Now, due to hypothesis H5 we have that ∂λ1/∂W1 ≥ 0 and due to
Step 1 we have that ∂W1/∂x ≥ 0 on x1 (t) so, we see that A (ω, t) is never
zero. With this, using hypothesis H2 and the uniform estimates of W2,W1

and ∂W2/∂x in DT
2 we get the uniform estimate for ∂W1/∂x on DT

2 .

Concluding, since this estimate is independent of T and D = D1 ∪ D2 we
complete the proof.

Let us check if these hypotheses are satisfied for our problem. Writing all
together we have:

W1,2 = u± 4

√
β

2ρ
A1/4, (3.96)

A =

(
W1 −W2

4

)4(
ρ

2β

)2

, (3.97)

u =
W1 +W2

2
, (3.98)

x1(t) = 0 ∀t, (3.99)

W2(x1(t), t) = W2(0, t) = uinflow − 4

√
β

2ρ
A

1/4
inflow, (3.100)

λ1,2 = u± 4

√
β

2ρ
A1/4, (3.101)

W 0
1 (x) = W 0

2 (x) = u0(x)± 4

√
β

2ρ
A

1/4
0 , (3.102)

where uinflow = u(0, t) and Ainflow = A(0, t). Now, regarding the hypotheses:
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H1 We need the initial velocity and the boundary conditions to be C1, which is
physically correct (without abrupt accelerations).

H2 Since λ1 > 0 and λ2 < 0 as we said before, this hypothesis is satisfied.

H3 The boundedness is achieved due to biological reasons, and we need to choose
u0 to be constant.

H4 Replacing equations (3.97) and (3.98) into the expression of g (3.100), we
see that this hypothesis is also satisfied.

But the problem comes with the fifth and sixth hypotheses, that are false in our
case. Indeed,

λ2 = W2 =⇒ ∂λ2

∂W2

= 1 > 0. (3.103)

Nevertheless, since it is a sufficient condition, we could get smoothness of the
solution in this case too. In fact, this is checked via numerical simulations in
chapter 5.

With a slightly modification of the equations and other tube law, it is shown
in [15] that under some plausible conditions such as the no-singularity of the cross-
sectional area and a pulsating boundary conditions (such as heart beats) the thesis
of the previous theorem is achieved.

3.2.1 Shock wave formation in compliant arteries

We have just seen that we can not assure smooth solutions. This makes also
clinical sense since if the heart beats are too abrupt, for example, the blood could
be faster than the usual blood wave: this is precisely the condition for a shock
wave to form.

Motivated for this fact, we study when and where the first shock wave could
be formed and which factors are relevant to it.

Next we present an original result where we obtain an explicit formulation for
when the first shock wave appears. Furthermore, we will see the direct influence
of the physical parameters to characterise from clinical data if this pathology
happens. We have followed the steps of Čanić and Kim [15], although they used
a slight different formulation. Keener and Sneyd also obtained a similar (but less
general) result in [61]. This result was presented in 2017 in the 4o Congreso de
jóvenes investigadores (IV Conference for young researchers) (see [101])

Theorem 3. Assuming constant initial data

A(x, 0) = A0, u(x, 0) = 0, (3.104)
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the time ts of the first shock formation is given by

ts = ω +
λ1

u′inflow(t)
= ω +

uinflow + 4
√
β/(2ρ)A

1/4
inflow

u′inflow(t)
. (3.105)

where ω is the first time when the forward characteristic intersects the left
spatial boundary.

Proof. In terms of the Riemann invariants, the initial data read W 0
1 (x) = W 0

2 (x) =

u0(x) ± 4
√

β
2ρ
A

1/4
0 . For this set of initial data, W1 is constant everywhere in the

region of smooth flow; the characteristics are straight lines in

D2 = {(x, t) : x2(t) ≤ x < +∞, t ≥ 0}, (3.106)

where x2(t) is the forward characteristic x′2 = λ1 emanating from (0, 0). The
solution in region

D1 = {(x, t) : 0 ≤ x ≤ x2(t), t ≥ 0}, (3.107)

bounded by the left boundary x1 = 0 and the forward characteristic x2, is
driven by u(·, t) on x1 and will develop shock waves due to the fact that u′(·, t)
changes sign.

To estimate the time ts we note that at the point (ts, xs) the partial derivative
∂W1/∂x blows up, as we can see in figure 3.1c. This occurs at the point where the
denominator A(ω, t) in (3.94) becomes equal to zero. We recall that its expression
was

A (ω, t) = 1 +
∂W1

∂x
(ξ, ω) eh(W1(ξ,ω),W2(ξ,ω))

×
∫ t

ω

∂λ1

∂W1

(W1 (x̃ (ω, τ) , τ) ,W2 (ξ, ω)) e−h(W1(x̃(ω,τ),τ),W2(ξ,ω))dτ.
(3.108)

Hence, it can be calculated by recalling that λ1 = W1, what means that
∂λ1/∂W1 = 1 and that W1 = W 0

1 everywhere. This implies that in (3.108)

eh(W1(ξ,ω),W2(ξ,ω))−h(W1(x̃(ω,τ),τ),W2(ξ,ω)) = 1 (3.109)

and so

A(ω, t) = 1 +
∂W1

∂x
(ξ, ω)(t− ω). (3.110)

From equation (3.85) we see that

∂W1

∂x

∣∣∣∣
x1=0

= −2
u′(t)

λ1

+
λ1

λ2

∂W2

∂x
. (3.111)
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Since ∂W2/∂x = 0, we obtain

A(ω, t) = 1− u′(t)

λ1

(t− ω). (3.112)

Therefor, isolating, the first time the shock forms is equal to

ts = ω +
λ1

u′inflow(t)
= ω +

uinflow + 4
√
β/(2ρ)A

1/4
inflow

u′inflow(t)
. (3.113)

Two remarkable conclusions become deduced from this result: the shock will
be produced earlier if the inflow accelerates and if the walls of the vessel are less
rigid (due to the β factor).

A case that could be interesting from a medical point of view is to see, in the
case of the aorta since is the one where we can find more literature, if this model can
explain the pistol-shot heard in aortic insufficiency. Taking as an approximation
the measures done in [24, 34, 80] we assume A0 = Ainflow ≈ 4× 10−2m. Regarding
blood flow velocity we have assumed 1 m/s, following the measures found in [82].
Recalling that

β =

√
πEh

(1− ν2)A0

, (3.114)

we will use the parameters of appendix A.
Now, for a healthy human being we have taken u′inflow = 7m/s2, following the

correlations of [82] and a Young’s modulus of E = 105 Pa. Hence, the value for
the first time and place when shock forms is

ts ≈
1 + 4

√
29633.5/(2× 1050)(4× 10−2)1/4

7
≈ 1.1s (3.115)

and
xs = tsλ1 ≈ 8.5m, (3.116)

which, according to [31] is far from the mean length value of the aorta, 33.2
cm.

Now, for a sick human being, say by aortic insufficiency, the heart increases
its volume and since the aortic valve does not close properly, the muscle must do
a greater contraction, so a greater blood flow acceleration happens in each heart
beat (see [50]). Using the same bibliography as we have previously consulted, we
could have that u′inflow = 15 m/s2. Moreover, the arteries could be not rigid enough
(what may cause an aneurysm), say E = 2 · 103Pa. With this variation we would
have:

ts ≈
1 + 4

√
592.67/(2× 1050)(4× 10−2)1/4

15
≈ 0.13s (3.117)
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and
xs = tsλ1 ≈ 0.25m. (3.118)

As it should be, this case is worse for the patient and a shock wave is formed
inside the typical length of the aorta. For the interested reader, some research has
been done in this line, although with different and sometimes less general models.
See [33, 84, 105]. Henceforth, we move on to the numerical simulations. Although
shock waves have not been simulated due to complexity of controlling the inflow
data, healthy cases have been simulated. For these simulations the method used
has been the Galerkin Discontinuous Finite Element Method, presented in the
next chapter.



Chapter 4

Discontinuous Galerkin Method

In computational fluid dynamics, specially in medical applications, accuracy is
preferred rather than velocity or simplicity in numerical methods. We must require
a number of key properties such as flexibility in geometry, robustness, efficiency,
high-order or variable order accuracy — since long time integration is needed —
and, if possible, possibility of high performance computing.

During the last decades, a number of numerical techniques for the solution
of nonlinear conservation laws, nonlinear convection-diffusion problems and com-
pressible flow have been developed. We first review briefly the three most popular:
finite differences, finite volumes and finite elements.

• Finite-difference methods (FDM) are discretisation methods for solving dif-
ferential equations by approximating them with difference equations, in which
finite differences approximate the derivatives. This is usually done using Tay-
lor series expansion and truncating at the desired order. Due to this, we can
achieve any order desired for the method, which is an advantage.

The two sources of error in finite difference methods are round-off error —
loss of precision due to computer machine — and discretisation error, the
difference between the exact solution and the exact approximation assuming
perfect arithmetic (that is, assuming no round-off).

This method relies on discretising a function on a grid, so to approximate
the solution to a problem, one must first discretise the problem’s domain.
This is usually done by dividing the domain into a uniform grid. There-
for, the solution is recovered in a pointwise way. It can be shown that the
truncation error is proportional to the step sizes (time and space steps). If
we reduce the step size or increase the truncation of the Taylor’s expansion
the accuracy of the approximate solution increases, but also the simulation’s
duration. Therefor, a reasonable balance between data quality and simula-
tion duration is necessary for practical usage. Large time steps are useful

37
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for increasing simulation speed in practice. However, time steps which are
too large may create instabilities and affect the data quality [54, 79]. There
are quite a lot of variations of the FDM, both explicit and implicit cases and
quite a lot of theory behind these methods, since FDMs are the dominant
approach to numerical solutions of partial differential equations [49]. For a
first approach to these methods we refer the interested reader to [5, 6, 58].
The main drawback of these methods is that complex geometries are not
allowed in a simple way.

• Similar to the FDM, in the finite volume method (FVM), values are calcu-
lated at discrete places on a meshed geometry [65,76,118]. “Finite volume”
refers to the small volume surrounding each node point on a mesh (control
volumes, or cells). In the finite volume method, volume integrals in a partial
differential equation that contain a divergence term are converted to surface
integrals, using the divergence theorem. These terms are then evaluated as
fluxes at the surfaces of each finite volume. Thus, FVMs use piecewise con-
stant approximations. Because the flux entering a given volume is identical
to that leaving the adjacent volume, these methods are conservative. An-
other advantage of the finite volume method is that it is easily formulated
to allow for unstructured meshes and, since it uses cell averages, it allows
discontinuities. The problem comes when we want to achieve high order on
general grids. Also, there are requirements of grid smoothness non trivial at
all [10,47,51]. For a survey of various techniques and results from the FVM,
we refer the reader to the monograph [36].

• The next step is the family of finite element methods (FEM). It is also
referred to as finite element analysis (FEA). The main basic steps of the
FEM are [78]:

1. Divide the whole domain of the problem into subdomains (can be a
regular or unstructured mesh) called finite elements.

2. Convert the differential equations we are dealing with into its weak
form, multiplying by an arbitrary function and integrating.

3. Choose appropriate test functions (they are usually polynomials) to
arrive to an algebraic system, and solve it.

Regarding the history, as it is often the case with original developments,
it is rather difficult to quote an exact date of invention, but in [12], the
roots of the FEM are traced back to three separate research groups: applied
mathematicians [22], physicists [116] and engineers [52], although the FEM
obtained its real impetus from the development of engineers. These methods
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can achieve high order and can deal without many problems complex ge-
ometries. The main issue is that they are implicit in time and when we are
dealing problems with direction (such a diffusion) are not really well suited.

To sum up the observations, we have:

Complex geometries High-order accuracy Explicit semi-discrete form
FDM × X X
FVM X × X
FEM X X ×

Table 4.1: Advantages and disadvantages of the most used methods for solving
differential equations numerically.

The ideal case would be to have a scheme with local high-order and flexible
elements as in the FEM; the nice handling of discontinuities as in the FVM; and
the explicit and relatively simple (semi-)discrete form of the FDM. We can find
indeed a method with these components, inside the FEMs, called Discontinuous
Galerkin Finite Element Method (DG-FEM, DGM or simply DG).

As happened with FEM, DG methods can be considered as numerical schemes
for the weak formulation of the equations. They were first applied to first-order
equations by Reed and Hill in [98], but their widespread use followed from the
application to hyperbolic problems by Cockburn and collaborators in a series of
articles [19–21]. In the DG-FEM framework, the solution is recovered in a more
continuous way, with polynomials, without the need of using a reconstruction
operator (such as interpolation). This feature of DG schemes is in common with
the classical FEM. But, unlike classical finite elements, the numerical solution
given by a DG scheme is discontinuous at element interfaces and this discontinuity
is resolved by the use of a so-called numerical flux function, which is a common
feature with FVM.

Hence, in the next sections we will give more details about this method, start-
ing from definitions and some mathematical notation up to the computational
implementation. As we said in the previous chapters, we are treating with a
one-dimensional problem, so both the theory as the implementation are a little
simpler. For a more general theoretical treatment (dimensions 2 and 3) we refer
the interested reader to the lecture notes [30].

4.1 Notation

The idea of this family of methods is to split the domain we are dealing with,
namely Ω = [a, b], into a set of the so-called elements, in our case they are subin-
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Figure 4.1: One dimensional finite element discretisation.

tervals as shown in figure 4.1. Formally we have

Ω =

Nel⋃
e=1

Ωe, (4.1)

Ωe = [xue , x
l
e] (4.2)

where
xue = xle+1. (4.3)

This subdivision of the general domain Ω will be denoted by Th and we call it
the triangulation of Ω (for analogy to the two and three-dimensional cases).

By Fh we denote the set of boundaries of the elements, namely

Fh =
{
xle
}Nel

e=1
∪
{
xuNel

}
= {xue}

Nel
e=1 ∪

{
xl1
}
. (4.4)

Moreover, we will sometimes treat in a separated way the inlet and outlet
boundaries, so

F ioh =
{
xl1
}
∪
{
xuNel

}
, (4.5)

FWh = Fh \ F ioh . (4.6)

First we recall some standard notation from the measure and integral Lebesgue
theory.

4.1.1 Measure and integral Lebesgue notation

Let M ⊂ Rn, n = 1, 2, . . . be a Lebesgue measurable set. We recall that two
measurable functions are equivalent if they differ at most on a set of zero Lebesgue
measure. The Lebesgue space Lp(M), with 1 ≤ p < ∞ is the linear space of all
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functions measurable on M (more precisely, of classes of equivalent measurable
functions) such that ∫

M

|u|pdx < +∞. (4.7)

With this, let k ≥ 0 be an artbitrary integer and 1 ≤ p < ∞. We define the
Sobolev space W k,p(M) as the space of all functions from the space Lp(M) whose
distributional derivatives Dαu, up to order k, also belong to Lp(M), i.e.,

W k,p(M) = {u ∈ Lp(M) : Dαu ∈ Lp(M)∀α, |α| ≤ k}. (4.8)

For p = 2, W k,2 is a Hilbert space and we denote it by Hk(M). Now, the DGM
is based on the use of discontinuous approximations. This is the reason why over
a triangulation Th, we define the broken Sobolev space

Hk(Ω, Th) = {u ∈ L2(Ω) : u|Ωe ∈ Hk(Ωe)∀Ωe ∈ Th}. (4.9)

Since we will be working with two dimensional vector-valued functions we will
denote

Hk(Ω, Th) = Hk(Ω, Th)×Hk(Ω, Th). (4.10)

The DGM can be characterised as a finite element technique using piece-
wise polynomial approximations, in general discontinuous on interfaces between
neighbouring elements. Therefor, we introduce a finite-dimensional subspace of
Hk(Ω, Th), where the approximate solution will be sought.

Let Th be a triangulation of Ω and let p ≥ 0 be an integer. We define the space
of discontinuous piecewise polynomial functions

ShP = {v ∈ L2(Ω) : v|Ωe ∈ PP (Ωe)∀Ωe ∈ Th}, (4.11)

where PP (Ωe) denotes the space of all polynomials of degree ≤ P on Ωe. Ob-
viously, ShP ⊂ Hk(Ω, Th) for any k ≥ 1 and its dimension is dimShP = P + 1.

Similarly as we have done before, we will denote

ShP = ShP × ShP . (4.12)

Finally, since we are going to deal with vectorial functions, we will under-
stand operations such as integration of derivation of the vector as the operation
component-wise.
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4.2 DG space (semi)discretisation

In order to give a more general situation, this time we will consider the source term,
namely the friction term. Since we are assuming that the blood is a Newtonian
fluid, the friction term has the form

f = −KRu, (4.13)

where KR is a strictly positive quantity which represents the viscous resistance
of flow per unit length of tube. We still assume that α = 1 (a flat profile) for the
reasons we discussed in subsection 3.1.2. Hence, we can write the system as

Ut + Fx = T (4.14)

with

U =

[
A
u

]
, F =

[
uA

u2

2
+ p

ρ

]
and T =

[
0

KR

ρ
u

]
. (4.15)

In order to derive the discrete problem, we assume that there exists an exact
solution U ∈ C1(H1(Ω, Th); [0, T ]), where T > 0 represents the final time, of
the Navier-Stokes equations (4.14). Then we multiply (4.14) by a test function
ψψψ ∈ H1(Ω, Th) and integrate over the domain. Specifying the dependency on U
we obtain: ∫

Ω

Utψψψdx+

∫
Ω

Fx(U)ψψψdx =

∫
Ω

T(U)ψψψ. (4.16)

Let us denote, for a measurable set M , the inner product of L2(M) with∫
M

uvdx = 〈u, v〉M . (4.17)

At this point is where the main difference with respect to the FEM appears.
We do not demand continuity between elements, and since the elements of the
triangulation Th are disjoint, we can decouple (4.16) and work separately with
each Ωe ∈ Th as:

〈Ut,ψψψ〉Ωe
+ 〈Fx(U),ψψψ〉Ωe

= 〈T(U),ψψψ〉Ωe
. (4.18)

We integrate by parts the flux term (in higher dimensions this would be equiv-
alent to apply Green’s theorem):

〈Ut,ψψψ〉Ωe
+ [F(U) ·ψψψ]

xue
xle
− 〈F(U),ψψψx〉Ωe

= 〈T(U),ψψψ〉Ωe
. (4.19)

We remark that the term evaluated in the boundary is interpreted as component-
wise. It is not the usual dot product of vectors.
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As we said before, we discretise the solution U with an approximation Uh ∈
ShP . Due to the fact that dimShP = P + 1, we can express this discrete solution
as a linear combination

Uh|Ωe
=

P∑
p=0

Û
e

pϕp (4.20)

where {ϕp}Pp=0 is a basis of the space ShP . In the previous expression, the
product denotes a component-wise product.
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Figure 4.2: Change of coordinates from global to local at an element.

Now, this expansion is carried out at each element Ωe ∈ Th, so we need to do a
readjustment of the coordinates. More precisely, the global semidiscrete solution
Uh is defined in all the length of the artery, namely 0 ≤ x ≤ l. But at each element
we need to resize to −1 ≤ ξ ≤ 1, see figure 4.2. To carry out this conversion, affine
mappings (common in FEM) are used. Their expression, from global to local and
local to global coordinates are, respectively,

ξ(xe) =
2x− xle − xue
xue − xle

, (4.21)

xe(ξ) = xle
1− ξ

2
+ xue

1 + ξ

2
, (4.22)

(obviously one mapping is the inverse function of the other one). More precisely
equation (4.20) has the form

Uh(xe, t)|Ωe
=

P∑
p=0

Û
e

p(t)ϕp(ξ). (4.23)
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We remark that the coefficients of the previous expressions only depend on
time. This is the characteristic of the so-called modal form of a finite element
method. The other possibility is the nodal form, where the solution is calculated
in some points (nodes) of each element. These coefficients are usually called degrees
of freedom. Here is where the main distinctive of the Galerkin methods come out:
the test function ψψψ also belongs to the finite-dimensional space ShP , indeed it will
be the same on each component, so we will change the notation to ψ. With this,
the first term of (4.19) is approximated by

〈Ut(xe(ξ), t), ψ(ξ)〉I =

〈
∂U(xe(ξ), t)

∂t
, ψ(ξ)

〉
I

≈
P∑
p=0

∂Û
e

p(xe(ξ), t)

∂t
〈ϕp(ξ), ψ(ξ)〉I ,

(4.24)
where I = [−1, 1]. Moreover, by substitution of variables, the third term of

equation (4.19) becomes

〈F(U),ψψψx〉Ωe
=

∫
Ωe

F(U(x, t))ψx(ξ(xe)) dx

=
2

xue − xle

∫ 1

−1

F(U(ξ, t))ψx(ξ) dξ =
2

xue − xle
〈F(U), ψx〉I .

(4.25)

Up to now there are some unclear points in the reasoning previously done.
First of all, the election of the test and basis functions. In the next subsection we
will choose them motivating the election.

4.2.1 Election of test and basis functions

In a benchmark more common in calculus, test functions are chosen as C∞ with
compact support. Nevertheless, for practical uses we consider both the test func-
tion ψ and the basis functions {ϕp}p belonging to the piecewise polynomial space
ShP . More precisely, in order to avoid the appearance of more coefficients we
choose the test functions as one of the basis functions. The idea of this is that in
the expression

P∑
p=0

∂Û
e

p(xe(ξ), t)

∂t
〈ϕp(ξ), ϕq(ξ)〉I (4.26)

by varying the test function all over the basis functions, we decouple the system,
so we can isolate the derivative of the degrees of freedom. The previous equation
can be seen as a product matrix-vector

MÛ
e

(4.27)
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where

Mij = 〈ϕi, ϕj〉I , Û
e

=

Û
e

1
...

Û
e

P

 . (4.28)

The most straightforward election would be to choose the canonical basis

ϕp(ξ) = ξp−1. (4.29)

Figure 4.3: Condition number (in norm 1) of the matrix M. As we can see, it
grows almost exponentially.

As a quality measure, we can look to the condition number ofM. In the norm
1, for example, we can see that it grows very quickly, as we present in figure 4.3.
Therefor, this election does not look like a robust choice for high P .

With this understanding, we look for a better basis, specifically one which
makesM diagonal. I.e., we want an orthogonal basis. The basis usually chosen is
the one formed by Legendre’s polynomials. Instead of enumerating the properties,
in this subsection we will reason in a straightforward manner its appearance. Some
useful properties of these polynomials are proved using basic algebra and calculus.

First of all, we apply the Gram-Schmidt process to the canonical basis and we
get a complete orthogonal basis {Qn}Pn=0, where Q0(x) = 1 and

Qn(x) = xn −
n−1∑
i=0

〈xn, Qi〉I
〈Qi, Qi〉I

Qi(x). (4.30)

Now we need a result about orthogonal bases extracted from [66]:
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Proposition 4. Let {pn}∞n=0 be an orthogonal polynomial sequence (OPS) in
L2([a, b]) with deg(pn) = n. Then

(i)
〈
xk, pn

〉
[a,b]

= 0 for k = 0, 1, . . . , n− 1.

(ii) The polynomial pn(x) of degree n has exactly n simple zeros in the open
interval ]a, b[.

(iii) There is a recurrence relation of the form

pn+1(x) = (αnx+ βn)pn(x) + γnpn−1(x), ∀n ≥ 1 (4.31)

where αn, βnγn are real constants depending on n.

Proof. (i) Let q be a polynomial of degree k. Since deg(pn) = n, it follows that
q lies in the span of {p0, p1, . . . , pk}, i.e., q =

∑
0≤i≤k aipi, ai ∈ R. If k < n,

then by orthogonality

〈q, pn〉I =
k∑
i=0

ai 〈pi, pn〉I = 0. (4.32)

In particular,
〈
xk, pn

〉
I

= 0 for k < n. This proves (i).

(ii) Let x1, x2, . . . , xm be distinct real zeros of pn in ]a, b[. Then we can factorise

pn(x) = (x− x1)ε1(x− x2)ε2 . . . (x− xm)εmr(x), (4.33)

where εi ≥ 1 and the polynomial r(x) has no zero on ]a, b[. Thus r(x) > 0
(or else r(x) < 0), ∀x ∈]a, b[.

Let
φ(x) = (x− x1)δ1(x− x2)δ2 . . . (x− xm)δm , (4.34)

where δi = 0 or 1 according as εi is even or odd. Then deg(φ) ≤ m
and φ(x)pn(x) ≥ 0 (or else φ(x)pn(x) ≤ 0) ∀x ∈]a, b[. This shows that
〈φ, pn〉[a,b] 6= 0. Thus, in view of the part (i), deg(φ) ≥ n. Since deg(φ) ≤
m ≤ n, we must have m = n. This proves (ii).

(iii) Let αn be the ratio of leading coefficients of pn+1 and pn. Then pn+1 −
αnxpn(x) is a polynomial of degree at most n. Let

pn+1(x)− αnxpn(x) =
n∑
i=0

bipi(x). (4.35)
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Then

bk =
〈pn+1 − αnxpn, pk〉[a,b]

〈pk, pk〉[a,b]
=
〈pn+1, pk〉[a,b]
〈pk, pk〉[a,b]

− αn
〈xpn, pk〉[a,b]
〈pk, pk〉[a,b]

=
〈pn+1, pk〉[a,b]
〈pk, pk〉[a,b]

− αn
〈pn, xpk〉[a,b]
〈pk, pk〉[a,b]

= 0

(4.36)

if k < n− 1 (in view of (i)). Thus

pn+1(x)− αnxpn(x) = bnpn(x) + bn−1pn−1(x). (4.37)

This proves (iii).

With this, since all the n distinct zeros of the polynomial Qn(x) of degree n
lie in ]− 1, 1[, we have Qn(1) 6= 0 for all n ≥ 0. Thus, we may define a new set of

polynomials Q̃n(x) = Qn(1) so that Q̃n(1) = 1. We will name these polynomials
again Qn. Clearly Q0(1) = 1 and Q1(x) = x.

The following lemma will be useful to arrive to the useful form of the polyno-
mials Qn:

Lemma 5. 〈xm, Qn〉I = 0 if m and n have different parity, i.e., m+ n is odd.

Proof. The proof is by induction on n. SinceQ0(x) = 1, Q1(x) = x and
∫
I
f(x)dx =

0 for an odd continuous function f , the lemma holds for n = 0 and n = 1. By
induction hypothesis, we assume the lemma holds for Qi(x) for i < n and we shall
show that it also holds for Qn(x). We have 〈xn, Qi〉I = 0 for i = n− 1, n− 3, . . .,
as n and i have different parity. Thus

Qn(x) = xn −
[n
2

]∑
k=1

〈xn, Qn−2k〉I
〈Qn−2k, Qn−2k〉I

Qn−2k(x), (4.38)

and it is an odd or even function according as n is odd or even. Thus
∫
I
xmQn(x)dx =

0 if m and n have different parity.

In consequence, we have the following proposition:

Proposition 6. The OPS {Qn}n satisfies the recurrence relation

Qn+1(x) =

(
2n+ 1

n+ 1

)
xQn(x)−

(
n

n+ 1

)
Qn−1(x) ∀n ≥ 1. (4.39)
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Proof. Since {Qn}n is a complete OPS, by proposition 4, there is a recurrence
relation of the form

Qn+1(x) = (αnx+ βn)Qn(x) + γnQn−1(x), ∀n ≥ 1 (4.40)

where αn, βn, γn are real constants depending on n. Now, by lemma 5, Qn(x)
is an odd or even function of x according as n is odd or even. Thus Qn(1) = 1
implies that Qn(−1) = (−1)n. On substituting x = 1 and x = −1 in the recurrence
relation, we get

αn + βn + γn = 1 and αn − βn + γn = 1. (4.41)

Thus, βn = 0 and αn + γn = 1. Also, αn is the ratio of the leading coefficients
of Qn+1(x) and Qn(x). The leading coefficients can be obtained from lemma 5
substituting in the points we know and solving a linear system by Cramer’s rule.
The reason why this method is used is because some recurrences on columns appear
and we are able to obtain the determinants via known productories (further details
in [66]). This leading coefficient has the form

(2n)!

2n(n!)2
(4.42)

and therefor,

αn =

(2(n+1))!
2n+1((n+1)!)2

(2n)!
2n(n!)2

=
2n+ 1

n+ 1
. (4.43)

Thus γn = 1− αn = −n/(n+ 1). This gives the recurrence formula.

Actually, these polynomials are widely known as Legendre’s polynomials and
we will denote them by Ln(x). The previous recurrence formula is also known as
Bonnet’s formula.

In figure 4.4 we can see the first 6 Legendre’s polynomials. The norm of Leg-
endre’s polynomials is given by:

‖Ln(x)‖2 =
2

2n+ 1
, (4.44)

and an explicit formula for the derivative is

d

dx
Ln+1(x) = (2n+ 1)Ln(x) + (2(n− 2) + 1)Ln−2(x) + (2(n− 4) + 1)Ln−4(x) + . . .

(4.45)
The proofs of these facts need more results from differential equations that

would get us far from our purpose. We refer the interested reader to [66] and [106].
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Figure 4.4: Legendre’s polynomials up to degree 5.

Returning to the original discussion, the new definition of the matrix in equa-
tion (4.28) is

Mi,j = 〈Li, Lj〉I . (4.46)

In this case, as we would expect, the condition in norm 1 ofM is much smaller
now, as we can appreciate in figure 4.5. We observe now a linear behaviour with
respect to the matrix size, in opposition with the exponential when the canonical
basis was used (figure 4.3). With this, we have solved what to do with the first
term of equation (4.19). In the next subsection we will be dealing with the second
term, the evaluation of the functions in the boundary of elements.

4.2.2 Numerical flux

We recall that the second term of equation (4.19) had the form

[F(U) ·ψψψ]
xue
xle
. (4.47)

Now we know that the test function will be a Legendre’s polynomial so, after
resizing to local coordinates, in the boundary (that now will be either −1 or 1)
will have the values

Lp(ξ(x
l
e)) = Lp(−1) = (−1)p, Lp(ξ(x

u
e )) = Lp(1) = 1. (4.48)

The problem comes with F(U). This term is evaluated at the boundary of
elements and hence, it carries the information between elements. But these values
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Figure 4.5: Condition number (in norm 1) of the matrix M. As we can see, it
grows linearly.

at the extremes of the elements may be not well defined, since although the solution
is continuous at each element, it may not be continuous in FWh . So, we have the
problem (actually is a Riemann problem) of obtaining the value of the physical
flux F at one point for which has two different values

F(Uh(x
u
e , t)) 6= F(Uh(x

l
e+1, t)). (4.49)

For convenience in the notation we will denote by

UL = Uh(x
u
e , t), UR = Uh(x

l
e+1, t) (4.50)

the left and right solution at one interelement point, where xe ∈ FWh .
The way to solve this is approximating it with the aid of the so-called numerical

flux H(UL,UR) : R2 × R2 → R2:

F(Uh(x
u
e , t)) ≈ H(UL,UR) (4.51)

In words, what we are doing is approximating a not well-defined function in the
problematic point by a proper function1 that depends on the “left” and “right”
values of the solution. Some desirable properties of the numerical flux are the
following:

1We could use two different numerical fluxes, one per component, but for simplicity we will
use just one.
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1. Continuity : H(`, r) is Lipschitz-continuous with respect to `, r, i.e. there
exists a constant LH > 0 such that

‖H(`, r)−H(`∗, r∗)‖ ≤ LH(‖`− `∗‖+ ‖r − r∗‖), (4.52)

where `, r, `∗, r∗ ∈ R2, for some norm ‖ · ‖.

2. Consistency : it works properly if we have usual continuity:

H(c, c) = F(c) (4.53)

for c ∈ R2.

3. Conservativity : in higher dimensions, this condition means some kind of
mass conservation. In one dimension it reduces to commutativity of the
arguments:

H(`, r) = H(r, `). (4.54)

Apart from the aforementioned properties, there is no scientific agreement of
which particular numerical flux to choose. In the next part we present some
reasonable options.

Some choices of the numerical flux

One of the most intuitive options is the central numerical flux given by

H(UL,UR) =
F(UL) + F(UR)

2
, (4.55)

that is, an arithmetic mean of the left and right physical fluxes. But this
numerical flux is unconditionaly unstable and, therefor, worthless for practical
purposes (see [37]). In the most of applications, in which Navier-Stokes is included,
it is suitable to use upwinding numerical fluxes. The concept of upwinding is
based on the idea that the information on properties of a quantity is propagated
in the flow direction. There is an abundance of schemes for this upwinding term
— Vijagasundaram scheme, Steger-Warming scheme, VanLeer scheme or Osher-
Solomon scheme are some examples that can be found in [37]. Further Riemann
solvers can be found also in [38,46,65,118,125]. We have chosen and implemented
two upwinding schemes mainly due to their simplicity and physical meaning. In
the rest of the section we will give more details about these two schemes.
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• The first one is a slight modification of the central numerical flux given in
equation (4.55).

H(UL,UR) =
1

2
[F(UL) + F(UR)− a(UR −UL)] , (4.56)

where a is the local propagation speed and the direction is reflected in the
difference (UR − UL) (since the wave propagates from left to right). The
main idea is to use a centred flux to which just enough dissipation is added
to ensure stability in all cases. In the scalar case the needed viscosity is
given by the largest local wave speed (see [112]). With more components,
there might be a superposition of the waves, each one with its corresponding
eigenvalue. So taking the viscosity coefficient in the flux as the maximum
over all eigenvalues should work. With this we have that

a = max
U∈[UL,UR]

∣∣∣∣λ(∂F(U)

∂U

)∣∣∣∣ , (4.57)

that is, the maximum modulus of the eigenvalues of the jacobian matrix
F′(U).

We will refer to the above flux as the Nessyahu and Tadmor (NT) central
scheme [83]. It is most frequently called Lax-Friedrichs flux (although it is
worth mentioning that such flux expression does not appear in Lax [72] but
rather on Rusanov [102]).

• The second numeric flux is based on using the information provided by the
method of characteristics. Since the characteristics are Riemann invariants,
the solution should remain constant along these curves. We recall that the
characteristics had the form

W1,2 = u± 4

√
β

2ρ
A1/4 (4.58)

and therefor

A =

(
W1 +W2

4

)4(
ρ

2β

)2

, (4.59)

u =
W1 +W2

2
. (4.60)
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Since W1 is the forward characteristic, it will need to get the information
from the left, so if we denote

UL =

[
AL
uL

]
, UR =

[
AR
uR

]
(4.61)

we have that the upwinding forward characteristic is

W u
1 = uL + 4

√
β

2ρ
A

1/4
L . (4.62)

Analogously we have

W u
2 = uR − 4

√
β

2ρ
A

1/4
R . (4.63)

From here we build the upwinding variables

Au =

(
W u

1 +W u
2

4

)4(
ρ

2β

)2

, (4.64)

uu =
W u

1 +W u
2

2
. (4.65)

So, the numerical flux will be the physical flux applied to the upwinding
variables, i.e.

H(UL,UR) = F

([
Au

uu

])
=

[
uuAu

(uu)2

2
+ p

ρ

]
. (4.66)

We can find this characteristic flux in the paper of Sherwin et al. [104].

To the best of our knowledge there is no theoretical analysis of this last flux
(notice that it is done specifically for this problem). Regarding the NT flux there
is some work on the stability of the method. We refer the interested reader to the
aforecited references.

In this subsection we have dealt with points xe ∈ FWh , but the treatment of
the inlet and outlet points xe ∈ F ioh is the same one. The only difference in this
case would be, as one could expect

UL = Uinflow (4.67)
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for the first element and
UR = Uoutflow (4.68)

for the last element. Since we are in the case of nonlinear hyperbolic systems,
as we can read in [30], the theory for the boundary conditions is missing.

In this chapter we have achieved the semi-discrete scheme:

Subsection 4.2.1︷ ︸︸ ︷
2

2p+ 1

∂Ûp(t)

∂t
=

2

xue − xle

∫
I

F(U(ξ, t)) ·
Equation (4.45)︷ ︸︸ ︷

L′p(ξ) +T(U(ξ)Lp(ξ)

 dξ

+(−1)pH(Uh(x
l
e, t),Uh(x

u
e−1, t))−H(Uh(x

u
e , t),Uh(x

l
e+1, t))︸ ︷︷ ︸

Subsection 4.2.2

,

(4.69)

for the Legendre degree p = 0, . . . , P and for every element Ωe, e = 1, . . . , Nel.
In order to obtain a discrete algorithm we need a quadrature rule for the integral
and a scheme for evolve in time. In the next chapter, the chosen rules will be
explained, along with some implementation details. Some numerical results are
also presented in the following chapter.



Chapter 5

Implementation and results

In this chapter we fully discretise the semi-discrete method previously presented.
In order to achieve this, we present the quadrature rules used for the spatial and
temporal integration. In the second part of this chapter we present some results of
applying this method. We have studied its stability, convergence and sensitivity
to parameters carrying out a total of nearly 2000 simulations.

5.1 Spatial integration

With all we have done in this section, we have a semi-discrete method given by
equation (4.19). But for the implementation of the method, we need to evaluate
the integrals

〈F(U),ψψψx〉Ωe
=

2

xue − xle
〈F(U), ψx〉I =

2

xue − xle

∫ 1

−1

F(U(ξ, t)) · L′p(ξ)dξ, (5.1)

〈T(U),ψψψ〉Ωe
=

2

xue − xle

∫ 1

−1

T(U(ξ, t)) · Lp(ξ)dξ. (5.2)

The quadrature rule chosen, following the steps of [104] has been the Legendre-
Gauss-Lobatto (LGL) quadrature. First we need to define the Gaussian integra-
tion:

Definition 1 (Gaussian integration). Let x0, . . . , xN be the roots of the N + 1-
th orthogonal polynomial pN+1, and let w0, . . . , wN be the solution of the linear
system

N∑
j=0

(xj)
kwj =

∫ 1

−1

xkw(x)dx, 0 ≤ k ≤ N, (5.3)

where w(x) : A→ R+ is some weight function, where A ⊂ [−1, 1] is a discrete
set. The positive numbers wj are called weights.
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Then,

Proposition 7. The following properties are satisfied:

1.
N∑
j=0

p(xj)wj =

∫ 1

−1

p(x)w(x)dx (5.4)

for all p ∈ P2N+1(I) where I = [−1, 1].

2. It is not possible to find xj, wj, j = 0, . . . , N such that (5.4) holds for all
polynomials p ∈ P2N+2(I).

The proofs can be found in [26]. This version of Gauss integration is quite well
known. However, the roots, which correspond to the collocation points, are all in
the open interval ]−1, 1[. The requirement of imposing boundary conditions at one
or both end points creates the need for the generalised Gauss integration formulas
which include these points. This lead us to the Gauss-Lobatto integration:

Definition 2 (Gauss-Lobatto integration). Let −1 = x0, x1, . . . , xn = 1 be N + 1
roots of the polynomial

q(x) = pN+1(x) + apN(x) + bpN−1(x), (5.5)

where a and b are chosen so that q(−1) = q(1) = 0. Let w0, . . . , wN be the
solution of the linear system

N∑
j=0

(xj)
kwj =

∫ 1

−1

xkw(x)dx 0 ≤ k ≤ N. (5.6)

Then
N∑
j=0

p(xj)wj =

∫ 1

−1

p(x)w(x)dx, (5.7)

for all p ∈ P2N−1(I).

In the special case of Jacobi weight, i.e. w(x) = (1 − x)α(1 + x)β with α, β ∈
[−1/2, 1/2] there is an alternative characterisation of the Gauss-Lobatto points,
namely they are the points −1, +1 and the roots of the polynomial

q(x) = p′N(x). (5.8)

For the proofs of the aforementioned results see [17]. With this, if we choose
pN = LN the n-th Legendre we obtain the Legendre-Gauss-Lobato quadrature.
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Since explicit formulas for the quadrature nodes are not known to the best of our
knowledge, such points have to be computed numerically as zeroes of appropriate
polynomials. The quadrature weights can be expressed in closed form in term of the
nodes, as indicated in the following formulas (see, e.g., Davis and Rabinowitz [26]):

x0 = −1, xN = 1, {xj}N−1
j=1 zeroes of L′N ; (5.9)

wj =
2

N(N + 1)

1

[LN(xj)]2
j = 0, . . . , N. (5.10)

Some points and weights are presented in table 5.1.

Number of nodes Nodes Weights
1 0 2

2 ±
√

1
3
≈ ±0.58 1

3
0 8

9
≈ 0.89

±
√

3
5
≈ ±0.77 5

9
≈ 0.56

4
±
√

3
7
− 2

7

√
65 ≈ ±0.34 18+

√
30

36
≈ 0.65

±
√

3
7

+ 2
7

√
65 ≈ ±0.86 18−

√
30

36
≈ 0.35

5
0 128

225
≈ 0.57

±1
3

√
5− 2

√
10
7
≈ ±0.54 322+13

√
70

900
≈ 0.48

±1
3

√
5 + 2

√
10
7
≈ ±0.90 322+13

√
70

900
≈ 0.24

Table 5.1: Points and weights for the Legendre-Gauss-Lobatto quadrature in
[−1, 1].

With this, we have the final discrete algorithm

Subsection thereforsubsec:test︷ ︸︸ ︷
2

2p+ 1

∂Ûp(t)

∂t
=

Subsection 5.1︷ ︸︸ ︷
2

xue − xle

∫
I

F(U(ξ, t)) · L′p(ξ)︸ ︷︷ ︸
Equation (4.45)

+T(U(ξ)Lp(ξ)

 dξ

+(−1)pH(Uh(x
l
e, t),Uh(x

u
e−1, t))−H(Uh(x

u
e , t),Uh(x

l
e+1, t))︸ ︷︷ ︸

Subsection 4.2.2

,

(5.11)
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for the Legendre degree p = 0, . . . , P and for every element Ωe, e = 1, . . . , Nel.
We have not mentioned it, but regarding the initial condition we need to transform
it to its degrees of freedom. Following the reasoning of the previous chapter, if
U0(x) = U(x, 0) we have

2

2p+ 1

(
Û0

)
p

=

∫
I

U0(ξ)Lp(ξ)dξ (5.12)

for p = 0, . . . , P . This result was also obtained by [117].

5.2 Temporal integration

We have obtained an algorithm for getting the derivatives of the degrees of freedom.
Hence, we need a scheme to evolve in the temporal dimension. We will only recover
the physical solution when the simulation is done (in order to plot the solution)
using equation (4.23). In most of the applications a Runge-Kutta of order 2 or
3 is enough, but following [103] we have chosen the Adams-Bashforth scheme.
These methods were designed by Adams to solve a differential equation modelling
capillary action due to Bashforth in [11]. The main reasons of this election are,
on one hand, the implementation-friendly expression; and on the other hand, the
fact that the Adams-Bashforth method with s steps has order s. This will allow
us to rise the order if it is desired.

This scheme is encompassed in the so-called linear multistep methods. Con-
ceptually, multistep methods attempt to gain efficiency by keeping and using the
information from previous steps rather than discarding it (as Euler explicit, for
example). Moreover, in the case of linear multistep methods, a linear combination
of the previous points and derivative values is used. Using our notation, denoting
the iteration by superscripts, a linear multistep method has the form

Û
n+s

+ as−1 · Û
n+s−1

+ as−2 · Û
n+s−2

+ · · ·+ a0 · Û
n

(5.13)

= ∆t ·
(
bs · Û

n+s

t + bs−1 · Û
n+s−1

t + · · ·+ b0 · Û
n

t

)
(5.14)

where the coefficients {ai}s−1
i=0 and {bi}si=0 determine the method, Û

0
= Û0

and ∆t is the time step. In the case of the Adams-Bashforth methods, they are
explicit methods and hence as−1 = −1 and as−2 = · · · = a0 = 0. Regarding the
other coefficients, the main idea is to interpolate the derivatives using the Lagrange
formula for polynomial interpolation. This yields the expression for the coefficients

bs−j−1 =
(−1)j

j!(s− j − 1)!

∫ 1

0

s−1∏
i=0
i 6=j

(u+ i)du, (5.15)
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for j = 0, . . . , s − 1. It can be shown that with this construction the s-step
Adams-Bashforth method has order s (see [58]).

In the following sections some numerical results have been performed using
this discrete method presented along this chapter and the previous one. All the
simulations have been done in Matlab R2017a.

5.3 Test case

As a test case we have replicated one of the numerical experiments done by [104].
We consider a normalised vessel of unit area, A0 = 1 and normalise the mean
velocity so that it has a unit value too (u0 = 1). Physiologically we expect the
wave speed to be an order of magnitude higher than the mean velocity and so we
prescribe a mean wave speed of c0 =

√
β/(2ρ)A

1/4
0 = 10. This can be achieved

by selecting β = 100 and ρ = 0.5. As inflow velocity we use an analytic function
simulating the heart beat of the form

uinflow(t) = 1− 0.4 sin(wt)− 0.4 sin(2wt)− 0.2 cos(2wt) (5.16)

where w = 2π/T and T is the time period (see figure 5.1).

Figure 5.1: Inflow velocity in the same units as the initial velocity.

Making the assumption that the spatial wavelength λ is approximately 100
times larger than the vessel diameter, we choose a time span of 10 since for the
linear case λ ≈ 100.
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Since we are considering a problem with a wavelength of λ = 100, in order to
observe the wave as a function of the artery centreline we will consider a compu-
tational interval [−100, 100]. The domain is subdivided into Nel = 10 elements of
equal length and a polynomial order of P = 7 is applied within each element. We
impose the boundary conditions of

ul(−100, t) = uinflow(t), ur(100, t) = 1, (5.17)

Al(−100, t) = 1, Ar(100, t) = 1. (5.18)

A second-order time stepping scheme was applied with a time step of ∆t =
5 · 10−3.

In figure 5.2 we can see how, indeed, we obtain the same results and a travelling
wave appears.

Both in these simulations and henceforth, the numerical flux used was the
characteristic flux presented in 4.2.2. The plots have been repeated for the NT
flux and no significant differences have been observed.

5.4 Convergence and stability

Regarding the stability and convergence of the method, there is not so much in
the literature. We can find some partial results about stability (specially for nodal
DG) in [48,64,95]. In these papers some CFL conditions are given, but for specific
problems. Hence, in general, their conclusions can not be extrapolated. In order
to obtain a rough idea of the stability of this method for our problem, we have
performed some simulations.

Nel 1, . . . , 8 β 2.2 · 104

P 0, . . . , 9 BPM 80
∆t 10−4 : 5 · 10−4 : 10−2 Final time 5 seconds

Table 5.2: Parameters’ values for the stability experiment.

In table 5.2 we can see the parameters used for the simulation. For the time
step we have used Matlab notation (ini:step:end). Following the measures used
in subsection 3.2.1 and appendix A we have estimated A0 = Aoutflow = Ainflow =
4 · 10−2 and u0 = uoutflow = 1. The other parameters have the same values as in
the previous simulations. Therefor, the conclusions obtained are based on 1600
simulations. What we have observed is that, in every case, no matter the polyno-
mial degree, number of elements (and hence space grid refinement), or time step
the solution obtained is completely stable, i.e., we have not observed neither oscil-
lations nor divergence. Hence we cannot state any kind of CFL condition relating
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∆t with Nel. We remark that these are great results, since from a clinical point of
view (due to the reasonable choice of the parameters) the method is stable.

With the convergence of the method we have a similar situation. Some works
have been made in this line, see [60, 69], but for specific (and scalar) equations.
Nevertheless, it is well known that FEMs are chosen for their accuracy (see [78]),
and this feature is inherited by DG-FEM. Moreover, in our case we have an addi-
tional problem: the boundary conditions. For reproducibility we have considered
the same inlet data as [104], a periodic function where we can control the beats
per minute. But, because of the form how it is constructed, it is not immediate
its manipulation. Due to this, we can not compare it with real data to measure
the real error.

What we can do is to measure how discontinuous is the discontinuous Galerkin
method. For fixed parameters (the same ones as in the previous simulations,
unless otherwise indicated) we have refined the mesh, i.e., we have augmented the
number of elements Nel from two to eight. As a measure of discontinuity we have
considered the norm infinity of the differences between the left and right values
of blood flow velocity at each element boundary. We have considered a 5 seconds
simulation, measuring approximately at first, at the middle and at the end of
the simulation. Since depending on the time step, each simulation has a variable
number of iterations we have specified this value in the variable It.

We present the results in figure 5.3. As it can be seen, there is not a clear
pattern from which some assertion can be done. It seems that the higher is the
number of elements, the higher are the discontinuities. This may be caused due
to the freedom of the polynomial to oscillate when it has a higher degree. Nev-
ertheless, we notice that the magnitudes are insignificant. We recall that the rest
blood velocity was 1 m/s.

5.5 Biomedical simulations dependent on the pa-

rameters

The next result we show is how the variables change depending on the physical
parameters. As independent variables we have chosen two parameters of our model.
The first parameter is β, which embraces the physical properties of the vessel’s
wall. Following the measures used in subsection 3.2.1 and appendix A we have
estimated a reasonable range of β ∈ [15 ·103, 30 ·103]. The second variable we have
controlled is the inflow data. We have used the aforementioned inflow function
for velocity but now controlling the period T . Since it is the periodicity of the
wave, biologically it means the heart beats per second. We have done simulations
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for T ∈ [0.8, 2] which correspond to values of beats per minute (in what follows,
BPM) between 48 and 120.

As dependent variables we have considered the maximum value of the flow
velocity and vessel amplitude. These simulations are done in a time span of 5
seconds with a time step of 0.005. The spatial discretisation has been of 10 elements
with polynomials of degree 5.

Several conclusions are obtained from these plots. The most notorious is maybe
the clear growth of both quantities as the heart rate rises. This is what we could
expect since the greater is the heart rate, the faster is the blood velocity. Also, if
we augment the BPM, the inflow blood acceleration u′inflow also rises. This is the
reason why the walls need to expand.

Regarding the dependence on β, the inverse behaviour is observed between the
two quantities. Nevertheless, this also makes sense because the greater is β, the
more rigid is the wall. This can be achieved by rising Young’s modulus or making
more compressible the material, shrinking Poisson’s ratio. In both cases, more
effort will have to be done to displace the wall, as we observe in figure 5.4. In
order to conserve the flux, if the amplitude gets smaller, the blood velocity must
be greater. Indeed, this is what can be observed in figure 5.5.

The magnitudes are also coherent with the physical meaning. In the case of
the amplitude we see how the greatest difference is about one centimetre (we recall
that the rest amplitude was of 4 cm). With the velocity, the difference is similar,
since the initial velocity was of 1 m/s and the values are between 1.15 and 1.45
m/s.
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Figure 5.2: Advection of travelling waves at times t = 2.5, t = 12.5, t = 20.



Chapter 5. Implementation and results 64

Figure 5.3: Discontinuity measure varying Nel, ∆t, P and the time when it is
measured.
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Figure 5.4: Maximum arterial amplitude (in centimetres) as a function of the BPM
and β.

Figure 5.5: Maximum blood flow velocity (in m/s) as a function of the BPM and
β.



Chapter 6

Conclusions and future work

In this work we have carried out an analysis of a blood flow model in elastic arteries,
based on the Navier-Stokes equations. Starting from a short historical survey, we
have stated the equations for our model. We have treated them from a more
abstract mathematical point of view to extract some results about the arterial
behaviour. In the second part of this work we have focused on the numerical
method for the simulations, and its deduction. We have ended with a short analysis
of this method and with some numerical tests. Next we review the main aspects
that have been treated during the text.

As the reader has been able to see, four paradigms have merge along the whole
document:

• A small survey point of view. Chapter 1 has been presented as a historical
background on arterial mechanics, up to 20th century. In subsection 2.1.3 the
main models for one dimensional artery simulation have been enumerated,
situating them chronologically. At the rest of the document, a distinguished
amount of references has been cited in order to either justify assumptions or
avoid digressions.

• Common reasonings in physics. Starting from physical principles such as
Newton’s second law, we have derived more complex mathematical relations
in terms of partial derivative equations, as have been done in chapter 2.
Once the equations have been established, conclusions have been extracted
directly from these equations, such us the conservation of physical quantities.

• Mathematical, academic analysis. In chapter 3 we have presented more ab-
stract results, suitable in calculus areas. Although, as we specified in the
introduction, the objective of the work is the blood simulation, we have con-
sidered necessary this part. This analysis has made possible to ensure some
necessary conditions for the feasibility of the model, such as the non-collapse
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of the artery. We recall that in subsection 3.2.1 a explicit time and place
for the appearance of a shock wave has been obtained. This theorem is
an original result of this work based on a slightly different model presented
by [15]. This result has been published in 2017 in the 4o Congreso de jóvenes
investigadores (IV Conference for young researchers) (see [101])

• Biomedical based numerical performance. Using the data presented in ap-
pendix A and the numerical scheme of Discontinuous Galerkin (chapter 4)
some simulations have been performed. Although some wave simulations
had been done in [104] among others, this kind of simulations have not been
performed, to the best of our knowledge.

Nevertheless, some lines of future work have been opened and this field of
knowledge continues proliferating. The step to three dimensional models has al-
ready been made, as in [39]. Even though we have not explain it for avoiding
complexity, bifurcations are also possible as is explained in [104]. Maybe one
of the most promising branches is coupling the arterial simulation with fractional
calculus, as was illustrated in subsection 2.1.3. This is useful where more viscoelas-
tic behaviours appear, such as in capillaries, aneurysms or simulation of arterial
valves. See for example [25, 29, 89, 132]. More recent are the works of Perdikaris
et al. simulating large arterial network using blood flow models together with
fractal-tree closures [88].

Some possible lines of future work are the following:

1. Using realistic inflow data. We have used analytic, explicit functions for the
inflow data, but maybe real measures are more appropriate for validating
the model. Moreover, instead of using averaged data, personalised measures
would be interesting for the usefulness of the model. Thus we could predict
some diseases or check the consequences of some medical procedures.

2. Stochastic analysis. In this work we have performed some basic sensitivity
analysis of the main parameters of the model. But, as a quick observation in
the literature offers, there is a great variability in the values of biophysical
parameters. Because of this uncertainty, some stochastic analysis would be
interesting, either with the point of view of statistics, or from the random
differential equations’ point of view.

3. Characterisation of different diseases. From aneurysm to blood thickening
or aorta insufficiency, there are some conditions that could be modelled with
blood flow simulations. This could provide some characterisation of such
diseases and improving their understanding.
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4. In a more mathematical field, necessary and sufficient conditions for smooth
flow. Moreover, if these conditions had biophysical meaning, they would be
of a great usefulness.



Appendix A

Biological parameters

In this appendix, following the suggestions of [110] we enumerate some biologically-
realistic values for the 1D flow model parameters in the context of simulationg
blood flow in large vessels.

1. Blood mass density (ρ): 1050kg ·m−3. [7–9,15,39,63,73,108,109].

2. Blood dynamic viscosity (µ): 0.0035N/(s ·m2). [2, 4, 8, 9, 27,39,40,59,63,73,
108,127]

3. Young’s elastic modulus (E): 105N/m2. [2,8,9,14,27,28,39–41,56,59,73,75,
133,134].

4. Vessel wall thickness (h0): this, preferably, is vessel dependent, i.e. a frac-
tion of the vessel radius according to some experimentally-established math-
ematical relation. For arteries, the typical ratio of wall thickness to in-
ner radius is about 0.1 − 0.15, and this ratio seems to go down in the
capillaries and arterioles. Therefor a typical value of 0.1 seems reason-
able. [9, 13, 39,40,73,90,121,122,133].

5. Momentum correction factor (α): assuming Newtonian flow, about 4/3 would
give a parabolic profile, while with 1 we would get a flat profile. An intermedi-
ate value, e.g. 1.2, may be used to account for non-Newtonian shear-thinning
effects [15,40–42,73,86,103,108].

6. Poisson’s ratio (ν): 0.45 [8, 9, 14,27,28,39,41,59,94,103,133].
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[46] J. Förste. Feistauer, m., mathematical methods in fluid mechanics. harlow,
longman scientific & technical 1993. xiii, 657 pp. £ 72.00. isbn 0-582-20988-
9 (pitman monographs and surveys in pure and applied mathematics 67).



Bibliography 74

ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für
Angewandte Mathematik und Mechanik, 74(11):544–544, 1994.

[47] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic sys-
tems of conservation laws, volume 118. Springer Science & Business Media,
2013.

[48] D. Gottlieb and E. Tadmor. The cfl condition for spectral approximations to
hyperbolic initial-boundary value problems. Mathematics of Computation,
56(194):565–588, 1991.

[49] C. Grossmann, H.-G. Roos, and M. Stynes. Numerical treatment of partial
differential equations, volume 154. Springer, 2007.

[50] J. E. Hall. Guyton and Hall Textbook of Medical Physiology. Elsevier Health
Sciences, 13 edition, 2015.

[51] A. Harten and S. R. Chakravarthy. Multi-dimensional eno schemes for gen-
eral geometries. Technical report, INSTITUTE FOR COMPUTER APPLI-
CATIONS IN SCIENCE AND ENGINEERING HAMPTON VA, 1991.

[52] E. Hinton and B. Irons. Least squares smoothing of experimental data using
finite elements. Strain, 4(3):24–27, 1968.

[53] M. B. Hisland and M. Anliker. Influence of flow and pressure on wave prop-
agation in the canine aorta. Circulation research, 32(4):524–529, 1973.

[54] J. D. Hoffman and S. Frankel. Numerical methods for engineers and scien-
tists. CRC press, 2001.

[55] R. Hooke. De Potentia Restitutiva, or of Spring. Explaining the Power of
Springing Bodies. Royal Society, 1674.

[56] K. Hunter, J. Albietz, P.-F. Lee, C. Lanning, S. Lammers, S. Hofmeister,
P. Kao, H. Qi, K. Stenmark, and R. Shandas. In vivo measurement of
proximal pulmonary artery elastic modulus in the neonatal calf model of
pulmonary hypertension: development and ex vivo validation. Journal of
Applied Physiology, 108(4):968–975, 2010.

[57] P. Hunter. Numerical simulation of arterial blood flow. PhD thesis, Re-
searchSpace@ Auckland, 1972.

[58] A. Iserles. A first course in the numerical analysis of differential equations.
Number 44 in Cambridge texts in Applied Mathematics. Cambridge univer-
sity press, 2009.



Bibliography 75

[59] J. Janela, A. Moura, and A. Sequeira. Comparing absorbing boundary con-
ditions for a 3d non newtonian fluid-structure interaction model for blood
flow in arteries. Mecánica Computacional, 48:1332–1349, 11 2010.
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