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ABSTRACT 24 

Vision-based systems offer a promising way for displacement measurement and receive increased 25 

attention in civil structural monitoring. However, the working performance of vision-based systems, 26 

especially the measurement accuracy and the robustness to different field conditions is not fully 27 
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understood. This study reports three cases studies of vision-based monitoring tests including one in a 28 

laboratory, one on a short-span bridge and one on a long-span bridge. The tracking accuracy is 29 

quantified in laboratory conditions in the range of 0.02 pixel to 0.20 pixel depending on the target 30 

patterns as well as the tracking method selected. The measurement performance under several field 31 

challenges are investigated including long-range measurement (e.g. camera-to-target distance at 710 m), 32 

low-contrast target patterns, changes of target patterns and changes in lighting conditions. Three 33 

representative tracking methods for the video processing, i.e. correlation-based template matching, 34 

Lucas Kanade (LK) optical flow estimation and scale-invariant feature transform (SIFT) were used for 35 

analysis, indicating their advantages and shortcomings for field measurement. One of the main 36 

observations in field application is that changes in lighting conditions might cause some low-frequency 37 

measurement error that could be misunderstood without the prior knowledge about structural loading 38 

conditions. 39 

 40 
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 43 

1 INTRODUCTION 44 

Bridges provide vital links in transportation networks and must be managed in a manner that minimises 45 

risk to public safety and disruption to service. However, the current inspection process mainly relies on 46 

visual check that can be subjective and prone to error. Therefore, reliable approaches for bridge 47 

condition assessment are required to assist the decision-making and make the best use of limited 48 

maintenance budget. 49 

Bridge deformation is a significant metric for bridge condition assessment. For example, measurement 50 

of deformation during controlled vehicle load testing helps to estimate bridge load carrying capacity 51 

(Wang et al., 2011) (BBC News, 2015). Serviceability is reflected through deformation during normal 52 

operation, since extreme values and ranges indicate problems that may limit operational use. 53 
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1.1 Review of vision-based approaches 54 

Limitations of more traditional displacement sensing technologies (e.g. LVDT, GPS, double-integration 55 

from acceleration etc.) that necessarily require physical access to a structure have driven research in 56 

non-contact optical sensing. Vision-based monitoring methods have promising features e.g. simple 57 

instrumentation and installation, operation remote from the structure and capacity for multi-point 58 

measurement using a single (camera) sensor. Existing studies have indicated the potential of vision-59 

based methods for structural condition assessment, in particular for system identification (Caetano et 60 

al., 2007; Oh et al., 2015; Yoon et al., 2016), finite element model calibration (Feng and Feng, 2015), 61 

damage detection (Cha et al., 2017) and contribution to bridge WIM system with camera assistance for 62 

traffic monitoring (Ojio et al., 2016). 63 

Target tracking is one critical component in a vision-based system, directly influencing the 64 

measurement accuracy. Template matching (Brownjohn et al., 2017; Chang and Ji, 2007; Ehrhart and 65 

Lienhart, 2015a; Fukuda et al., 2013; Guo and Zhu, 2016; Macdonald et al., 1997; Stephen et al., 1993) 66 

and optical flow estimation (Caetano et al., 2011; Cha et al., 2017; Chen, Wu, et al., 2015; Chen et al., 67 

2017; Chen, Wadhwa, et al., 2015; Diamond et al., 2017; Ehrhart and Lienhart, 2015b; Ji and Chang, 68 

2008a; Khaloo and Lattanzi, 2017; Yang et al., 2017; Yoon et al., 2016) are established methods widely 69 

used for bridge deformation measurement whereas feature point matching is a relatively new and 70 

promising tracking method that is theoretically scale-invariant and rotation-invariant (Ehrhart and 71 

Lienhart, 2015a) and has been validated in several short-range measurement tests (Ehrhart and Lienhart, 72 

2015a, 2015b, Khuc and Catbas, 2017a, 2017b). There are also some other methods through tracking 73 

the special shapes of target patterns based on edge detection or image thresholding algorithms (Ji and 74 

Chang, 2008b; Lee et al., 2006; Ribeiro et al., 2014; Wahbeh et al., 2003) e.g. line-like cables, circular-75 

shaped dots and chessboard, etc. These methods have limitations for application due to the requirement 76 

about pattern shapes. 77 

To find the most appropriate tracking method for structural monitoring, it is necessary to evaluate their 78 

measurement accuracy and the robustness to different field conditions. Busca et al. (Busca et al., 2014) 79 

evaluated three techniques (template matching, edge detection and digital image correlation) on a steel 80 
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truss railway bridge, concluding that the three techniques provide similar tracking performance while 81 

tracking accuracy is slightly poorer for natural targets. Ehrhart and Lienhart (Ehrhart and Lienhart, 82 

2015a) evaluated the performance of three techniques (optical flow, template matching and feature point 83 

matching) by tracking structural features of a footbridge and reported that feature point matching is 84 

robust to the changes of background condition (i.e. snowfall) whereas drift over time was observed in 85 

the measurement by two other methods. 86 

These two existing studies provide some information about the influence of pattern features and pattern 87 

changes on measurement results. However, more studies are necessary to evaluate the field performance 88 

of vision-based systems since several critical field challenges are not considered yet e.g. robustness to 89 

lighting changes and viability for long-range monitoring. 90 

1.2 Purpose of this study 91 

The purpose of this study is to investigate the effectiveness of vision-based systems for displacement 92 

measurement in different environmental conditions through three case studies. One laboratory test and 93 

two field tests were performed indicating several influential factors on measurement performance, i.e. 94 

estimation error in projection transformation, camera-to-target distance, the distinctiveness of target 95 

patterns, changes of target patterns and changes in lighting conditions. Three representative tracking 96 

methods were considered for video processing, demonstrating their advantages and shortcomings to 97 

deal with the observed influential factors. Other error sources in field tests like camera shake, 98 

atmospheric refraction and temperature variations were not apparent in test observations and thus are 99 

not discussed in this study. 100 

This paper is the first study to apply the feature point matching method in the long-range monitoring 101 

test and the measurement was evaluated through comparison with the processing results using classical 102 

tracking methods. The field measurement by vision-based systems might carry some low-frequency 103 

error due to camera shake or lighting changes. A method to distinguish the main source of low frequency 104 

error is proposed in this study. 105 

To that end, section 2 introduces the methodologies for vision-based displacement measurement, in 106 

particular, three representative tracking methods. In section 3, a laboratory uniaxial oscillation test used 107 
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to validate the video processing methods and to study the tracking accuracy in laboratory conditions is 108 

described. Section 4 and 5 report the field tests for mid-span deformation measurement in a short-span 109 

railway bridge and a long-span suspension bridge, respectively. The performance of vision-based 110 

systems with challenging field conditions e.g. low-contrast patterns, changes of target patterns and 111 

changes in lighting conditions are investigated, indicating the advantages and shortcomings of the three 112 

tracking methods. Finally the main findings from the three tests are summarised.  113 

 114 

2 VIDEO PROCESSING METHODOLOGIES 115 

In vision-based systems, the hardware comprises data acquisition devices, portable computer with video 116 

processing software and accessories like tripod and artificial targets (optional). Video processing 117 

package is the key part which could fit into a three-component framework in Figure 1, i.e. camera 118 

calibration, target tracking and displacement calculation. 119 

Camera calibration is aimed at determining the projection transformation from the structural system to 120 

the image plane. The projection transformation used in this study is the planar homography that is 121 

calibrated based on a few planar point correspondences and is capable to reconstruct the two-122 

dimensional planar displacement. 123 

Target tracking is critical in the video processing package to locate the target regions in the image plane 124 

through tracking methods. The tracking methods considered in this study include template matching 125 

and optical flow estimation that are established and classic, as well as feature point matching that 126 

receives increased attention in structural monitoring. 127 

The structural displacement could be easily derived from the change of structural coordinates given the 128 

image location of a target (output of target tracking) and a projection transformation (output of camera 129 

calibration). 130 

A software package for the post-processing analysis of video files to measure the structural 131 

displacement is developed by the authors using C++ language, partly referring to OpenCV library. This 132 

custom-developed software is capable to measure the structural displacement of multiple targets 133 
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simultaneously within the field of view and offers three options of tracking methods (shown in Figure 134 

1) to adapt to different test conditions. 135 

This section provides a description of the methodologies of three target tracking methods used in the 136 

custom-developed video-processing software i.e. correlation-based template matching, Lucas Kanade 137 

(LK) optical flow estimation and scale-invariant feature transform (SIFT) method (Lowe, 2004).  138 

2.1 Correlation-based template matching 139 

Template matching is a classic technique for target tracking by searching in a new frame for an area 140 

most closely resembling a predefined template, following the procedures demonstrated in Figure 2. A 141 

target region is selected as the template that is a subset image in the reference frame. A matching 142 

criterion is defined to evaluate the similarity degree between the template and the new frame and the 143 

criterion used is zero-mean normalised cross correlation coefficient (ZNCC). The target location in the 144 

new frame corresponds to the peak location in the similarity matrix that has resolution at pixel level. 145 

Subpixel interpolation schemes (Feng et al., 2015) are required to refine the tracking results to sub-pixel 146 

level and the interpolation method used in this study is zero-padding in frequency domain using the 147 

matrix multiplication form of discrete Fourier transform (Guizar-Sicairos et al., 2008).  148 

Template matching has been applied in structural monitoring since the earliest work on the Humber and 149 

Severn Bridges in 1990s (Macdonald et al., 1997; Stephen et al., 1993), and the recent applications 150 

include displacement monitoring tests in a railway bridge (Feng et al., 2015), a long-span bridge (Ye et 151 

al., 2013) and a high-rise building (Liao et al., 2010). 152 

2.2 Lucas Kanade optical flow estimation 153 

Lucas Kanade optical flow estimation detects the motions in an image from the brightness pattern shift 154 

(Beauchemin and Barron, 1995). The calculation process imposes one temporal constraint on image 155 

properties and one spatial constraint on motion consistency, i.e. that the pixel intensities of an object do 156 

not change between consecutive frames and that neighbouring pixels have similar motion. The image 157 

motions are derived using the following equation, 158 
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where dx  and dy  denote the motions in image plane; xI , yI  and tI  represent the spatial and temporal 160 

gradients of image intensities; and i  denotes the ith pixel location in a 3 3  patch around a feature point 161 

( , )x y .  162 

The procedures are demonstrated in Figure 3. The most prominent corners are detected by Shi-Tomasi 163 

corner detector (Jianbo Shi and Tomasi, 1994) in the reference frame with their locations updated in the 164 

new frame by Eq.(1). Backward estimation is then performed from the new frame to the reference frame 165 

in order to refine the point correspondences based on the error between the initially detected points and 166 

the backward-estimated points. Point correspondences are further refined based on geometric alignment 167 

using the least median of squares method (Massart et al., 1986). 168 

The LK optical flow estimation was applied in a laboratory test of a multi-storey metal tower (Yoon et 169 

al., 2016) for system identification, for field application of a footbridge deformation monitoring 170 

(Ehrhart and Lienhart, 2015b) and for bridge stay-cable vibration measurement (Caetano et al., 2011; 171 

Ji and Chang, 2008a). 172 

2.3 Scale-invariant feature transform (SIFT) 173 

Feature point matching is an efficient tracking technique through matching feature points in consecutive 174 

images based on their local appearance. Several robust feature extractors and descriptors are reported 175 

in literature (Alahi et al., 2012; Bay et al., 2008; Calonder et al., 2010; Lowe, 2004; Rublee et al., 2011) 176 

and the one used in this study is the SIFT method. 177 

The procedures are demonstrated in Figure 4. Keypoints are extracted from the local extremes in the 178 

Difference of Gaussian images (differences of Gaussian filtered images with varied blur level) and 179 

described by vectors using the gradient magnitudes and orientations of neighbouring pixels. Keypoints 180 

between two images are matched by identifying their nearest neighbours evaluated using the Euclidean 181 

distances between keypoint descriptor vectors. The outliers in keypoint correspondences are removed 182 

based on geometric alignment using the least median of squares method (Massart et al., 1986). 183 

The SIFT method has been validated in the deformation measurement test of a railway bridge (Khuc 184 

and Catbas, 2017a). Other feature point matching methods are also validated only in short-range 185 

monitoring tests (Ehrhart and Lienhart, 2015a, 2015b; Khuc and Catbas, 2017b).  186 
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3 VALIDATION TEST IN CONTROLLED ENVIRONMENT 187 

This section investigates the performance of three tracking methods (i.e. correlation-based template 188 

matching, LK optical flow estimation and SIFT method) in controlled environmental conditions through 189 

a laboratory uniaxial oscillation test. 190 

3.1 Test configuration 191 

An APS 400 Electrodynamic shaker was set vertically on solid ground shown in Figure 5(a) and driven 192 

by an input of chirp signal with frequency range 0.5 Hz to 2 Hz. The test was run twice, with no artificial 193 

target in Run 1 and with the chessboard pattern attached to shaker mass (shown in Figure 5(b)) in Run 194 

2 in order to increase the feature salience. 195 

One GoPro Hero4 camera was fixed on the ground looking at the oscillating shaker mass; sample frames 196 

in two runs are given in (c) and (d). The frame rate was set as nominally 60 Hz with narrow field-of-197 

view option. A Balluff micropulse transducer was attached to the shaker mass shown in (b) to provide 198 

an accurate reference displacement measurement sampled at 256 Hz. 199 

The recorded video files were post-processed using the custom-developed video processing software to 200 

derive the displacement data of shaker mass. Camera calibration was performed according to the 201 

dimensions of shaker mass indicated in Figure 5(b) to estimate the planar homography; the target 202 

locations in the image were estimated by the three tracking methods, respectively; and the horizontal 203 

and vertical displacement was acquired through transforming the image locations to the structural 204 

locations via the planar homography. 205 

3.2 Measurement results 206 

The measurement results using the GoPro camera and Balluff transducer in two runs are illustrated in 207 

Figure 6, indicating that, 208 

 Vision-based system based on a consumer-grade camera is qualified to measure the vertical 209 

oscillation of shaker mass by tracking either natural features or artificial target patterns with the 210 

cross-correlation coefficient (compared with the Balluff measurement) reaching over 99%. 211 

 Oscillation occurred only in the vertical direction and any displacement measurement in the 212 

horizontal direction corresponds to measurement error. In Run 1, correlation-based template 213 
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matching provides the best measurement performance while the SIFT measurement includes the 214 

highest noise. Measurement error in Run 2 is much smaller than in Run 1 after increasing the target 215 

salience. 216 

 During the oscillation period in Run 2, the horizontal measurement indicates a chirp signal with a 217 

similar shape as the vertical measurement but with much smaller amplitude. It might be caused by 218 

the error in projection transformation, making the dominant vibration leak to minor motion 219 

direction. 220 

To investigate the tracking accuracy of the three methods, the data collected during the stationary period 221 

were taken into account with the estimation results summarised in Table 1. This indicates that in 222 

laboratory conditions, correlation-based template matching is the most accurate method while the SIFT 223 

achieves the poorest accuracy with the highest sensitivity to the distinctiveness of target patterns. 224 

Laboratory evaluation avoids numerous difficulties that can diminish performance in field conditions 225 

due to environmental influences such as camera-to-target distance, unstable target patterns and lighting 226 

conditions, etc. In section 4 and 5, two field tests on bridge deformation measurement are reported to 227 

illustrate the real-world working performance of vision-based systems. 228 

4 DEFORMATION MEASUREMENT TEST ON A SHORT-SPAN BRIDGE 229 

The vision-based system applied in the two field tests is the Imetrum Dynamic Monitoring Station 230 

(DMS) originating from research at the University of Bristol and commercialised via the university 231 

spin-out company Imetrum formed in 2003. The system includes one or more GigE high performance 232 

cameras for data acquisition and the software ‘Video Gauge’ for the real-time video processing.  233 

The target tracking algorithms used in the software are proprietary extensions of correlation-based 234 

template matching techniques which enable better than 1/100 pixel resolution at sample rates beyond 235 

100 Hz in field applications. The system used by University of Exeter has been trialled in several one-236 

day field campaigns on a number of bridges in the UK, indicating comparable or even better 237 

measurement accuracy compared to an LVDT for short-range measurement (Hester et al., 2017) and 238 

the GPS for long-range measurement (Xu et al., 2017). 239 
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In this study, the Imetrum system was used in field tests mainly for two functions, 1) as a data 240 

acquisition device to record the video files of the bridges that would be analysed using the custom-241 

developed video processing software, and 2) to provide (using the Imetrum proprietary video processing 242 

software) the reference data of bridge deformation for the evaluation of the measurement results 243 

provided by the custom-developed video processing software. 244 

This section reports a case study using the vision-based system for the deformation measurement of a 245 

short-span railway bridge. Section 4.1 and 4.2 below describe the test setup and the results obtained, 246 

respectively. 247 

4.1 Test configuration 248 

The Mineral Line Bridge is a steel girder bridge with 14 m span, carrying the West Somerset Railway 249 

near Watchet, UK. Figure 7(a) indicates the test setup with an Imetrum camera mounted at the top of a 250 

tripod approximately 12.5 m away from the mid-span of the bridge. One sample frame captured by the 251 

Imetrum camera is illustrated in Figure 7(b) with the target region for measurement marked by a 252 

rectangular box. 253 

Since the fundamental frequency of the bridge was estimated to be above 10 Hz, a frame rate of 30 Hz 254 

was set for the Imetrum system. The camera calibration was performed using the dimensions of the 255 

bridge girder and the artificial target at mid-span. The displacement data along the vertical and 256 

longitudinal directions was measured directly by the Imetrum system and also extracted from the 257 

custom-developed post-processing software using the three tracking methods.  258 

4.2 Measurement results 259 

Time history data of displacement measurement are illustrated in Figure 8, indicating that, 260 

 The three tracking methods all capture the vertical deformation of the bridge induced by the passing 261 

of a steam train with one steam locomotive and seven passenger carriages with the maximum 262 

deformation at 6.4 mm. 263 

 A similar deformation pattern during the train passing occurs in the longitudinal measurement with 264 

much smaller amplitudes (less than 0.56 mm) apart from the measurement by SIFT method due to 265 



11 

 

the high noise. It might be caused by the error of projection transformation, making the vertical 266 

deflection data leaked to the horizontal direction. 267 

 An apparent low-frequency motion trend in the horizontal direction is observed after 30 s for all the 268 

four measurement that should be an error since the bridge was empty with no heavy loading. During 269 

this period, the four methods provide different amplitude values and the SIFT measurement is the 270 

most noisy one but with the smallest amplitude. The LK optical flow estimation method failed to 271 

measure in some frames possibly due to the large brightness changes. In terms of the image motion, 272 

the maximum drift in the image horizontal direction reaches approx. 0.3 pixel, larger than the 273 

estimated tracking accuracy in laboratory conditions. It indicates that the tracking accuracy 274 

becomes poorer in field conditions for any of the three tracking methods. 275 

According to the authors’ test experiences and the literature, the low-frequency error in vision-based 276 

measurement could be caused by either the camera motion (Zhao et al., 2017) or changes in lighting 277 

conditions (Brownjohn et al., 2017). The error induced by camera motion should be consistent at those 278 

pixels corresponding to the stationary objects in the field of view. The camera motion is believed not to 279 

be the main error source in this case because Figure 8 is for one among several targets tracked in the 280 

bridge girder (in Figure 9(a)), and these show image motions inconsistent in both the amplitude and 281 

direction as shown in Figure 9(b) and (c). 282 

To quantify the influence of lighting changes, mean pixel intensity at the initially selected target region 283 

(T0) were calculated as shown in Figure 10(a). This indicates a growth of averaged brightness from 284 

28.5 s to 37 s followed by a gentle decrease, which has a trend similar to the measurement error in the 285 

longitudinal direction in Figure 8(a). The initial frame and the frame at the time step 37 s are shown in 286 

Figure 10(b) and (c) for visual comparison of lighting changes. In the second frame, the bolts within 287 

the rectangular region (T0) are more distinctive against the background due to the improved lighting. 288 

Therefore, it is believed that the low-frequency error in the longitudinal direction is caused by the 289 

lighting changes. 290 

None of the three tracking methods is robust to large lighting changes in field tests. The SIFT method 291 

experiences the least influence in measurement while the LK optical flow might fail to identify the 292 
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features under apparent lighting changes. The low-frequency error due to lighting changes might 293 

mislead the users about the bridge loading condition if no prior knowledge is available. 294 

A sharp brightness increase is observed at time step 18.57 s in Figure 10(a) corresponding to an outlier 295 

in the measurement by correlation-based template matching and the Imetrum system in Figure 8. The 296 

cause of these anomalies is changes in target pattern due to a bird flying in front of the target, as shown 297 

in Figure 11. This indicates that the LK optical flow estimation and SIFT method are not sensitive to 298 

small pattern changes whereas the correlation-based template matching method might fail to track. 299 

The demonstration of vision-based monitoring in a short-span bridge indicates that the vision-based 300 

system is capable to measure the bridge deflection under traffic loads using any of the three tracking 301 

methods, although the measurement might become unstable when suffering from apparent changes in 302 

lighting conditions or target patterns. 303 

In the next section, a similar test was performed on a long-span bridge to investigate the viability of 304 

vision-based system for the long-range monitoring. 305 

5 DEFORMATION MEASUREMENT TEST ON A LONG-SPAN BRIDGE 306 

This section describes a case study of using a vision-based system measuring deformation of the 307 

Humber Bridge, UK, a suspension bridge with (at the time of writing) the world’s eighth longest span. 308 

Section 5.1 and 5.2 describe the test setup and the results obtained, respectively. The Imetrum system 309 

was used in field for video acquisition and the video files were post-processed by the custom-developed 310 

software to evaluate the performance of three tracking methods for the long-range measurement. 311 

5.1 Test configuration 312 

The Humber Bridge, with main span of 1410 m links the towns of Hessle and Barton across the Humber 313 

estuary. A single day of field testing using the Imetrum system on 22nd July 2015 was used to measure 314 

the displacement at mid-span of the bridge which has been reported in (Brownjohn et al., 2017; Xu et 315 

al., 2017). The camera, equipped with a lens of 300 mm focal length, was located at the base of the 316 

north tower shown in Figure 12(a), 710 m from the mid-span of the bridge. An artificial target with the 317 

pattern of concentric rings in Figure 12(b) was attached to the parapet at the mid-span. One sample 318 
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frame by vision-based system is shown in Figure 12(c) with the annotations at the two target regions, 319 

T1 covering the artificial target region and T2 under the deck soffit with low-contrast patterns. 320 

The previous modal test (Brownjohn et al., 2010) indicates 14 modes in the vertical direction with the 321 

modal frequencies lower than 1 Hz and the fundamental frequency was 0.117 Hz. Since the frequency 322 

components of interest were lower than 1 Hz, the frame rate of the Imetrum system was set as 10 Hz. 323 

The camera calibration was performed according to the square dimension (1 m) of the artificial target. 324 

The displacement data along the vertical and transverse directions was measured directly by the 325 

Imetrum system and also extracted from the custom-developed post-processing software using the three 326 

tracking methods.  327 

5.2 Measurement results 328 

An 80-second signal of vertical displacement at the target region T1 recorded at approx. 19.22 PM (BST) 329 

is illustrated in Figure 13. The maximum displacement reaches 160.5 mm at approximately 31 s by the 330 

Imetrum measurement while some data points using the three post-processing methods are missing for 331 

about 0.9 s when the displacement values reach their maxima. Two frames during this period are shown 332 

in Figure 14 indicating a big change in target pattern. Due to the low sun elevation in the west, the target 333 

panel on the east side was initially partially in the shadow of the bridge railing, shown in (a). When one 334 

tall vehicle passed the mid-span of the bridge between the sun and the target, sunlight was completely 335 

blocked, making the whole target pattern visible in the image. This indicates that the three tracking 336 

methods are all not robust to large changes in target patterns. Imetrum system, with its proprietary 337 

algorithms, is more robust in this case. 338 

The target region T2 is located at the deck soffit that is less salient with smaller spatial changes in target 339 

patterns compared with the target region T1. In Figure 15, the maximum displacement measured at T2 340 

is 128.2 mm and 130.7 mm by the correlation-based template matching and SIFT method, respectively 341 

while the LK optical flow method failed to track several frames including the period reaching the 342 

maximum displacement. This indicates that the LK optical flow method has higher requirements on 343 

salience and stability of target patterns. The displacement measured at T2 is smaller than that measured 344 

at T1 because 1) the two targets would experience different motion as the bridge rotates about its 345 

longitudinal axis due to eccentric traffic loading; and 2) the bridge axis directions projected in the image 346 
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plane and the projection transformation were determined according to the artificial target panel and thus 347 

were not perfectly aligned with those for the feature target T2 under the deck soffit.  348 

6 CONCLUSIONS 349 

This paper investigates the performance of vision-based systems for displacement measurement in 350 

laboratory and field tests. Three representative tracking methods (i.e. correlation-based template 351 

matching, LK optical flow estimation and SIFT method) were used for the post processing of test 352 

records with their performance compared with a commercial vision-based system, Imetrum DMS. 353 

In laboratory conditions, the tracking accuracies for the two methods, correlation-based template 354 

matching and LK optical flow estimation are close varied from 0.02 pixel to 0.10 pixel depending on 355 

target patterns while the accuracy of SIFT method is poorer in the range between 0.03 pixel and 0.20 356 

pixel. 357 

The working performance of three tracking methods in field tests are summarised in Table 2.  358 

 All the three tracking methods are effective for either short range or long range measurement (e.g. 359 

camera-to-target distance at 710 m) with the displacement varying from several millimetres to ten 360 

centimetres. However, the tracking accuracy becomes poorer than that achieved in laboratory 361 

conditions. 362 

 The salience of target patterns has a direct influence on the measurement accuracy and high-contrast 363 

patterns are preferred for tracking. LK optical flow estimation has the highest requirement about 364 

the distinctiveness and stability of target patterns and might fail to track when the other two methods 365 

work fine. 366 

 Changes to target patterns due to object obstruction or daytime shadows might lead to missing data. 367 

Correlation-based template matching is the method most sensitive to the changes of target patterns 368 

while the other two tracking methods are also influenced when facing large changes on target 369 

patterns. 370 

 Changes of lighting conditions might cause some low-frequency measurement error using any of 371 

the three tracking methods, which could be misunderstood without the prior knowledge of structural 372 
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loading. SIFT method is influenced by the lighting changes but provides smaller measurement error 373 

compared with the other two methods. 374 

It is indicated that apart from constraining the test conditions, e.g. testing in overcast weather or 375 

selecting the sheltered target patterns, how to deal with varying lighting conditions in the field is still 376 

an open question for vision-based measurement. 377 

Another important observation is that although the two-dimensional displacement measurement is 378 

provided by the vision-based system, the measurement along the minor deformed direction might not 379 

be reliable. This is because the error in projection transformation might lead to the leakage of dominant 380 

deformation to the minor deformed direction. Thus special attention should be given to interpret the 381 

measured displacement along the minor deformed direction. 382 
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TABLE CAPTIONS 519 

 520 

Table 1 Tracking accuracy at 95% confidence interval for three tracking methods in laboratory conditions. 521 

Tracking accuracy 

(95% confidence interval) 

Correlation-based 

template matching 

LK optical flow 

estimation 

SIFT 

Run 1 (pixel) 0.026±0.055 0.029±0.069 0.048±0.149 

Run 2 (pixel) -0.009±0.020 -0.001±0.020 0.011±0.037 

Accuracy range (pixel) [0.01, 0.08] [0.02, 0.10] [0.03, 0.20] 

 522 

 523 
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 524 

Table 2 Working performance of three tracking methods in field tests 525 

Field conditions 

Correlation-based 

template matching 

LK optical flow 

estimation SIFT 

Long-range measurement    

Low-contrast patterns  ×  

Small pattern changes ×   

Large pattern changes × × × 

Lighting changes × × × 

 526 

 527 
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FIGURE CAPTIONS 528 

 529 

 530 

Figure 1 Procedures and methodologies in custom-developed video processing software package for structural 531 

displacement measurement. 532 
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 533 

Figure 2 Procedures of one target tracking method: correlation-based template matching. 534 
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 535 

Figure 3 Procedures of one target tracking method: Lucas Kanade (LK) optical flow estimation. 536 
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 537 

Figure 4 Procedures of one target tracking method: scale-invariant feature transform (SIFT). 538 
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 539 

Figure 5 Test configuration of a vision-based system for vertical oscillation measurement of an APS shaker in 540 

laboratory: (a) test configuration of shaker and GoPro camera in Run 1; (b) test configuration of shaker in Run 2 541 

with chessboard patterns attached to shaker mass; (c) one sample frame from the GoPro video recorded in Run 1; 542 

and (d) one sample frame from the GoPro video recorded in Run 2. 543 
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 544 

Figure 6 Time histories of displacement measurement of shaker mass acquired by the custom-developed video 545 

processing software package: (a) measured displacement in the horizontal direction by vision-based system in 546 

Run 1; (b) measured displacement in the vertical direction by vision-based system and Balluff transducer in Run 547 

1; (c) measured displacement in the horizontal direction by vision-based system in Run 2; and (d) measured 548 

displacement in the vertical direction by vision-based system and Balluff transducer in Run 2. (Legends CC, LK 549 

and SIFT denote the three target tracking methods used for video processing, namely correlation-based template 550 

matching, Lucas Kanda optical flow estimation and Scale-invariant feature transform.) 551 
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 552 

Figure 7 Test configuration of a vision-based system for the mid-span displacement measurement on a railway 553 

bridge in Somerset, UK: (a) camera setup near the bridge and the target region at mid-span selected for video 554 

tracking; and (b) one sample frame from the recorded video when one steam train passed through the bridge.  555 
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 556 

Figure 8 Time histories of displacement measurement acquired by the Imetrum system and by the custom-557 

developed video processing software package using three tracking methods: (a) displacement measurement in the 558 

bridge longitudinal direction; and (b) displacement measurement in the vertical direction. (Legends CC, LK and 559 

SIFT denote the three target tracking methods used for video processing, namely correlation-based template 560 

matching, Lucas Kanda optical flow estimation and Scale-invariant feature transform.) 561 
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 562 

Figure 9 Tracking results of image motions at the selected four target regions (T0~T3) in the bridge girder by the 563 

correlation-based template matching: (a) locations of four target regions in the frame selected for tracking; (b) 564 

measured image motions at four target regions along the image horizontal direction; and (c) measured image 565 

motions at four target regions along the image vertical direction. 566 
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 567 

Figure 10 Variations of image brightness at the initially selected target region T0: (a) time history of mean pixel 568 

intensity at the target region T0; (b) the truncated initial frame with a rectangular annotation at the target region 569 

T0; and (c) the truncated frame at the time step of 37 s with a rectangular annotation at the target region T0. 570 
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 571 

Figure 11 Two consecutive frames from video files at approx. 18.6 s indicating the changes of target pattern due 572 

to a flying object (frames truncated and zoomed-in for clarification). 573 
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 574 

Figure 12 Test configuration of a vision-based system for the mid-span displacement measurement on the Humber 575 

Bridge, UK (Xu et al., 2017): (a) camera setup near the bridge tower; (b) an artificial target installed at the east 576 

side of mid-span; and (c) one sample frame from the recorded videos with the annotations at two selected target 577 

regions for video tracking.  578 
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 579 

Figure 13 Time histories of displacement measurement in the vertical direction at the target region T1 acquired 580 

by Imetrum system and by the custom-developed video processing software package using three tracking methods 581 

with the markers indicating the time steps of tracking failure. (Legends have the same meaning as in Figure 8.) 582 
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 583 

Figure 14 Two frames from the video file at approx. 31.3 s indicating the changes of target pattern due to the 584 

passing of one tall vehicle at the mid-span of the bridge that temporally blocked the sunlight, making the whole 585 

target pattern visible in the image. 586 
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 587 

Figure 15 Time histories of displacement measurement in the vertical direction at the target region T2 acquired 588 

by the custom-developed video processing software package using three tracking methods with the markers 589 

indicating the time steps of tracking failure. 590 


