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Abstract

This thesis presents a meta-learning architecture designed to form an agent able to operate

in a classic reinforcement learning environment. Drawing on several existing meta-learning

techniques, this agent learns its environment by subdividing it between multiple predictive

components, each with their own machine learning capabilities.

These components are competitive and co-operative, competing for `worth', which is

used periodically to remove under-performing components and direct the creation of new

ones. Components compete to make as many accurate predictions as possible, balancing

number of predictions made against the accuracy they can achieve. Co-operation comes

from trading information, either prediction values or memory data, to other components,

in return for a portion of any worth the other component receives.

Components may vary in internal architecture. They can store di�erent information, can

use di�erent machine learning algorithms, can share di�erent information or can subdivide

the environment in di�erent ways. They are all measured by the same worth metric, so the

agent's component set will consist of a highly heterogeneous pool, determined by which

components work best in which roles.

This creates a complex set of multiple machine learners, arranged into several trees of

information-suppliers and information-user, rather than depending on a single machine

learner to handle the entire problem. Meta-learning comes from the agent's ability to

learn how to create these structures. It learns to predict which component types will work

best in which circumstances, as well as learning which parameters to provide these with

when it creates them.

This thesis evaluates the basic properties of such an agent under di�erent conditions.

Tests cover its ability to correctly evaluate the worth of its components, its ability to

learn to usefully select which types of new components to generate, and its ability to

learn from one task to improve its performance on the next. Experiments on a variety

of learning problems con�rm the architecture is able to exhibit the required component

creation, deletion and balancing with no internal restructuring between tasks.

Several possible future expansions are also explored, using the component-worth metric

as a metric for the value of information. Testing suggests this allows the agent to be able

to learn an information-seeking drive, which directs it to move to a source of information in
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order to solve a later task, rather then depending exclusively on the information it receives

passively.
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Nomenclature

st The state presented to the agent at time-step t

Vt The state vector from st

Ati The available action with index i from st

Cj The component with index j

Oj The output of component with index j

Rt The reward received by agent at time t

R̂tij Prediction of reward for action i by Cj at t

Lj Cj 's mean squared error over all predictions R̂∗

Dj Cj 's baseline prediction, the average of all rewards R̂∗

Bj Cj 's baseline error, equivalent to the error of a maximally simple predictor

Gj Cj 's adjusted error metric

Qtj Cj 's total accumulated worth at time-step t

Wtj Cj 's total accumulated worth divided by its age at time-step t

C Set of all components within the agent

P Set of predictions gathered for the currently presented action

R Set of selected predictions for all actions available in st
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1 Introduction

This thesis presents, we believe, a novel architecture for an agent operating within a clas-

sic Reinforcement Learning (RL) environment. The aim is to accelerate learning of new

environments by carrying over information learnt from previously solved problems. To ac-

complish this the agent meta-learns the over-arching structural patterns in environments

of the type it will be presented with by learning a set of similar but di�erent environments

before being tested against the �real� trial environment.

The architecture is termed SAMLA, short for Self-Additive Meta-Learning Agent.

The aim is to produce an agent which predicts the e�ects, in terms of reward, of its

actions. This would allow it to operate in a reinforcement learning environment by contin-

uously predicting the utility function's outcome and selecting actions to maximise it. To

accomplish this prediction the agent has a set of what are termed `components', each of

which is able to predict the future reward within a subset of the agent's environment. The

subset of the environment a given component makes predictions for is termed its `scope'.

Components exist competitively, each attempting to maximise the number of predictions

it makes against the accuracy of these predictions.

Quantity of predictions must be balanced against quality, as only a single component is

chosen as the `expected most accurate predictor' for any given prediction, and components

are judged based on the number of times they were chosen. Specialisation, making low

numbers of predictions, allows a component to make highly accurate predictions, but limits

the number of chances it has at being selected. Generalists can cover gaps which no

other component is competing for, but su�er in terms of accuracy, so lose to specialists

if those elect to make a prediction on a given time-step. A key aspect, however, is that

each component may be using di�erent problem-space sub-division strategies, leading to a

competition amongst components not only to �nd the correct degree of specialisation, but

also to �nd the correct dividing lines in the environment, along which to specialise.

The structure of components is arbitrary, from the agent's perspective. They all possess

the same broad structure, with inputs and outputs taking standard forms, allowing them

to link to each other and the agent in a consistent manner, but they may vary greatly in

terms of internal structure. The competitive approach selects for useful components, while

culling useless ones, as determined by their accumulated reward. This allows a variety of

di�erent machine learning algorithms to be made available to the agent, each implemented

by a di�erent component type. Despite di�ering internal structures, the agent is able to
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treat them in the same manner, and they are able to be evaluated against each other with

a common metric.

Meta-learning is accomplished by the agent itself learning which component structures

are useful for the learning tasks it faces in its environment and which are not, and delib-

erately adding new useful component types to itself. As well as simply selecting the type,

the agent is able to direct the new components to take data from existing components, as

well as select parameters for the machine learning algorithms contained within the compo-

nent. This component-placement behaviour is learnt by standard reinforcement learning

mechanisms, and uses the same component-usefulness measure which is used to determine

which components to preserve and which to remove from the set.

This allows a wide variety of separate well-known machine learning algorithms to be

tested, used and combined by the high-level agent. As such, this system can harness

the power of tried and tested algorithms, from k-means to tile-based RL approaches to

recurrent memory neural nets, discarding approaches which are less useful, and attempting

to combine those which prove successful. As such, the agent is able to learn which of these

are best suited to the type of environment it is facing, and can predict these environments

using the most e�cient and e�ective of the tools it has been provided with, without need

for designer knowledge.

The architecture is inspired by Baum's [3] work on "Intelligence as an economy of

agents". It shares the same basic premise of a set of competitive and co-operative agents

using an economic model as means of removing useless or unneeded agents from the set

but diverges su�ciently from this to be considered a separate approach.

1.1 Novel Contributions

The novel contributions this work is believed to bring are as follows:

• The architecture is able to combine two major approaches to meta-learning, portfolio-

of-algorithms and stacking, into a single agent in a way which allows the strengths

of both to be exploited.

• The architecture is able to perform meta-learning in reinforcement learning environ-

ments, a relatively understudied area of meta-learning

• The architecture performs a degree of meta-cognition, and does so in a way currently

unexplored in the literature. This is demonstrated in a test of the agent's ability to

discover hidden variables based on its own error rate.

1.2 Introduction to rest of work

The rest of this work is structured as follows:
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Chapter 3 We discuss other works in the �eld of meta-learning. We review the major

branches and approaches to the �eld, and then attempt to place this work's architecture

in the context of this existing literature.

Chapter 4 We present the structure of the proposed agent. We look at the fundamental

�ow from input to output, and how the agent performs self-addition. We also present

a comparison between this agent and two other key works, su�ciently similar to require

individual attention. These comparisons are presented later than the other background

reading as they require an overview of the architecture for a thorough assessment.

Chapter 5 We assess the agent, by performing a series of tasks, each of which tests

an aspect of the agent's desired capabilities. The �rst test evaluates the architecture's

ability to value components, based on how much they contribute towards the agent's

predictive abilities. The second test evaluates the agent's meta-learning capabilities, by

using a standard machine learning library on a publicly available data set. The third test

evaluates the agent's ability to perform in a Reinforcement Learning environment. The

fourth test the evaluates the agent's ability to meta-learn within an RL environment. The

�fth test then tests the agent's ability to subdivide the environment between components.

Chapter 6 We present a brief exploration of possible future work building on this archi-

tecture, focusing on the possibility for self-motivated learning and information acquisition.

Although preliminary testing indicates a high potential for future results, additional work

is needed for con�rmation and full assessment.

Chapter 7 We present a brief conclusion and summary of the work as a whole.
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2 Background

The proposed system �ts into two major �elds of machine learning research, Reinforcement

Learning and Meta-learning.

Reinforcement Learning, RL de�nes the problems the system is designed to approach

and solve, as well as providing the algorithms against which its performance can be mea-

sured. The �eld concerns attempting to generate a 'policy', a state-to-action mapping

allowing the agent to know which action to perform in any given state in order to max-

imise a reward function. This reward function, as well as the actions the RL agent can

perform and the nature of the information available to it, are provided by the agent's de-

signer. A key di�erence between RL and other machine learning problems is that of `credit

assignment'. When an agent received a high reward, or a negative one, it must determine

which recently taken actions are responsible for this outcome, and which were irrelevant.

Meta-Learning de�nes the approach the agent uses to solve these problems, as well

de�ning which metrics it is intended to compete against other RL algorithms on. Meta-

learning is the �eld of `learning how to learn', approaching problems with knowledge gained

from previously seen and learnt problems. A classic view of meta-learning is the two layered

architecture, in which a high level algorithm learns to guide the learning of a lower one, in

order to maximise the lower one's performance.

Of these two �elds, it is fair to describe Reinforcement Learning as the older and broader

�eld. This work is not attempting to compete against the current leading RL algorithms

by most measurement metrics, but rather to bring approaches from the smaller �eld of

Meta-Learning, in order to produce useful results in speci�c circumstances.

This crossover is thought to be interesting as a greater majority of Meta-Learning re-

search has been into the machine learning �eld of direct supervised learning, with far fewer

papers addressing ML in RL problems, as can be seen from the overview papers [1] [12]

[29] [30]. The architecture of the proposed system is also, we believe, su�ciently novel to

both �elds to be worth studying.

2.1 Meta-Learning Approaches

2.1.1 Introduction

When presented with a supervised machine learning problem, either classi�cation or re-

gression, a vast number of possible solutions exist. Many algorithms exist for both these
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tasks, and each algorithm requires a set of parameters to be supplied, to guide its perfor-

mance. In many cases, the variables might also be selected from a larger pool of possible

inputs for the learner, or the designer might have to choose which pieces of information

will be useful when designing a physical sensor.

These decisions are collectively referred to as the bias [4]. The parameters and pre-

cise implementation details of a machine learning algorithm are its bias, while an agent's

bias would be the set of all previously mentioned designer-decisions. While this bias is

commonly introduced by the human user of the algorithm, meta-learning is the study of

selecting this bias in an automatic fashion [4].

Bias is the portion of the space of all possible solutions which the machine learner will

explore to �nd the solution to the problem it has been presented with and/or an ordering

of the subspace, altering the priority placed on exploring certain solutions. If this bias

encompasses the correct solution the learner is advantaged by being able to ignore incorrect

solutions, or by being directed towards the correct one faster. This term `bias' should not

be confused with statistical bias, which is a systematic error in a predictor. It is instead a

term for the restriction strategy a learner uses to exclude a portion of its solution space.

Such an exclusion is �rstly useful in that it either reduces the number of solutions the

learner must explore before it �nds the correct one or moves it to explore the correct one

earlier, but is also useful if the agent has insu�cient training cases to decide between two

or more possible solutions, only one of which is actually valid. If the bias space does not

include the �awed ones, or marks them as lower priority, the learner will select the correct

one.

By learning which biases were productive in previous tasks, and by correlating various

sources of information about the data-set with patterns of success and failure in various

biases, a machine learning algorithm attempts to select an appropriate bias for the task

at hand. This bias is then passed to one or more lower-level algorithms, which attack

the problem directly. Their success can then be used as another training case for the

higher-level meta-learning algorithm.

As an aside, it is possibly worth noting that bias has not been escaped. Neither a human

engineer or a meta-learning algorithm are free from biases or assumptions. They simply use

knowledge gathered from previously faced problems to increase the amount of information

available to solve the present problem.

A Bayesian analysis of data is a possible exception to this, in that it could be made to

use all data points equally, and makes no pre-assumptions about the probabilities involved

or their inter-dependencies. Selecting the variables to present to the Bayesian learner, how-

ever, would still represent a designer-introduced bias, as would electing to use a Bayesian

approach as opposed to other machine learning strategies.
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2.1.2 Portfolio

A simple, yet highly e�ective approach to meta-learning is to provide the agent with

a library of common machine learning algorithms. A higher level, but not necessarily

particularly complex, machine learner then learns which algorithms work best on which

problems, based on a designer-provided �tness metric. Such metrics could be the usual

measures of ML success, such as accuracy or speed, possibly further biased by a designer-

added metric for understandability of the results produced. The higher level learner is

termed the `meta-learner', and the algorithm of which it is attempting to maximise the

e�ectiveness is termed the `base learner'.

E�ectiveness, in this case, would be de�ned as the ability of the meta-learning layer to

select the correct algorithm from the standard machine learning algorithm pool in a way

which maximises this designer-chosen metric. To evaluate this e�ectiveness, all possible

solutions would need to be evaluated, to compare the meta-learner's performance against

the theoretical optimal selection. An example of this type of assessment is Santos et

al's paper [20] which compares a meta-learner with a portfolio of 40 algorithms against a

theoretical optimal.

Examples of algorithm portfolio use in general are Guo et al's [10]'s work on algorithm

selection for NP hard problems, Salama et al's [19] work on the use of neural networks

as meta-learners or Carvalho et al's [6] work on meta-learning decision tree construction

biases for small-disjunct leaf generation.

What is done with the output of the top-level meta-learner varies. In some implementa-

tions the algorithm predicted to achieve the best results based on this metric is immediately

run on the data. This approach produces a meta-learner which can be applied as if it were

a normal machine learner, taking a training set and learning to return an output, be it a

classi�cation, a Reinforcement Learning policy or a regression curve. Examples are Gagli-

olo and Schmidhuber's work on an online portfolio learning algorithm for multi-armed

bandit problems [9], or Xu's work on `SATzilla' [32], a portfolio approach to the problem

of satis�ability.

The only externally visible functional di�erence between a portfolio meta-learner setup

and a non-meta-learning one is that it has used previous training sets to improve its capa-

bilities. This functional similarity allows meta-learning algorithms to be used in situations

which previously used standard algorithms without requiring major structural rewrites to

the surrounding code.

Another, similar, approach is to run all the algorithms in the library, then combine their

results with a weighting based on their expected usefulness for this particular task, as

predicted by the higher-level algorithm. Alternatively, this ranking could be returned to the

user, allowing them to make an informed decision about which algorithm to implement [5].
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This allows user knowledge as well as meta-learnt knowledge to be combined into algorithm

selection.

2.1.3 Parameter Learning

Another, somewhat similar approach is to have a single high-level meta-learning algorithm

and a single low-level task-learning algorithm. The meta-learning layer here would bias

the task learner by altering the parameters it takes initially. A good example of this

would selecting the width of the kernel in a Support Vector Machine, as seen in Soares et

al's work [24], although their approach does include aspects of ranking meta-learning, as

described later in this section.

In an abstract sense this is very similar to the portfolio approach. The high-level learner

has a bias space to select from, and chooses one which maximises the expected utility of

a user-provided success metric. The principal di�erence being the granularity and range

of the bias space. A portfolio approach may have a wide range of possible biases, if

the lower-level ML algorithms are varied in their capabilities, while a parameter-setting

meta-learner would have a smaller space, as it can only act within the constraints of the

singular ML algorithm it has been provided with. However, the parameter setting has a

far greater precision available to it, if the parameters are continuous values, and is more

able to �ne-tune its approach than a portfolio-selecting meta-learner can.

Portfolio selection therefore has a wider range across the space of all possible biases, but

the parameter setting approach has an in�nite number of points it may choose within this

space. This implies that neither is necessarily superior, but should either be selected in

response to the needs of the problem, or combined into a single architecture.

2.1.4 Ensemble methods: Combination of classi�ers

A di�erent approach to meta-learning is to combine multiple machine learners into a sin-

gle learning algorithm. Various strategies exist to accomplish this goal, with their own

strengths and weaknesses.

Boosting and Bagging Bagging and boosting are machine learning processes which

revolve around splitting a single data-set into multiple subsets by subsampling. This is

done either randomly in the case of bagging, or weighted to enhance learning, for boosting.

Multiple instances of the same machine learning classi�er are training on distinct subsets

of the training data. These classi�ers are then combined by a process of voting. Newly

presented instances are voted on, with each classi�er returning the class it believes the

instance belongs to. The majority vote is then returned as the overall classi�cation [21] [12].

The weighting used by boosting is to test the performance as new classi�ers are gen-

erated, and preferentially select instances which the existing classi�ers mis-classify. The
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training set these new classi�ers would be trained on are the parts of the overall training

set which the existing ensemble of classi�ers would otherwise fail to handle correctly.

This thesis does not consider bagging as a meta-learning algorithm for two major reasons.

The �rst is that it only receives a single training set, so cannot learn to improve its

learning on new problems based on experience of previously seen ones. The second is

that no "learning about learning" occurs, the crude de�nition of meta-learning. There

exists no higher level classi�er which receives feedback from the lower level ones, and so

the classi�cation method cannot learn to select a bias its learning.

Boosting, on the other hand, features partial meta-learning. While it still only handles

a single problem at a time, it does dynamically select a bias based on feedback from lower-

level learning. It compares its existing classi�er set against the training data, evaluates

its performance, and adjusts how new classi�ers are trained. As such, boosting could be

considered a basic form of meta-learning, albeit one which cannot transfer this knowledge

outside of the task at hand.

Bucket Brigade One of the earliest applications of ensemble methods is the so called

Bucket Brigade classi�er approach [11], in which each layer possesses only a single algo-

rithm, with each layer hopefully gaining accuracy by using the results of the previous layer.

Another architecture is to have a wide �rst layer of machine learning algorithms which run

in parallel, with a second layer of a single learner which takes as inputs the concatenated

outputs of this entire �rst layer. Applications of this can be seen in Chan and Stolfo's

work [7].

The key di�erence between this approach and boosting and bagging is the use of a

machine learner to read from the outputs of other learners. In boosting and bagging a

simple voting procedure is used, while bucket brigades use the outputs from the �rst layer

of machine learners, their attempts at classi�cation, as inputs into another.

Stacking Stacking is named from its architecture consisting of multiple layers of algo-

rithms, stacked on top of each other, with each layer running in serial, and using the

outputs of the previous layer as feature inputs. Each layer is attempting to perform the

same classi�cation task, but is able to use the outputs of the previous layer's machine

learners as well as the input features, thus improving its performance. The highest layer

is then used as the overall classi�cation.

While stacking is sometimes considered to be a meta-learning algorithm [29] it di�ers

greatly from Baxter's [4] description of meta-learning as picking a bias for a learner. It has

been argued [1] on these grounds that it should not be considered a part of meta-learning

proper, but merely a related �eld of study. Those who consider it a part of meta-learning

do so because it incorporates learning about learning, from which the term is derived.

Ultimately, however, each machine learner is independent of any other, simply taking the
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outputs of other learners as if they were environmentally-provided features in a standard

input vector.

It is also worth noting that the bias for the machine learners in this approach, regardless

of the layer they are a part of, must be user-provided. As a result, the solution space

must be narrowed by the designer rather than a higher-level algorithm, requiring designer

knowledge of the problems the algorithm will face.

Cascading As investigated by Michelson el at [14], cascading is a form of stacking which

repeatedly subdivides the data based on sub-classes, passing only a given class to the next

machine learning layer. To take an example, a cascading learner trained to recognise cats

might subdivide between animals and non-animals, mammals and non-mammals, the �-

nally cats and non-cats. The top layer learner attempts to distinguish between animals

and non-animals, allowing the second layer to only focus on learning the distinction be-

tween mammals and non-mammals. This increased specialisation improves the accuracy

by reducing the problem's scope at each stage. It requires a set of training data which is

annotated with the full class taxonomy, however, as opposed to the simpler class structures

of conventional classi�cation algorithms.

An alternative approach to cascading, as used by the Viola Jones classi�er [31], is to

arrange a set of classi�ers into an ordered list. Each element of the list attempts to solve the

same classi�cation test, in this example that of face-detection. Each classi�er can return

false, which would then be used as the overall response, or allow the next classi�er in the

list to run. Early classi�ers are crude, very rapid, and highly prone to false positives, while

avoiding high false-negatives. This architecture is designed for speed, to quickly return

false on obvious instances, removing the need to run all later classi�ers.

Meta-Decision Trees A more complex approach, used by [28] and [8], is the meta-

decision tree, which employs a decision tree structure to combine a set of base-level classi-

�ers into a single, higher performance one. A set of classi�ers are trained on the training

data, or each on subset of the training data. A second algorithm then learns to take their

results, concatenated into a single feature vector, possibly with meta-outputs such as con-

�dence, and attempts to learn which of its base level classi�ers would be most likely to

return the correct class.

This method is essentially simply a di�erent means of combining multiple results into

one, but relies on �nding a single high-performance algorithm for each case, rather than

performing a weighted average across all algorithms. While it has aspects of the portfolio

approach, in that multiple di�erent architectures of base level classi�er could be chosen,

from which the meta-learner would return only one, it di�ers in that all base algorithms

have been trained on the given problem, as in ensemble techniques. The portfolio approach

di�ers in that it selects an algorithm which will be applied to the entire current problem,

rather than a single instance.
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The main di�erence between the portfolio selection approach and the meta-decision

tree, in terms of results, is the number of learners created. A meta-decision tree will have

a number of algorithms available to it at run-time, when the learner faces a non-training

task, allowing it a greater maximum theoretical performance. Conversely the portfolio

approach is faster to train and requires lesser computational resources once trained, as

once trained only a single algorithm, the one chosen by the meta-learner, needs to run.

2.1.5 Input features available to preceding approaches

While it is possible for stacking approaches to meta-learning to simply use the output of

machine learners in an earlier layer as the inputs for the meta-learning algorithm, designers

of portfolio and parameter selection approaches must provide input features to the meta-

learning layer in order for it to achieve useful results.

One approach, used by [5] is to provide the meta-learning with designer-selected sta-

tistical characteristics of the dataset. Such properties could be the size of the dataset,

the standard deviation of the input features or various measures of information content.

This allows very processed information to be fed into the meta-learner, allowing a far more

structured understanding of the data-set in question than might otherwise be possible, but

requires the designer to know which measures would be useful.

Another approach useful in portfolio algorithms is to run a subset of all available learners

on a subset of the full data set, to form a �rst impression of their relative performance.

Various output statistics, such as accuracy, time taken and standard deviation of error can

be taken from each learning algorithm tested, and formed into a feature vector which can

be fed into the meta-learning algorithm.

This approach is known as 'landmarking', and has been shown [17] to have an acceptable

success rate, and reduces the needed designer-knowledge of the problem. It is interestingly

similar to stacking, in that it relies on a machine learning algorithm taking the outputs of

certain learners to produce a response better than any of their individual capabilities.

2.1.6 Meta-Cognition

Meta-cognition concerns agents able to learn about their own learning, planning and rea-

soning. It could be considered less a �eld of research and more a broad umbrella term able

to describe a wide range of algorithms, due to the breadth of approaches the term can

cover and the range of problems it can be applied to.

A good example of this is the Meta-Cognitive Loop agent [2], which is able to recognise

situations in which previously learnt rules are no longer applicable and begin learning anew.

This is not a �pure� meta-cognition agent as it relies on an already-studied Reinforcement

Learning approach and acts within an RL domain, and instead uses meta-cognition to

augment its capabilities.
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Speci�cally, its meta-cognitive capabilities are its ability to partially predict the useful-

ness of its already-gained knowledge. It develops a behavioural policy, as is common to

many RL agents, which it uses for action within the environment, but is able to discard

this policy when it becomes a liability rather than an asset. In [2] this occurs through a

designer-written function which wipes the policy when it fails a certain number of times,

but it is conceivable that the subsystem could be expanded into a meta-cognitive learning

function which attempts to predict future errors from recent errors, and either wipe the

learnt policy or blend it with a newly learnt one.

�Pure� meta-cognitive agents exist in a theoretical state, de�ned here as those which use

meta-cognition as their primary mechanism, rather than add a meta-cognitive layer to a

conventional learning algorithm. An example would be the Goedel machine [22], a fully

self-referential learner which is able to alter any part of its internal structure to improve

its capabilities. Such a learner would be fully meta-cognitive, as it would be aware of every

aspect of its internal functioning. However, at the time of writing this approach has yet

to be implemented.

2.2 Proposed Agent in Above Context

The agent proposed by this paper aims to incorporate features of parameter selection,

algorithm portfolio learning and algorithm stacking.

The agent operates by forming a set of base learners, termed components, each of which

attempts to learn to predict the results of the actions the agent takes in a subset of the

environmental states the agent encounters. This results in di�erent components handling

di�erent parts of the environment, which may well represent di�erent tasks, in terms of

the information the components need to gather and how this information is processed.

What is meant by "di�erent parts of the environment" can change based on agent archi-

tecture and which components are selected. Give di�erent component architectures with

di�erent subselection strategies the agent can learn which subdivision strategy leads to op-

timal results, in terms of predictive accuracy. Examples might be geographic subdivision,

subdivision based on objects present in visual �eld, subdivision based on recent reward or

subdivision based on other component's predictions.

The agent creates new components over time, as well as removing those deemed less

useful, based on the `worth' metric. Meta-learning occurs by the agent attempting to

maximise the worth of the components as it adds them, by taking learnt actions to select

the new components' properties. It then receives feedback after the component has been

evaluated, following a large number of time-steps (ex 100 000), and so can trial-and-error

learn to create high-worth components.

When creating the individual components the agent is able to select from a range of

options. These options are designer-speci�ed parameters which a�ect how the component
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will operate internally, which can include both the algorithm the component can use as

well as the parameters the algorithm is passed. This represents aspects from both portfolio

selection, choosing the algorithm the component will use, and parameter selection. The

current architecture can only allow for discrete options, leading to a lower range of choices

than a continuous parameter selection meta-learner, however.

Algorithm stacking occurs by linking the outputs of components into the inputs of others.

Components are executed in serial, in the order in which they were created, so any newly

created component may be linked to, and so take inputs from, existing ones. This new

component can then use the processing of the earlier components to aid its own. This

allows sequences of components to work together, each building on previous ones, possibly

combining the outputs of multiple components into one.

It would therefore seem reasonable to say that the agent proposed in this work possesses

a degree of capability in all three of these types of meta-learning. It is not specialised for

parameter selection, so will under-perform in these compared to dedicated meta-learners,

but should be able to match algorithm portfolio learners. The performance on algorithm

stacking would depend on the exact nature of the components the agent is given to work

with.
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3 SAMLA: Self-Additive Meta-Learning

Agent

In this chapter we discuss the architecture of a self-additive meta-learning agent, shortened

to SAMLA, in greater depth. We discuss how the SAMLA architecture takes inputs from

its environment, processes them, and then selects an action from those available to it.

The agent operates in a series of time-steps, structured in the same way as conventional

reinforcement learning agents. A time-step consists of a state presentation, an action

selection and a reward. The state is a feature vector representing the external information

available to the agent at that time. If the agent were an embodied robot, for example,

that vector could be the data from a visual sensor. The agent then selects an action from

the set of actions possible at that time-step. This action then results in a reward, which is

often zero, which is fed back into the agent.

Actions are de�ned by the agent's designer, and provided to it when it is created. This

means that while the set of available actions can change from time-step to time-step this

set must always be a subset of the set of all possible designer-de�ned actions. The agent

can encounter new situations in terms of feature vector inputs, but never new actions.

The agent operates by making predictions as to the rewards which given actions will pro-

duce, both in the short and long terms. Initially we investigate the short term operations

of the agent, which can then be expanded into the long term. Short term actions occur

simply by predicting the rewards for a given action in the next time-step, without consid-

ering any further consequences that action may have. As a result, short term predictions

cannot be used for learning multi-step tasks.

Predictions are made by a collection of processing elements termed `components', each

of which attempts to make predictions of the reward which will be received if the agent

were to take a particular action. These predictions are then used by the agent to select

the action with the highest expected future reward, by picking a single prediction for each

action available at the current time step. This prediction is chosen from the set of all

predictions made for that action at that time-step, and is the prediction with the most

accurate component. Accuracy of a component is a function of its past errors, accumulated

by feedback from all the predictions it has previously made.
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Not all components will make predictions during all time-steps, so the chosen component

will not always be the same. Components are referred to as having a `scope' of prediction,

this scope is de�ned as the subset of states they will attempt to predict the outcomes of.

3.1 Structure

At time-step t the meta-learning agent is presented with a state, st. This state consists of

a feature vector Vt and a set of actions {At1, At2, ...Atn}, which are the actions available

to the agent at time t. From these, the agent must select a single action, Atc, which is

returned to the environment, where c is the index of the chosen action. The environment

then provides the agent with a reward value, Rt.

The agent contains a set of components, C , consisting of components {C0, C1, C2, ...}.
A component is processing element whose goal is to generate useful predictions which

the agent may use. Its internal structure is unimportant from the agent's perspective,

the component simply follows a de�ned set of interactions, receiving inputs and returning

outputs. How it arrives at these outputs is irrelevant to the agent itself.

In general, a component will consist of two functions. The �rst de�nes the `scope' of the

component, the subset of the environment space which it will attempt to make predictions

for. A simple example might be a component which only operates in a given geometric

area. The �rst function takes the provided X/Y co-ordinate, and determines whether they

fall within the area of the world the component has been allocated by the agent. If it is, the

component makes predictions about the e�ects of the agent's actions, if not, it does not, to

avoid reducing its overall accuracy. More complex functions can select which predictions

to make based on other inputs, including possibly inputs taken from other components'

outputs.

The second function is a machine learning algorithm which will make these predictions.

Both of these will use the feature vector presented to the component at each time step,

while the learner will also follow the rewards the agent receives and the actions it takes, so

that it can learn which input patterns combined with which actions correspond to which

received rewards.

When a state is presented at time t, the agent iterates through each component in turn,

presenting each with the feature vector, Vt. Each component Ci has its own output vector

Oi, which it may update at this point. Output vectors vary based on component type.

They must have an output, for consistency's sake, but it may be zero-length. Their con-

tents are designer-de�ned, and should ideally contain any information which is produced

by the machine learner inside the component which may be of use for other components.

It normally contains the last prediction the component has made, but can also contain the

previous error the component has received through feedback, the contents of the compo-

nent's own memory or any other information the designer deems appropriate.
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Components are executed serially, based on the order they were added into the agent,

so the oldest components are processed �rst. Any component may, when its turn in this

iteration arrives, read from any outputs it has been connected to. These connections are

created during creation process of the component, as part of the parameters which de�ne

the component's behaviour. As a result, the supplier components are necessarily older

than the supplied component.

This linking of components allows for algorithm stacking, as the output of one component

can be fed as input into another. It forms a tree graph, with information �owing from older

components' output vectors into younger components' inputs.

Therefore, when presented with a feature vector a component has access to two sources

of information external to itself. It has access to the feature vector Vt, but also may be

connected to and reading from any number of other components' output vectors. This

could allow it to take another component's prediction, perform its own processing using

that prediction as a starting point, and produce a more accurate prediction, which it then

submits as its own. In this way two components would work together to make a single

prediction with a higher accuracy than either could achieve alone.

3.2 Example of architecture as described thus far

Figure 3.1 represents a basic agent, consisting of three components. Black circles are

the outputs, Oi, of the components. Component 1 has de�ned an output array of length

2, Component 2 has an output of length 1, and Component 3 has an output of length 0.

Line arrows represent sources of information used or produced by the components. All

components are using the feature vector which the agent receives from the environment,

while component 3 is also using an input de�ned by Component 1.

Arrows leading to the prediction set represent the predictions made, which occurs in a

fashion described later. Both components 1 and 2 are making predictions as to the expected

value of the currently investigated action for the given feature-vector. Component 3 is not,

nor is it providing any information to any other components, and as such is useless to the

agent during this particular action presentation on this particular time-step.

This pass only consists of a single action from a single time-step, however. Which com-

ponents make predictions can vary from time-step to time-step, but connections between

components remain �xed. This means that it is possible that component 3 is simply a

specialist which only rarely makes predictions. However, it may be that it is entirely use-

less, and neither predicts nor assists other components. If so, component 3 would be a

candidate for deletion, as explained below.
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Figure 3.1: A sample agent's internal structure. The agent is receiving information from en-
vironmental sources (bottom), processing it using inter-connected components,
assembling a prediction set, then returning an action to the environment based
on this set.
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3.3 Component prediction generation process

For each action available to the agent at time step t each component Cj may elect to make

a prediction of the reward the agent would receive if it took action Ati. This prediction

is written R̂tij , where t is the time-step, i is the action's index and j is the index of the

component making the prediction. Therefore it is the predicted value of the reward signal

which the agent will receive from the environment between time steps t and t + 1 if it

selects action Ai in time step t.

Each action is iterated through separately, so each component is run once per action

available at time-step t. This allows each component to produce a new output vector for

each action. A good example of an output might be the prediction that component has

made for that action. This would allow another component, run later in the component

sequence, to base its prediction on that of the previous one, and attempt to improve its

predictive accuracy by combining its own machine learning algorithm's results with that

of its supplier component. Multiple passes, one for each possible action, easily enable

this, with the supplier component outputting its prediction for the currently presented

action, allowing other components to read directly from its output without need for internal

memory.

After an iteration through all components for Ati the parent agent will therefore have

been presented with a set, possibly empty, of predictions for the expected value of Ati,

each in the form R̂tij . From these, the agent must form a single value prediction, R̂ti,

which it associates with action Ati. It goes through each action, assigning to each a single

prediction taken from the set of all predictions made by the components for that particular

action. The ultimate goal is to arrive at a set of such predictions, {R̂t0, R̂t1, R̂t2...}, for
every action index 0 to n−1. t in this case would be the time-step's index, the second value

would be the index of the action. n is the number of actions available at this time-step.

Once each action available at this time-step has been assigned an expected value the

agent can select between them. While the valuations were produced by the components,

their role in the decision making process is now complete. The agent must then select from

a set of options, each with an expected reward. This is a classic RL problem, as the agent

must attempt to balance reward maximisation with exploration. Many strategies could be

implemented without altering the overall architecture. In this case, roulette-wheel selection

is used, in which each action is given a probability equal to its proportion of the overall sum

adjusted expected reward. The alteration is to add a constant k to the values such that

the lowest expected reward is equal to zero. The maximum would therefore be adjusted to

maximum− k. This allows the selection process to handle negative expected rewards.
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The probability for a given action being selected, in the current implementation of

exploration-vs-exploitation, is therefore:

p(select(Ati)) = (R̂ti − k)/
n−1∑
q=0

(R̂tq − k)

3.4 Component Error Comparison

Each component is assigned an `error metric' by the agent, which the agent uses to compare

it against other components when selecting a prediction to use for a given action. This

error metric is a function of three values, the component's average error when predicting

reward, denoted by L, a `baseline error', denoted by B, and the component's index in the

agent's set of agents, j. This baseline prediction is the error a naive predictor would make

if it had the same scope as the component, and is described below.

A component Cj may make a single prediction, R̂ti, for every action i at every time-step

t, following the presentation of state st. Of the actions available at t, only one action may

be selected by the agent, and only predictions made for that selected action are retained

by the agent, the rest are discarded. This prediction can be compared against the received

reward, Rt, to produce the error for that individual prediction, Lt, by taking the square

of the di�erence, Lt = (R̂ti − Rt)
2. The average error L of a component is the average of

all the individual errors for each prediction the component has ever made. The number of

these will be equal or less than the number of time-steps in which the component had the

option to make a prediction, which is equal to the number of time-steps elapsed since the

component was created.

Two sets of time-steps and their rewards need to be compared. The �rst is the com-

ponent's lifetime, the set of all time-steps which have occurred since the component was

created. The second is the subset of those in which the component made predictions. The

�rst set, the lifetime time-steps, is used to establish a `baseline error'.

The �rst step in computing the baseline error is to derive a naive prediction, denotedDtj ,

where j is the index of the component and t is the time-step. This is the average reward

received by the agent during each time-step in the component's lifetime. Each component

therefore has a slightly di�erent Dtj , unless they were created on the same time-step, in

which case they will have identical Dtj .

Since the D value is adjusted at every time-step, as a new reward is received by the

agent from the environment it must be written as Dtj rather than simply Dj , as Dtj may

di�er from D(t+1)j .

The aim of a D value is to �nd the prediction and hence the error a 'maximally simple'

predictive component would make. Such a component would do nothing but record all
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incoming reward for each time-step, average them, and predict this valueD for every action

at every time-step. If a component cannot achieve a lower error than such a simplistic

predictor it is deemed zero-worth. Each component must have its own complementary

`simplistic predictor' running in parallel so that the two of them are compared using the

exact same data.

Every time a prediction is made by a component, and therefore every time its average

predictive error, L, is updated, another complementary prediction is made, which is the D

value of that component. The baseline error for that time-step is Btj = (Dtj −Rt)
2. The

component's baseline error Bt, is the average of all such complementary predictions. The

error metric, denoted Gt, of a component is de�ned by Gt = Lt/Bt, or 1 if Bt is 0. This is

the average predictive error of the component relative to its average naive predictive error,

which it would have achieved were it to simply predict the average agent reward.

If Gtj > 1 the component can be ignored by the agent when selecting which components'

predictions to use in decision making. Such a value would indicate that the component

had an error equal to or higher than its naive comparison predictor, and therefore was

making unhelpful predictions. If Gtj < 1 then the component is making predictions at a

level which is better than chance, and thus can be used by the agent.

This error metric is used by the agent to determine which component's prediction to

employ when attempting to predict the result of an action Ati at time t. The agent is

seeking to select a single prediction for the action's expected reward, and examines all

predictions which the set of components have produced in order to select a single one.

Predictions are compared by taking the error metrics of the components which produced

them, multiplying the younger (in terms of time-steps since creation) component's error

metric by k, and selecting the component with the lower of the two values. k in this

case is a bias value selected by the designer such that 2 > k > 1. It causes the agent

to discriminate between components of similar error-metrics by their age, preferentially

selecting the older component. Older components are chosen in the case of ties.

This slight bias towards older components avoids the agent continually replacing compo-

nents with new ones despite younger components not having usefully lower error rates, thus

removing its ability to build on existing components. This bias was empirically determined

to be necessary, as slight variations in error rates between components are inevitable, re-

sulting in components continually being replaced by identically structured new additions.

These new additions would then eventually also su�er �uctuations in their error rates,

which would allow still new components to take their place. For the tests in this thesis a

value of 1.1 for k is used.

Selecting between multiple components consists of a series of these one-to-one compar-

isons until a single component has been shown to out-perform all rivals. Since component
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ages can be used to form an ordered list, the comparison function outlined above can sort

the component set without inconsistency.

3.5 Valuing and Removing Components

Once a component's prediction has been selected as the predicted result for a given action,

and used as the agent's prediction for the reward obtained if it were to take action Ati,

the component itself is paid. To avoid re-using the term `reward', which is already used

in a reinforcement learning context, the components receive `worth', using a monetary

metaphor. `Payment', therefore, takes the place of `rewarding', and `worth' takes the place

of `accumulated reward'. For every time-step at most one component per possible action

is paid, speci�cally the one making the prediction which was selected for that action, i.e.

the most historically accurate one. However, since multiple actions are usually possible for

any given time-step, multiple components may receive a payment.

A component's total accumulated worth, the sum total of all it has been paid, is denoted

Qj for component Cj . Its worth, however, is its rate of income, not its total accumulated

payment. Its worth is denoted Wj and is Qj/agej

Multiple components are paid as each possible action needs to have a prediction assigned,

in order to compare actions against one another. As a result, despite an untaken action

not being chosen by the agent, the component's prediction was still useful to the agent,

as it was used to know which actions to avoid. Therefore for each untaken action, as well

as the one the agent did choose, a component must be paid. It is entirely possible, of

course, that a particular component might have made several useful predictions, and so be

paid multiple times in a single time-step. This results in the agent making a number of

payments to components equal to the number of actions. These may be to one or more

components, up to a number of components equal to the number of actions, if each action's

prediction was made by a di�erent component.

For each result predicted, the component pays out a �xed value to the components.

This value is arbitrary, as all payment comparisons are relative, rather than absolute. The

payment is provided by the agent to the component which was chosen as the best predictor

for that result. The components then share out worth amongst themselves, by dividing it

equally between themselves and any component they are receiving information from. This

occurs hierarchically, with each component in turn distributing received worth down to

any other components it was using. Once distributed, the worth is simply accumulated

by the components, giving them a lifetime sum total monetary value Qtj where t is the

current time-step and j is the component's index. Its income over time is denoted by Wtj

and is the Qtj divided by the number of time-steps since the component was created.

Distribution down to a component's suppliers occurs by dividing the total worth received

equally between the component which was paid and all other components it is using as
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information-suppliers. These will possibly then distribute the worth they received from the

higher-up component with others, again dividing the portion of the initial reward which

was sent to them into equal portions and passing them down to their suppliers, while

keeping one of the portions for themselves.

A component's total accumulated payment therefore, if payment is Z and it has m other

components it is using information from, is described by:

Q(t+1)j = Qtj + (Z/(m+ 1))

Each of those m supplier components then receives the same amount of worth which the

previous component added to its total worth, but these suppliers cannot directly add it

to their own total accumulated worth. Instead they must divide it between themselves

and their own suppliers equally, in the same process as above. Since no loops can exist in

the supplier-supplied component-to-component links this process terminates with a set of

components with no suppliers.

A component's value to the system as a whole, therefore, is determined by how useful

it is in terms of predictions made, as well as how useful it was to other components,

providing these in turn have a source of payment to distribute to it. It is a function of this

accumulated monetary value Qtj which is used to determine which components to remove,

when a periodic garbage collection pass is performed on the component set.

For removing useless or unnecessary components from the agent's component pool three

similar possible approaches can be used. The �rst is to remove the component with the

lowest average income, that is to say taking the component's monetary total Qtj and

dividing it by the number of time-steps which have elapsed since that particular component

was created. Provided there is also a minimum age before which the components cannot be

removed this technique works well, and allows the system to remove components which are

either inaccurate, representative of an exceedingly rare environmental feature, or simply

useless. This value is denoted Wtj , the component's income over time.

The two other methods involve dividing the component's worth not by its age but by its

computational resource use, either by clock-time used to carry out its internal computation,

or its clock time plus its maximum-ever memory use. Their relative worths would need to

be de�ned by the designer, as well as the thresholds above which the agent starts removing

components. While not employed in this thesis, such component-removal strategies could

be useful for creating a maximum-performance agent, in terms of real-time decision making

on �nite hardware. It could certainly be interesting as a further study to see how an

agent attempts to learn an environment if its most accurate and useful algorithms were

computationally expensive and their use needed to be limited to only the most di�cult

parts of the problem.
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Figure 3.2: A sample agent paying a component for its prediction. This is for a single
action in the given time-step, multiple actions can exist, so this sequence can
occur multiple times during the same time-step. The component paid by the
agent for other actions may be the same or may be di�erent, but the internal
links between components remain the same. In this example, component 2 has
been paid a reward denoted k for its prediction. It has one supplier component,
so must share it between the two of them, each therefore receiving (k/2). Com-
ponent 1, however, has two suppliers of its own, so takes this k/2 and divides
it between the three of them, each therefore taking (k/2)/3 payment. They
add this to their total worth, and their worth to the agent is that total divided
by the number of time-steps they have been in existence, that is to say their
income over time.
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3.6 Component Addition and Meta-Learning

Meta-learning occurs by learning which components to add to the pool. This learning is,

in turn, accomplished by components. At designer speci�ed times (usually either following

a high error or at �xed time periods) the agent is prompted to create a new component.

The designer will have speci�ed a series of archetypes from which it can choose, which may

also have a set of parameters to set.

These are a set of actions, from the agent's perspective. It is presented with a set of

options in the form of actions, and must take them, similar to how it takes other actions.

Meta-learning was designed to be as similar to ordinary Reinforcement Learning as possible,

to simplify architecture and reduce con�icting design goals.

When creating a component, the �rst action the agent must take is to select a con-

�guration for the new component, followed by the parameters this con�guration requires

for implementation. A common con�guration is for the component archetype to be the

machine learning algorithm it contains, and its parameter to be its scope of prediction.

The agent therefore must select a type of learner and specify how specialised it wishes it to

be. The utility function in this case, which the agent attempts to maximise, is the future

worth of this new component. This is a quanti�able, learnable, signal.

The reward function for any action taken during meta-learning is simply the total accu-

mulated worth of the created component, Qtj , after a �xed number of time-steps from that

component's creation. The agent is therefore trying to predict the total reward the compo-

nent will receive if it is created in a given con�guration, so it can select the con�guration

which maximises total accumulated worth.

For every option available in the creation of the component, say every type of machine

learning algorithm available, predictions are made as to how much worth a component

using that setup would eventually accumulate. One of these options will be selected, and

the relevant predictions stored alongside the newly created component. After a designer-

speci�ed number of time-steps (usually in the order of magnitude of a few million) the

component's total worth is returned, and these predictions' accuracies can be evaluated.

Components specialising in making predictions concerning future worths of other com-

ponents are the source of the meta-learning in the agent. They make predictions about how

useful new components would be if given certain parameters, then wait for feedback from

the agent. This is a slow process, but allows these components to determine which types of

parameters (machine learner or scope for example) result in high-worth components, and

which result in low-worth components which are removed.

These components are termed meta-learning components. Due to the slow nature of their

prediction-feedback (they must wait for other components to be fully evaluated before
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receiving feedback) they must be handled slightly di�erently from normal components.

They still receive worth for making correct predictions, still compete mutually, and still

take outputs from other components. However, they are shielded from removal for a long

grace period, to allow their long prediction cycle to �nish. As a result, they must only

be added very rarely to the component pool, to prevent it from being �ooded with meta-

learning components.

This results in a somewhat distinct class of components, which are added and removed

at a slower rate. In other respects, however, they operate normally. This means that they

themselves are subject to replacement by superior competitors. Newer meta-learning com-

ponents will be able to use the outputs of normal components to improve their accuracies,

and will compete to �nd the best for each prediction type (one component may be best

at predicting the worth of machine learning algorithms, while another might be best at

selecting the scope).

Meta-learning, therefore, is in learning to predict which types of new component will be

useful. This is learnt by the meta-learning components. This mechanism allows the agent

to create better components for future tasks, improving its performance on those tasks.

Meta-meta-learning, however, is very slowly learnt by competition between the meta-

learning components. This mechanism has no special attention given to it, it is simply

hoped that these meta-learning components will be able to build on the information gener-

ated by non-meta-learning components, the `normal' components. If they cannot, the agent

remains entirely functional without meta-meta-learning capabilities. In�nite recursion of

meta-learning may be interesting, but it is not the focus of this thesis.

3.6.1 Pseudocode: Agent's main decision loop

Algorithm 1 represents the basis for how the agent selects actions from those presented

to it. The aim is to arrive at a prediction for the expected reward of each action available

to it at the current time-step. It can then select a high-expected-value action, and as such

maximise its lifetime total obtained reward. A degree of randomness is introduced in order

to allow exploration, in a classic RL exploration-vs-exploitation design.

The fundamental process is to look at each available action in turn and present it to

the agent's set of components (lines 2 to 8). A subset of the components will then make

a prediction. The agent will gather these into a set (line 9), containing all predictions for

this particular action, set P. From this gathered set of predictions the agent then selects a

single prediction (lines 13 to 31). It selects this by looking at the components' past errors,

and selecting the one with the lowest previous error. This "best prediction" is then used

as the agent's own prediction as to the reward it would achieve in the next time frame if

it were to select the action Ati. Once every Ati in st has been assigned an expected value

by the agent, it then selects an action based on these expectations.
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Algorithm 1 Agent's main decision function, taking a state and returning an action.
Inputs

st State provided by environment, container for all other inputs as well as actions
Vti Feature vector
R(t−1) Reward from previous time-step

Steps

1: R = {} . New empty ordered array for predicted results of all actions in st
2: for i = 0→ number_of_actions do
3: P = {} . New empty list for predicted result for action Ati

4: for j = 0→ number_of_components do
5: Cj .takeData(Vti)
6: Cj .takeDataFromOtherComponents()
7: if Cj .currentFeatureIsInScope() then
8: P = Cj .generatePrediction()
9: P = P ∪ P

10: end if

11: end for

12: . Predictions for action i have been made, now a single one must be placed into R
at index i

13: if P.isEmpty() then
14: R[i] = 0
15: continueLoop
16: else

17: bestPrediction = P[0] . Set default to be �rst in list
18: for j = 0→ number_of_predictions_made do
19: . //he1 is the error of the component which made the current-best prediction
20: he1 = bestPrediction.creatorComponent.historicError
21: . //he2 is the error of the currently considered prediction's creator
22: he2 = P[j].creatorComponent.historicError
23: he2 = he2× k
24: . //The second prediction must be from a younger component, because the

component list is ordered by age. As such, he2 must be penalised, multiplying it by
the bias k

25: if he2 < he1 then
26: bestPrediction = P[j]
27: end if

28: end for

29: R[i] = bestPrediction
30: end if

31: end for . Each action has now been assigned a predicted result
32: min = minimum_value_in_list(R) . Set minimum to lowest predicted value (can

be <0)
33: probabilities = {} . Empty list for all the action-selection probabilities
34: for i = 0→ number_of_actions do
35: R[i] = R[i]−min
36: sum = sum+ R[i]
37: end for

38: for i = 0→ number_of_actions do
39: probabilities[i] = (R[i])/sum
40: end for

41: action_index = select_by_probability(R)
42: return action_index
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It is worth noting that while every action has a set of predictions made of its expected

value only one action will be selected by the agent. Therefore only the predictions made

for the chosen action can be evaluated. All other predictions must be discarded, and

their creator components' errors remain unchanged. The entire set of predictions, not just

the bestPrediction, but the P set for the chosen action, is evaluated when the reward is

obtained. This means that every component which made a prediction as to the result of

the chosen action has its historic error updated in the next time-step.

3.7 Similar Architectures

Two other approaches exist in the literature which are su�ciently similar to the SAMLA

architecture to require in-depth comparison. This comparison occurs after a discussion of

the structure of the SAMLA architecture to allow technical details to be compared.

The two approaches are the AERA/EXPAI agent architecture and the Hayek machine.

Both are approaches which revolve around an agent composed of multiple sub-agents, which

are added and removed based on usefulness. The EXPAI architecture, of which AERA is

an implementation, is more structurally similar to the SAMLA architecture of this thesis,

but the Hayek machine served as an initial inspiration for SAMLA.

3.7.1 Self-modifying AERA and EXPAI frameworks

AERA [15,25,27], and the broader category of architectures EXPAI [26], of which AERA

is an example, are self-modifying frameworks which use mechanisms similar to this thesis's

SAMLA architecture.

In the AERA family of architectures an agent attempts to work towards a drive, roughly

similar to a reinforcement learning agent's utility function, based on data received from

the environment. It accomplishes this by subdividing the task between multiple models,

termed granules in the EXPAI literature, similar to this SAMLA's components. To

reduce ambiguity, the term `granule' will be used for these elements.

These granules are similar to components in that they take inputs and return predictions

and outputs. In AERA, the granules use pattern matching, establishing a set of precondi-

tions which must be met for a pattern to be considered "present". They can then form a

prediction of a future condition. This condition may be goal-related, therefore serve a role

similar to that of prediction in SAMLA. It may also be a prediction of the ful�lment of a

second granule's preconditions.

Planning can therefore be performed by taking a given set of truth values (environmental

or granule outputs), evaluating expected future truth values given particular actions, then

iteratively progressing in this fashion. Reverse is also possible, by taking desired future

conditions, then running the process backwards, investigating which conditions would need

to be true a time-step t− 1 for the desired conditions to be true at time-step t.
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Granules are evaluated based on their predictive accuracy and are able to be combined

hierarchically, by referring to the truth values of granules created earlier. This is similar to

SAMLA, which rewards components based on predictive accuracy, and allows components

to stack by building on the outputs of others.

A key aspect of the EXPAI architectural approach, compared to the AERA approach, is

the self-improvement drive. Based on a formal de�nition of curiosity by Schmidhuber [23],

the agent is motivated to create new, e�ective, granules. This provides a self-motivated

learning drive, which allows the agent to autonomously learn in periods where no designer-

provided drive is applicable. This occurs in a learnt way, allowing experience to guide the

creation of new granules.

Comparison Many aspects are therefore similar between the architectures outlined in

this paper and the AERA/EXPAI model. Components/granules are added to cover gaps

in the predictive abilities of the agents. They are removed if found to be low accuracy,

kept if shown to be useful.

The �rst di�erence revolves around the primary goal of the SAMLA architecture. As an

attempt at creating a meta-learning reinforcement learner, the components are machine

learning algorithms in and of themselves. The agent selects not only what to use as their

target (for some component types) but also which algorithm it expects to have the best

results on the problem at hand. While expansions have been proposed for the EXPAI model

which would provide learning capabilities to the granules these have yet to be implemented.

This represents a major di�erence, given the focus on meta-learning in SAMLA.

Granules in the AERA model are created by a �xed granule-creation subsystem. No

meta-learning occurs, as there is no feedback nor learning structure within this subsystem.

A complex system exists to infer cause and e�ect, and create sets of new granules to

investigate many possible cause-e�ect links at once, but no learnt targeting occurs.

Granules in the EXPAI (but not the AERA) architecture can guide the agent towards

situations in which it creates new granules, but are not linked into the granule-creation

mechanism. This means these architectures are learners, but not strictly meta-learners.

The second di�erence is in the nature of the outputs. SAMLA's components output

expected utility following actions, as well as arbitrary data from their machine learning

algorithm. Such data can be their prediction, some stored data, meta-data (recent error

for example) or any other numeric value. This di�ers from the AERA model which allows

only �nal outputs and relevant information such as priority and con�dence. By allowing

partially-processed information to be output in a component-de�ned way the SAMLA

architecture allows a wider variety of types of information to be extracted from a component

for use in later processing. It also allows for a slow selection for component-types which
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provide useful information, without requiring designer knowledge of which information-

sources would be useful.

This di�erence leads to certain di�erences between the capabilities of the two agents.

This work explores the agent's ability to navigate grids and recognise images, while the

AERA/EXPAI model revolves around linguistics and planning/simulation. These are two

key �elds in which one architecture has an advantage over the other.

SAMLA has the advantage in image classi�cation and similarly structured environments,

as its components are larger and have greater internal power. Existing algorithms can be

leveraged, allowing the agent to represent a `messy' concept such the di�erence between

hand written digits within a single component, rather than requiring multiple granules

to encompass the di�erence. This learning can be performed within the component itself,

reducing the demand on the component-creation mechanism, as it can take a more abstract

and high-level approach to component creation.

In the AREA/EXPAI architectures, conversely, the boolean representational structure

of granules makes them ideal for planning. Granule predictions are for state transitions,

so the entire agent is primarily geared towards plan-based action, as opposed to standard

reinforcement learning, which simply deals in utility function expectations. Evidently there

are many environments in which reasoned planning is a far more e�ective solution than

simple utility function expectation maximisation.

Memory structures are another di�erence. In the SAMLA architecture, the components

are able to store data internally, and share it with other components (an example is the

recent-error sharing task). The component worth metric allows components to exist which

serve simply as short term memory blocks. EXPAI architectures have a shared global

memory, recording the results of granule pattern matching, and storing active predictions

and goals. This allows the SAMLA architecture to use multiple di�erent forms of memory,

such as bu�ers, recursive neural networks, reservoir methods or other, and discard those

which prove less useful.

Future work While mostly unimplemented, the future work section of this thesis lays out

certain other key di�erences between the architectures, in terms of which future tasks the

two approaches would be suited for. Both architectures are intended for further expansion,

with works on EXPAI going to length to discuss a roadmap for the future of the architecture

[26].

Both architectures aim to implement an arti�cial curiosity function which acts as an

internal drive to create new useful components/granules. In this, the EXPAI structure is

superior due to its mathematical underpinnings providing a strong plan of attack. This

work's curiosity drive is primarily based around the work of Oudeyer et al [16], and has

yet to be tested within the SAMLA architecture.
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Conversely, this work outlines and tests a knowledge representation mechanism which

EXPAI lacks. By dividing the learning task between the structure of the representation

(the components) and the information which is contained within that representation (the

information stored by those components), the agent has a very dynamic manner of storing

information.

As outlined and tested in section 5.0.2, this mechanism allows a second type of infor-

mation seeking behaviour. Shorter term then component-creation, it assumes that certain

properties of the environment will be accessible to the agent, but not immediately. The

agent must therefore take action to acquire this information. If this property is highly dy-

namic, the agent may have to repeatedly go check its value before taking an action which

depends upon it.

An example might be the weather. The agent may need to take a set of actions to check

the weather, rather than have access to it immediately. The representation here would be

that there exists a property (the weather) which a�ects the outcome of the agents actions.

A clear structural distinction exists within the agent between two key types of knowledge.

Firstly that weather exists, and how weather a�ects its actions. Secondly what the weather

is at this current time.

The mechanism allows this second type of knowledge to be handled in a separate fashion

from the �rst. The �rst is slow, and requires new components to be created, it is a

permanent part of the agent, and must only be learnt once. The second must be constantly

rechecked. The agent needs to learn a series of actions to check the weather, so that it can

do so repeatedly. It also needs to be able to evaluate the worth of that piece of knowledge,

and the reliability of the knowledge once obtained (it will be useless after a week, but still

valid after ten seconds, with a learnable trustworthiness curve in between).

This work outlines and tests a clear mechanism for hypothesising the existence of such

information, learning the process of information acquisition, and attributing a quanti�able

worth to that information. In SAMLA, learning about the nature and reliability of in-

formation occurs within components, and can be handled competitively to �nd the best

algorithm for the job. The meta-learner need not concern itself with the minutiae, but

must only �nd an algorithm to delegate to, a far easier job.

This delegation of tasks is expected to greatly improve the agent's performance on such

jobs, which are expected to be common in environments where the agent is mobile but

has senses which only cover a small portion of the environment. The ability to seek out

information is key to autonomy, and simplifying the learning process allows otherwise

intractable problems to be handled with ease.

In conclusion, the di�erence between the architectures comes primarily from scale of

components/granules and the mechanism by which they are generated. This paper has
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larger granules (components), containing machine learning algorithms, and uses the same

competitive-prediction-by-granule mechanism for solving its primary task as it does for

creating new granules. It is therefore a meta-learner, as it has one or more learning

algorithm learning to create new learning algorithms to solve a task.

The AERA/EXPAI approach revolves around far smaller granules, individually contain-

ing far less information and representing far less of the total environment. Conversely, it

has far more granules, and they can be evaluated at a faster rate, and created in greater

numbers. This allows more �ne-tuned removal and addition. They are also specialised in

planning, and operate well in tasks which require these abilities.

Both architectures could be adapted to be more similar to the other, but as they stand

are very di�erent in terms tasks they are suited for and design goals.

3.7.2 The Hayek machine

This work's initial inspiration was the Hayek machine, described in Baum's paper [3],

although the two architectures di�er greatly. The key feature this thesis takes from the

earlier paper is the concept of a set of agents forming a super-agent, by subdividing the

problem between themselves.

In the Hayek machine the components bid for access to the world. One agent wins the

bidding for each time-step, and may select which actions the agent as a whole takes. If it

achieves reward from the environment it may keep it, allowing it to win further bids. Com-

ponents also pay others for setting up situations which they bene�t from, allowing chains

of components to perform actions in sequence, generating reward for the last component,

which pays it back down the line.

This di�ers from the agent presented in this work, as it allows components to directly

take actions on the agent's behalf, rather than components to act as advisors to the agent

by informing it of the expected outcomes of actions. One key reason the components as

predictors approach was preferred over components as action-performers was the case of

negative rewards. In the Hayek machine the components have a strong incentive to bid

for control over the agent when the expected reward is positive, but have no incentive to

bid for control when an negative reward is inevitable. This would prevent the agent from

learning to select the lesser of two negative rewards, as no component would choose to take

this portion of the environment.

Another key choice in using predictions rather than providing direct links between com-

ponents and actions is that of bucket-brigade style component linking. In the Hayek

architecture each component exists alone, and must take the agent's inputs and produce

an output, and as such the agent overall cannot outperform any component's accuracy. In

this work's architecture, however, components may use other components' predictions as

starting points for their own. Therefore algorithms which would, in isolation, only have

marginal success can be combined into more e�ective structures.
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This use of predictions also adjusts how the agent selects and rewards components. In

Baum's work, the components receive reward from the environment at the same time the

agent does, then share it between themselves. In this work, however, the components are

paid by the agent without any direct link between the reward, or worth, they receive and

the reward the agent receives.

In terms of component generation the agents also di�er. The components in the Hayek

machine are generated at random, from the space of all possible `scopes'. These scopes, as

in the work, as the regions of the problem space which a given component is responsible

for. This does not allow the agent to select the composition of its own components,

which the agent architecture this work describes uses to enable meta-learning. It seems

possible to construct a Hayek machine which allows learnt component creation, by allowing

components to bid for the task of component creation. They would then receive reward

for doing so after their `child' component had been in existence for a given number of

time-steps, allowing its contributions to the agent's performance to be evaluated.

In conclusion, it can be seen that while the two architectures share similarities they

are functionally very dissimilar. A key driver of this is their di�ering goals. The Hayek

machine is designed as a pure Reinforcement Learner, while the Self-Additive Meta-Learner

is designed to bring meta-learning capabilities to the �eld. While this work is inspired by

Baum's work, it is su�ciently di�erent to be considered its own architecture, rather than

be thought of as a variant of the Hayek machine.
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4 Validation Experiments

4.1 Introduction

This section tests the essential foundations of the agent, verifying that it behaves as in-

tended, with regard to component creation and evaluation.

The desired outcome is that the agent is able to form a pool of components which are,

when combined, able to predict the rewards it will receive in its environment. Amongst

these, the agent must be able to subselect the set of `useful' components, those which

produce accurate non-duplicate predictions. Components which have a lower error rate

must be privileged over those with higher errors, and those which make the same predictions

as other, older, components must be ignored as redundant. This must be accomplished

by the worth metric, which should allow a sorting of the components from most useful to

least, in terms of improvement of overall predictive accuracy.

The tests in this section are designed to test the architecture's capabilities in a way

which covers as much of its desired range of capabilities as possible. The goal was to

produce a reinforcement learning agent out of the SAMLA architecture, which focuses

on meta-learning. The �rst test veri�es that the agent's core structure, the component

addition, valuation and removal system is a valid and possible approach to self-addition.

Most subsequent tests then show meta-learning capabilities, each attempting to cover a

di�erent type of meta-learning.

4.2 Component Valuation Test

This test is designed to demonstrate the ability of the system to attribute numeric worth

to components in order to reach an optimal set of components. Such a set would be

the one which, between them, best predicts the agent's environment. The agent must

attempt to maximise its predictive accuracy using a �nite number of components of limited

computational capabilities. As such, worth must be assigned to order the components in

terms of usefulness. Since lowest worth components are removed �rst, the worth must

correspond to how much the agent's performance would be damaged by the component's

removal, that is to say how `useful' it is.

The task chosen to test this is a simpli�ed version of a reinforcement learning task,

adapted to remove the need for long-term credit assignment, in order to more easily explain

the nature of the components the system is producing.
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The environment for this test is a simple 25 × 25 grid, with (x,y) co-ordinates ranging

from (0,0) to (24,24). Each cell has a particular value assigned to it, de�ned by 17 −√
(x− 12)2 + (y − 12)2 where x and y are the cell's (x,y) co-ordinates. This creates a

gradient from the furthest corner, with a value of just above 0, to the central cell (12,12)

which has a value of 17. The agent has a set of four actions, representing movement in

the four cardinal directions. It must predict the value of the cell it will arrive in following

any particular action. Once arriving at the (12,12) cell it is moved to a di�erent random

position on the grid. The reward received is the value it must predict, the value of the cell

it arrives in. Hence each of the four actions available in any square have di�ering rewards.

The goal of the agent is to maximise total reward received, which is best accomplished by

repeatedly travelling to the (12,12) cell by the fastest route.

Component architecture for this task The agent's only feature input in this circum-

stance is its (x,y) position on the grid, thus this is the only information available to the

components. This information is entirely su�cient to provide perfect predictions of future

reward.

Only one component structure has been provided to the agent for this task. This com-

ponent architecture is an average-value predictor which takes the (x,y) position the agent

was at when the component was created and a parameter determining the scope of the

component's predictive �eld. The initial (x,y) position, the feature vector the agent was

presented with on the time-step when it created this particular component, is referred to

as that component's `formative vector'. It de�nes the centre of the portion of the environ-

ment the component is responsible for. The predictive �eld draws a circle centred on the

formative position vector so as to encompass a proportion of the seen inputs equal to that

demanded by the provided scope-parameter.

This is accomplished by having the component record the agent's input vector on the

time-step when it was created, as well as the feature vectors from its �rst 1024 time-

steps. It orders these by Euclidean distance from its formative feature-vector, and selects

a distance which separates the p1024 closest samples from the rest, where p is the desired

proportion. This has a risk of bias due to the sampling being only from a limited amount

of the component's total lifetime (only the �rst 1024 time-steps) but is computationally

inexpensive and produces acceptable results for this test's purposes.

When the agent's input indicates that it is within a component's chosen circle, the

component then averages all seen grid-values (which are returned as reward signals to the

agent) for each of the four cardinal movement actions. It then predicts these averaged

values whenever it determines the agent is within 'its' part of the environment. As such,

the probability that this component makes a prediction at any given time-step is p. In

other cases the component simply skips that time-step, and the agent must use another

component as a source of predictions.
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Components can only store a single expected value for each action, internally, regardless

of how many grid-squares their predictive scope covers. Since a component which encom-

passes more than one square on the grid will have to average its predictions across multiple

squares, each with di�ering rewards, components lose accuracy as their predictive scope

increases.

This sets up a balancing issue for the components. Their predictions will gain accuracy

as their scope decreases, as a large scope will encompass too many di�ering values from

too many parts of the grid for their prediction to be competitive against those of other

components. Conversely, too small as scope will provide far too few chances at making

any predictions, and components only receive worth for predictions made. This balance is

controlled by the scope parameter, passed when the component is made.

The scope parameter is provided by the agent, and can therefore be meta-learnt to be

optimise component creation. Other than this, no meta-learning can occur for this test.

Components are created periodically, once every 1667 time-steps, rather than in response

to learnt responses by the agent or to environmental cues.

When a component is created, the agent is able to assign it a proportion of the environ-

ment to cover, its `scope'. This is selected by the agent from a set of 16 options, with the

options being 1/2k/2 for k ranging from 1 to 16. This provides the agent with, if it can

meta-learn this parameter, a way of creating components which will best balance quantity

of prediction with quality of prediction.

Five separate runs were performed, each for 250,000 time-steps, with a component cre-

ated every 1667 time-steps. This lead to the creation of 149 components, of which only

97 were kept. This is due to the presence of 3 meta-learning components, not included

in this count, which counted against the 100 maximum-component cap. This cap was set

unnecessarily high to allow a large number of components to be preserved for study.

Meta-learning components are, by necessity, handled di�erently to non-meta-learning

components. While normal components make predictions about the reward received by

the agent if it takes particular actions, the meta-learning components make predictions

about the worth a component would have if it were created with a particular parameter

set. The normal components receive information about their predictive accuracy in the

next time-step, but the meta-learning components must wait till the component whose

worth they were predicting has aged enough for this to be known. As such, the agent does

not remove a component marked as a meta-learner until it has gone through a su�cient

number of time-steps to have received enough feedback on its predictions to evaluate its

predictive e�ectiveness. This `su�cient number' is a designer set parameter, which for

these tests was set to 16,000,000 time-steps.
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Figure 4.1: 5 agents' component error against component scope

The results from this test showed that the agent is able to correctly assess components,

and is able to use generalists when they are the best choice, but replace them with spe-

cialists where available.

Component Error against Component Scope Figure 4.1 shows an analysis of 5

agents' components, comparing error and scope. It con�rms what was expected, that the

size of a component's chosen environmental scope, the part of the environment which it

will make predictions within, is linked to its error. The larger the range of predictions a

component attempts to make, the worse its accuracy at those predictions.

It is worth noting that some components failed to correctly match their actual scope,

the proportion of the time-steps they made predictions in, to their scope-parameter. This

resulted in them taking too much of the environment as their scope (those which are at

1.0 or near it in Figure 4.1). This is entirely expected, considering the limited information

available to these components. Since components must attempt to learn for themselves the

range of environmental values, then learn to subselect from these to match their provided

scope-parameter, they are vulnerable to various ordinary issues relating to sampling and

data sizes. The agent's architecture does not depend on the success of any individual

component, so if these �aws cause the component to perform worse than it otherwise

would it can simply be replaced by another.

Component Worth by Age The agent only has need of a single component per predic-

tion, and will select older components preferentially. If two components make predictions

as to the results of the same action at the same time frame, and have almost identical
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Figure 4.2: Component error against component scope, using data only from the �rst agent
to run, demonstrating that the shape of the distribution for individual agents
is similar to the combined graph 4.1

historical errors, the agent will use the older of the two. As such, components made early

on in the agent's lifetime have a signi�cantly higher chance of having high worth, as they

will have 'claimed' parts of the environment, preventing any new components from gaining

worth by making predictions while the agent is in those parts of the environment.

Components are considered to have an `almost identical historical error' if their errors

are such that the error of the elder component is less than a factor of k greater than the

younger component, where k is a small value greater than 1. For this trial, this value has

been set at 1.1. Higher values increase the improvement a new component needs to make

on an older component's error to be accepted as superior, while lower values, down to 1,

make it easier.

Values of 1, in which errors were compared against one another fairly, were shown to

lead to excessive stabilisation times, with large numbers of components being replaced

without improvement to the agent's overall predictive e�ectiveness. This is due to very

small di�erences in historic errors having too large an impact on the agent's architecture.

Conversely, values of 1.5 and above lead to inferior component maintaining their positions

to the detriment of the agent's performance.

Figure 4.3 shows that the agent is valuing older components more, therefore preserving

those it has at the expense of the new, all other variables being ignored. This is necessary for
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Figure 4.3: Component age against component worth. Component ages are plotted as
age/5000, for ease of reading

more complex component-component interactions, as it allows the output from older com-

ponents to be used by others without risk of these older components being pointlessly re-

moved.

It also demonstrates an ability to value components in relation to the whole set. New

components which perform identical tasks to existing ones are useless to the agent, and

are valued as such. Since low-worth components are removed �rst should the agent run

out of space for new components this mechanism results in the agent not losing predictive

capacity, as it is only removing redundancy.

Worth against Scope As previously discussed, a component must balance its scope of

prediction, the amount of the environment which it makes predictions in, against the error

it incurs from attempting to learn such a large area. These errors are competitive against

the other components which have predictive scopes which overlap with its own. Only the

most accurate (as determined from past predictions) component will be chosen for any

particular action at any particular time-step, so to gain worth a component must be the

most accurate at least some of the time.

Figure 4.4 shows the worths the components of the �ve agents achieved, plotted against

their scope. As seen from this �gure, several strategies exist for a component to gain

su�cient worth to be kept. These correspond to the parameters the agent provides when

the component is created, with the agent attempting to maximise the worth of its new
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Figure 4.4: Component worth against component scope.

component.

The most reliably high-worth form of component is the moderate scope option. Those

ranging between 0.1 and 0.4 in terms of proportion of the environment predicted exist in

the highest density of high-worth components, and so have the highest chance of being

a high-worth component. These moderates balance accuracy against scope, and so while

an extreme specialist component might eclipse them occasionally, this component would

necessarily only make predictions rarely. The moderate would therefore still have an ac-

ceptably large amount of the environment in which it was the most accurate, and so would

accrue an ample amount of worth to be preserved. These components divide the environ-

ment into patches, with the number of patches determined by the number of components

the agent is permitted to build.

The specialists (those below 0.1), on the other hand, employ a strategy of guaranteed

highest-accuracy at the cost of having limited options to use this accuracy. While their

predictions will always out-perform other components' predictions, the agent is rarely in

the part of the environment they are able to handle, so they rarely receive worth. It can

be seen that as scope decreases, so does the maximum possible reward. If a component is

so specialised the agent almost never uses it it is a prime candidate for removal, so should

have low worth. The agent would clearly not lose much predictive accuracy without it.

These components only persist if they serve the role of hyper-specialist in a part of the

environment the agent visits regularly.

On the other range of the scale are the extremely high scope components (> 0.4). These

compete with one-another almost all the time, as their scopes overlap. As such, only very
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Figure 4.5: Expected worth of parameters.

few can gain worth, even without competition from more specialised components. Against

these most specialised components they will also fail to gain worth, as their errors are

high due to the need to average across so many di�erent domains. Their key advantage,

though, is that they win any competition in which they are the only competitor. With such

a large scale they cover many areas which no other component does. While the agent will

eventually �ll in these regions will more accurate components, during the initial learning

phase these components can make huge numbers of predictions. These components serve

the role of fallback predictors, used if the agent has nothing better to use.

This may be a large proportion of the time, especially during the early learning period,

so a generalist component may accumulate large amounts of worth before competition

arrives. Even afterwards, if competing components are not evenly spread it may still have

a high proportion of its predictions be accepted without competition. This results in the

highest-worth components being generalists.

Meta-Learning of component scope parameter

While this test only had a single component type, the agent was able to assign the scope

to the new components it created. As such, it was able to learn which values produced

the highest worth components. The parameter was a value between 0.5 to 0.00276, chosen

from 16 options, each 1/(20.5) smaller than the previous.

The expected worth of a component, for each of these parameter options, is shown in

Figure 4.5. It is after the full 250,000 time-steps of training, allowing su�cient time for a

degree of meta-learning. Figure 4.5 indicates that, on average, the agents expected high-

45



scope components to be worth a moderate amount relative to other components. The

highest expected worth occurred between 0.09 and 0.02. Anything past that, those which

would lead to components responsible for less than 0.02 of the environment, was expected

to produce very low worth components.

The values on predicted in Figure 4.5 are not directly equal to the component worths

seen in previous �gures. Those are total worth received by component divided by age,

while this �gure displays expected total worth received. Components are ranked against

each other by worth/age in order to allow newer components to be added into the agent's

component pool, and compete fairly against existing components. If a newer component

is now achieving a better worth/time_step than an older component the older of the two

should be removed, regardless of its total lifetime worth accumulation, since it has now

been superseded.

When the agent is selecting which components to build and which parameters to use,

however, it is simply concerned with the total worth the component will accumulate before

the evaluation of that component occurs. Since this evaluation occurs after the same

number of time-steps for each component there is no need to divide by age.

In terms of meta-learning, Figure 4.5 indicates a degree of success. Certainly the ex-

tremely low scope values (<0.02) were seen to result in extremely low worth components.

This would translate to far fewer components being made with these parameters, therefore

improving the agent's overall performance, as such components contribute little to the

overall predictive e�ectiveness of the agent.

A greater number of components would need to be created, in a variety of separate

environments, for actual meta-learning to occur. As with any machine learning, meta-

learning depends on su�ciently large data sets to function. This will be investigated in

later tests.

4.3 Meta-Learning Demonstration, using the Weka toolkit

and the MNIST dataset

This test examines how the agent would select between a set of machine learning algorithms

to best maximise its predictive accuracy. It uses �ve algorithms from the Weka toolkit [13].

The task is a visual recognition task between two di�erent characters from the MNIST

dataset [33], speci�cally classifying between the digits 4 and 5. The MNIST dataset was

chosen for its common usage in machine learning �elds. Rather than simply randomly

subdivide the data to form training and testing subsets, it uses the human generated

handwriting from separate individuals between training and testing, leading to far greater

con�dence that success on the MNIST data would translate into success on newly acquired

real-world data.
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Figure 4.6: Example of MNIST data. The character partially out of frame is intentional,
and is how a portion of the data was presented to the agent. For ease of
viewing, all �ve images have been rescaled from 28× 28 to 56× 56 pixels, with
no interpolation.

To reduce the accuracy of the algorithms, to improve test clarity, the characters are

randomly translated by a few pixels. The size of the transform is uniformly distributed,

independently on the x and y axis, to a maximum magnitude of half an image size. Images

are 28 × 28 pixels, therefore maximum absolute transform distance per axis is 14 pixels.

An example of �ve such images is available in Figure 4.6.

4.3.1 Structure of the test

1024 training images were generated for the two classes in this classi�cation task, for a

total of 2048. The two classes were the characters `4' and `5'. All images were taken from

the MNIST training set then transformed by slight tranformation. This transformation

consisted of two translations, one on the x and one on y axis. They translated between 0

and 14 pixels, randomly chosen uniformly. Images were allowed to lose parts of the glyph

in this process, if it was partially translated out of the image. This data would simply be

lost to the agent.

The images were then presented to the agent as a 768 element input vector, with a

numeric value representing the class provided in the next time-step as reward. This allows

the agent to view the problem as a prediction task, as it is predicting the next value of its

reward signal based on the input feature vector. Both image sets were merged and shu�ed

into a single training set which was presented to the agent twice. During this time, the

agent was permitted to create 6 separate components, which were trained on the presented

data, attempting to learn then relationship between the data and the reward signal.

The components available were simply adapted classi�ers, designed to either predict 1

or 0, depending on the class. They adapted the reward signal into a boolean class signal

for use by the weka classi�ers. Every component had a full scope, requiring it to make a

prediction in every case. This resulted in only one component being 'chosen' by the agent.

It received reward, and was used for future predictions, while all others would receive near

zero worth, as they had their predictions be ignored. As such, the only way to maximise

component worth was to reduce component error, by picking the component type with the

best chance of correctly predicting the class from the input features.
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After the two passes through the training data, a new testing set was derived from the

MNIST data, again with translations. This testing set was taken from the MNIST testing

corpus, and consisted of, as with the training set, 1024 instances of the character '4' and

1024 instances of the character '5'. The reward signal was disabled, preventing the agent's

components from learning any further from this data.

Meta-learning was made possible by repeatedly presenting new training and testing sets

to the agent. After each presentation all �rst-level learners, those predicting the classes of

the presented glyphs, were purged. Meta-learning components, however, remained.

All that remained in each cycle was the components responsible for predicting the worths

of new components, those which enable meta-learning. A new test could then be run, gen-

erating a new set of components on a freshly generated training and testing set. These

image sets would be randomly generated by subselecting from the MNIST corpus and

translating the characters position, leading to a structurally similar but still distinct prob-

lem from the previous. 50 tests were performed, after which the agent's expectations for

the worths of each component type was recorded.

Six separate component types were available to the agent in this test, corresponding to

six separate Weka algorithms. These were:

1. A Multilayer Perceptron

2. A C4.5 Tree

3. A Naive Bayes Tree

4. A Logistic Linear Model

5. A Voted Perceptron

6. An Instance Based Learner (closest single instance)

Where possible, they used the default parameters supplied by Weka. Only the multilayer

perceptron had its parameters changed, to alter the number of hidden neurons to a single

layer of 8.

4.3.2 Results

The testing process was run �ve times, so �ve separate agents were trained, and their

meta-learnt valuations of the algorithms, corresponding to their expectations of the vari-

ous classi�ers' accuracies on this problem, were recorded. They are compared against the

accuracies (proportion of correct classi�cations) of the algorithms when run independently

on newly generated training and testing sets. This accuracy is referred to as the compar-

ative accuracy, and can be seen as a measure of the `true' usefulness of the algorithm

for this particular task. Table 4.1 displays these results, and has been sorted based on the

agent's expected worth for each component type.
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Expected Worth Comparative Accuracy
InstanceBased 3511 0.95
NaiveBayes Tree 2045 0.80
C4.5 1151 0.74
Logistic Linear 475 0.68
Multilayer Perceptron 333 0.50
Voted Perceptron 168 0.66

Table 4.1: Agent's expected worth for a given algorithm against algorithm's performance
in separate testing (accuracy in terms of proportion classi�ed correctly)

As can be seen, the agent's expected worth correspond well to the accuracies of the

various algorithms for this task. It deviates from the ordering which would be produced by

sorting according to the comparative accuracy in its evaluation of the worth of the lower

three, but these are algorithms which both the agent and the external evaluation agree are

less than ideal for this task.

This indicates a degree of meta-learning on the agent's part, as it was able to select

between algorithms to improve the predictive accuracy of its components. This is an

example of the `portfolio of algorithms' approach to meta-learning.

4.4 Component Stacking: Deduction of hidden variable from

recent error rate

This test shows the ability of the architecture to use the outputs of existing components

to improve the performance of newly created components. The task requires the agent to

be able to deduce a hidden boolean variable from the results of its actions.

4.4.1 Task

The agent has two actions at every time step, termed A and B. It is also presented with

a single feature input, an integer value between 0 and 7, inclusive. This value is the

external state of the world and is termed the V ISIBLE_INDEX. It indexes into a

reward table, which the agent must learn, which as been populated with values uniformly

randomly distributed between -10.0 and 10.0. This reward table is generated when the

environment is created and remains constant for as long as the agent is running, which is

the full duration of any given test.

For the �rst 64 time-steps of the agent's existence in the environment, the task is a simple

learning task. When it selects an action the reward is initially looked up in the reward table,

termed REWARD_TABLE, using the visible variable V ISIBLE_INDEX as a key.

This reward is then modi�ed based on the agent's action. If action A is taken, the agent

receives REWARD_TABLE[V ISIBLE_INDEX] as reward. If it selects action B,

however, it receives the negative, (−REWARD_TABLE[V ISIBLE_INDEX]). This

allows the agent to learn when to perform action A, and when to perform action B. It is
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able to learn to maximise reward by inverting the value in the table when that value would

be negative, and as such can consistently gain a positive reward.

After 64 time-steps, however, the hidden variable is randomly altered. The hidden

variable is a boolean value in the environment which randomly changes every 64 time-steps.

It acts as another inverter. If the variable is true the reward will be as previously received,

but if it is false the reward will be multiplied by -1. This hidden variable multiplier,

termed HIDDEN , is therefore either 1 or -1. If the agent's action is a multiplier termed

ACTION , which is 1 if the agent selects action A, and -1 if the agent selects action B,

the reward received for a given action is REWARD_TABLE[V ISIBLE_INDEX] ×
ACTION ×HIDDEN .

This means that regardless of how well the agent can infer the reward table, its expected

reward is zero if it cannot infer the hidden variable. If the hidden variable were to alter

every time-step, the agent would have no way of devising a policy with better results than

random action selection.

4.4.2 Component Architecture

The agent in this test has only a single component, a non-linear regressor able to learn

to map inputs to rewards, and thus make predictions as to the results of actions. For as

long as the hidden variable remains constant, the agent is able to use this component to

predict the rewards of its actions, and thus achieves above chance results. However, this

component alone cannot solve the task if the hidden variable is altered.

When the hidden variable is altered, components which were previously successful are

now predicting the inverse of the rewards received, and as such are producing large errors.

The agent which depends on these predictions therefore takes incorrect actions, and receives

negative reward on average, as the hidden variable is inverting the results of its previously

successful decision policy.

The solution comes from component stacking. The existing components have a single

output, their previous time-step error rate. They also have an additional input, which the

original components were unable to any make use of. This input connects to another com-

ponent's output, and serves to limit the scope of prediction of a component. The original

components are unable to use this input simply because there is no existing component to

link to.

The components (other than the very �rst) de�ne their scope based on their inputs,

which is the error function of another already-existing component, their supplier. After

each prediction is made, this supplier component sets its output variable to the error that

prediction incurred. The user component then takes this value, and averages the values

it sees. This builds up a picture of the range of errors its supplier component produces.

It then selects as its scope either the time-steps where the previous error incurred by its
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supplier component was higher than lifetime average or those in which its error was lower

than the average. This creates a scope of roughly 50% of all time-steps, since the errors

correspond to the hidden variable's state, and that is distributed equally between both

boolean values.

This process relies on the �rst component, the one whose error function serves as an

information stream to the second component, having a bias.

The �rst component has a full scope, and predicts at all time-steps. It learns to predict

based on the �rst 1024 time-steps it sees. Due to the random nature of the hidden variable,

these will not be uniformly distributed between states in which the hidden variable is true

and those in which it is false. This creates a bias, in which its error will be correlated to

the state of the hidden variable. If averaged over time, the state of the hidden variable can

be inferred from the �rst component's error. The second component uses this information,

and learns to predict only a subset of the environment. This subset is correlated to the

state of the hidden variable, and therefore the second component's predictions are far closer

to the actual result than chance.

This results in the agent relying on pairs of components. The �rst attempts, but fails, to

learn to predict its environment based on visible input, and has its limiting input connected

to a non-informative input stream. The second learns to predict based on the visible input,

as the �rst, but limits the time-steps in which it will predict based on the error of the �rst

component's previous prediction. It will either predict when its donor component has a

recently high error or a low error, depending on its randomly chosen parameter.

The agent uses these predictions to select its actions. Each time-step, a number of

second-level components will make predictions, depending on the error of their �rst-level

donor component. The agent selects the second-level component with the lowest historic

error, and uses that components predictions as its expected results for taking either action.

Importantly, no second-level component has a full scope, and each only predicts a subset

of the environment. The agents predictions rely on at least two second-level components

existing, each handling a portion of the conditions the agent �nds itself in.

4.4.3 Results

The scores over time two batches of agents are shown in Figure 4.7. The agents with

component stacking enabled clearly out-perform the agents without, and demonstrate pro-

gressive learning from a low start to a �at `mature' state, after which no further learning

was achieved.

The results show the agent behaved as expected. There were 40 runs of a control test,

in which the agent was unable to usefully link components together. This was achieved by

forcing component error outputs to 0, leading to them providing no useful information to
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Figure 4.7: Average performance of 40 runs for agents with stacking enabled and agents
with stacking disabled

their users. In this con�guration agents showed no major learning, with the agents' scores

remaining close to the baseline which would be achieved by chance. 40 runs were then

performed of the agent without these limitations, in which the components were able to

use other components' outputs. These showed consistent learning, achieving results well

above chance.

No meta-learning occurred, nor was any possible, as no parameters were available for

the agent to set.

It is worth noting that the random result would average to 0 reward/time-step, but the

non-stacking agent still performed at a rate greater than this level. This is as of yet not

completely understood, but appears to be related to structurally similar components with

slight biases and extremely similar historical errors alternating based on the recent errors

seen due to the hidden variable.

4.5 Reinforcement Learning mechanism

The agent presented in this paper, till this point, used a simple action-reward framework,

in which each action receives a reward immediately, and no action depends on any other

for success. For these tasks credit assignment, determining which action produced which

reward, was therefore straightforward. In this task, however, reward depends on multiple

actions occurring in sequence, a more di�cult learning task. To expand the agent for

longer term learning work task, a simple Temporal Di�erencing framework is employed.
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When operating in a Reinforcement Learning environment, the agent's actions are stored

in a queue, and are rewarded based on the rewards of not only that action's time-step,

but the following N time-steps, where N is designer-speci�ed. These are discounted by

a designer speci�ed parameter, λ. Total reward for an action at time-step t is therefore

de�ned as:
N−1∑
n=0

R(t+n)λ
n

This is a standard Reinforcement Learning technique, which allows for action-chains to

be credited for their end result, even if many of the actions within the chain produce no

noticeable e�ect in and of themselves.

The components therefore, under this framework, predict this discounted sum of future

rewards, for the next n actions, rather than simply the reward for the next action. Other

than this, the agent behaves the same, and components competitively attempt to predict

these rewards, by reducing their scope to improve their accuracy.

4.6 Reinforcement Meta-Learning: Useful feature discovery

This task tests the agent's ability to discover which sources of information provide useful

information, as opposed to those which are simply noise. It is also a test using the agent's

reinforcement learning capabilities.

4.6.1 Task

In this task, the agent must navigate a grid environment in order to achieve reward. To

do so, it is presented with a series 16 of feature vectors. 15 of these are noise and 1 is its

(x,y) cartesian position on the grid. While the non-noise input is marked, the agent has no

a-priori knowledge of this. In this test, the marking is simple. Each vector has 3 elements.

The 15 noise feature vectors have their values �rst two elements set to a random (x,y)

co-ordinate within the grid borders, and their third value set to -1. That is to say these

vectors are {random, random,−1}. The useful information vector is set to the agent's

(x,y) co-ordinate, with their third element set to 1, so {x, y, 1}. This creates an easily

recognised di�erence between the vectors, to test the agent's ability to learn to use it.

The component available to the agent in this case, other than the meta-learners, was

a simple instance based learner. The learner was designed to replicate a tile-based RL

strategy, attempting to assign a single averaged record to each (x,y) co-ordinate on the

grid. The learner simply averaged the results for each action (the TD-discounted sum of

the rewards for the next n time-steps), and used those as its predictions whenever the

agent returned to that particular part of the grid.

The information it used to infer the agent's current position was derived from 1 of the

16 vectors presented each time-step. The agent was able to target its components when
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they were created, picking a particular "prototype" vector, Zj chosen from 1 of the 16

presented during the time-step the component was created on. The component recorded

this representative vector, and selected as its input the vector most similar to it from the

16 possibilities.

Similarity was a weighted Euclidean distance from the prototype vector. The component

took all 16 input vectors, and select the one with the lowest distance to its prototype vector.

This was the Euclidean distance, weighted by a random vector k. This vector was generated

for each component, with its values randomly distributed between 0 and 1. The distance

was computed by:

distance(Zj , input) =

2∑
i=0

k[i](Zj [i]− input[i])2

This lead to each component valuing a di�erent portion of the input vectors to a di�erent

degree, when comparing them against their feature vectors. A component with k = (0, 0, 1)

for example, would order the input vectors to select those closest to its prototype vector's

0th element, corresponding to the x co-ordinate. In this test, such a component would be

useless to the agent, as it is the last element which indicates whether an input vector is a

useful information source.

If the component was created with the useful vector as its representative vector and a

weighting vector which selected for inputs with a similar last element, it would be able to

deduce the agent's (x,y) position, and thus its predictions would be useful to the agent. If

it had not been given a useful representative vector, it would only read in random noise,

and thus its predictions would not be above those achievable by chance.

The environment was a grid of 25 by 25, with a reward of 100 given to the agent whenever

it reached (12,12). When it reached the reward it was randomly moved to another position

on the grid. The agent could move in all four cardinal directions, and simply failed to

move if it selected an action which would move it o� the grid, wasting a time-step. The

agent created a new component every 1500 time-frames.

To test the meta-learning capabilities, all non-meta-learning components were purged

every 135,000 time-steps. This completely removed all ability of the agent to predict its

environment, as all meta-learning components in this test were prevented from making

any predictions as to the results of environment-altering actions. This allowed the agent

to retain its learning as to the expected value of component con�gurations, but not the

expected value of its movement actions.

The expectation was that an agent with meta-learning components would be able to more

swiftly relearn its environment, as it knew which `landmarks' to look for, which vectors

in its input set were useful information and which were not. The components were also

limited to only being allowed to record results for 125 input values, out of the environment's
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Figure 4.8: Average of 5 agents' scores over time, resetting learning every 135,000 time-
steps.

total 625. Once they had taken 125 distinct input-vectors they would take these as their

scope, and not make predictions for other input-vectors. This was done to require multiple

components to cover the entire grid, so the agents would have to repeatedly build useful

components in order to achieve a full optimal policy for the entire environment.

4.6.2 Results

Five agents were run with meta-learning capabilities, �ve were run without, and their

performances recorded. Each was run for 1,485,000 time-steps. The agents' non-meta-

learning components were purged every 135,000 time-steps, providing 11 separate learning

episodes of 135,000 time-steps, 10 of which could involve meta-learning from the previous

episodes. As expected, the meta-learning agents out-performed the non-meta-learners over

the course of test.

As can be seen in Figure 4.8, both sets of agents performed roughly equally in the �rst

episode (graph increments 0 to 30). The non-meta-learners, in red, out-performed their

competitors, due to pure chance, but both reached a reasonable behavioural policy by the

episode's end. The average reward then immediately drops, as the agents' components are

purged, and they revert to a blind wandering strategy.

As shown in Figure4.8, in episode 2, from 30 to 60, the meta-learning is slightly visible,

but not heavily pronounced. Other than a single agent which underperformed, the meta-

learning agents were able to formulate an above-chance policy faster than their non-meta-

learning competitors, due to their recognition of useful environmental features. This is
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Figure 4.9: Comparison of the scores of two agents. The �rst (a typical result), and the
second (which failed to perform to the same degree as its siblings).

re�ected in the slightly earlier rise in score, as their components were better targeted to

the useful environmental cues. It is believed to be by chance that the non-meta-learners

out-performed the meta-learners towards the very end of episode 2.

From episode 3 onwards, the meta-learners clearly outperform the non-meta-learners.

Learning occurs earlier, as the agents require fewer training examples to successfully learn

a useful policy. Since components are �nite in number and multiple successfully targeted

ones are needed for a full policy the meta-learners also out-perform on �nal score, by the

end of all episodes after the 3rd, as well as training speed. While the non-meta-learners

achieve a degree of success by randomly targeting their components, they never produce

su�cient components to reach optimal performance.

4.6.3 The Failed Agent

As can be seen in Figure 4.9, one of the �ve meta-learners failed to achieve a useful policy

until late into the task's total runtime. The typical agent, in black, performs as the others

did, reaching a high score in all episodes after the 5th, showing far faster learning than on

its initial episodes. While its performance was not perfect, it was strong and consistent.

The failed agent, however, achieves almost no progress from the random walker until

episode 8, starting a graph increment 210 (time-step 1,080,000). It is not until episode 9

that it achieves the performance the �rst agent achieved in its 2nd episode.

It is believed this agent simply repeatedly failed to correctly target its components due

to unlucky exploration. By repeatedly selecting noise inputs, rather than useful ones, its

components had no ability to predicts the results of its actions, so it was unable to form a
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useful policy. Without examples of successful components, its meta-learners were unable to

infer which environmental features were information and which were noise, so it continued

to randomly assign its components.

This continued till it eventually converged to the correct solution, and can be seen to

follow the previous agent's learning patterns after than point. In the last episode, episode

11, it can be seen to have achieved a result roughly comparable to the typical agent's, both

in terms of �nal score-per-time-frame and speed of learning.

4.7 Expanded MNIST testing

This test was designed to assess the agent's ability to handle task subdivision amongst

multiple components, using real data and Weka algorithms. It was similar to the meta-

learning test studied previously, but with 20 glyphs to recognise, spread amongst 5 classes.

This makes it a far more complex task than the previous MNIST test, which involved only

2 glyphs (5 and 4), and 2 classes. The classi�ers from the Weka toolkit remain the same

as described in Section 4.3, forcing the agent to use multiple binary classi�ers only able to

select between 2 classes to solve a 5 class classi�cation task.

The task consists of choosing which digit, between 0 and 4 inclusive, a given image

represents. The dimensions are as previously, 28 × 28 black and white images, forming

a 784 long feature vector for each time-step. 4096 images for each digit are loaded from

the training corpus of the MNIST data set, then rotated by 0, 90, 180 and 270 degrees,

with each rotation saved as a separate feature vector. All four are assigned the same

class, the digit they represent, but can have very di�erent visual appearances. No other

transformations are made to the images.

This creates a more complex classi�cation task, as a generalised shape for each digit

can no longer be assigned. While a 0 may appear similar under all rotations, a 1 has two

distinct shapes it will assume, and the other digits, 2, 3 and 4, will appear very di�erent

under all rotations.

This task is similar to the previous task subdivision test, but di�ers su�ciently to be

worth investigating. In the previous test, all components used subdivision to maximise

their worth by balancing predictive scope against predictive accuracy. In this test, however,

those pressures must also be balanced against the inability of the components to predict

more than one class.

Every component was provided with a scope-setting unsupervised learner. When the

component was formed, it recorded the inputs presented at that time-step. It used this

feature vector to sub-select a portion of all the feature vectors presented during the compo-

nent's lifetime. As before, this occurred by forming a sphere within the space of all possible

feature vectors, attempting to encompass an agent-selected proportion of all future inputs.
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This unsupervised learner therefore worked based o� the Euclidean distance between its

`prototype' image and the one currently presented to the agent.

Using this scope, the component then collects 1024 feature vectors from those which are

su�ciently close to its prototype and uses this as a training set for its WEKA classi�er.

This classi�er attempts to predict if a given feature vector belongs to the same class as

the component's prototype initial formative training image. If so, the component makes

its prediction, that the current feature vector belongs to the class that the component was

built to predict. If it does not the component makes no prediction, as it cannot determine

which of the 4 other classes this image might belong to.

The component, therefore, only makes a prediction if both the unsupervised Euclidean

learner, broadly restricting the component's predictive scope, and the Weka learner, re-

turn true. The unsupervised learner attempts to subselect a set of images which appear

super�cially similar to the �rst one the component was presented with, its prototype. This

is expected to have some degree of correlation to that prototype's class, but be too simple

to achieve a high accuracy. It will, however, avoid the Weka algorithm needing to waste

capacity on learning the `easy' problems, leaving it to specialise on the speci�cs.

It is entirely possible that the unsupervised learner would fail to recognise many of the

rotated digits as similar. The digit `1' rotated through 90 degrees is super�cially very

dissimilar to how it appears before rotation. For this reason, the agent is expected to

require multiple components for each digit, or class.

4.8 Results

The results for this test were fairly disappointing. A single agent was trained, in order to

examine the internal structure of its components. It was then compared to a basic multi-

class classi�er, made from one binary classi�er per class, designed to represent a standard

solution to the problem. The classi�er used was the basic J-48 decision tree from the Weka

toolkit, running with default parameters.

In the agent's case 35 training passes were performed, which from previous runs had

been shown to be su�cient to allow the agent to reach its maximum performance. Each of

these training passes randomly selected 24,000 training samples from the 81,920 generated

initially (4096 images of each digit, 5 digits, 4 rotations per image).

Following these 24,000 steps of training a testing pass was performed. This occurred

using a newly generated image set from the MNIST testing corpus, as opposed to the

MNIST training corpus. Again, 4096 images were loaded for each digit then all four

rotations added to the testing set. A random subset of 12,000 images were then selected

from this testing set. The results can be seen in �gure 4.10.
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Figure 4.10: Percentage accuracy of the agent as training progresses.

As can be seen from this �gure, the agent reaches maximum accuracy at 480,000 training

samples. The maximum accuracy is 9,882 correct classi�cations out of a possible maxi-

mum of 12,000, or 82.35%. In comparison, the rival multi-classi�er achieved 10,059 correct

responses out of 12,000 tests, or 83.825%. The agent can therefore be seen to have com-

parable accuracy to this comparison classi�er. The rival classi�er was presented with only

40,960 training cases, and performed only a single training pass per sub-classi�er (with

one sub-classi�er for each class). This means the rival used fewer training cases to achieve

better performance in lower clock-time.

This is disappointing as it was expected SAMLA would exceed this rival. This seemed

possible due to the agent's ability to subdivide the problem based on both feature inputs

and classes, rather than purely on classes. The rival takes each training case and uses it

either as a true or a false case for each classi�er, with one classi�er being assigned each

of the �ve classes. This agent, however, subdivides along these lines, but then further

subdivides based on the feature vector it is presented with, so a component might only

handle upside down versions of the digit `2' for instance, while the rival would have a single

classi�er for all cases of the digit.

To investigate why it was unsuccessful, despite having the opportunity to use more

classi�ers than its rival, closer inspection of the agent produced is required. Figure 4.11

displays the worths the agent has placed on its components sorted by the age of these

components. In a functional agent on an statistically stationary problem the agent should
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Figure 4.11: Graph of the worths the agent attributes to its predictive components, sorted
by age.

assemble a set of components which solve the problem as accurately as possible, then reject

further additions, while preserving this existing core. As can be seen, older components

have a higher worth than younger ones. This means their predictions are being used

more per time-step on average than the new additions. Since these new additions are not

improvements over the older ones, this indicates the agent is functioning normally in this

regard. This matches up the results seen in the earlier tests.

Figure 4.12 shows component error against component scope, illustrating how their

accuracies were a�ected by their degree of specialisation. It indicates that the source

of the problem may be in the subdivision function the components use. In �gure 4.1,

from the �rst test in this section, it was seen that the component's scope of prediction was

connected to its error rate. Speci�cally, as the scope approached 0, meaning the component

in question made almost no predictions at all, its error also approached 0, indicating it was

almost perfectly accurate. This is expected, as it indicates specialisation. On the other

hand, increasing scopes to, say, 0.5 greatly increased the error. Such a component would

make predictions 50% of the time, and would be a generalist, which the agent would use

if it did not have access to a specialist for that part of the environment. In the previous

test (Figure 4.1) this was seen to occur.

In this test, however, specialisation showed a negative e�ect on the error rate. As scope

increased average error rate decreased. While some highly specialised components were

able to match the rates of those which were given a scope of 0.5, none did any better. This

60



Figure 4.12: Graph of errors of each component in the agent's pool against the proportion
of the environment it takes as scope. Error is for relative comparison only,
units and absolute values are irrelevant.

indicates the component specialisation strategy was ine�ective and possibly detrimental.

Possibly a di�erent strategy would have worked, but the one used did not make the task

easier for the machine learning algorithms the components were using.

Specialisation of components is a key feature this architecture relies on to out-perform

more basic machine learning algorithms. Interconnection of components is another, but was

not available during this task. Meta-learning which algorithms are successful is another,

but this test was too short for any major meta-learning to occur, so the agent had no

advantage there.

The agent equipped with this particular component design did slightly worse than the

rival classi�er. While this architecture is not speci�cally designed to be the optimal classi-

�er, it would seem reasonable to assume at least some performance could be achieved with

a di�erent component architecture.

It is also worth noting that the components were only able to train their internal machine

learning algorithms with 1024 training cases. This was due to memory constraints, as many

components would be training simultaneously. Conversely, the rival algorithm was able to

use its full 40,960 training cases on each of its machine learners. A rival was tested using

only 1024 training cases for each digit, and only achieved an accuracy of 7,448 correct

61



classi�cations for 12,000 tests, or 62%. This is below the agent's achieved results.

4.9 Discussion of results

The preceding tests may not have established the agent as the pinnacle of either rein-

forcement learning or classi�cation, but have demonstrated a wide range of capabilities

possessed by the agent. They have validated the agent as a meta-learner, con�rming that

its architecture functions as expected, able to expand usefully, without constantly replac-

ing existing internal structures. These structures have been shown to be kept based on

usefulness, and able to build upon each other.

In terms of meta-learning, the agent has been shown to have success in portfolio algo-

rithm selection, algorithm stacking and parameter selection. This ful�ls the thesis' primary

aim of producing a meta-learning reinforcement learning agent. It has also been shown to

be able to learn to target its learning, learning to recognise useful sources of information

from useless ones. This meta-learning capability allows for faster learning on future tasks,

assuming similarity between the environments these tasks occur in.
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5 Experiment into Self-Directed

Information Seeking

This section covers a set of tests of a tentative future direction for the architecture. It is

separated into its own section due to being less rigorously investigated than other areas,

and being outside the original goals of the architecture. It was added because it seemed a

powerful mechanism which naturally arose from the abilities of the component-valuation

mechanism which already existed, and so could provide a unique capability to agents

constructed using the SAMLA architecture.

5.0.1

Learnt Information Seeking A key issue with the agent as it stands is its passive approach

towards its environmental inputs. While it acts to maximise its utility by taking the action

with the highest expected return at each time step, it does so purely on the information

directly in front of it, in the form the designer has provided it.

It would be far more useful to have an agent able to seek out information, based on the

expected usefulness of that information, in terms of improvements to the agent's predictive

accuracy. The simplest of these actions might be simply to re-orient itself to look in a

di�erent direction, or focus on a di�erent object. A single action, taken to gain a di�erent

perspective. The agent could face a task, look around to gain a better understanding, then

turn back to the task and solve it with the aid of this new information.

Longer term actions might involve interacting with objects, say by picking them up

to determine their weight or tapping them to determine their composition; it might also

involve travelling to other parts of the environment, a learnt sequence of movements. In

general, it requires normal Reinforcement Learning approaches with goals determined based

on information-gain, rather than designer-provided utility functions.

It is possible that the component-based architecture of this agent allows some useful

insights into which pieces of information would be useful to the agent, and at what times.

The core principle of this is that the components should have the ability to sway the

agent's behaviour based on their worth. Worth is a measure of how much the component

contributes towards the agent's predictive ability, so it would seem reasonable to assume

the information which a high worth component uses also contributes towards the agent's

predictive ability.
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5.0.2 Competitive Hidden Variable Predictions

An alternative approach to learnt information seeking is to deliberately attempt to �nd

information resolving an unpredictable element in the environment. This creates a focus,

allowing pieces of information to be evaluated. In the "component is assigned a condition

under which it records" approach the agent relies on its meta-learning setting this condition

usefully, or in a scattershot approach in which it makes large numbers of components and

discards most. The hidden variable prediction approach, however, allows the agent to learn

information sources through competitive predictions, similar to those routinely used.

The �rst step is to select a phenomenon in the environment to be predicted. This should

presumably be one it has no current ability to predict. A new component is created,

termed the DEFINER. The DEFINER is assigned a description of this phenomenon, for

example "is at location A, took action B, received reward > 0". The DEFINER can then

determined whether or not the given action in the given circumstance lead to the given

result or not. This means that if another source within the agent makes a prediction as to

whether or not the de�ned phenomenon will occur or not the DEFINER can feed back an

error for this prediction.

The WRITER, therefore, is a type of component which is assigned a given DEFINER

to make predictions with respect to. The DEFINER is, in e�ect, a hidden variable the

WRITERs are attempting to predict. At any point any WRITER may make a prediction.

The DEFINER then stores all predictions made by all WRITERs which are assigned to

it until it next encounters its assigned condition+action. Either the phenomenon, in this

case the result of an action, occurs or does not. All the stored predictions can now be

evaluated. Since the result is a boolean it can be described as either a 1 or 0. This allows

the WRITERs to be assigned errors, based on how accurately their predictions match the

results. Predictions are purged at this point, now that they are evaluated.

The �nal component is the USER. It is also assigned a DEFINER, and uses the informa-

tion the WRITERs of that DEFINER produce. It takes as information the best prediction

made so far. That is to say (in this example) it takes the most recent prediction by the

most accurate WRITER as to whether the agent will receive a positive reward if it takes

action B in location A. It then makes predictions as normal, presenting them to the agent.

The agent can then use these predictions, if they prove to be accurate.

In summary, the DEFINER is a component designed to record whether a given condition-

action pair result in a given result. WRITERs competitively attempt to predict this

outcome, and receive feedback as to their error from the DEFINER. The USERs then take

the best prediction made by a WRITER and act as normal components, making predictions

about the external reward function based on this prediction.

Worth is passed from USER to DEFINER to WRITER, with only the most accurate

WRITER currently submitting a prediction receiving worth from the DEFINER. This
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means that if a USER cannot �nd a way to make use of a DEFINER's information it will

not receive worth, and it, the DEFINER and all WRITERs assigned to that DESIGNER

will be low worth and subject to deletion. It also means that inaccurate WRITERs will not

receive worth. Since WRITERs still have scopes of prediction, like normal components,

this again sets up the tradeo� between accuracy of prediction and number of prediction.

The WRITERs can then use the worth they receive to generate internal reward for the

agent. This internal reward would direct the agent towards conditions under which the

high-worth WRITERs can make useful predictions. It is in this manner that the agent

learns to �nd information to solve problems, by slowly attributing more and more worth

to WRITER-DEFINER-USER trios based on how much they help its overall predictive

capabilities.

These components do not, in practice, have to be separate. A component could ful�l any

of these roles at the same time, or indeed all three, if its internal structure were su�ciently

complex. Since multiple WRITERs and USERs can be linked to one DEFINER this three-

in-one component could simply be an initial component which is expanded on by later

components assuming its roles, other than that of DEFINER, and thus improving the

overall accuracy. In the following example, however, all three roles are served by separate

components.

5.0.3 Hidden Variable Prediction Testing

In this test the agent was presented with a task requiring seeking out information to solve.

The agent exists in a geometric environment topologically forming a tree. At the central

node the agent is presented with 5 buttons. 4 of these will return a reward of -3, the

remaining one will return 1. For the purposes of this �rst test, the correct button is

only either the �rst or the second. The remaining three buttons will always result in -3.

Alternatively, the agent can travel down the tree, by either choosing left or right.

The tree is 4 splits deep, each a left/right decision, so the �nal layer has 16 nodes. The

environment therefore has 31 locations for the agent to visit. Each location is assigned a

colour, red, green or blue, that is to say a 3 element vector. The agent's feature vector

is its location in the environment, in terms of a 4 element vector, and a 3 element colour

vector, for a 7 element feature vector. The agent can continue travelling down the tree

from the start node by selecting either left or right, or can elect to return to the starting

location. At the �nal level, 4 deep, it can only return.

Only one location in this environment is relevant to the agent. A single location at the

penultimate level is chosen, that is to say accessible only if the agent performs the correct

3-action decision sequence. If the colour at that location is green the �rst button will

return 1 and the second will yield -3, if it is blue the �rst button is -3 and the second is

1. The three remaining buttons are -3 regardless. Colours are randomly reassigned each

time a button is pressed, so the agent must �nd the information again after each attempt.
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Figure 5.1: Graph of di�erence in predicted value of the hidden variable and its actual
value.

This means that the agent has an expected reward of -2.2 per button press if it acts

randomly. After a small number of trials, however, it should infer that the three last

buttons are always negative, and only pick from the �rst two. This gives it an expected of

-1. To achieve a positive reward it must learn to �nd the information.

The agent is given an automatic DEFINER, and cannot make any of its own. This

DEFINER de�nes its phenomenon as "in the button location, press of button 1 will return

a positive reward". WRITER components must then predict whether this assertion is true

or not. Each of these WRITERs is given a scope of a single location, randomly chosen,

from the tree. That is to say it will only attempt to predict the result of the button press

if the agent is receiving information from its selected tree-location. Almost all of these tree

locations are, of course, entirely useless noise.

If successful, only the WRITER at the correct location would receive any worth. Even

that WRITER, however, would have to learn to connect the feature vector it receives,

the colour of the location, to the prediction it needs to make. For this purpose, they were

equipped with a simple regression tree learner which would output the expected probability

of the DEFINER's phenomenon occurring.
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Figure 5.2: Graph of 10 agents' scores over time

The successful WRITER can then guide the agent to the information by emitting internal

reward, which normal components will learn to predict. These normal will also take the

role of USERs. They are also regression tree learners, which take the DEFINER's output,

as well as the agent's feature vector, to attempt to predict either the external or internal

reward the agent will receive from an action.

As can be seen in �gures 5.1, 5.2 and 5.3 the agent proved successful in its task. 10 agents

were run, each for 153,000 time-steps. For recording purposes, this was broken down into

51 episodes of 3000 time-steps, but this has no bearing on the agent's behaviour.

Figure 5.1 shows the agent was slowly able to learn to predict the value of the hidden

variable. Since the phenomenon this hidden variable connects to is an evenly distributed

boolean, the correct button is either the �rst or second, the baseline error is 0.5. This error

is simply the average absolute di�erence between the true value of the hidden variable and

the predicted value, not a mean squared error.

The error can be seen to quickly drop, then slowly stabilise at 20 episodes, or 60,000

time-steps. This is far above chance, and indicates the agents have indeed found the correct

location in their environment. The non-immediate learning is due to the need to, after it

has produced a WRITER able to generate the correct prediction as to the value of the

hidden variable, learn the path to that component's chosen location. The continuing error

is presumed to be due to the high exploration factor the agent was given, to promote
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Figure 5.3: Graph of average of the 10 agents' accumulated absolute scores over time,
indicating that near-zero scores were achieved by mixtures of negative and
positive results, rather than simply by taking fewer actions

faster, but less optimal, reinforcement learning. This error is from sequences where the

agent simply never reached the information-providing location, and a di�erent WRITER

had to make the prediction. This other WRITER would have no useful information, so

would make a prediction of 0.5.

In terms of reward, the agents can be seen to achieve a positive or near positive average

reward. Since the negative reward is -3 and the positive is 1, a positive score requires the

agent to select the correct button more than 75% of the time. Some agents can be seen

to have a positive reward, while some are below, presumably due to imprecisions in their

learning.

A 0 score could be achieved by simply pressing no buttons ever, so Figure 5.3 plots the

absolute score received, to check whether the agents are pressing buttons at all. As can

be seen, the agents adopted a policy of far greater button pressing than they started with,

since their initial policy was purely random and involved pressing the constantly-negative

buttons routinely. However, it can also be seen that the agents slightly increased the

frequency of button pressing following learning to �nd the correct solution.
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Figure 5.4: A single agent's visits to the information-bearing location, over time.

In terms of visits to the information-bearing location, analysis of a single agent run

subsequently, simply to record this piece of information, revealed the rate of agent visits

increased greatly. Average visits at the start of training were approximately 10 per 3000

time-steps, but rose to approximately 150. This is seen in Figure 5.4. While this agent

was more unstable that the usual case in the previous 10 it seems su�ciently similar to

assume the visit rates of the previous 10 increased in a roughly similar fashion.

In conclusion, it can be seen that this method has a degree of viability. While this

test was simple, it demonstrated an agent architecture able to learn to �nd a piece of

information amongst environmental noise, then follow behavioural sequences to acquire

that information.

5.0.4 Hidden Variable Prediction vs Conditional Memory

Two approaches to information-sources learning have been outlined. On the one hand,

the process could be entirely self-contained within a single component, which records if

the state matches a given condition, then uses this information later. On the other hand,

multiple components could interconnect, competitively attempting to �nd the best source

of information to solve a given prediction problem.
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Both use internal reward from components to guide the agent towards the information

source, once these components have had slight success from random exploration, and gath-

ered some worth. Both of them are able to discard useless components, which either record

incorrectly or fail to improve the agent's predictive capabilities.

The �rst approach is condition based. It allows the agent to hypothesise that a given

piece of information in the environment will be useful at some later time. It can be linked

to another event, with a learner which attempts to directly use the information it holds,

and/or it can supply this information to any other component which can make use of it.

What it cannot do is learn this condition directly. The condition under which information

is recorded must be meta-learnt by the agent.

The second approach is more active. The components are learning when to predict the

value of this hidden variable, and what to predict, based on their feature inputs. It is also

competitive, allowing slow improvements, as more specialist components take over from

generalists.

An essential feature of the second approach, however, which has yet to be explored is that

of retracting predictions. A component might decide, based on previous experience, that

its prediction as to the value of the hidden variable is no longer likely to be accurate. If it

wishes to preserve its low error, it could possibly learn to withdraw its prediction. It could

either do this in response to errors the agent is making, implying it has faulty information;

in response to some environmental cue, indicating that the agent's situation has changed;

in response to some other hidden variable prediction being set, indicating contradiction;

or simply in response to time passing, if the hidden variable is highly dynamic.

While the conditional memory components can be engineered to forget, the second ar-

chitecture provides a natural framework for this additional capability to be added into the

agent's overall feature set. It also allows learnt forgetting, in which components are able

to connect their inputs to the probability of their stored data being incorrect.

5.0.5 Recorded properties of objects

The existing structure could be described as "De�ne a condition and a phenomenon, allow

components to predict whether when that condition is next met that phenomenon will

occur, distribute the most accurate prediction made to other components to make use of".

It is a system attempting to store the value of a variable in the environment which the

agent only has partial access to, allowing it to fetch the information from one location

and use it in another. Currently, it can only represent information requiring no point of

reference, zero-order logical predicates, rather than �rst or higher orders.

One extension which could be considered is to expand the WRITER → DEFINER

→ USER structure to include a NAMER. This NAMER would assign unique identi�ers
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to objects, allowing the agent to record properties of these objects discovered through

investigation, then recall them at a later time.

This extension is considered less for its own sake, and more to demonstrate how the

existing knowledge representation structure could be extended, by adding new roles which

enable new types of representations, all basing themselves on the DEFINER core.

In essence, the previous solution can be though of as simply storing zero-order predicates

about the environment. The agent can take actions to determine the truth value of P or Q,

having hypothesised the existence of such a variable, and that it is responsible for causing

phenomenon R under condition C. This augment is intended to allow the agent to store

information in the form P (x), and recall it at a later time. The di�culty is not from

having an indexed data store, which is commonplace, the di�culty comes from needing to

recognise said x repeatedly and consistently, and distinguish it from y and z.

A separate component is required for this storage/recall process due to the di�culty in

connecting sensory data to physical objects, especially when those objects are lost from

view for a time. In many environments the objects the agent will encounter will change

in appearance over time. This therefore requires the agent to have some ability to learn

which properties can be used to distinguish and recognise objects, and which change too

rapidly or too inconsistently to be used.

The NAMER therefore would act as a mechanism to assign identities to sensed objects,

based on some component-speci�c approach. WRITERs would each adopt a NAMER

(initially chosen at random), and this WRITER-NAMER pair would then attempt to

make predictions as to the results of the DEFINER's phenomenon. Each prediction would

only be tested if the NAMER indicated it was the same object. This means that di�erent

NAMERs would recognise di�erent objects as "being the same", and assign them the same

unique ID. This divergence would occur both at write and a read time for that given

variable.

Since the DEFINER is attempting to �nd the most accurate WRITER, and anyWRITER

has chosen a single NAMER, the NAMER's accuracy is implicitly determined by the DE-

FINER, but the DEFINER does not need to measure this accuracy directly. WRITERs

which have been assigned a useful NAMER will succeed, and produce useful and low-error

predictions, those which have not will not.

NAMERs are distinct from WRITERs due to the assumption that they would fail at

a much higher rate. They cannot learn which properties of an object to look for, under

the current architecture, so must be randomly constructed. Eventually the agent might

meta-learn to produce more useful NAMERs, and it is possible that a learning structure

could be developed to maximise prediction quantity and accuracy, but this is beyond the

scope of this work.
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If useful NAMERs are rare, it makes sense to separate them, so that multiple WRITERs

can be linked to a single successful NAMER. They would pay worth to this NAMER, in

return for its outputs, and so it would be easy to determine which NAMERs were successful

and which were not after these NAMERs had existed from a number of time-steps.
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6 Future Work

While the SAMLA architecture has been shown to produce interesting results, and meets

the initial aims of being a novel reinforcement learner capable of meta-learning, various

possibilities for future investigation present themselves. Many of these lines of investigation

revolve around exploiting the component-worth metric as an internal drive.

6.1 Evolving components

In this work all component internal structures have been provided to the agent by the

designer. This includes but is not limited to which machine learning algorithms to use,

how many information sources to draw from and which pieces of information to output.

While su�cient for these tests, for a much larger environment, requiring a far broader

range of capabilities which may be unknown to the designer, greater �exibility is required.

Components are currently selected from a set of archetypes by the agent, then given

speci�c parameters and targets, such as, in some tests, being primed with a given feature

vector to use as the centre of their scope. These archetypes are de�ned by the designer,

the speci�c implementations, which are the components themselves, are de�ned by the

agent. As such, each component has an archetype it belongs to, a blueprint of its internal

architecture.

The components' worth to the agent is already available, since it is the worth used to

decide whether or not to remove a given component from the agent's component pool.

This worth can be fed back to the archetype used to create the component, which can then

have its own worth computed. This archetype's worth would be a function of the worths

of all components which are created based on the architecture it de�nes.

After a designer-de�ned number of components have been created, all archetypes avail-

able to the agent will have been attributed a worth, based on which the agent has learnt

to be most useful, in terms of the use of the components they can create. This can be used

as a �tness function, and standard genetic evolution occur. Archetypes could be crossbred

and mutated, forming a subtly new set of archetypes which the agent can use. These

would, in principle, lead to the creation of better components, more able to predict the

agent's environment. Such a process could repeat inde�nitely, allowing the agent to slowly

adapt the internal structures of the components it creates.
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6.2 Self-Structured Learning

An interesting possibility for the agent would be to allow it to learn to predict which types

of capability would be useful in the future, then act to maximise its capabilities beforehand,

rather than reactively. Since components form the capabilities of the agent, and these are

given a numeric worth, and the agent already predicts the worth of the component at

the time the component is created, it is already predicting the expected worth of new

capabilities. This prediction could be expanded to increase the agent's capabilities.

6.2.1 Curiosity: internal reward for creation of components

In Oudeyer et al's work [16] an agent consisting of a set of `experts', each able to predict

a portion of the environment was shown to be able to learn to move towards learnable

parts of the environment. Unpredictable areas, and areas which had already been learnt

were avoided, in favour of areas which allowed the generation of new experts. While not

identical to the agent presented in this work the similarities are su�cient to suggest such

an approach might work with this work's agent.

Since new components are only given worth if they improve the agent's predictive capa-

bilities, with duplicates and useless components being given low or zero worth, the addition

of new high worth components can be assumed to be linked to improvements in predictive

ability. An internal reward signal could be created, corresponding to the expected worth

of any component made during that time-step. In almost all time-steps this would be zero,

as components are only created occasionally, but when non-zero it would be a function of

the agent's expected improvement in its own predictive capabilities.

If the agent were to learn to maximise both the internal and external reward signals it

could learn to seek out areas which would lead to the creation of new high-worth compo-

nents. Such areas would not be those it had already explored and generated components

to predict, nor those which it could not successfully form components for. The agent would

therefore have a preference for tasks which would lead to it gaining new predictive abilities,

and could use reinforcement learning techniques to maximise its own learning.

6.2.2 Alternative signals for prediction

A more complex agent, in terms of component structures and component interconnections,

might bene�t from having components attempting to predict more than simply the reward

signal. In this work so far the only learning which is performed by component is attempting

to predict the external reward signal for the part of the environment which their scope

covers.

If a component were generated which attempted to predict an environmental cue, rather

than the external reward signal, it could provide useful information to other components.

It would serve as an information supplier, and receive worth from other components using
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its outputs to improve their own predictions. An example might be a next-time-step

predictor, which attempts to predict the sensory feature vector the agent will receive in

the next time-step, based on the current one.

This could be useful in two ways. The �rst is that this approach may be a way to break

down tasks too complex for a single component's learning algorithm to handle. It could

either serve as a scope limiter, reducing the task size, or another information source. In

either case, another component could bene�t from being faced with an easier to solve task.

The second use for this type of structure might be in times of low external reward, or

times when the agent is already predicting the environment as well as it can. In such

circumstances these components which predict other environmental e�ects could serve

as a way for the agent to continue learning, despite there being no way to improve its

prediction of the external reward signal in the current state of the environment. When the

environment changes, these components could have already performed useful learning, and

serve as a ready-made foundation for the next generation of components.

The immense number of possible predictions the agent could make, considering it could

attempt to predict any part of the environment to any number of time-steps in the future,

makes meta-learning required to maximise the utility of these components. The agent must

build, through trial-and-error, a rough picture of which environmental cues will be useful

to predict, and on which time-scales. It would be attempting to learn which predictive

capabilities would serve it best in the future, as suppliers to future components.

Such components could possibly bene�t from self-motivated learning, if the agent were

to seek environment cause-e�ect links to learn at times when the environment contained no

obtainable external reward. This would allow an agent which could autonomously continue

learning while it had no designer set tasks.

It is important to note that this learning is entirely grounded in the external reward

signal provided by the designer. While these components do not themselves interact with

it they only gain worth if they supply useful information to components which do. Without

this there would be no preference from the agent's perspective to learn one environmental

cue over another, which would be problematic in complex and noisy environments.

6.2.3 Self-directed Reinforcement Learning

Another meta-learning dependent autonomous learning would be self-directed reinforce-

ment learning. This would be a process in which the agent selects a goal state, de�ned

by a component, then attempts to reach it from various parts of the environment. The

component would need to return a boolean, which can re-use the normal scope setting

boolean functions which previously investigated components use. This would then serve

as co-ordinator for the agent's learning, by registering itself into a list of possible non-

immediately-rewarding RL goals.
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Other components could then make predictions de�ned by one of these RL goals. Rather

than predict external reward following actions, it would predict the probability of reaching

its chosen goal following certain actions. They would develop in a similar way to already-

seen RL prediction structures, as demonstrated in this work's testing.

This gives the agent a probability for every action of reach a given RL goal. It can then

multiply this probability by the expected value of the goal, and add this into its weighting

for each action. Initially, the value of a goal is simply some user-de�ned `curiosity' value,

which directs the agent towards such RL goals if no other external reward is available. As

such, the agent could train itself to perform multi-action sequences.

These RL goals would serve two purposes. The �rst is in dynamic environments where

some objectives could begin to deliver external reward where previously they did not. If

the agent has already learnt a path to these objectives it can simply alter its expected

value for the RL goal and multiply that with its existing probability mapping. This would

enable it to quickly access the goal, without needing to learn it again.

The second is if this goal could serve as a useful starting point for a second RL action

sequence. If the state the agent arrives in can be found to lead to some external reward,

this could be extended to the goal itself. When at the self-de�ned goal the agent is provided

by its components as to the expected future reward of actions, by normal RL mechanisms.

These predictions can be seen as the value of the goal, since it provides access to these

future rewards. By already learning the sub-goal the agent has a shorter action sequence

to learn to reach its ultimate goal, reducing learning times.

Again, this self-directed learning is highly dependent on meta-learning to be successful.

Any part of the agent's environment could be set as a self-directed RL goal, but most of

these locations have no use, so learning to reach them would be pointless. The self-set

RL goals would need to be attributed worth based on their future usefulness, either as

sub-goals or if the environment alters to give them value. The agent would then need to

learn to predict this worth, and to only set sub-goals when it had a high enough degree of

expected future worth.

6.2.4 Conditional Memory Components as Information Utility Measures

One approach to self-directed reinforcement learning would be to have a conditional mem-

ory structure in some of the components. They would record from the environment if and

only if their condition was met. What this condition would be depends on the particular

components, but they could, for example, only record in a given location, or in the pres-

ence of a given object, or even if another component makes a prediction above a given

threshold. Once information has been recorded, they would either wait for a second con-

dition, at which point they would make a prediction, or supply the information to other

components to use. The conditions these components record data under would constitute
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the "goal states" the agent could learn to act towards. Since the components are given

numeric worth based on usefulness, this could be translated into a reinforcement learning

drive the agent could act to maximise, thus maximising the e�ectiveness of its most useful

components.

This approach is somewhat similar to the neural Long-Short-Term Memory [18] archi-

tecture, in that both record at given points, based on a condition, then allow others to

read from their memory store. Unlike the LSTM networks, these conditions would be set

by the agent, when it creates the memory components, rather than being learnt. Clearly

this strongly advantages the LSTM architecture initially, until this work's agent is able

to meta-learn which conditions to look for. Once it has completed this meta-learning,

however, assuming it is able to �nd patterns in the environment allowing it to do so, it

would be able to place memory components speci�cally targeted towards features in the

environment which represent non-immediately useful information.

An easy example would be to have a location in the environment, say the top of the area

the agent �nds itself in, which has a useful feature input. The bottom of the area has a

set of buttons the agent can press, one of which yields a positive reward, the rest of which

yield a negative. The information from the top of the grid is the only way to deduce which

button will return positively, so the agent must travel upwards, to acquire the information,

then back down to use it.

A component could be generated which records only if the location matches the top of the

grid, but only makes predictions when the location matches the bottom. Many components

could be generated, all with di�erent locations for both recording and predicting, but only

one which is set to record from the top of the grid will have any useful information regarding

the decision the information faces. These locations are set by the agent, initially randomly,

although in principle it should be able to meta-learn, given experience.

The result would be only the useful component gaining worth. If the recording location is

incorrect the component has no way of predicting better than chance, while if the prediction

location, the scope of the component, is set incorrectly the component will have nothing

useful to predict. As it stands, however, the agent wanders blindly if there is no clear path

to reward. Since the agent would have no incentive to press a button, since only one yields

positively and the rest negatively, and no other rewards exist on the grid, it would simply

take random movement actions.

A solution would be to have the components generate an internal reward signal the agent

could seek. The user-de�ned external reward, received from the environment, would be the

primary driver of the agent, but a lower-strength signal from the components themselves

would be added in. This signal would be a function of the worth of the component, which

would pay out a portion of its worth to a�ect the agent's behaviour.
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In this example the component would generate an internal reward signal when it records

information. In a sense it would be `thanking' the agent for taking actions which ad-

vantaged this component. The component would gain from being in a location with an

information source, as it can later use this information to make predictions, and thus gain

worth. The agent had no other path to external reward, so followed this source of internal

reward. The agent then gains, as its components are now better able to predict which

button to use, and allow it to gain a positive reward after moving back to the bottom of

the environment.

The goal of this addition to the agent is to allow short action sequences to be performed

by the agent to gain information useful to the problem at hand. Since the condition which

the component uses to determine whether to record or not is simple it cannot be used

for highly complex or subtle problems. The condition is necessarily simple, as it must be

created by the agent through parameter selection, in contrast to the LSTM model which

learns its own condition. However, it could prove a fairly useful tool, in environments

where information is close at hand but not directly present.

Also of note is that the information recorded by the component does not need to be

limited to a single numeric value, of course. It can store the entire input vector that

particular component was receiving during that time frame. This could include both the

feature vector the agent was receiving as well as the outputs of the components it was

connected to. It could then use machine learning to link this information to the results

it is trying to predict. The conditions under which it records and makes predictions are

�xed, but what it does with that information can be learnt.

Anecdotal success This structure has been tested very brie�y, and indicates possibly

promising results. Randomly generated components were created, and only one which had

its recording condition and prediction conditions set usefully was given worth (subsequent

usefully con�gured components were redundant, so not given worth). Internal reward was

then generated by this component, and the agent was able to cycle between information

and decisions, providing much better performance than expected by pure chance.

It is important to note, however, that this test was far from rigorous, and has not been

repeated or studied su�ciently to draw any reliable conclusions from.

6.2.5 Overview of agent with planned future features

With both the currently implemented and proposed future features, the agent represents

what this work is aiming for, an autonomous, self expanding learner.

The agent's learning consists of two main parts. Firstly is its representation of the

world. This is its knowledge, the data it has acquired from the environment and stored in
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either a component's own memory system or the shared memory created by the DEFINER-

WRITER structures. The second part is its capabilities, the abilities it possesses to trans-

form this representation into predictions about the e�ects of actions, in terms of their total

future e�ect on the utility function.

The agent is self-expanding in that both its capabilities and representations can con-

tinually be improved, by iterative addition and testing of new components. The agent

is autonomous as it is able to self-motivate to improve both its representation and its

capabilities.

Capabilities Predictive capabilities are component based. They exist within the agent

as the set of prediction-making components. Improvements to its capabilities come from

improvements to this set. The �rst mechanism for this is improving coverage, creating suf-

�cient components to make predictions for all actions at all times. The second mechanism

is replacing these components which new ones with better suited algorithms, allowing more

accurate learning using the same data. The third is stacking components, allowing them

to combine their capabilities. The fourth and last mechanism is to specialise, to reduce

the scope which newly created components take on in order to improve their predictive

accuracy.

This incremental improvement has been partially demonstrated by previous tests, and

evolved specialisation is hoped to increased it further still. By allowing components to

randomise their specialisation strategies, those used to reduce their predictive scope, com-

ponents in general will slowly subdivide the environment in an increasingly optimal fashion.

Self directed capability learning takes the form of a reward signal for creating high

expected worth components, as seen in the section 6.2.1 on component worth as curiosity.

This is a slow process in which the agent takes actions on its environment to place itself

in situations where new, useful, components can be created. It is learnt, in that the agent

learns through experience to predict the future worth of components, and will not be

motivated to create components it does not expect to be useful.

Representations Representations are stored in two ways. The �rst is in the components

themselves. Any component might have a short memory system, say recalling the last few

input time-steps, or conditionally recording individual feature vectors. This mechanism

is highly heterogeneous, with di�erent component architectures storing di�erent pieces of

information in di�erent ways.

This internal-to-components structure is an unstructured way of storing large amounts

of information for short time periods, based on what proves useful. Components which

store useful data, and possibly then share it with others, are kept, while those which do

not are not. In this way the representation slowly grows, as new components are accepted,
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and as the agent meta-learns which types of memory component will be accepted into the

overall component set.

This representation structure's self motivation comes from components producing inter-

nal reward as seen in the section 6.2.4, on conditional memory components. This allows the

agent to autonomously take actions to update the information stored within components,

based on learnt behaviours combined with discovered component-worth.

The other representation structure is the external-to-components mechanism described

in section 5.0.2, created by a DEFINER-WRITER setup, and used by an arbitrarily large

number of USERs. The self-motivation mechanism for this representation is as described

and tested above, and again is learnt based on the usefulness of the information being

gathered. This usefulness is measured based on the components using the information,

and ultimately requires the information to have some part in making useful predictions

about the agent's user-de�ned utility function.

Evidently this structure would need expansion, with one of the many forms of expansion

required being explored in section 5.0.5. The agent's full world-representational capabilities

depend on the �exibility of the external-to-components representational structure. Since

all major long term information storage is expected to take place within this structure

it must be capable of representing as much of the world as possible in as simple a form

as possible. Presumably this would include expansion into sets, ordered lists, maps and

attribute-bearing links between objects to expand on the simplistic zero-order and �rst-

order predicates already described.

Component generation motivation Since both of these representational structures

are de�ned by components the agent bene�ts from the already-discussed component-

creation motivation. The agent requires motivation both to seek and update the infor-

mation stored within its knowledge representation structures, as well as the motivation

to expand these structures themselves. This is, however, covered by the drive to create

high-worth components, so does not need to be handled separately.

The complete agent As such, with these proposed improvements the agent would

be capable of slow, progressive expansion of both its knowledge representation and its

predictive capabilities. It is also capable of autonomously seeking to improve these, both by

expanding its predictive and representational capabilities and actively fetching information

from its environment in a �rst location to solve a problem in a second.

With these features the agent could be considered complete, as it would have self-

improvement autonomy across all necessary functions. The agent could then be relied

on to slowly self-expand its component set in a way which would maximise its predictive

capabilities, and therefore its ability to maximise its utility function.
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7 Conclusion

This thesis has investigated a number of aspects of the SAMLA architecture.

The �rst aim of this agent was to be an investigation into meta-learning in the �eld of

reinforcement learning. To this end, a series of tests were performed, assessing the agent's

meta-learning capabilities across a range of tasks, each task showing a degree of success.

The second aim was to provide a framework for later work. A large section on the future

direction of the agent describe a realistic framework for expansion, all aimed at creating a

powerful autonomous agent. Various features were discussed, including some initial testing,

all aimed at covering a distinct required area for autonomous self-motivated learning and

information discovery.

The �rst aim therefore forms a foundation for the second. The agent had to be shown

to be able to perform self-addition in a useful, reliable way. These additions needed to

be evaluated correctly, operate together without con�ict, subdivide the environment to

balance predictive accuracy and coverage, and removed when necessary without degrading

the performance of the remaining components.

These capabilities were shown to be functional. The agent was shown to be able to learn

to select the highest accuracy algorithm from those available to it, allowing it to increase

its performance over sequential tasks, by meta-learning from the successes and failures in

the previous. This in turn indicates that the component-worth evaluation provides useful

feedback to the agent, allowing better components to be produced.

This component-worth metric was also shown to be useful in subdividing the environ-

ment, splitting the predictive task between multiple components, replacing generalists with

specialists as these specialists become available, without losing access to the generalists in

situations where no specialist can be found.

The component architecture was also shown to be able to form structures from multiple

components, and their information sharing was shown to be able to grant them capabilities

beyond those possible for a single component in isolation.

While some alterations were made to the component types in use in the various tests,

the overall architecture of the agent remained unchanged for all these tests. This indicates

the architecture itself has a broad range of capabilities, and seems a reliable foundation for
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future testing and expansion, either in terms of new component structures or new features

built upon the existing architecture.

The second aim uses the component-worth metric, which has been shown to be a func-

tional metric for evaluating components, as a metric for evaluating information and capa-

bilities. An autonomous agent must learn to take actions to maximise its capabilities in

much the same way as it must learn to take actions to maximise its reward function. The

proposed additions split the task between representational structure, the model the agent

uses to describe its environment; the contents of this representational structure; and the

ability to use this represented information in a way which leads to better actions being

taken, in the context of the designer-supplied utility function.

Each of these provides an internal drive for the agent, leading it to learn how to improve

itself, without requiring speci�c teaching. If this can be implemented successfully, the

agent should have `complete' self-improvement autonomy, that is to say a drive to improve

all required aspects of the information-gathering task at hand.

The ability of the architecture to perform a wide range of tasks, including multiple types

of meta-learning, with minimal restructuring indicates that it could be possible to create

a singular agent able to succeed at all these tasks. Such an agent was not implemented

in this thesis due to time constraints, and lack of an environment able to train and test

all of these capabilities simultaneously. Such an agent should be possible, however, simply

by broadening the range of components available to the agent at any one time, as well

as incorporating all desired features into these components, such as information-source

selection, parameter selection and algorithm portfolio selection.

In general this work can be considered a successful foundation for future work, as well

as a broad overall summary of the architecture's known current abilities.
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