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Robustness analysis of VEGA launcher model based on effective sampling

strategy

by Siyi Dong

An efficient robustness analysis for the VEGA launch vehicle is essential to minimize the

potential system failure during the ascending phase. Monte Carlo sampling method is

usually considered as a reliable strategy in industry if the sampling size is large enough.

However, due to a large number of uncertainties and a long response time for a single

simulation, exploring the entire uncertainties sufficiently through Monte Carlo sampling

method is impractical for VEGA launch vehicle. In order to make the robustness analysis

more efficient when the number of simulation is limited, the quasi-Monte Carlo(Sobol,

Faure, Halton sequence) and heuristic algorithm(Differential Evolution) are proposed.

Nevertheless, the reasonable number of samples for simulation is still much smaller

than the minimal number of samples for sufficient exploration. To further improve the

efficiency of robustness analysis, the redundant uncertainties are sorted out by sensitivity

analysis. Only the dominant uncertainties are remained in the robustness analysis. As

all samples for simulation are discrete, many uncertainty spaces are not explored with

respect to its objective function by sampling or optimization methods. To study these

latent information, the meta-model trained by Gaussian Process is introduced. Based

on the meta-model, the expected maximum objective value and expected sensitivity of

each uncertainties can be analyzed for robustness analysis with much higher efficiency

but without loss much accuracy .
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Chapter 1

Introduction

For the success of an aerospace mission, flight safety is one of the key aspect. The

performance of the flight control system, even in the presence of uncertainties and dis-

turbances, is vital to ensure safety. Typically every aerospace system will have a set

of functional and operational limits and the control laws must ensure the operation of

the system within these limits irrespective of the presence of uncertainty perturbations

and external disturbances. Such control laws are called ’robust’ to uncertainties and

disturbances. It is vital to determine the level of robustness of the control laws at the

design stage itself to ensure the success of the mission. Hence, robustness analysis is

performed on the closed loop control system or closed loop model to determine any ex-

treme condition of uncertainties that could make the system unstable, or in the loss of

desired functional performance limits. Occurrence of such extreme conditions need to be

avoided by all means either by limiting the operating levels (a sub level of performance

typical for first flights) or by redesigning the control laws (contrary to aircraft problems,

typical for a launch vehicle type of problems as there is limited possibility for a first

flight with lower operational capability). If no instability or violation of performance

limits, the level up to which the performance may be deteriorated are assessed. Fur-

thermore, while determining the worst case uncertain parameter combination, it is also

equally important to understand the sensitivity of each uncertainties to the designed

objective functions. When the number of uncertainties present in the model are large,

it is of typical interest to find out which uncertain parameters are key sensitive ones,

often identified as ‘driving uncertain parameters’.

1
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1.1 An overview of simulation based robustness analysis

In aerospace industry, the methods for robustness analysis are normally divided into

two categories: analytical based methods and simulation based methods. The analyt-

ical based methods, such as gain and phase margin, µ analysis, Sum of Squares (SoS)

etc..., require the exact information of the dynamics of the model. For example, µ analy-

sis requires the details of the state space model and the controller in a very specific form,

so called Linear Fractional Representations or LFT models. However, in our research

case, the model has to be treated as a ’black box’ as the controller of the model are

present but the precise details of them are unknown (confidential). The ‘confidential’ in

our research means the VEGA company do not wish to release to detail of design pa-

rameters of their launch vehicle to a third party for business confidential purpose. This

is often the case when dealing with industrial problems; many of them will be available

under third party license and details won’t be revealed. Under this circumstance, the

only choice left to us is the simulation based methods. Normally, the Monte Carlo meth-

ods and optimization based methods are favoured by the aerospace industry. The main

reasons for this affinity for such methods are simplicity and efficacy of the analysis ap-

proach. Furthermore, the popularity of the method stem from the wide adaptability of

such methods to different models, applications and disciplines, and limited requirements

for specialist newly trained skill set for the industry and agencies (especially when vali-

dated simulation/optimisation based tools are readily available from a third party to the

industry, for example University of Exeter offering codes to the engineers in industry).

1.1.1 Sampling based method

Several sampling strategies are present in literature to distribute sample points, also in

higher dimensional problems. Aerospace industry conventionally focus on Monte Carlo

sampling methods for the purpose of robustness analysis. Monte Carlo method dis-

tributes sample points in a random manner. Three main advantages of the method

are: (1) it is easy to implement; (2) it can be also used for risk assessment to explore

the safety regions in uncertainty space that no constraint violation happens , (3) the

convergence of covering the entire uncertainty space is independent of the dimension of

uncertain parameters. In other word, as the minimal number of samples to best approx-

imate an integration problem is calculated and expressed as a coefficient multiplying
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a higher order term, the number of minimal samples based on Monte Carlo method is

not related to the higher order term. In this research, a phrase ‘order of convergence’

in later chapters means ‘the speed of convergence’ or the minimal number of samples’.

This phrase refers to how fast or how efficient the robustness analysis would be.

More details about the Monte Carlo method will be introduced in Chapter 3. However,

a few applications of Monte Carlo method in aerospace industry for carrying out robust-

ness analysis are listed here.

Hanson and Beard [3] implemented the Monte Carlo method to assist the design the

model of launch vehicle and ensure the design launch vehicle is robustness to the un-

certainties. The Monte Carlo method is applied to verify the design requirements. In

their paper, they also mentioned the types of distribution (such as normal or Gaussian

distribution) that is depended on the probability density function and discussed the min-

imum number of sampling size. Hanson and Hall [4] applied the Monte Carlo method

to assist the design of Ares I type launch vehicle as well. The design requirements, such

as structure load analysis, flight control design, failure analysis, under the varying of un-

certainties are testes by Monte Carlo method. Then the assessments are carried out to

analyze whether the performance of outputs obtained from the Monte Carlo simulation

satisfy the design requirements. Thipphavong [5] also proposed the Monte Carlo simu-

lation for safety test for scenario of separation of aircraft in air traffic control system.

In this paper, the author combined the Monte Carlo method with features of fault tree

to accelerate the risk acceessment of air traffic control. Crespo, Giesy and Kenny [6]

used the Monte Carlo method for robustness analysis to determine the hard constraints

based on the design requirements.

On the other hand, the quasi-Monte Carlo method, which is a low-discrepancy se-

quence, is not much used yet for robustness analysis in the aerospace industry [3]. The

Monte Carlo and quasi-Monte Carlo methods are stated in a very similar way and in-

dented to solve the generic integration problem. The difference between two methods

is that the quasi-Monte Carlo is not randomly generate sampling points but in a more

deterministic fashion. It has been noticed that for a number of problems that have

been studied,especially in Finance industry [7–10], the quasi-Monte Carlo sampling ap-

proaches lead to significantly faster convergence with much smaller number of samples
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for the mean and standard deviation of the output as compared to Monte Carlo sam-

pling. More details about quasi-Monte Carlo Carlo can be found in Chapter 3. However,

quasi-Monte Carlo method is studied by many other authors [11–15], and it is demon-

strated as a more efficient way with a better convergence for solving the integration

problem compared to Monte Carlo method. It is a popular method in finance, health

and natural sciences for model validation and verification.

Furthermore, an approach that can take significant advantage from the sampling schemes

is Gaussian Process emulation. This approach considers the simulator as ‘black-box’ with

its inputs, which is modeled as a realization of a stochastic process. Prior information

about simulator that is gathered and updated typically by sampling scheme, either

Monte Carlo or one of the quasi Monte Carlo methods, is expressed as a Gaussian

Process with mean and covariance functions. From a frequentest perspective, the origin

of the methodology used a regression model in conjunction with a zero-mean GP to

best predict simulator output at an untried input configuration. Later on a Bayesian

perspective was taken to incorporate additional sources of uncertainty, for e.g., model

discrepancy, parametric uncertainty, found in typical robustness analysis problems [16].

The underlying concept is applicable to uncertainty analysis [17], sensitivity analysis

[18], calibration and also to optimization [16]. More details on the Gaussian Process

emulation will be provided in Chapter 5. An excellent graduate textbook on this topic

is [19].

1.1.2 Optimization based method

Optimization based robustness analysis is also widely used in aerospace engineering[20].

Normally, in order to avoid a local optimum, the global optimization strategies are more

welcome than local optimization algorithms, or mixed strategies which bear the advan-

tages from both local and global optimization methods. Especially, the evolutionary

based algorithms are most popular when the study subject is complex and nonlinear

system, such as Genetic Algorithm (GA) [21] and Differential Evolution (DE) [22]. The

study on optimization based robustness analysis normally focus on adapting the global

optimization algorithm to the subjective model and comparing the performance with

Monte Carlo based worst case validation; or proposing a novel optimization algorithm

or a strategy to modify an existing optimization/iteration algorithm tailoring to the
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specific problem under consideration in order to improve the efficiency of worst case

validation.

Oudin and Puyou [23] designed a adaptive control law for aircraft and applied one

global optimization algorithm for robustness analysis to verify whether the behavior of

controller meets the design requirements under the vary of uncertainties. In this thesis,

the optimization algorithm only used as a tool for worst case analysis. Marcos and

Marina [20] proposed different optimization algorithms for robustness analysis based

on the ELV launch vehicle. In the meantime, the authors also compared the results of

worst case validation with the results obtained through Monte Carlo method. It shows

that the optimization based worst case validation has a better efficiency in worst-case

search over the Monte Carlo method. The focus of the authors is on the study of results

of worst-case results based on different algorithms. Menon also implement the different

optimization strategies to study the robustness of an Linear Parameter Varying(LPV)

controller for a re-entry vehicle [24]. The author mainly focus on proposing two hybrid

optimization algorithms for robustness analysis. The hybrid optimization algorithm de-

notes a strategy to combine the both local and global optimization algorithms in order

to achieve a good worst-case result. The hybrid optimization normally could obtain a

better worst-case than ordinary a single local or global optimization algorithm [25]. But

the drawback is the computational cost could be very expensive.

1.1.3 Brief summary

Simulation based robustness analysis is suitable for the complex models or the models

with insufficient details. It is also able to transfer a problem from a continuous domain

to discrete domain by scattering a sequence of points. The Table 1.1 followed summaries

the application of simulation based robustness analysis and features of each method. In

the table, ‘L’, ‘NL’, ‘Aerospace’, ‘Other industry’, ’Efficiency’ and ‘CC’ denotes ‘Linear

system’, ’Nonlinear system’, ‘application in Aerospace industry’, ‘application in other

industry except aerospace industry’, ‘the efficiency when applied to robustness analysis’

and ‘computational cost/complexity’ respectively. The characters ‘3’ means ‘widely

used’ and ‘5’ means not or seldom used.
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Method L NL Aerospace Other industry Efficiency CC

Monte Carlo 3 3 3 3 Medium High

quasi-Monte Carlo 3 3 5 3 Medium to High High

Optimization 3 3 3 3 Medium to High High

Table 1.1: Applications of simulation based robustness analysis and features of each
method

1.2 Research motivation

Monte Carlo method is widely used for robustness analysis in the aerospace industry.

This method is easy to implement and ideally convenient for complex system. However,

the computational time required by Monte Carlo method for robustness analysis is not

cheap and not quite efficient, especially when the dimension of the uncertainties is high

and computational budget is constrained. Moreover, a single simulation of a complex

model in aerospace engineering may often need longer simulation time. In this thesis,

the main objective is looking for efficient alternate sampling and optimization methods

for robustness analysis of a complex system, mainly rooted on the concepts on quasi

Monte Carlo methods (for the first time in the case of a European launch vehicle model

to best of authors knowledge) and optimization methods (of which few are available

ones and others are integrated/tuned with the efficient sampling methods). The ideas

developed in the thesis will also lever from the conventional Gaussian Process emulation

which will be employed for the first time to a detailed launch vehicle model. To study

the efficiency of robustness, we propose the quasi-Monte Carlo method and a modified

Differential Evolution(DE) optimization algorithm to compare the efficiency with Monte

Carlo. Moreover, the efficiency of robustness analysis can be affected by high dimension

of uncertainties. Thus, the variance based sensitivity analysis is proposed to identify the

driven variable to reduce the dimension of uncertainties. However, the variance-based

sensitivity analysis is an expensive method for sensitivity analysis if the dimension of

uncertainties is high. To lower the time cost for sensitivity analysis, the Gaussian Process

emulation is introduced to approximate the statistic features of the distribution of the

outputs. The statistical model generated by Gaussian process replaces the initial ELV

launch model for the sensitivity analysis in order to reduce the computational burden

and achieve an acceptable quality of the sensitivity index. The usability of Gaussian

Process emulation models in revealing worst case behavior is also demonstrated.
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1.3 Research contribution

The main research contributions of this thesis are:

• In this research, the quasi-Monte Carlo sampling methods are considered, applied

to robustness analysis of a closed loop model of a launch vehicle of industrial

standard, and verified to be more efficient way for analysis (mean, standard devi-

ation and coverage of uncertain space) in our case compared to the conventional

Monte Carlo method. Specific performance costs suggested by industrial experts

(ELV, Italy) have been considered as metrics for the analysis. The results of the

worst case analysis obtained by the quasi-Monte Carlo method is no worse than the

Monte Carlo method at least. In most cases of the analysis, the quasi-Monte Carlo

methods achieved a better worst case result than Monte Carlo method. Compu-

tational budget constraints, which typically followed in industrial practice 1 and

affordable in most analysis cases [25], were imposed in all the analysis cases.

• The conventional DE optimization algorithm is modified with a new way for gen-

eration of initial population. Specifically the low discrepancy sampling method

was used to generate the required good uniformity distribution for the initial pop-

ulation and then a short step-size parameter was used to enhance the efficacy of

the conventional optimization scheme. Like many other published studies on pop-

ulation based evolutionary optimization schemes, several numerical experiments

using standard test functions were carried out to validate the proposed concept.

The modified optimization algorithm DE is approved as a much efficient method

for robustness analysis of the launch vehicle control system model than the con-

ventional DE algorithm, Monte Carlo method and quasi-Monte Carlo method.

• For sensitivity analysis, the variance based sensitivity analysis which exploits the

sampling schemes is considered, and demonstrated as a good method to sort out

the driving uncertain parameters, or the most sensitive uncertain parameters, for

the case of relatively small dimensional uncertain parameter space problem. Here

also, the computational budget constraints are present. Especially, it is a good

1ELV, Italy, ESA private communication



Chapter 1. Introduction 8

candidate method to study the sensitivity index of uncertain parameters when the

model is given as ‘black-box’ model.

• Gaussian Process is successfully applied to obtain a statistic meta-model based on

the ELV launch vehicle model. Based on the meta-model, the sensitivity index for

the complete set of uncertain parameters is determined with an affordable com-

putational burden and within an acceptable quality. The sensitivity index weight

of each variable is identified and used to reduce the dimension of uncertainties

by neglecting the non-important variables. The usefulness of the Gaussian Pro-

cess methodology to reveal the worst case behaviour of the models effectively and

swiftly is also demonstrated

1.4 Thesis organisation

In Chapter 2, a literature review is given to discuss the current research status on Monte

Carlo, Quasi-Monte Carlo, sensitivity analysis and Gaussian Process.

In Chapter 3, the mathematical model of the VEGA launch vehicle model, designed and

developed by the ELV, Italy, is introduced. The VEGA launch vehicle is a three stage

rocket, in which the present study focuses on the ascending phase in the first stage only.

The structure, dynamics, uncertainties, outputs and objective criteria for robustness

analysis are given in this chapter.

The Monte Carlo, quasi-Monte Carlo, DE and its proposed variant are discussed and

applied to determine robustness of the VEGA launch vehicle model in Chapter 4. The

results and the computational efficiency of these methods are compared. In the mean-

while, the effects of wind is studied independently which is very important during the

ascending phase.

In Chapter 6, the variance based sensitivity analysis is discussed and applied to study

the driving uncertain parameters, or the most sensitive uncertain parameters. However,

not all of the parameters are investigated because of the excessive computational cost

associated with the methodology. Only 15 uncertainties are selected from the entire

uncertainty set and studied by the variance based sensitivity analysis methodology.

In Chapter 7, the Gaussian Process is introduced to generate a computationally fast sta-

tistical meta-model mainly for the purpose of sensitivity analysis in higher dimensional
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uncertainty space. The entire uncertain parameters are considered with this method-

ology, and sensitivity index of each uncertain parameter is efficiently determined at

an affordable computational cost with good accuracy. The usefulness of the Gaussian

Process method in determining the worst case perturbation is also discussed and demon-

strated in Chapter 5.

In Chapter 8, the main conclusive conclusions and summary are given, along with a few

narrated future works.



Chapter 2

Literature Review

A survey of the basic principles of the research approaches in this thesis is elaborated in

this chapter, and includes discussion of the Monte Carlo and quasi-Monte Carlo methods,

different evolution, sensitivity analysis, and the Gaussian process.

2.1 Monte Carlo method

Complex systems often have elements that behave in a stochastic manner, or have pa-

rameters vary within a bounded range. It is important to assess the variability of output

responses of such complex systems. The Monte Carlo simulation method is often used

to study the properties of such complex systems. Typically a representative mathemat-

ical model of suitable level of complexity is simulated on the computer by randomly

sampling the parameters within their bounds, or randomly generating variables describ-

ing elements with the stochastic behavior. Subsequently the responses of interest are

obtained from the simulation data and used for assessing maximum, variability, etc.

and used for statistical inference. The Monte Carlo simulation is widely used in sev-

eral disciplines, including engineering, finance, biology, physics, operations research, and

management science. It is widely used in many fields of engineering, especially applied

to robustness and reliability analysis for complex system.

For instance, for the launch vehicle considered in this thesis, there are many uncertain

parameters that may affect the performance of the launcher including the external wind

force on the vehicle, the rotation rate, the actual force provided by the thrusters, the

10
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dynamic force and torques, and possible signal delay from the internal electronic sys-

tem. Clearly, as the number of uncertain parameters increase, the underlying problem

becomes abstruse due to the large dimensionality. An approach is to find out whether

the launch vehicle would remain robustly stable (satisfy certain mission objectives or

design requirements) even in the presence of the worst scenario (multiple uncertainties

are varied simultaneously yielding an extreme output values) or not, by investigating

all the outputs of interest. The method of evaluating only at the extremes of the un-

certain parameters (i.e., at minimum and maximum value of the parameters, and their

combinations for the vector of uncertain parameters) or at regular grid points (i.e, at

minimum value to maximum value of the parameter at regular intervals) might not

always necessarily reveal the inherent extreme, or worst-case behavior due to possible

intricate nonlinear influence of the parameters on the dynamics of the system. Several

researches [3–5, 26, 27] have considered basic Monte Carlo method as a tool for assessing

the robustness and reliability of systems in aerospace engineering.

The Monte Carlo method is a potential approach to vary the uncertainties under one

or many distribution rules in order to find a combination of values of the uncertainties

close enough to the worst scenario. Normally it requires a large number of simulations

for a good convergence. If the launch vehicle is stable in the presence of the worst case

uncertain parameter that is obtained by the Monte Carlo method based simulations with

a specific confidence level, then typically industry classify that the control laws of the

launch vehicle as robust to these uncertainties and allows to be cleared for the mission

(similar many other issues have to overcome prior to certification).

In robustness and reliability analysis, Monte Carlo method normally is employed as a

tool for generation of the uncertain parameters and tries to reveal the possible condition

that makes the system failure; or it indicates the probability of a system stay in the

safety conditions over the entire mission. Industrial favoritism for the method seems

to stem from the simplicity of the approach and possibility to adopt the concept easily

across different platforms and projects. The principles of basic Monte Carlo method,

the sampling requirement subject to specific degree of confidence, and its convergence

are discussed.
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2.1.1 Monte Carlo integration

The expected value of the Lebesgue integrable function f(.) is expressed as the equation

2.1 ∫
B
f(u)du (2.1)

Let u be a random variable. The integration domain is B ⊆ RS and satisfy 0 < λS(B) <

∞ where λS is the S-dimensional Lebesgue measure. It is possible to represent the

integration domain B in probability space with probability measure as follows

dµ =
du

λS(B)
. (2.2)

Then, it is easy to show that

∫
B
f(u)du = λS(B)

∫
B
fdµ = λS(B)E(f) (2.3)

where E(f) is the expected value of the random variable f . Viewing from the statistical

perspective, the numerical integration turns out to be the calculation of expected value.

Let ‘f ′ be a random variable on an arbitrary probability space (A,N, λ). Monte Carlo

estimate for the expected value E(f) is obtained by taking N -independent λ-distributed

random samples a1, . . . , aN ∈ A and letting

E(f) ≈ 1

N

N∑
n=1

f(an) (2.4)

The Strong Law of Large Numbers [28] guarantees that this procedure converges almost

surely in the asymptotic sense that

lim
N→∞

1

N

N∑
n=1

f(an) = E(f)λ∞ − a.e. (2.5)

where λ∞ is the product measure of numerable many copies of λ. The variance is given

as

σ2(f) =

∫
A

(f − E(f))2dλ (2.6)

and is finite, whenever f ∈ L2(λ) (Lebesgue space).
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To elaborate a bit further, if f ∈ L2(λ), then, for any N ≥ 1, from the variance relation,

we have ∫
A
. . .

∫
A

(
1

N

N∑
n=1

f(an)− E(f))2dλ(a1) . . . dλ(aN ) =
σ2(f)

N
. (2.7)

Let us define g := f − E(f), then ideally

∫
A
gλdλ = 0 (2.8)

and
1

N

N∑
n=1

(f(an)− E(f)) =
1

N

N∑
n=1

g(an) . (2.9)

Thus, it may be shown as

∫
A
. . .

∫
A

(
1

N

N∑
n=1

f(an)− E(f))2dλ(a1) . . . dλ(aN )

=

∫
A
. . .

∫
A

(
1

N

N∑
n=1

g(an))2dλ(a1) . . . dλ(aN )

=
1

N2

N∑
n=1

∫
A
. . .

∫
A
g(an)2dλ(a1) . . . dλ(aN )

+
2

N2

∑
1≤m<n≤N

∫
A
. . .

∫
A
g(am)g(an)dλ(a1) . . . d(aN )

=
1

N

∫
A
g2dλ =

σ2(f)

N

The absolute value of error in E(f) is, on average, εE = σ(f)N−1/2 where σ(f) =

(σ2(f))1/2 is the standard deviation of f . The Monte Carlo estimate is given as

∫
B
f(u)du ≈ λS(B)

N

N∑
n=1

f(xn) , (2.10)

where x1, . . . , xN are N independent µ -distributed random samples from B. The abso-

lute value of error, on average, is given by ε = λS(B)σ(f)N−1/2.

The key features of the Monte Carlo method are: (i) it has a probabilistic error bound

O(N−1/2), (ii) the order of the magnitude does not depend on dimension S, and prefer-

able for dimension S ≥ 5, (iii) comparing the classical integration scheme O(N−2/s),

(iv) the convergence rate is also defined as O(N−1/2). Here, the applicability of the

methodology to a wide class of problems has to be highlighted. In all the derivations,
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the value of f does not necessarily require any analytical form. This can be function

evaluated at a set of discrete points, this could be an analytical function, a complex

function, a complex model, a simulator, no matter what way they are modeled. The

only requirement is that one should be able to supply the necessary input conditions for

f , which often will be a black-box complex simulator, and evaluate it at the respective

supplied conditions, or instance of parameter occurrence. Ideally, Monte Carlo method

is suitable for high dimensional problem according to the features described above. To

improve the rate of convergence , some researches has already been done. However, this

is not belonged to our research concerns. More details can be found in other researcher’s

work, such as [11].

The pattern of the random number distribution is based on the probability density

function λ. The two categories of distribution are: (i) uniformly, and (ii) non-uniformly.

The most commonly used non-uniformly distribution is normal/Gaussian distribution.

More types of non-uniformly distribution can be found in the book [29]. It should

be aware of that the sampling points generated by a computer is not exactly random.

Instead, it is typically pseudo-random, which implies that the generation of the sequence

of random number depends on many other properties as well. In this thesis, all random

numbers are generated by the Matlab version 2009b due to compatibility with the VEGA

model discussed in Chapter 2.

2.1.2 Requirement of Sampling size

Because the error bound ε is probabilistic, the precision/accuracy of the Monte Carlo

integration can only be ensured with a degree of confidence[11]. According to the Cen-

tral Limit Theorem [28], a minimal sampling size N is required for the Monte Carlo

integration error with the confidence level c. The minimal number of N is expressed as

N = ε−2σ2h (2.11)

where the h is the confidence function. The confidence level may be represented as

c =

∫ h

−h

1√
2π
e−u

2/2du

where the term λ(u) is the probability density function.
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Unfortunately, the σ in equation 2.11 cannot be calculated by the Monte Carlo integra-

tion itself. An easy way is to use M independent points over the random sequence N

to calculate the empirical error and deviation. The empirical error, which makes use of

the indicator function value I(j) and 1 ≤ j ≤M , is:

ε̃ = (
1

M

M∑
j=1

(I(j) − Ī)2)1/2 (2.12)

where the term Ī represents the average expressed as

Ī =
1

M

M∑
j=1

I(j) .

Thus, the empirical deviation is σ̃ = N1/2ε̃, which can be used to replace the σ in

equation 2.11 in order to calculate the value of N for a given confidence level c. This

will be used to obtain an idea of the computational budget for a required confidence

level, and allows to do the necessary trade off/compromise one has to make between

computational limits and quality of solution.

From the subsection above, the most significant advantage of the Monte Carlo method is

that the integration error(or convergence rate) only depends on the sampling number N ,

but not anything to do with the dimension. So Monte Carlo is ideal for high dimensional

problem. By increasing the number of sampling points, the integration error can be made

smaller. Moreover, the confidence level of the integration error can be approximated in

terms of the sampling size N . One has to notice that the method does not guarantee

revealing worst case behavior. The respective problem may be posed to be solved using

the traditional methodology, but at the expense of significant computational budget.

2.1.3 Random number generation

In practice, the random number generated by the computer is not exactly random.

The generation is based on some deterministic algorithms. So this process is called

pseudo-random. The pseudo-random generates uniform random numbers. Some details

of generating the pseudo-random numbers in theoretical level can be found in [30]. For

non-uniformly distributed variables, such as Gaussian distribution, the density transfor-

mation method is applied.This method is also the general procedure for random number
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production in different probability density function p.

Denote y is a uniform random number, and there is function of y that it makes x = X(y).

The x is the non-uniform random variable with probability density p(x). In steady of

drawing the non-uniform random variable directly based on its probability density p(x),

we product the uniform random numbers and transfer these numbers to non-uniform

distributed numbers according to the mapping function X(y). The X(y) is found based

on the computation of expectation. For a function f ,

Ep[f(x)] = Eunif [f(X(y))] (2.13)

by using the change of variable in integration,

∫
f(x)p(x)dx =

∫
f(X(y))p(X(y)X ′(y)dy (2.14)

Because the expectation of a function f(x) based on uniform distribution is:

E[f ] = I[f ] =

∫
f(x)dx (2.15)

Then

p(x)X ′(x) = 1 (2.16)

So that, ∫
f(x)p(x)dx =

∫
f(X(y))p(x)dy

=

∫
f(x)(dy/dx)dx

(2.17)

The probability density p(x) = 1
X′(y) = dy/dx. Thus,

∫ X(y)

p(x)dx = y (2.18)

The cumulative distribution function of P (X(y))andX(y) then is:

P (X(y)) = y

X(y) = P−1(y)
(2.19)
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(a) The random sequence (b) The quasi-random sequence

Figure 2.1: The distribution of random and quasi-random sequence

Although the density transformation method is easy to implement, the inverse of the

cumulative density function P−1(y) may not be easy to obtain.

2.2 Quasi-Monte Carlo Method

Quasi-Monte Carlo is a type of quasi-random sequence or low-discrepancy sequence.

Compared to the Monte Carlo method, the quasi-Monte Carlo is a pseudo-random se-

quence which is deterministic. The term ‘discrepancy’ mentioned above is a measure of

uniformity of a sequence. The quasi-Monte Carlo aims to provide a better uniformity

when compared to the Monte Carlo. In the Figure 2.1, it shows the distribution of the

256 points for a two dimensional case. The random sequence is generated following a

quasi-random sequence, here specifically following Sobol principle, which is discussed

more in sequel. In the left sub figure, marked (a) of Figure 2.1, it is easy to see that

certain space has accumulation of points, and certain space has no filling points at all.

The granularity of filling of the space, while maintaining the randomness among the

sampled points, is crucial to optimal sampling problems. A reason for this phenomena

is because the sampled points are independent, and the fact that the points are gener-

ated without sharing any information. On the contrary, the quasi-random sequence uses

the correlation information between the points for the generation of sampling points.

Hence, as evidently seen in Figure (b), a better uniformity for the sampling points can

be observed.

When the Quasi-Monte Carlo is applied to solve the integration problem, such as the

equation 2.1, the convergence rate is O((logN)kN−1)[30]. For large N and relatively
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small dimension, the quasi Monte Carlo has a faster convergence rate over the Monte

Carlo. However, for a high dimensional problem, the effectiveness of quasi-random

sequence is limited. To overcome this drawback, some additional methodologies are

introduced to regain the faster convergence of the quasi-random sequence for high di-

mensional problem in this section. To demonstrate the effectiveness of quasi-Monte

Carlo in a realistic industrial research problem, three low discrepancy generation using

Sobol sequence, Halton sequence and Faure sequence will be discussed in sequel.

2.2.1 Discrepancy

The discrepancy is the measure of uniformity of a sequence. Suppose aN points sequence

{xn} is s-dimensional unit cube Is = [0, 1)s. The local discrepancy for a sub interval J

of Is is defined as[31]:

RN (J) =
1

N
A(J ;N)−m(J) (2.20)

where A(J ;N) is the number of points N falling in the sub interval, 1 ≤ n ≤ N , m is

the volume of J . J must be rectangular sub interval, and let E be defined as the set

of all such sub intervals. In this additional framework, the local discrepancy RN is also

called the quadrature error in measuring the volume of J [11]. The overall discrepancy

of the sequence xn is defined as:

DN = sup
J∈E
|RN (J)| (2.21)

Now, suppose every sub interval J in E has the value 0 for the lower bound, IsJ = [0, x)s,

and denote the modified set of all such sub intervals as E∗N , the discrepancy is then

defined as:

D∗N = sup
J∈E∗N

|RN (J)| (2.22)

For a low-discrepancy sequence, a small value of discrepancy D∗N is essential. In detailed

surveys on quasi-Monte Carlo methods, Hammersley [32] and Halton [12] show that, for

any dimension greater than 2, there exist N points in Is with

D∗N = O((logN)s−1N−1) (2.23)
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and there exists a sequence of points in Is with

D∗N = O((logN)sN−1) (2.24)

Both equations indicate that the value of discrepancy is dependent on the order of the

sequence and increases exponentially with dimension. This is also a reason why the

quasi-Monte Carlo losses the effectiveness for high dimensional problem.

2.2.2 Quasi-Monte Carlo integration error

Because the conventional analysis based on probability theory is no longer able to apply

(not i.i.d) to the quasi-Monte Carlo to find the error of the integration, the quasi-Monte

Carlo integration error is defined based on an alternative approach called Koksma-

Hlawka inequality [11, 13]. For a sequence {xn}, the integration error of a bounded

variation function f(.) is subject to

ε[f ] =

∣∣∣∣∣
∫
Is
f(x)dx− 1

N

N∑
i=1

f(xi)

∣∣∣∣∣ ≤ V [f ]D∗N (2.25)

The V [f ] is the variance function and defined in the Hardy-Krause sense [13] as

V [f ] =

∫
Id

∣∣∣∣ ∂sf

∂t1 . . . ∂ts

∣∣∣∣ dt1 . . . dts +
s∑
i=1

V [f
(i)
1 ] (2.26)

where f
(i)
1 is the restriction of the function f to the boundary when xi = 1.

There are various way to construct the quasi-Monte Carlo with small discrepancy, such

as Sobol [33], Halton [12] and Faure sequence [34]. The discrepencies of all of these three

sequences are bounded by

DN ≤ cs(logN)sN−1 (2.27)

Niederreiter in [14] provides the properties for a low-discrepancy sequence as that the

discrepancy must satisfy:

DN ≤ cs(logN)sN−1 +O((logN)s−1N−1) (2.28)

The bound of the discrepancy indicates that the quasi-random sequence with a small

discrepancy has a smaller integration error compared to the random sequence.
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Based on the bound of the discrepancy DN and the Koksma-Hlawka inequality, the

integration error of the quasi-Monte Carlo is given by[11]:

ε[f ] ≤ csV [f ](logN)sN−1 (2.29)

Thus, the convergence rate is considered as O(logN)sN−1. A remark here is that,

because the integration error using the quasi-Monte Carlo is an inequality relationship,

it is not tight as the integration error of random sequence, which has an equality relation.

2.2.3 Discussion on quasi-Monte Carlo

The quasi-Monte Carlo is designed to solve an integration problem and originally Caflisch

expressed potentials and concerns about application of the quasi-Monte Carlo to simula-

tion problems[11]. Unlike the crude Monte Carlo method, the quasi-Monte Carlo cannot

provide a confident level of accuracy by choosing the sampling size N . Specifically for

a large dimension case, the discrepancy bound is dominated by the term (logN)s un-

less N > 2s. In reality, constrained by computational capability of computer and the

complexity of the simulation model, the sampling size N cannot tend to infinity or a

relatively large value. The effectiveness of quasi-Monte Carlo that depends on the di-

mension is obvious. By observing the 2D projection of the distribution points, it may

indicate whether the quasi-Monte Carlo is effective for the certain size of dimension.

The Figure 2.2, 2.3 and 2.4 are examples of such projection based on Sobol, Faure and

Halton sequence. The sequence in this figure is constructed by Sobol sequence and the

dimension is 30. In the Figure (a), the projection for the lower dimensions (dimension 1

versus 2 as an example) is very uniform; on the other hand, the projection in some higher

dimensions ( such as the example in Figure (b) for dimension 29 versus 30) is extremely

‘bad’. For the ‘bad’ projection, a larger number of sampling points is required to fill

the empty space. In conclusion, the Sobol sequence may loss its effectiveness when the

dimension size is 30. Normally, the ‘bad’ projection is rare observed when the dimension

is below 10 for Sobol sequence. In Moskwitz experience [35], the quasi-Monte Carlo can

remain in the superior position over crude Monte Carlo when the effective dimension is

below 30.
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(a) The projection of dimension 1 vs. 2 (b) The projection of dimension 29 vs. 30

Figure 2.2: The 2D project of Sobol sequence

Wang[15], Kucherenko[36] and Yucesan[37], proposed the concept of effective dimension

to reduce the dimension of a sequence. Generally speaking, the core concept of the effec-

tive dimension is to screen the redundant dimension by satisfying either superposition

sense or truncation sense. The definition of the superposition sense and truncation sense

will be given below. The Principle Component Analysis (PCA) and Brownian Bridge

(BB) method are widely used [11, 15] for effective dimension. The main purpose of these

two methods is to put the weight of variance into the first few dimensions because the

good 2D projection for lower dimensions in quasi-Monte Carlo. In our research work,

instead of using PCA or BB, the global sensitivity analysis is employed for effective

dimension. In summary, for the effectiveness of quasi-Monte Carlo for high dimensional

problem, the key step is to identify the weight of variables based on variance. Although

there are various methods to find the sensitivity indices, a good candidate choice so far

for the type of research problem dealt in this thesis is the Variance Based Sensitivity

Analysis. The reasons are: (1) Often the detail of the complex simulation model is

confidential, and an explicit analytic relationship is not precisely known, or is closed.

The implication is that the model has to be considered as black box. We can only access

the output data of the simulation. It is impossible to study the sensitivity based on

analytic expression level. (2) The core concept of effective dimension needs the informa-

tion of the variance and correlation for the variables based on the ANOVA(Analysis of

Variance) decompensation method. The detail of the sensitivity analysis will be given

in next chapter. (3) The computation is affordable for a problem in moderate size of

dimension.
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(a) The projection of dimension 1 vs. 2
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(b) The projection of dimension 28 vs. 30

Figure 2.3: The 2D project of Faure sequence
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(a) The projection of dimension 1 vs. 2
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(b) The projection of dimension 29 vs. 30

Figure 2.4: The 2D project of Halton sequence

2.2.4 Effective Dimension

The application of ANOVA decomposition for effective dimension was introduced by

Caflisch [38] in first place. The ANOVA is an approach to decompose a function f(.)

into a sum of less complex functions. Hence, the function f is expressed as:

f(x) = f0 +
s∑
i=1

fi(xi) +
s∑
i<j

fij(xi, xj) + · · ·+ f12...s(x1, x2, ..., xs) (2.30)

In the function above, the components fi(xi) are called the first order terms, and the

components fij(xi, xj) are called the second order terms, and so on. Suppose the s-

dimensional unit cube is defined as Is, the total variance of the function f(.) is defined

as:

σ2 =

s∑
n=1

s∑
i1<...in

σ2i1..in (2.31)
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in which σ2i1..in =
∫
Is f

2
i1..in

(xi1 , ..., xin)dxi1 , ...,dxin .

For a subset y = (xi1, ..., xim), 1 ≤ i1 < · · · < im ≤ s, the variance for the subset y is

defined as

σ2y =
m∑
n=1

m∑
i1<...in

σ2i1..in (2.32)

Thus, the definitions of the effective dimension are:

Definition 1. The effective dimension of f(.) in the superposition sense is the smallest

integer dS , such that ∑
0<|y|<dS

σ2y ≥ pσ2 (2.33)

where p is the proportion as 0 < p < 1.

Definition 2. The effective dimension of f(.) in truncation sense is the smallest in-

teger dT such that ∑
0<|y|⊆1,2,...,dT

σ2y ≥ pσ2 (2.34)

From the definition of ANOVA decomposition and the definition of superposition sense

and truncation sense (variance aspects), it is easy to understand that the idea of the

effective dimension is directly related to the sensitivity analysis. To determine the

effective dimension, we can thus apply the global sensitivity analysis, which is discussed

further in detail in the next chapter. In definition 1, the dS is always expected to be a

small value so that the function f(.) is dominated by the lower order term in ANOVA

decomposition. Normally the superposition sense is quite useful when all the variables

are equally important. In definition 2, the dT indicates the weight of variables. In other

words, these variables should be most important and dominate the function f . The

effective dimension is dependent on p. To obtain a good quality of dS and dT , normally

the p is expected to be greater than 0.95. For the same p, we always have dS ≤ dT .

2.3 Differential Evolution and Quasi-Monte Carlo

The optimization based worst case validation for robustness analysis is widely used in

aerospace engineering, such as [20, 23, 24, 39]. Especially the author in [20] demon-

strated that the heuristic based optimization, such as that proposed in [24] has a better
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performance in worst-case validation compared to the conventional Monte Carlo method

for analyzing the performance of VEGA launch vehicle in the P80 ascending phase. Al-

though the uncertainties and Simulink block considered in [20] are different from our

simulation experiment, some mutual objectives are employed for both researches, such

as max(Qα(mach)). The term Qα is the aerodynamic load performance of the launch

vehicle, which is of great importance and of interest to the industry. Thus, it has become

standard among the community and a consensus is being arrived that the optimization

based robustness analysis is a good strategy in revealing the extreme behaviours of the

system typically when the computational budget is limited.

Here, the interest is to demonstrate that the quasi-Monte Carlo based initialization for

the population based method considered in [20, 24] significantly improve the convergence

of the worst-case validation. Research in [40, 41] shows that an initial population with

a better distribution in the case of Genetic Algorithm(GA) help convergence to global

solution. Thus, one of our goals in this section is to demonstrate that the quasi-Monte

Carlo has good potential to provide a good distribution of the initial population in Dif-

ferential Evolution(DE). Like GA, DE is also a heuristic based optimization. The basic

DE and GA have same or similar strategy of population initialization (normally based

on Monte Carlo method with uniform distribution for initialization) and selection, but

different in crossover and mutation operators. These concepts ‘initialization, selection,

crossover and mutation’ for DE will be discussed in next subsection. The simple idea

here is to make use of the quasi-Monte carlo based initialization of population for the

DE algorithm. Only Sobol sequence will be studied in the experiment.

2.3.1 Differential Evolution

DE is a population based global optimisation algorithm having roots on evolutionary

optimisation principle and introduced by Storn and Price [22]. Different scheme are avail-

able for DE. In this study,the DE/rand/1/bin strategy is used, where the ‘DE ’ denotes

Differential Evolution, ‘rand ’ denotes the way of choosing the individuals for mutation

is random, ‘1 ’ denotes the number of pairs of individuals that are selected for mutation

and ‘bin’ denotes the way of recombination of the pairs of individual is binomial. DE

consists of 4 steps based on this scheme:(1)Initialization of population,(2)Mutation, (3)

Crossover, (4)Evaluation and selection.
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(1)Initialization of population. Suppose the size of population is n, the population

set is denoted as x = [x1, x2, ..., xn]. For each individual xi, i = 1, 2, ..., n in the set x,

it consist of m-dimensional uncertain parameters. A individual is expressed as xi =

[xi1, xi2, ..., xij , ..., xim], j = 1, 2, ...,m. A conventional DE initialize a certain number of

population by following the principle below:

xij = xminij + (xmaxij − xminij )× r, i = 1, ..., n j = 1, ...,m

where xij denotes the uncertain parameter value in jth dimension of the ith individual.

Furthermore, xmaxij and xminij represents the maximum and minimum bound of the un-

certain parameters, which typically scaled appropriately to a unit interval. The term r

is a ‘random’ perturbed variable typically uniform distributed within the interval [0, 1].

The random perturbed value r in crude DE is generated by Monte Carlo method with

uniform distribution.

(2)Mutation To generate the mutated individual for next potential generation, three

different individuals are selected from current generation.The potential mutated indi-

vidual is generated by followed principle:

x̄G+1 = xGr1 + F (xGr2 − xGr3) (2.35)

where x̄G+1 is the mutated individual for crossover operation, xGr1, x
G
r2, x

G
r3 is the three

different individuals randomly picked-up from current generation, F is a scaler factor

within the range [0, 1].The term xGr2 − xGr3 indicates the search direction from point xGr1

and the F determines the step size in that direction.

(3)Crossover A crossover operator determines whether an element in the new mutated

individual will be remained as a prospective element for the next generation, or not.

The definition is followed:

pG+1
ij =


xGij if ρrand > ρc

x̄G+1
ij otherwise

where pG+1
ij is the prospective value of the jth element for the ith individual, ρrand

is a uniform random variable and the ρc is crossover probability, i = 1, 2, ..., n and

j = 1, 2, ...,m. If a random variable ρ is greater than the crossover probability, the
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value of that element will be kept as current value; otherwise, it will be replaced by the

mutated element.

(4) Evaluation and selection After crossover operation, the prospective individual

xG+1
i will be evaluation by a objective function. The evaluation result is named as

fitness. If the prospective individual xG+1
i has a better fitness value than its parent’s

(xGi ) fitness value, this individual will be selected for the next generation as a new parent.

Otherwise, the current parent individual xGI will be chosen and marked as xG+1
i .

xG+1
i =


pG+1
i if f(pG+1

i ) ≤ f(xGi )

xGi otherwise

The pseudo code of the DE is given in table below.

Pseudocode of DE

1 Begin
2 Initialize the population by Monte Carlo method with uniform

distribution xGi , G = 1, i = 1, 2, ..., n
3 Evaluate the individual of the population of initialization, f(xi)
4 Obtain the best individual popbest
5 while( termination criteria satisfy)
6 for i = 1 to N
7 randomly select xr1, xr2, xr3,

8 x̄G+1
i = xGr1 + F (xGr2 − xGr3)

9 for j = 1 to m
10 if ρrand > ρc Then

11 pG+1
i,j = xGi,j

12 else

13 pG+1
i,j = x̄G+1

i,j

14 End if
15 End for

16 If (f(pG+1
i ≤ f(xGi ))) Then

17 xG+1
i = pG+1

i

17 else

18 xG+1
i = xGi

19 End if
20 End for
21 G = G+1
22 End while
23 End
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2.3.2 Differential Evolution with Sobol initialization

Though it has been recommended to have an initial population of 1.5 to 2 times the

dimension of the uncertain space, it has been shown in the previous studies that even a

lower number of initial population can also perform well with DE/rand/1/bin schemes

in [20, 24, 25]. For example, the number of initial population, for the 118-dimensional

problem we have, is 50 (selected based on . It has been concluded that a better ini-

tial population distribution will potentially improve the convergence with a constrained

computational cost [42]. Following the convergence plot of f1 in Figure 4.1, the Sobol

sequence is chosen as a candidate sampling method to generate the initial population

for DE.

DE with Sobol initialization is essentially the same as crude DE, except the way of

generating the initial individuals (i.e., the step 2 of pseudo code of the DE; This would

become: ‘Initialize the population by Sobol sequence: xGi , G = 1, i = 1, 2, ..., n’). The

random properties occurred in the ‘Mutation’ and ‘Crossover’ parts still follow the uni-

form random distribution strategy. Instead in the case of Sobol initialization DE, the

random perturbed value r in equation 2.3.1 is generated by Sobol sequence rather Monte

Carlo method. The initialized individuals are distributed in a quasi-random manner in

the uncertainty space. Because the Sobol sequence potentially has a better uniformity of

the distribution, and a good coverage across the higher dimensional space as discussed

earlier, DE should have higher opportunity to converge to global optimum value at a

faster pace. In this case, it was observed that a lower value of F in 2.35 yields better

results since the sobol sequence covers the space in a better manner.

2.3.3 Hybrid Differential Evolution

The Hybrid Differential Evolution (HDE), proposed in [20, 24] is considered as an exten-

sion version of DE. It combines the global optimization algorithm DE and a local opti-

mization algorithm. A trigger is employed to switch the optimization algorithm between

the DE and local optimization algorithm. The trigger is activated from DE to local opti-

mization when the current generation in DE has no or very small(the improved fitness is

smaller than the user assigned threshold of improvement ) improvement in fitness. Then
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the local optimization starts to explore the neighborhood of a randomly selected indi-

vidual from the current population set. If a better optimum value is found, the selected

individual will be replaced by the local optimum solution, otherwise, this individual will

be remained. Then, the trigger is deactivated and the DE continue the optimization for

next generation. In our experiment, the Matlab optimization function ‘fmincon’ is ap-

plied to the local optimization.The fmincon is the gradient based optimization. It uses

the Hessian Matrix for the objective function based on the Karush-Kuhn-Tucker(KKT)

conditions. The KKT conditions uses the auxiliary Language multiplier. The method

of Language multiplier for optimization is expressed as:

L(x, λ) = f(x) +
∑

λg,igi(x) +
∑

λh,ihi(x) (2.36)

where the f(x) is the objective function of x, gi(x) is the ith in linear inequality function,

hi is the ith linear equality function, λg,i and λh,i are the Lagrange multiplier for the ith

function g(x) and h(x) respectively.

The KKT conditions means there exists a set of λ that satisfy the followed conditions:

∆xL(x, λ) = 0

λg,igi(x) = 0
(2.37)

So the local optimization is given as:

∆2
xxL(x, λ) = ∆2f(x) +

∑
λi,g∆

2gi(x) +
∑

λi,h∆2hi(x) (2.38)

For a non-differentiable objective function, such as the simulator of the VEGA launch

vehicle, the fmincon at least require the number 2D + 1 of function evaluations to con-

struct the gradient.Here the D is the dimension of the uncertainty. In our case, the

D = 118 and the minimum number of function evaluations for fmincon is 237. The

fmincon will stop the local optimization when the number of evaluations reaches the

assigned value or the improvement over each gradient is smaller than threshold 10−6.

The threshold value can be re-defined by user as well. And typically due to this fact, in

the case of HDE, at the early stages of optimisation DE, which has potential to escape

from the local peaks at the initial stages like GA, is preferred. Moroever, since the di-

mension of the problem is high, and the ‘fmincon’ optimisation has to evaluate gradient

information numerically yielding to additional computational load, it is preferred to be
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selected only at the final one stage to provide the final improvement towards the global

solution. Instead of ‘fmincon’, it is possible to use other non-gradient local optimisation

methods. However, in the present study we are not aiming neither in this direction, nor

improving the conventional HDE with sobol initialization strategy for the same reason.

We consider applying HDE for comparison purpose alone for a specified fixed computa-

tional budget (typically set to 1000 simulations) as previous studies have considered the

methodology. The pseudo-code of the HDE is given below.

Pseudocode of HDE

1 Begin
2 Initialize the population by Monte Carlo method with uniform

distribution xGi , G = 1, i = 1, 2, ..., n
3 Evaluate the individual of the population of initialization, f(xi)
4 Obtain the best individual popbest
5 while( termination criteria satisfy)
6 If (improvement of fitness satisfies the requirement)
7 continue DE
7 Else
8 (1) Randomly select a individual in the current set of population, say x0
9 (2) Apply the local optimization with the start point x0
10 (3) If (any improvement in fitness)
11 replace x0 by the local optimum solution
12 Else
13 keep x0
14 End while
15 End

2.4 Gaussian Process

The Gaussian process is a method of estimating a Gaussian probability distribution to

predict the objective values under a corresponding set of mean functions, covariance

functions, and the inferences on the functions. The Gaussian process is introduced

from a function-space point of view. However, to better understand the principle of

the Gaussian process, we first introduce an equivalent point of view, the weight-space

view [19]. The concept of the Gaussian process is easier to understand from the weight-

space point of view than from the function-space point of view. However, the algorithms

mentioned in the function-space view are employed in practice.
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2.4.1 Weight-space review

In the beginning, we consider a linear model in the view of Bayesian analysis to present

a real problem. The model is expressed as:

f(x) = xTw, y = f(x) + ε (2.39)

where x is the input variables, w is the weight of each inputs, f is the value of the

linear model, y is the observation of the model with the noise involved and ε is the

Gaussian noise. Normally the Gaussian noise is a Gaussian distribution with zero mean

and variance σ2n:

ε = N(0, σ2n) (2.40)

where N denotes the normal distribution. Thus, the observation value is different from

the function value f . To describe the features of the distribution of the linear model

associated with the noise, the probability density function for the observations is given

in the equation 2.41 below.

p(y|X,w) =
n∏
i=1

p(yi|xi, w) =
n∏
i=1

1√
2πσn

exp(−(yi − xTi w)2

2σ2n
)

=
1

(2πσ2n)n/2
exp(− 1

2σ2n
|y −XTw|2)

= N(XTw, σ2nI)

(2.41)

where the X is input matrix as X = {x1, x2, ..., xi, ...xn}, the sign ‘| |’ denotes the

Euclidean length of the vector.

This probability density is also called the likelihood of the Bayesian linear model. The

weight w in the equation is also called prior in the Bayesian linear model. The prior

means the inference about the parameters based on our knowledge of the model before

we investigate the inputs and observations. The detail of the properties of the prior will

be discussed in the function-space view later. Normally, the weight w is chosen as a

Gaussian prior with zero mean and covariance matrix Σp.

w ∼ N(0,Σp) (2.42)

The posterior is the distribution of the weight w based on prior and the investigation of

observation. It is provided for the inference of the Bayesian linear model. The Figure
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2.5 presents the difference of the probability distribution based on the concepts of ‘prior’

and ‘posterior’. The posterior is obtained by following the Bayes’ rule:

Figure 2.5: The prior and posterior

p(w|y,X) =
p(y|X,w)p(w)

p(y|X)
(2.43)

where the p(w) is the probability density of the prior in the equation 2.42, the p(y|X)

is called marginal likelihood and is independent to the prior. Note that the Bayes’ rule

is only on one condition and has the form as: p(a|b) = p(b|a)p(a)/p(b). Here, we just

introduce an additional condition X to all of the terms into the Bayes’ rule. However,

as the prior has no information with the inputs, the condition X is not given in the prior

term.

The marginal likelihood in the equation 2.43 is defined as:

p(y|X) =

∫
p(y|X,w)p(w)dw (2.44)

From this equation, we can see the p(y|X) actually is a constant. So the posterior of

the equation 2.43 can be described as:

posterior =
likelihood× prior

marginal likelihood
(2.45)

If we only considered the terms are depended on the weight w, the term marginal

likelihood is neglected. The posterior is then proportional to the multiplication of the
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terms prior and likelihood :

p(w|X, y) ∝ exp(− 1

2σ2n
(y −XTw)T (y −XTw))exp(−1

2
wTΣ−1p w)

∝ exp(−1

2
(w − w̄)T (

1

σ2nXX
T + Σ−1p

)(w − w̄))
(2.46)

where the w̄ = σ−2n (σ−2n XXT +Σ−1p )−1Xy. From the equation 2.46, the typical Gaussian

distribution format can be identified. So the posterior distribution of the weight with

mean w̄ and variance (σ−2n XXT + Σ−1p )−1 can be written as:

p(w|X, y) ∼ N(w̄, (σ−2n XXT + Σ−1p )−1) (2.47)

As the linear model is based on the Bayesian setting, the prediction of the outputs at

the a given point x∗ is calculated by averaging the outputs of all linear functions with

respect to the posterior:

p(f∗|x∗, X, y) =

∫
p(f∗|x∗, w)p(w|X, y)dw

= N(σ−2n xT∗A
−1Xy, xT∗A

−1x∗)

(2.48)

where the A = σ−2n XXT + Σ−1p . The prediction is also a Gaussian distribution.If the

linear model is not a Bayesian setting, normally only one parameter of the weight in

posterior is chosen by some criteria rather than all of the parameters are involved in the

prediction.

In practice, the input matrix X is not directly assigned into the linear model. Instead,

a set of polynomial functions are employed to project the inputs into a higher or equal

dimension space. The reason is that the projection would be able to increase the number

of expressions for the Bayesian linear model. As long as the polynomial functions are

independent with the weight w, the Bayesian model is still linear for the w. Based on

this replacement, the linear model is then expressed as:

f(x) = φ(x)Tw (2.49)

where the φ(x) is the polynomial functions. Thus, the predictive distribution in equation

2.48 is rewritten as:

p(f∗|x∗, X, y) = N(
1

σ2n
φ(x∗)

TA−1φ(X)y, φ(x∗)
TA−1φ(x∗)) (2.50)
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2.4.2 Function-space view

Gaussian process is composed by the mean function and covariance function. We defined

the mean and covariance functions for a process f(x) by following expression:

m(x) = E[f(x)]

k(x, x
′
) = E[(f(x)−m(x))(f(x

′
)−m(x

′
))]

(2.51)

where m(x) is the mean function, k(x, x
′
) is the covariance function, x and x

′
is either

the training data or test data.

Then the Gaussian process is normally written as the format below:

f(x) ∼ GP (m(x), k(x, x
′
)) (2.52)

To better understand the Gaussian process, a simple example is introduced. For the

sample Bayesian linear model mentioned in the weight-space view, the f(x) = φ(x)Tw.

The prior w is also same and defined as w ∼ (0,Σp).

E(f(x)) = φ(x)TE[w] = 0;

E[f(x)f(x
′
)] = φ(x)TE[wwT ]φ(x

′
) = φ(x)TΣpφ(x

′
)

(2.53)

As the training and test date are both considered in the covariance function, this prob-

ability distribution is the joint Gaussian distribution with zero mean and covariance

φ(x)TΣpφ(x
′
). From this example, we made the inference on the mean function as the

zero mean. In practice, we need to make the inference on the covariance function as

well. The reason is that it is not easy to compute the covariance matrix based on the

definition. Thus, a substituted polynomial function is applied to calculate the covariance

for each pair of the training and test date. For example, a very common used covariance

function is called ‘squared exponential’ (SE) and defined as:

cov(f(x), f(x
′
)) = exp(−1

2
|x− x′ |2) (2.54)

There are many other covariance functions available as well. The inference for the co-

variance is also very important to the Gaussian process.

To predict the distribution, we firstly consider a case without any noise in the observa-

tion.The noise-free observation means the function value equals to the observation from
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the equation 2.39. In practice, we are not interested to put too much effort to draw the

random functions φ(x) from the prior. Thus, the joint prior is introduced according to

the training and test data and is expressed as:

 f
f∗

 ∼ N
0,

K(X,X) K(X,X∗)

K(X∗, X) K(X∗, X∗)

 (2.55)

where the X includes n training points and X∗ has n∗ test points. K(, ) denotes the

covariance function. For the joint posterior distribution, those random functions who

are not agree with the observations are abandoned. Then the joint Gaussian distribution

for prediction then is given as:

f∗|X∗, X, f ∼ N(K(X∗, X)K(X,X)−1f,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗))
(2.56)

The details to drive the equation 2.55 and 2.56 can be found in [19]. When the noise

is involved in the observations, we are unable to directly access the function values.

Suppose the noise is also a Gaussian distribution with zero mean and variance σ2n.

Then, the variance of the prior becomes:

cov(yp, yq) = k(xp, xq) + σ2nδpq (2.57)

where the δpq is a Kronecker delta that if p = q, δpq = 1; otherwise, δpq = 0. The reason

is the noise is independent for each input point. So the noise matrix is diagonal. By

following this principle, the joint prior is rewritten as:

 f
f∗

 ∼ N
0,

K(X,X) + σ2nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

 (2.58)

Then the predicted joint Gaussian prediction with noise is driven to:

f∗|X, y,X∗ ∼ N(f̄∗, cov(f∗)) (2.59)

where

f̄∗ = E[f∗|X, y,X∗] = K(X∗, X)[K(X,X) + σ2nI]−1y

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2nI]−1K(X,X∗)
(2.60)
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2.4.3 Hyperparameters

In Gaussian process, there are some parameters that need to be decided by user. These

parameters are called free parameters or hyperparameters. The variance Σ2
p in the

prior and the variance σ2n in the noise are two typical hyperparameters. Normally,

the covariance functions have some other hyperparameters. For example, the squared-

exponential covariance function is defined as:

k(xp, xq) = σ2fexp(−
1

2`2
(xp − xq)2) (2.61)

where the σ2f is the signal variance and the ` is considered as a scaler. Both of them

are hyperparameters. The hyperparameters highly affect the predicted joint Gaussian

distribution. There are two widely used method to select the proper value of the hy-

perparameters: Bayesian model section and cross-validation. The details about the two

methods can be found in [19]. In this thesis, we are not going to introduce it in detail,

but will briefly mention the method that is implemented in the Gaussian process for our

experiment.

2.5 Variance based Sensitivity Analysis

2.5.1 Overview

Sensitivity analysis (SA) is a useful approach with which to study the mapping relations

between the input uncertainties and the output response for a complex system. SA is

also related to robustness and reliability, and is able to estimate whether or not the pres-

ence of one uncertainty or a set of uncertainties could affect the stability of a system. SA

also can screen out the uncertainties with very little effect on robustness and reliability.

Normally, the sensitivity analysis is coupled with uncertainty analysis. However, due to

the confidential nature of protocols regarding the VEGA launch vehicle, limited informa-

tion is available regarding the uncertainties of the vehicle, such as the scaled value, the

probabilistic density function of each uncertainty, etc. Thus, the uncertainty analysis

in our research is somewhat constrained. Uncertainty analysis studies the distribution

of the input of the uncertainties, while sensitivity analysis studies the contribution of

each uncertainty in a system according to the input uncertainties. In this research, all
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the uncertainties are epistemic. Although we have little information about the uncer-

tainties, we understand the nominal upper and lower bounds of the uncertainties. The

nominal values of uncertainties assigned to the system are automatically transferred into

the scaled value by the simulator. Moreover, there are many sensitivity and uncertainty

analysis methods [43], such as differential analysis, response surface analysis, and Monte

Carlo methods, among others.

Normally, the results of sensitivity analysis could be any of the following:

(1) All of the uncertain parameters make a great contribution to the output. In this

situation, more investigation is required to enhance the knowledge of the model.

(2) None of the uncertain parameters are sensitive to output response. In this situation,

the range of the uncertain parameters may not have been chosen properly, or the output

depended on some other factors that were not considered as uncertainties, such as the

existence of wind for dynamic loads.

(3) A group of uncertainties do not influence the output response. These uncertainties

make few contributions to the output and can be removed from the simulation. This is

the desired situation.

The variance decompensation method is one approach by which to study the contri-

bution of each uncertainty of the sampling-based methods (Monte Carlo or quasi-Monte

Carlo). It is the fundamental concept of variance-based sensitivity analysis. Variance-

based sensitivity is a global sensitivity analysis method. There are many other ap-

proaches for sensitivity analysis in sampling-based methods, such as nonparametric re-

gression, squared rank differences/rank correlation coefficient, and the two-dimensional

Kolomogorov-Smirnov test among them. More details about these sampling-based meth-

ods can be found in [44]. In our research, we only considered variance-based analysis

because it is effective, reliable, and closely related to the concept of effective dimensions

mentioned in previous chapter, which make it an ideal method by which to improve the

effectiveness of the quasi-Monte Carlo method. However, its drawback is that its high

computational cost is inflexible when the dimension of the uncertainties is high. To

overcome this drawback, we propose using the Gaussian process to train a meta-model

to ease the computational burden.

To carry out a variance-based sensitivity analysis, the five basic steps listed below must

be followed, based on the steps for performing a sampling-based sensitivity analysis:
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(1) Determination of uncertainty distribution.

(2) Generation of sampling points.

(3) Simulation in terms of the sampling points.

(4) Presentation of uncertainty analysis results.

(5) Presentation of sensitivity analysis results

Determination of uncertainty distribution.

The manner of distribution of the uncertainties are considered the most important part

in sampling-based sensitivity analysis as it significantly influences the results of sensi-

tivity analysis. Normally the distribution is ideally determined according to an expert

review. A preliminary analysis of the uncertainties is recommended to help to define

some parameters of the distribution, such as mean value, range, and the quantiles of

the corresponding cumulative distribution functions [44]. Thus, the limited computation

source could have a better use. In our experiment, the experts on the VEGA launch

vehicle model defined the range of the uncertainties, but there is no other information

about the uncertainties.

Generation of sampling points.

There are three commonly used strategies to generate the sampling points: random

sampling, importance sampling, and Latin hypercube sampling[43–45].Random sam-

pling, introduced in the previous chapter, is easy to implement . However, its drawback

is that there is no guarantee that all given sub-regions will be covered unless the sam-

pling size is large enough. Importance sampling exhaustively divides the uncertainty

space into many sub-regions without any overlap. In each sub-region, only one value is

sampled (has only one sampled point). Importance sampling is used to analyze whether

a sampled value has high consequence but low probability. Latin hypercube sampling

is based on the idea of importance sampling in that it exhaustively divides the space

into many sub-regions, but unlike importance sampling, it does not ensure that there is

only one point in each sub-region. More details about generating the sampling points

via importance sampling and Latin hypercube sampling can be found in [43]. In our

research, we proposed an alternative sampling method: quasi-random sampling, which

was introduced in the previous chapter. Because quasi-random sampling has a high

uniformity distribution, it is an ideal method with which to obtain good coverage of the

uncertainty space. More specifically, we user a Sobol sequence to generate the sampling

points. If the uncertainties are not independent, the control of correlation in sampling



Chapter 2. Literature Review 38

is very important. However, in Chapter 2 we have already mentioned that all the un-

certainties are independent. Thus, there is no consideration of the correlation issues in

our research.

Simulation in terms of the sampling points.

All of the individual points generated by the Sobol sequence are assigned into the VEGA

CONTROL simulator, and all of the relevant outputs are recorded for sensitivity anal-

ysis.

Presentation of uncertainty analysis results.

In this step, the purpose is to simply display the results of mapping between the input

uncertainties and the output of the analysis [xi, y(xi)], i = 1, 2, .., n. The displayed in-

formation normally contains the cumulative distribution function (CDF), mean value,

standard deviation, etc.

Presentation of sensitivity analysis results

The presentation of sensitivity analysis results requires more display sophistication since

it requires mapping the relation between the input uncertainties and output results. The

various approaches to sensitivity analysis have been mentioned in previous chapters, and

more details can be found in [44]. For the purposes of our research, we are only interested

in the scatter plots and variance decompensation.

2.5.2 Methodology

Variance-based sensitivity analysis is not a new technique for indicating the importance

of an input factor with respect to the output response of interest of a model. In our

research, we only focus on the Sobol method (or Sobol indices) to study the sensitivity

indices. The Sobol method is one of the most commonly used methods in variance-

based sensitivity analysis[46], and has been widely studied by many researchers [47–49].

In the aerospace industry, analytical sensitivity analysis is widely used in studying the

importance of design parameters, as in[50]. However, the use of variance-based sensi-

tivity to study the importance of the uncertain parameters in the aerospace industry,

especially for launch vehicles, is rare. Analytical sensitivity analysis often implements

the differential method to study the parameters. The priority of applying the differential

method for sensitivity analysis is that the model must be able to expressed by a poly-

nomial function. The differential method is a easy, fast, and efficient way to study the

importance of the factors. However, in our research, the VEGA launch vehicle simulator
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is treated as a black box, since all of the design parameters of the launch vehicle are

confidential. Moreover, our study is focused on the uncertain parameters rather than

the design parameters. Thus, the analytical method is not applicable in our research.

Therefore, variance-based sensitivity analysis is an ideal approach, since we only need

to study the mapping relation between the input variables and the corresponding output.

The key idea of the sensitivity indices is the decompensation of the objective func-

tion f(x) into a summation of many components associated with each input factor x.

Then, according to the decompensation concept, the relation between the components

in the decompensated function f(x) and partial variances in the variance decompensa-

tion V (Y ) can be found. This relationship is used to identify the sensitive indices. The

decompensation of the function f(x) is expressed as

f(x) = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + · · ·+ f12...n (2.62)

where the x = [X1, X2, ..., Xi, ..., Xn], fi = fi(Xi), fij = fij(Xi, Xj). There are total 2n

components in the decompensation function.

The function of f0,fi,fij are defined as:

f0 = E(Y )

fi = EX∼i(Y |Xi)− E(Y )

fij = EX∼ij (Y |Xi, Xj)− fi − fj − E(Y )

(2.63)

where the Xi denotes the ith input variable,the X∼i denotes the matrix of all vari-

ables expect Xi, the f0 is the expected value of output response Y (or objective value),

EX∼i(Y |Xi) is the expected value of Y except the value of Xi is fixed, EX∼ij (Y |Xi, Xj)

is the expected value of Y except the Xi and Xj are fixed. The higher order of the

decomposition functions are defined based on the principle of equation 2.63.

The sensitivity indices relies on the variance information of the objective values under

the different conditions of uncertainties. It is associated with the method called variance

decompensation mentioned above. To find out the sensitivity, the variance decompen-

sation is defined as:

V (Y ) =
∑
i

Vi +
∑
i

∑
j>i

Vij + · · ·+ V1,2,...,n (2.64)
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where the terms, Vi and Vij , in the variance decompensation V (Y ) are defined as:

Vi = V (fi(Xi)) = VXi [EX∼i(Y |Xi)]

Vij = V (fij(Xi, Xj))

= VXiXj (EX∼ij (Y |Xi, Xj))− VXi(EX∼i(Y |Xi))

− VXj (EX∼j (Y |Xj))

(2.65)

where VXi(EX∼i(Y |Xi)) denotes the variance of the expected objective value when the

variable Xi is fixed with all possible values for other variables, VXiXj (EX∼ij (Y |Xi, Xj))

is the variance of the expected objective value when then variable Xi and Xj are fixed

with all possible values for other variables. Divid the variance V (Y ) for both sides of

above equation 2.64, the sensitivity indices is expressed as:

∑
i

Si +
∑
i

∑
j>i

Sij + · · ·+ S1,2,...,n = 1 (2.66)

where the Si is first order sensitivity of a input variable xi.

For sensitivity analysis based on the Sobol indices, the focus is on the first order sensitiv-

ity of a input variable and the total effect sensitivity index for that variable in practice.

The reason is the application is simply and effectiveness.

So the first order sensitivity coefficient of a variable xi is defined as:

Si =
VXi(EX∼i(Y |Xi))

V (Y )
(2.67)

This equation presents the relation between the Sobol indices and variance decompen-

sation. It also gives the reason why the function decompensation is the key idea of the

sensitivity indices.

The total effect sensitivity index for a variable is defined as:

ST i =
EX∼i(VXi(Y |X∼i))

V (Y )
= 1− VX∼i(EXi(Y |X∼i))

V (Y )
(2.68)

where the EX∼i(VXi(Y |X∼i)) is the expected variance with all input factors are fixed ex-

cept the Xi and the VX∼i(EXi(Y |X∼i)) is the variance of expected objective values with

all input factors are fixed except Xi. The total effect sensitivity index of a variable xi

means the entire contribution associated with the input factor Xi in all terms of the vari-

ance decompensation V (Y ). The total effective sensitivity index includes the first order
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and higher order sensitivity effects. The higher order sensitivity effects are considered as

the interaction effect between the xi and other input factors. If the ST i = Si, it means

there is no interaction between xi and other input factors. The term VX∼i(EXi(Y |X∼i))

in above equation can be considered as the first order sensitivity effect of the X∼i and

means the effect without Xi involved.

According to definition of variance, the V (Y ) can be expressed as:

V (Y ) = E(Y 2)− (E(Y ))2 (2.69)

We extent this definition mentioned above to first order of the variance decompensation

VXi(EX∼i(Y |Xi)):

VXi(EX∼i(Y |Xi)) =

∫
E2
X∼i

(Y |Xi)dXi − (

∫
EX∼i(Y |Xi)dXi)

2 (2.70)

In above equations 2.69 and 2.70, the second terms (E(Y ))2 and (
∫
EX∼i(Y |Xi))

2 are

both always equal to f20 . The first term can be expressed as:

∫
E2
X∼i

(Y |Xi)dXi =

∫ ∫ ∫
f(X1, X2, ..., Xi, ..., Xn)

× f(X ′1, X
′
2, ..., X

′
i, ..., X

′
n)dX∼idX

′
∼idXi

=

∫ ∫
f(X1, X2, ..., Xi, ..., Xn)

× f(X ′1, X
′
2, ..., X

′
i, ..., X

′
n)dXdX ′∼i

(2.71)

where the X and X ′ are two independent matrices of all input variables but generated

by same method.

From the equation 2.71, there are actually 2n-1 variables. In our case, the n is equal to

118. Thus, the total dimension of this function is 235. To solve the integral with 235

dimension by numerical method in practice is almost unrealistic. Based on Chapter 3

we know that the Monte Carlo and quasi-Monte Carlo are capable to approximate the

integration problem of high dimension. But for such high dimension case, the heavy

computational burden is inevitable if a high accuracy is needed. In practice, an alter-

native approximation is proposed to calculate the first order sensitivity effect and the

total sensitivity index. Suppose we have different independent matrices A and B. For

each element in the matrices, they are expressed as aji and bji. The i denotes ith input
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factor and is from 1 to n (n=118 in our case). The j denotes the jth point (or individual

or a condition of uncertainties) and is from 1 to N. N is the total number of simulations

(or objective function evaluations). A
(i)
B denotes a matrix with the elements that are

all from the matrix A except the elements in ith column are from matrix B. Similarly,

the B
(i)
A denotes a matrix with the elements that are all from the matrix B except the

elements in ith column are from matrix A. Thus, the approximated first order sensitivity

effect is defined as:

VXi(EX∼i(Y |Xi)) =
1

N

N∑
j=1

f(A)jf(B
(i)
A )j − f20 (2.72)

and the total sensitivity effect of Xi is defined as:

VX∼i(EXi(Y |X∼i)) =
1

N

N∑
j=1

f(A)jf(A
(i)
B )j − f20 (2.73)

The equation 2.72 and 2.73 above are considered as the estimator for sensitivity analysis.

As both matrices A and B are independent, they can be generated separately with 118

dimensions.

The equation 2.72 is improved in [51, 52] and extent to the new estimator:

VXi(EX∼i(Y |Xi)) =
1

N

N∑
j=1

f(A)j(f(B
(i)
A )j − f(B)j) (2.74)

The improvement for equation 2.73 is mentioned in [53] and the new estimator is ex-

pressed as:

VX∼i(EXi(Y |X∼i)) = V (Y )− 1

N

N∑
j=1

f(A)j(f(A)j − f(A
(i)
B )j) (2.75)



Chapter 3

VEGA Launcher model

3.1 Background

The VEGA launch vehicle is small to medium weigh payload launcher developed un-

der the European Space Agency(ESA) program. The main contractor for the VEGA

launcher is a Italian company called ELV S.p.A Company. The first launching of VEGA

was 2012. The history of VEGA program is back to 1990’s. The concept of VEGA

was proposed by an Italian named DPD Difesa y Spazio in 1988 in order to replace

the US Scout launcher that was already retired. The purpose of VEGA is to survey

the possibility to complement the Arina launcher family with a small payload launch

vehicle by using the solid booster. The VEGA launcher is mainly consist of 4 stages,

including 3 solid propellant stages and one liquid propellant stage(also called Attitude

and Vernier Upper Module or AVUM). In the first 3 solid stages, the P80FW, ZEFIRO

23 and ZEFIRO 9 Solid Rocket Motor (SRM)are applied respectively. The liquid stage

employs the LPS engine instead. Actually in our research, we only interested in the first

stage (P80FW stage or P80 stage). The Figure 3.1 is prototype of the VEGA launch

vehicle 1.

3.1.1 Launch mission profiles

The typical VEGA launching mission is consist of three phases. Phase 1 is an ascend-

ing phase that deliver the Launch Vehicle(LV) into the low elliptic orbit( sub-orbital

1http://www.esa.int/esapub/br/br257/br257.pdf
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Figure 3.1: The VEGA luancher (Courtesy Url Link)

trajectory) by first three stages. The phase 1 includes three events: (i) vertical ascent

with programmed pitch maneuver and a zero-incidence flight (for stage i); (ii) incident

flight(for stage ii); (iii) fairing separation and payload is delivered into the sub-orbital

trajectory(for stage iii). The ascending phase 1 with its associated distinct events is

presented in Figure 3.2. At Phase 2, the payload and stage 4 are delivered to the in-

termediate orbit by AVUM after separation with stage 3. Then maneuvering by AVUM

stage, the payload eventually is delivered to the final orbit. During Phase 3, AVUM is

http://www.esa.int/esapub/br/br257/br257.pdf
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Figure 3.2: Sub-orbital trajectory with associated events in phase 1 (Courtesy Url
Link)

separated with payload and the AVUM is maneuvered to a safe distance with spacecraft.

Then the AVUM carries out the burn of the engine for orbit disposal maneuver. The

AVUM re-entry into the earth’s atmosphere.

3.2 VEGA launch vehicle trajectory and Dynamics

In this thesis,as the real dynamic structure, control parameters and design parameters of

the VEGA launch vehicle are not given due to confidential purpose. We can not offer a

general type of launch vehicle to serve a better understanding of the nature of uncertain

parameters.The VEGA launch vehicle is a TVC based rocket. The very basic physical

concept of ascending trajectory is introduced by the equations of the trajectory. The

equations of motion(EOM) are applied to study the dynamics of the rigid body. The

concept of EOM is also used for the bending modes of the VEGA launch vehicle. In the

end, the TVC actuator is also introduced in this chapter.

http://www.esa.int/esapub/br/br257/br257.pdf
http://www.esa.int/esapub/br/br257/br257.pdf
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3.2.1 Rigid Body

The P80 ascending phase has two sub-phases: the vertical ascent and the turn-over

ascent trajectory [1]. The VEGA launcher firstly ascends vertically from the ground.

When the launcher vehicle reaches the specified altitude (normally after go through the

high air density regions of the atmosphere), the turn-over maneuver makes the launch

vehicle carry out the turn-over motion. For vertical ascent phase, the EOM can expressed

as:

m
dv

dt
= T −D −mg (3.1)

where the T is the thrust of VEGA launcher, D is the aerodynamics drag, m is the mass

of the VEGA launch vehicle, v is the vertical velocity and g is the local gravitational

acceleration. All units in SI.

The thrust T in the equation 3.1 is given by:

T = −Ve
dm

dt
+ (pe − po)Ae (3.2)

where the Ve is the exist velocity of the launch vehicle, pe is the exit pressure of nozzle,

po is the local pressure of atmosphere and Ae is the exit area of the nozzle. The negative

sign ‘−’ is given here because the rate of mass changing is negative. The propellant is

losing over the ascending time. The term −Ve dmdt is called momentum thrust and the

(pe − po)Ae term is called pressure thrust.

Normally, the thrust due to pressure is very small and neglected from the equation 3.2.

In the meantime, the exit velocity Ve is given by:

Ve = goIsp (3.3)

where the go is the sea level gravitational acceleration and equals to 9.8m/s2, Isp is

called specific impulse.

Thus, by neglecting the pressure thrust term and replacing the Ve by the equation into

the equation 3.2, the thrust of the launch vehicle is expressed as:

T = −Ve
dm

dt
= −goIsp

dm

dt
(3.4)
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The aerodynamic drag D in the equation 3.1 is given by:

D =
1

2
ρv2CDS (3.5)

where the ρ is the aerodynamic density, v is the velocity of the VEGA launch vehicle,

CD is the drag coefficient and S is the reference surface. The drag coefficient CD changes

according to the variation of the altitude and speed(or the mach number: the ratio of

the launch vehicle velocity to the speed of sound). The term 1
2ρv

2 is called dynamic

pressure and often is expressed as q(t) = 1
2ρv

2.

To approximate the equation 3.1, the drag term normally is neglected and the thrust is

assumed to be the constant. Then the equation 3.1 can be re-written as:

m
dv

dt
= −goIsp

dm

dt
−mg (3.6)

In the turn-over phase, an angle exists between between the trajectory of the LV and

the local horizontal axis. Thus, the force and torque that act on the launch vehicle (LV)

need to be considered for the EOM during the flight in two dimensional motion. The

Figure 3.3 given below provides the information about the force, torque and frames. The

meaning of the notation presented in the Figure 3.3 is given below:

- α : angle of attack

- θb : pitch angle

- δ : thrust gimbal angle

- U : velocity vector

- W : wind velocity vector

- FA : aerodynamic force acted on the point A

- T : thrust

- FE : inertia force of LV nozzle

- ME : inertia torque of LV nozzle

- m : mass of LV

- g : gravitational acceleration

- x, xb : the x axis in body frame

- z, zb : the z axis in body frame

- xt : the x axis in trajectory frame

- zt : the z axis in trajectory frame
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Figure 3.3: Two dimensional motion of the VEGA launcher [1]

Gravity The gravity force acted on the LV based on the body frame is expressed as:

Fxg = −mg sin θb

Fzg = mg cos θb

(3.7)

Thrust The majority lifting force is provided by the thrust in VEGA launch vehicle.

The pressure thrust is also neglected for turn-over flight phase. So the expressions of

the force and torque generated by thrust are given by:

FTx = T (t) cos(δ)

FTz = −T (t) sin(δ)

MT = −T (t)lCG sin(δ)

(3.8)

where the T (t) is thrust over the time, δ is the thrust gimbal angle and the lCG is the

length between the swivel point C on the nozzle and the center of gravity G(COG).

Aerodynamic force and torque When the VEGA launch vehicle in the ascending

phase, the aerodynamic force and torque are generated by the interacting between the
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LV and atmosphere. The effect of aerodynamic force and torque are not able to omit

in early ascending stage, especially at the turn-over phase. The dynamic load has the

most possibility to violate its constraint in the early ascending stage.The aerodynamic

force and torque in the pitch motion is expressed as:

FAx = −q(t)SCA

FAz = −q(t)SCN

MAy = q(t)SCN lGA

(3.9)

where q(t) is the dynamic pressure, S is the reference surface, CA is the coefficient of

aerodynamic force at x axis, CN is the coefficient of aerodynamic force at z axis and lGA

is the length between the center of pressure(or aerodynamic center) of LV and COG. The

equation 3.9 has the negative sign because the forces on the x and z axis have negative

direction to the body frame. FAx is also called aerodynamic drag and FAz is the force

acting through the point A(aerodynamic center). Note that the position of aerodynamic

center is also depended on the time(lifting force). The coefficient CN is a function of

the angle of attack α.

When the effect of bending is involved in the EOM, the angle of attack α is no long a

global variable over the time. It becomes the local angle of attack that also depends on

the position x at the LV. The local angle of attack is then defined as:

αlocal(x) = α+
(lOG − x)

U
θ̇ − ∂ξ(x, t)

∂x
− ξ̇(x, t)

U
(3.10)

where lOG is the length between the origin and the COG and ξ(x, t) is the elastic

deflection equation of the bending modes that will be introduced in later section. As

the coefficient CN is a function of angle of attack, the local CN is also depended on the

x and defined as:

CNα =
∂CN
∂α

(3.11)

The aerodynamic force FAz associated with bending modes is re-defined as:

FAz = −q(t)S
∫ L

0
CNα(x)αlocal(x)dx

= −q(t)S(α

∫ L

0
CNα(x)dx+

θ̇

U

∫ L

0
CNα(x)(lOG − x)dx

+
∑
i

qi(t)

∫ L

0
CNασi(x)dx−

∑
i

q̇i(t)

U

∫ L

0
CNαφi(x)d)

(3.12)
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where q(t) is the dynamic pressure and equals to 1/2ρU2, L is the length of VEGA

launch vehicle,qi(t), σi(x) and φ are defined in the bending modes and will be explained

in later section.

Rigid body dynamics Denote the G = [xb, yb, zb] as the body frame. The motion

of the rigid body can be given by the dynamic expression:

MG = Iω̇

FG = m(V̇ + ω × V )
(3.13)

where the MG is the torque in the body frame, I is the inertia, m is the mass of LV, FG

is force on the LV and V is the linear velocity.

As the EOM of the rigid body only concerns the x-z plane in LV, by submitting V =

[ẋb, 0, żb]
T and ω = [0, θ̇b, 0]T ,the dynamic of the rigid in equation 3.13 can be re-defined

as:

MG = Iyy θ̈b

Fx = m(ẍb + θ̇bżb)

Fy = m(z̈b + θ̇bẋb)

(3.14)

The mass m and the initial I or Iyy are assumed as constants or varying over the time

slightly when compared to other dynamics. By considering all forces and torques on the

LV in the body frame (gravity, thrust force/torque and aerodynamic force/torque), the

force and torque in the rigid body frame is expressed as:

MG = lGAq(t)SCNαα− T lCG sin(δ)

Fx = T cos(δ)− q(t)SCA −mg sin(φb)

Fz = −q(t)SCNαα− T sin(δ) +mg cos(θb)

(3.15)

Combined the equation 3.14 and 3.15, then

Iyy θ̈b = lGAq(t)SCNαα− T lCG sin(δ)

m(ẍb + θ̇bżb) = T cos(δ)− q(t)SCA −mg sin(φb)

m(z̈b + θ̇bẋb) = −q(t)SCNαα− T sin(δ) +mg cos(θb)

(3.16)
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The equation above can be given as a standard dynamic expression:

θ̈b =
q(t)SCNαlGAα

Iyy
− T lCG sin(δ)

Iyy

ẍb =
T cos(δ)− q(t)SCA

m
− g sin(θb)− θ̇bżb

z̈b = −q(t)SCNαα
m

− T sin(δ)

m
+ g cos(θb) + θ̇bẋb

(3.17)

3.2.2 Bending modes

Constrained by the capability of the thrust, the weight of the launch vehicle should

be as light as possible by employing lighter material for the Launch vehicle rigid body.

This sacrificed structure rigidity potentially makes the LV suffering extra flexibility and

hence the additional aerodynamic load caused by the flexible modes. To study the

elastic property of the LV, the bending modes are introduced. The analysis of EOM of

the bending modes needs coupled with the EMO of rigid body. We use finite number

of modes to describe the elastic deflection of the LV. Each mode is considered as a

mass-spring-damping system. The Figure 3.4 shows the shape of elastic deflection mode

coupling with motions of the LV. More detail about the bending modes can be found in

[54].The equation of the elastic deflection at a point x along the LV is given as:

ξ(x, t) =

N∑
i=1

qi(t)φi(x) (3.18)

where the x is the abscissa at the LV longitudinal axis, t is the time, φ denotes the

normalized ith mode shape and qi(t) is the ith mode generalized coordinate. The qi also

satisfies the equation of the mass-spring-damping system and is expressed as:

q̈i + 2ζiωiq̇i + ω2
i qi = Qi (3.19)

where the ζi is the sampling coefficient in ith mode, the ωi is the frequency of the ith

mode and Qi is the generalized of the ith mode.

Coupling with the LV motions and only considering the first moment of the forces, the
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Figure 3.4: The bending mode shape for LV [1]

Qi is expressed as:

Qi =

∫ L

0
(
∑

Fzφi(x) +
∑

Myσi(x))dx

=

∫ L

0
[−(Tδ +mElEC δ̈)φi(x) + IE δ̈

∂φ(x)

∂x
]dx

= (−Tδ −mElEC δ̈)φi(lOC) + IE δ̈
∂φ(lOC)

∂x

(3.20)

where Fz represents the force on the mode along the z axis in the rigid body frame, My

represents the torque on the mode along the y direction in the rigid body frame, lOC is

the coordinate of the pivot point, IE is the local inertia of the mode and

σi =
∂φi
∂x

(3.21)

Since the rigid body and elastic motions can be measured by the Inertial Measurement

Unit (IMU),combined with the equation 3.18, 3.19,3.20, the equation of the elastic de-

flection can be solved.

3.2.3 TVC Actuator

The dynamic of the TVC actuator is presented by a transfer function: a second order

model and a time delay for engine response:

WTV C(s) =
e−Ts

B2s2 +B1s+B0
(3.22)
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where the T is the time delay, B2, B1 and B0 are the coefficient of the model. However,

the TVC time delay will be neglected in the simulation. The reason will be mentioned

later.

3.3 VEGA Simulink model

First flight phase with altitude between 30m and 60km is considered in the present study.

The VEGA Simulink model is a nonlinear 6 degrees-of-freedom model simulator called

VEGACONTROL or VEGAMATH to perform the simulation for VEGA flight in time

domain during the stage 1 (P80 stage). The simulator is consist of 7 sub-blocks, such

as the LV model(P80), the TVC (Thrust Vector Control) system, including the delay of

computation, the GNC system (Guidance, navigation and control), the propulsion and

MCI (Mass-center-inertia) system, the INS (Inertial navigation system), the bending

modes and the aerodynamic modes. The figure of Simulink model is given in 3.5 2

below.

2The reference of the simulator figure comes from the project document that is provided by ESA [2]
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Figure 3.5: VEGACONTROL simulator [2]
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The simulator has full set of non-linear equations of motion with the normal force, drag

and tree axis moments curves depending on Mach and angle of attack, kinematic coupling

in all axes, and a non-linear model of the eletro-mechanical actuator (EMA) dynamics

with associated backlash and delays. The mathematical model for QUASAR Inertial

Sensor Unit with its noise and bias characteristics and the propulsion model of the

P80 solid propulsion system with validated thrust curves that include thrust oscillation

effects to assess proper execution of the separation dynamics further constitute to the

complexity of the simulator.

A high fidelity structural flexible mode model describing the launcher deformation is

included to assess proper filtering and stability properties. The atmosphere model in-

cludes also a set of measured sizing wind-gust input models representative for the launch

site Kourou. The launcher dynamics are driven by the FPSA ADA/C-flight code reflect-

ing the flight management system for the time line sequence command and execution

of associated guidance navigation and control system for thrust vector control (TVC)

and roll and attitude control (RACS) and other support functions such as acceleration

threshold detection (ATD) and pyro-valve command for stage separation. The different

blocks made available from Industry were interconnected and configured to realize the

simulation of the launch vehicle model in the present thesis.

The computation resource in our experiment for this Simulink model is given in the

followed Table 3.1. For a single simulation process, the approximate simulation time is

Computation Power

CPU Intel i5-2410M @2.3Hz dual core

Memory 4 GB

Operation
System

Windows 7, 64-bit

Matlab
Version

2009b (Compulsory)

GPU None

Table 3.1: The computation Power

12-32 seconds. The computation is varied depended on the total number of simulations.

It is already observed that a longer computing time is required after the simulation count

is over 2000. When the number of simulation set to 10000, a single computing process

will roughly takes 30-35 seconds.
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3.4 Uncertainties

The scaled upper bound values and lower bound values for the uncertainties (Scattering

values) are fixed in the p-code file that is applied to the Matlab simulation. Thus, there

is no way to access the file and no prior knowledge of these uncertain variables. The

scaled scattering variables are multiplied by a nominal value in the interval [-1, 1]. So

the uncertainties that we can investigate and vary are the normalized values only.All

the uncertain variables are independently. For robustness analysis purpose, we try to

explore the entire uncertain with equal opportunity. Thus, the uniform distribution is

applied to the Monte Carlo method in this research. The description, variable name in

the Matlab code and the category of a uncertainty is given in the Table 3.2.

Category Variable identifier Description

Aeroelasticity Flag.aeroelastic
To enable the aeroelasticity ef-

fect(+10 % on CN coefficient)

Flag.disp CA
Dispersion on Stage 1 Axial coeffi-

cient

Flag.unc CA
Uncertainty on Stage 1 Axial coeffi-

cient

Flag.disp CN
Dispersion on Stage 1 Normal Coef-

ficient

Aerodynamics Flag.unc CN
Uncertainty on Stage 1 Normal Co-

efficient

Flag.disp Xcp Dispersion on Stage 1 Xcp

Flag.unc Xcp Uncertainty on Stage 1 Xcp

Flag.aero roll To enable Roll motion

Flag.azimuth wind angle Wind azimuth direction [rad]

Wind Flag.h wind Synthetic wind gust altitude [Km]

Flag.RealW Enable Real wind

Flag.IRSmountingX
IRS Mounting Error w.r.t X Body

Axis

IRS (Inertial Ref-

erence System)
Flag.IRSmountingY

IRS Mounting Error w.r.t Y Body

Axis

Continued on next page
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Table 3.2 – Continued from previous page

Category Variable identifier Description

Flag.IRSmountingZ
IRS Mounting Error w.r.t Z Body

Axis

Flag.INS Noise Enable INS Noise

Flag.dISP Stage 1 impulse scattering

Thrust Parame-

ters Scattering
Flag.dTc Scattering on time burn

Flag.SRM roll Scattering on P80 Roll Torque

MCI Flag.stagedM Structural mass scattering

Flag.stagedM Prop Scattering on propellant mass

Flag.stagedJx Scattering on XX MOI

Flag.stagedJy Scattering on YY MOI

Flag.stagedJz Scattering on ZZ MOI

Flag.stagedxCOG
Scattering on X CoG(Center of

Gravity)

Flag.stagedyCOG Scattering on Y CoG

Flag.stagedzCOG Scattering on Z Cog

Flag.stagedJx S
Scattering on structural Stage XX

MOI

Flag.stagedJy S
Scattering on structural Stage YY

MOI

Flag.stagedJz S
Scattering on structural Stage ZZ

MOI

Flag.stagedxCOG S Scattering on structural X CoG

Flag.stagedyCOG S Scattering on structural Y CoG

Flag.stagedzCOG S Scattering on structural Z CoG

Flag.PLdM Scattering on PL(Payload) Mass

Flag.PLdJx Scattering on PL XX MOI

Flag.PLdJy Scattering on PL YY MOI

Flag.PLdJz Scattering on PL ZZ MOI

Continued on next page
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Table 3.2 – Continued from previous page

Category Variable identifier Description

Flag.PLdxCOG Scattering on PL X CoG

Flag.PLdyCOG Scattering on PL Y CoG

Flag.PLdzCOG Scattering on PL Z CoG

Flag.PAdM Scattering on PA Mass

Flag.PAdJx Scattering on PA XX MOI

Flag.PAdJy Scattering on PA YY MOI

Flag.PAdJz Scattering on PA ZZ MOI

Flag.PAdxCOG Scattering on PA X CoG

Flag.PAdyCOG Scattering on PA Y CoG

Flag.PAdzCOG Scattering on PA Z CoG

MCI Flag.PL2dM Scattering on PL2 Mass

Flag.PL2dJx Scatter on PL2 XX MOI

Flag.PL2dJy Scatter on PL2 YY MOI

Flag.PL2dJz Scatter on PL2 ZZ MOI

Flag.PL2dxCOG Scattering on PL2 X CoG

Flag.PL2dyCOG Scattering on PL2 Y CoG

Flag.PL2dzCOG Scattering on PL2 Z CoG

Flag.RACSdM
Scalltering on RACS(Roll and Atti-

tude Control system) Mass

Flag.RACSdJx Scattering on RACS XX MOI

Flag.RACSdJy Scattering on RACS YY MOI

Flag.RACSdJz Scattering on RACS ZZ MOI

Flag.RACSdxCOG Scattering on RACS X CoG

Flag.RACSdyCOG Scattering on RACS Y CoG

Flag.RACSdzCOG Scattering on RACS Z CoG

Thrust Offset and

Misalignment
Flag.TVC SF A Scattering on TVC gain Lane A

Flag.TVC bias A disp
Scattering on TVC Lane

A(Gaussian)

Continued on next page
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Table 3.2 – Continued from previous page

Category Variable identifier Description

Flag.TVC bias A)unc
Scattering on TVC Lane

A(uniform)

Flag.TVC SF B Scattering on TVC gain Lane B

Flag.TVC bias B disp
Scattering on TVC Lane

B(Gaussian)

Flag.TVC bias B)unc Scattering on TVC Lane B(uniform)

Flag.Thrust misA dis
Scattering on thrust misalignment

first Lane(Gaussian)

Flag.Thrust misB dis
Scattering on thrust misalignment

Second Lane(Gaussian)

Flag.Thrust misA unc
Scattering on thrust misalignment

first Lane(uniform)

Flag.Thrust misB unc
Scattering on thrust misalignment

Second Lane(uniform)

Flag.PvP offsetX Scattering on thrust offset in X

Flag.PvP offsetY disp
Scattering on thrust offset in Y

(Gaussian)

Flag.PvP offsetZ disp
Scattering on thrust offset in Z

(Gaussian)

Flag.PvP offsetY unc
Scattering on thrust offset in Y (uni-

form)

Flag.PvP offsetZ unc
Scattering on thrust offset in Z (uni-

form)

Atmosphere Flag.air density scat Atmosphere Density

Separation Dis-

turb
Flag.sep dist yz

Flag.sep dist az

Bending Modes Flag.flex freq Scattering on Bending frequencies

Flag.TMC PVP
Scattering on Translation at Pivot

point

Continued on next page
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Table 3.2 – Continued from previous page

Category Variable identifier Description

Flag.RMC PVP
Scattering on Rotation at Pivot

point

Flag.TMC INS Scattering on Translation at INS

Flag.RMC INS Scattering on Rotation at INS

Table 3.2: The description, category and variable name in VEGACONTROL of each
uncertainty

3.5 Outputs

The VEGA simulator provides the output response in time domain. All the output

responses with their variable name in the simulator, description and unite are provided

in the Table 3.3.

Variable identifier Description Unit

out MCI(:,1) LV total mass [Kg]

out MCI(:,2) X CoG [m]

out MCI(:,3) Y CoG [m]

out MCI(:,4) Z CoG [m]

out MCI(:5) Jxx [Kg m2]

out MCI(:6) Jyy [Kg m2]

out MCI(:7) Jzz [Kg m2]

out MCI(:8) Jxy [Kg m2]

out MCI(:9) Jxz [Kg m2]

out MCI(:10) Jyz [Kg m2]

out altitude Altitude [m]

out mach Mach number [-]

out pdyn Dynamic pressure [Pa]

Continued on next page
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Table 3.3 – Continued from previous page

Variable identifier Description Unit

out q alpha Q-alpha(Dynamic load) [Pa deg]

out F aero Aerodynamic forces(x,y,z axis) [N]

out M aero Aerodynamic torques(x,y,z axis) [Nm]

out AoA(:,1) Angle of attack [deg]

out AoA(:,2) Incidence [deg]

out AoA(:,3) Sideslip [deg]

Attitude error Attitude error(pitch, yaw,roll) [rad]

out beta(:,1) TVC dynamics lane A [rad]

out beta(:,2) TVC dynamics lane B [rad]

out beta cmdA TVC Commanded Value lane A [rad]

out beta cmdB TVC Commanded Value land B [rad]

out betaDotA TVC rate deflection Value lane A [rad/s]

out betaDotB TVC rate deflection Value land B [rad/s]

out omegaPQR
Angular velocity in Body axes(roll, yaw,

pitch)
[rad/s]

out POS ECI LV position in ECI RF [m]

out VEL ECI LV velocity in ECI RF [m/s]

out thrust Thrust [N]

out Acc NG INS
Non gravitational acceleration sensed at

INS
[m/s2]

out time Simulation time [s]

out Wa Velocity along accelerometers [m/s]

out Wp Platform velocity [m/s]

Wx Non gravitational velocity [m/s]

NS Ctrl(:,1) Drift velocity - Z axis [m/s]

NS Ctrl(:,2) Drift position - Z axis [m]

NS Ctrl(:,3) Drift velocity - Y axis [m/s]

NS Ctrl(:,4) Drift position - Y axis [m]

out Wind east Wind East Component vs. Time [m/s]

Continued on next page
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Table 3.3 – Continued from previous page

Variable identifier Description Unit

out Wind north Wind North Component vs. Time [m/s]

Table 3.3: The variable name in the VEGACONTROL, description and the unit of
each output

For example, the output response of Qα in terms of the nominal value of uncertainties

is given in Figure 3.6.

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3
x 10

5

Figure 3.6: The nominal output response of Qα (x-axis - Qα [Pa deg], y-axis - Mach)

3.6 Objectives

The main research objective is the assessment and understanding of aerodynamic loads

constraints during the Stage 1 (P80 phase) subject to the uncertain parameters listed in

Table 3.2. The interested problems are: (i) Determine the maximum excursion value for

the dynamic aerodynamic load over the given Mach profile; (ii) Determine the uncertain

parameter directions corresponding to the maximum excursion of aerodynamic load; (iii)

Compare the response due to the uncertain parameter in (ii) against the Qα vs. Mach
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constraint profile depicted in Figure 3.6; (iv) Analysis to be completed within a fixed

computational budget that typically favoured by Industry in a reliable and convincing

manner; (v) Determine driving uncertain parameters, or active uncertain parameter

space, i.e., most sensitive or contributing uncertain parameters among the many; (vi)

Develop exploratory analysis using efficient sampling based and krigging based methods

to obtain solutions for (i)-(v). In this thesis, a function evaluation requires simulation

of the 6 Degrees-of-freedom(DOF) VEGA simulator performing the P80 ascent phase.

The main inputs varied for the analysis are mostly those listed uncertainties in Table

3.2. The criteria that are helpful for assessing performance violations, if any, for P80

phase are: (i) Qα less than a desired profile as shown in black in Figure 3.6; (ii) total

angle of attack < 3 [deg]; (iii) lateral drift position < 500 [m] for z and y components;

(iv) lateral drift velocity <15 [m/s] for ż and ẏ components. In sequel, efficient quasi

Monte Carlo sampling schemes and Gaussian process based methods will be explored to

understand this problem in detail.



Chapter 4

Robustness analysis based on

Monte Carlo, quasi-Monte Carlo

and optimization methods

The basic concept of Monte Carlo method is given in the Chapter 2.1. The objective is

to provide elementary concepts of necessary probability theory, to define basic notations

and terminology that will be used in the thesis. In sequel, the concept of variance

reduction and quasi Monte Carlo techniques are discussed in Chapter 2.2. Finally, the

idea of optimization based methods tailored to the robustness analysis problem is briefed

in Chapter 2.3. The results of robustness analysis based on these approaches mentioned

above are discussed in this chapter in order to highlight the advantage of Quasi-Monte

Carlo approach.

4.1 Samples construction based on Quasi-Monte Carlo se-

quence

4.1.1 Sobol sequence

The Sobol sequence is constructed based on the theory of (t,m, s)-nets and (t, s)-

sequences developed by Niederreiter to construct a low discrepancy sequence [31]. The

(t,m, s)-nets denotes a class of point sets that have zero discrepancy for several sub

64
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intervals J in Is. The (t, s)-sequences denotes a class of sequences of points in Is that

form the particular nets (point sets). To generate the Sobol sequence, a conventional

algorithm, the so called Algorithm 659 [55], has been made use of and discussed in

brief here. To construct the Sobol sequence with low discrepancy in the unit interval,

firstly, the direction number is needed. The direction number is a binary fraction number

(vi = 0.vi1vi2...) and is defined as:

vi = mi/2
i (4.1)

where the mi is an odd integer with 0 < mi < 2i The mi can be chosen freely. The way

to obtain the direction number is choosing a primitive polynomial in GF (2) field (also

called Z2 field) [31, 55]. In this algorithm, the polynomial is chosen as:

P = xd + a1x
d−1 + ...+ ad−1x+ 1 (4.2)

where ai is 0 or 1 and P is a primitive polynomial of degree d in GF (2). Once the

polynomial is settled, its coefficients are used to define a recurrence to compute the vi:

vi = a1vi−1 ⊕ a2vi−2 ⊕ ...⊕ ad−1vi−d+1 ⊕ vi−d ⊕ [vi−d/2
d], i > d (4.3)

where ⊕ is the bit-by-bit operation.

The recurrence in terms of the mi can be expressed as

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ ...⊕ 2d−1ad−1mi−d+1 ⊕ 2dmi−d ⊕mi−d (4.4)

Eventually, for the ith point, it is constructed by followed definition:

xi = i1v1 ⊕ i2v2 ⊕ ...⊕ ikvk ⊕ ...

where ik is the kth binary digit number of the i, i = (...i3i2i1)2. A unique good property

of the sequence based on this principle is that the when the points xi in the sequence

are projected to a lower dimensional face, the points would not be distributed over the

same location in a higher dimensional space.
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4.1.2 Halton Sequence

To construct the Halton Sequence, two definitions - Digit Expansion and Radical In-

verse Function - are to be introduced [31]. For any integer b ≥ 2, there is a set

Zb = {0, 1, 2, ..., b − 1}. So a integer n ≥ 0 can be expressed by the digit expansion

in base b:

n =

∞∑
j=0

aj(n)bj (4.5)

where aj(n) ∈ Zb. aj(n) = 0 when j is large enough. For any integer b ≥ 2, the radical

inverse function φb in base b is expressed as:

φb(n) =
∞∑
j=0

aj(n)b(−j−1) (4.6)

where n is the digit expansion mentioned above.

The Halton sequence is defined in terms of these two definitions. For any dimension

s ≥ 1 and any integer b1, ..., bs ≥ 2, the Halton sequence xn in base b1, ..., bs is defined

as:

xn = {φb1(n), ..., φbs(n)} (4.7)

where the element φbi , 1 ≤ i ≤ s in xn is the radical inverse function mentioned above.

4.1.3 Faure Sequence

The way to construct Faure Sequence has mutual concept as the way to construct Halton

sequence. For Faure sequence, the base b is required as b ≥ s, s is the size of dimension.

So there is a set Zb = {0, 1, ..., b− 1}. The maximum number of sampling size is limited

to N = dm, where m is an positive integer and 0 ≤ j ≤ i ≤ m. Denote cij =
(
i
j

)
mod d,

where ‘mod’ is the modulo operation. The modulo operation obtains the reminder after

one number is divided by another. Then an integer n can be expressed as:

n =
m−1∑
i=0

ai(n)bi (4.8)
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where ai(n) ∈ Zb. The first element of xn is expressed as:

x1n =
m−1∑
j=0

aj(n)b−j−1 (4.9)

For rest of the elements,

aj(n) =
m−1∑
l=j

cljal(n) mod d (4.10)

Then,

xin =

m−1∑
j=0

aj(n)d−j−1, i 6= 1 (4.11)

4.2 Distributional robustness analysis

ELV launcher model, a complex system, normally needs several seconds, or minutes

(depending on configuration and phase of trajectory considered) for a single run of the

simulation. Besides, the dimension of the uncertainty is typically large. Moreover, the

aim is to carry out the analysis in a convincing manner within a limited computational

budget. Though there are possibility for parallel processing on multi core machines, this

option is not in the present plan and scope of the research work. Following the direc-

tions of industrial partners, the computational budget is fixed at 1000, i.e., the maximum

number of allowed simulations for achieving the solution is 1000. From the nominal sim-

ulations itself, it was observed that the presence of wind contributes significantly to the

aerodynamic load excursions. The original ELV model has 124 uncertainties, of which

6 of them are fixed to their nominal values (following discussions with ESA(European

Space Agency) and the team members who create the ELV launcher model).

4.2.1 Objective functions

In present research problem, all the objective functions, which encapsulate the specific

design performance measures, needs to be maximized (to reveal the extreme behavior

associated with the system). Because the optimization algorithms can only deal with

the minimization procedure, the objective function will be taken a negative sign when

the optimization based validation is carried out. A general format of the worst-case



Chapter 4. Robustness analysis 68

validation is defined as:

max(f(∆)) or min(−f(∆))

subject to ∆− ≤ ∆ ≤ ∆+
(4.12)

where the ∆ is the uncertainty set with 118 dimensions( ∆ = [δ1, δ2, ..., δ118]), the ∆− is

the lower bound of the uncertainties and the ∆+ is the upper bound of the uncertainties.

Six basic objective functions are considered 1, of which the main focus would be only

given for the first objective function as it is of prime importance for the industry. The

uncertainties are normalized, such that the lower bound for all δi is -1 and the upper

bound for all δi is 1. The fi is objective function or cost function

They are (Units given in square brackets):

(1) f1 = max(Qα(Mach)) - The maximum dynamic load over entire Mach, [Pa Deg]

(2) f2 = max(DV Z(t)) - The maximum drift velocity of Z axis over the time, [m/s]

(3) f3 = max(DP Z(t)) - The maximum drift position of Z axis over the time ,[m]

(4) f4 = max(DV Y (t)) - The maximum drift velocity of Y axis over the time ,[m,s]

(5) f5 = max(DP Y (t)) - The maximum drift position of Y axis over the time , [m]

(6) f6 = max(AoAT (t)) - The maximum total angle of attack ,[Deg]

4.2.2 Results

For all efficient sampling based worst case validation, a computational budget fixed at

1000 simulation runs (following directions in [25]) have been considered. Four different

sampling schemes have been considered. They are based on crude Monte Carlo method

(Blue) and quasi Monte Carlo method using Faure (Green), Halton (Purple) and Sobol

(Red) sequences. The worst case function values obtained from each sampling scheme

vs. the six different cost functions are summarized in Table 4.1. Since the industrial fo-

cus in on the aerodynamic load response (Qα) subject to the uncertain parameters, and

moreover to save space and to give a comprehensive set of results, the analysis results

are summarized mainly in three plots (related to only the cost function f1,which is the

maximum dynamic loads) such as i) convergence plot, i.e., the number of simulations

1In this chapter, only the results based on objective function f1 are given. All other results in terms
of other objective functions are given in the Appendix
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vs. the maximum value for the cost function attained; ii) the worst case perturbation

direction in a normalized interval; iii) the dynamic response plot, i.e., the Qα vs. Mach

plot. The Figure 4.1 is the convergence plot for cost function f1 over different distribu-
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Figure 4.1: The convergence plot for f1 based on different distribution method

tional methods. It is clear that, the Sobol sequence has a better convergence with the

highest cost value (or objective value) over the other methods. When compared, Halton

sequence seems to have the relatively poor performance than crude Monte Carlo method,

however the difference is relatively small. Hence, the argument that in [11] ‘quasi-Monte

Carlo method would not loss effectiveness when compared to Monte Carlo’ holds good in

considered uncertainty analysis problems: the quasi-Monte Carlo has at least the similar

performance as Monte Carlo for high dimensional uncertainty analysis problems with

the launch vehicle models.

The worst case perturbation directions in a normalized interval are given in Figure

4.2,4.3,4.4 and 4.5. Note that, the uncertainty vector with the largest objective value,

i.e., the worst case uncertain parameter, with respect to the quasi-Monte Carlo and

Monte Carlo method is considered for the bar plot. From the perturbation bar plot,

it can be observed that how far the variables are away from the nominal value. Those

variables who have large perturbation values are highly possible to affect the cost value

heavily. From this figure, all uncertainties in the worst-case of Faure sequence have large
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(b) Variables from 16 to 30 under different worst-case scenario

Figure 4.2: The worst case uncertainties (1 -30) for f1
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(b) Variables from 46 to 60 under different worst-case scenario

Figure 4.3: The worst case uncertainties (31 -60) for f1
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(b) Variables from 76 to 90 under different worst-case scenario

Figure 4.4: The worst case uncertainties (61 -90) for f1
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(b) Variables from 106 to 118 under different worst-case scenario

Figure 4.5: The worst case uncertainties (91 -118) for f1
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bias contrast to their nominal values and almost reach the upper bound 1. This means

the worst value must be dominated by some large positive uncertainties. In the figure,

some uncertainties in the four worst-cases do not have a particular pattern in direction or

bias value, such as the variable ‘Z23dJx S ’ in plot (B) in Figure 4.2. We can observe that

the bias could either be small or larger and direction could either be negative or positive.

On the other hand, some uncertainties, such as ‘P80dJy ’ in plot (A) of Figure 4.2, do

have a recognized pattern that all uncertainties have similar bias with same direction.

These uncertainties may have high probability in linear relationship between volume of

bias and objective value. It also has a special pattern in the interests of investigate. Note

the uncertainty ‘dTc’ in plot(A) of Figure 4.2, this uncertainty has large negative biases

in the worst-case of Halton, MC and Sobol but large positive bias in the worst-case of

Faure. There is a small group of such uncertainties that three biases are in the same

direction with similar perturbation values but the remain one is in a different direction.

These uncertainties may have similar property as the uncertainties have the four biases

in the same direction and value. One example is that the variable ‘dTc’ is proved as

one of the dominant variables in Chapter 6. One inference can be made in this case is

that the negative bias in the worst-case of Faure sequence makes a ‘negative effect’ or

‘damping effect’ to objective value f1 to decrease the cost value when the bias reach the

upper bound. In this case, 12 uncertainties can be identified with pattern of interesting

by following the principle mentioned above. Another important point to mention here

is that the results using quasi Monte Carlo methods are reproducible when compared to

Monte Carlo methods.

The Qα vs. Mach plot gives the information that at what speed the VEGA lunch

vehicle violates its load constraint, if any. The plot of Qα vs. Mach number based on

the worst-case of cost function f1 in terms of different quasi Monte Carlo and Monte

Carlo distribution methods is give in the Figure 4.6. The response line in black colour

indicates the reference design aerodynamic load envelope w.r.t variation in Mach. From

figure 4.6, it is obvious that the the value of Qα based on different distribution methods

exceed the constraint for a short span of Mach. These spans happen at different mach

number of different methods, but all of them around the region the launch vehicle

attains Mach number 2. The differences are due to the slight variations in the worst

case uncertain parameters identified by the different methods as given in comparison

figure ??. It means that the dynamic load of VEGA launch vehicle is higher than its
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designated value when the speed of the launcher is around Mach 2 operating region in

the P80 phase. The constraint violation implies the VEGA launch vehicle suffers more

pressure than its anticipated maximum pressure. This is of significant risk for the launch

vehicle and hence there is high probability for a failure of mission. Note that the value of

Qα twice crossover the constraint for Sobol and Halton methods whereas once for Faure

and Monte Carlo methods. For comprehensive reading of this thesis, several similar
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Figure 4.6: The Qα plot in terms of the worst case from f1 by different distribution
methods

figures (including convergence plot, perturbation bar plot and dynamic time response

plot) for the cost function of f2 to f6 (details of cost function can be found in Chapter

4.2.1) are not given. However, to convey the main message put forward in the chapter,

the worst case values based on different distribution methods for all the cost functions

(within the fixed computational budget of 1000 simulations maximum) are given in the

Table 4.1.

Computation Cost

As all the results are limited to 1000 simulations, an average computing time for each

result is 372.4 minutes that is approximate 6.2 hours. The computation power and Mat-

lab version is already introduced in Chapter 3.3.

Note that, to avoid the Monte Carlo method ‘luckily’ obtain a very large objective
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Method f1 f2 f3 f4 f5 f6

Monte Carlo 3.0592× 105 23.3822 1003.4694 25.5220 961.7573 3.1390

Sobol 3.4742× 105 20.6084 1076.1478 23.8545 1138.4139 3.1404

Halton 3.0455× 105 25.5019 1073.8014. 24.0327 1121.7021 3.1397

Faure 3.0799× 105 23.2363 1029.1031 23.4257 1147.3471 3.1369

Table 4.1: The worst case values based on different distribution method for cost
function f1 to f6

value from a single worst case valuation (following guidance from [24, 25]), we precede

an independent 25 runs of Monte Carlo based worst case validation. The worst case

values for Monte Carlo method mentioned above is the closest one to the average of

the 25 independent worst case values. This principle is applied to all worst case values

obtained by Monte Carlo method in this thesis.

From the table, the Sobol sequence has a overall best performance , especially outstand-

ing for function f1 over other methods: about 10% ∼ 20% larger than other methods

. But the Sobol sequence has a much smaller worst-case value of objective function f2

over other methods. For cost function f5, the quasi-Monte Carlo based methods have a

better performance than the Monte Carlo method. There is not too much difference in

function f6 based among these sampling methods. An observation in this regard is that

the response surface of the objective function f6 is too flat. This table reemphasize that

the quasi-Monte Carlo at least has a similar performance to that of the Monte Carlo,

and even much better for cost functions with this high dimensional problem.

Nevertheless, from the Table 4.1, we can guarantee the quasi-Monte Carlo won’t be

worse than the Monte Carlo method when the computation budget is limit. The quasi-

Monte Carlo is good methodology for distributional uncertainty analysis for identifying

potential worst case perturbations, and all of the worst case values given in the Table

4.1 exceed their design specified constraints. The results suggest there is requirement for

further enhancing the robustness properties of the design, or rather introduce operational

limitations. However, the issue of convergence of the quasi-Monte Carlo and its relation

to the effective dimension still remains. This issue will be discussed more in the next

chapter by carrying out the global sensitivity analysis for identifying the active uncertain

parameter space, or key uncertain parameters or driving uncertain parameters for the

specific problem. What we would then do is to check whether the worst case solutions
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and directions obtained in this chapter is a fair representation of the identified active

uncertain parameter space or driving uncertain parameter space.

4.3 Differential Evolution

The basic concept of DE and its application of robustness analysis in aerospace industry

is introduced in Chapter 2.3. In this section, the analysis results based on DE are given.

4.3.1 Worst-case validation results

The objective functions in the optimization based worst-case validation are same as the

functions used in distributional based worst-case validation. The configurations of the

DE, DE with Sobol initialization and HDE algorithms are very important factors to

affect the performance of the worst-case validation. All configurations for DE, DE with

Sobol initialization and HDE algorithms are given in the tables 4.2 - 4.4 as followed.

Configuration Value

Number of population 50
Number of iterations 20
Step-size(scaler factor) F for mutation [0 ∼ 1] 0.8
Crossover probability ρc [0 ∼ 1] 0.8

Table 4.2: The configurations for DE

Configuration Value

Number of population 50
Number of iterations 20
Step-size(scaler factor) F for mutation [0 ∼ 1] 0.04
Crossover probability ρc [0 ∼ 1] 0.8

Table 4.3: The configurations for DE with Sobol initialization



Chapter 4. Robustness analysis 78

Configuration Value

Number of population 50
Number of iterations 20
Step-size(scaler factor) F for mutation [0 ∼ 1] 0.8
Crossover probability ρc [0 ∼ 1] 0.8
The number of function evaluation for local optimization 237

Table 4.4: The configurations for HDE

Choice of population and iterations

As the number of simulation is constrained to 1000, the multiplication of number of

population and iterations is equal to 1000. The number of population theoretically can

be chosen freely. However, a different choice could yield a different effect for the opti-

mization. A larger number of population can explore a wider uncertainty space. More

iterations leads a better worst-case in most cases because there is larger opportunity to

drive the optimum value down to a lower objective surface(for minimization only) . So

ideally, the number of population and iteration should both be as large as enough. How-

ever, constrained by the limited computation resource, it must have a trade-off choice to

maximize the optimization performance. According to our experience and experiment

conclusion from other researchers, [24, 25] for example, a 50 population size with 20

iterations is a good candidate for such a trade-off decision. As our research interest is

not comparing the different trade-off choices that yield the best optimization results, we

only give the robustness analysis results based on the configurations mentioned in the

tables above.

Choice of step-size

Normally, for crude DE, the value of step-size is greater than 0.8 for a good performance

based on our expertise and guidance in [20, 24, 25]. However, in Table 4.3, the step-size

is very small, only 0.04. The reason is that the Sobol initialization provides a better

uniform and even distribution. Although some 2D projections in high dimension may

reveal a some cluster of points (for example, in Figure 2.2), our purpose is to disperse

these cluster of points more widely but without much ruining the uniformity. Since the

step-size determines how far the next generation will move, so a small value for DE with

Sobol initialization is favoured. To support this argument, several numerical experi-

ments with standard test case functions have been carried out. Based on the numerical
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experiments, the empirical value for step-size for DE with Sobol initialization is smaller

than 0.1. Nevertheless, this value is also coupled with the number of population.

For HDE, a extra configuration is called ‘the number of function evaluation for local

optimization’. The value of 237 in our experiment is assigned as the minimal require-

ment number of function evaluation based on the Matlab optimization function fmincon

because of our limited computational budget. The ‘number of function evaluation for

local optimization’ could increase the total number of function evaluations enormously.

Based on the configurations in Table 4.4, the total number of function evaluations could

be from 1000 to 5740, but forced stopping after 1250 simulations is introduced (just

to be sure about completion of the local optimisation). The Table 4.5 gives the worst-

case values based on the three optimization methods for cost function f1 ∼ f6(details

of cost function can be found in Chapter 4.2.1). From this table, the DE with Sobol

Method f1 f2 f3 f4 f5 f6

DE 3.3318× 105 22.3257 923.6494 26.5737 983.0093 3.1404

DE with Sobol 3.8773× 105 29.4903 1163.9797 34.3820 1180.0562 3.1394

HDE 3.3033× 105 22.6730 1051.2470. 23.4222 1046.5893 3.1399

Table 4.5: The worst case values based on different optimization methods for cost
function f1 to f6

initialization has a much better performance overall. The advantage of the DE with

Sobol initialization is obvious except the cost function f6. It demonstrates that a better

initialization of the DE is able to perform better in optimization. Comparing the results

in Table 4.5 and 4.1, it can be seen that the optimization based worst-case validation has

an overall better performance than the Monte Carlo and quasi Monte Carlo methods.

Generally speaking, the optimization based method for worst-case validation can still

be considered as a better choice than the distributional methods. Introducing the quasi

Monte Carlo based initialization step in the optimization based analysis method offers

significant improvement in obtaining the global solution swiftly.

Computation Cost

-DE and DE with Sobol: The number of simulation are both 1000. The average

computing time for each result is 375.1 minutes that is approximate 6.3 hours. The

computation power and Matlab version is already introduced in Chapter 3.3.



Chapter 4. Robustness analysis 80

-HDE: As the number of simulation for HDE is unpredictable, the time taken for each

experiment is varied. In our research, the HDE often switch on the local optimization.

The number of simulations is normally between 2700 to 4500 approximately. Thus, the

time takes for this method is roughly between 945 and 2100 minutes(between 15.8 hours

to 35 hours). Note that the time spent in simulation is nonlinear to the number of

simulations. This phenomenon is illustrated in Chapter 3.3.

The Figure 4.7 gives the convergence plots based on DE, HDE, DE with Sobol initial-

ization and Monte Carlo method. From this figure, the convergence of DE with Sobol

initialization can be seen to be significantly better than others. It dominates the maxi-

mum cost value after the first 100 function evaluations. After 300 function evaluations,

the maximum cost value is already much larger than the maximum cost values obtained

by all other methods. Note that the analysis in [25] was demanding the global solution

within 300 function evaluation or so, due to major impediment on the requirement on

the simulation time for each function evaluation. DE with Sobol initialization improves

the performance of worst case validation significantly for aerodynamic load cost func-

tion f1, which is of supreme interest to industry [20]. In summary, the Sobol sequence

is a good strategy for population initialization for the DE algorithm in this case and

builds confidence to be considered as the right candidate for the important problems as

in [25]. The Figures 4.8,4.9,4.10 and 4.11 provides the directionalities of the uncertain

parameter vector corresponding to the worst-cases obtained using the methods of DE,

HDE and DE with Sobol initialization respectively.

The Qα plot over the mach number based on the optimization methods are given in the

Figure 4.12. From this figure, the DE and HDE exceed the constraint twice around the

mach number 2. The DE with Sobol initialization exceed the constraints three times

around mach number 0.3 and 2. Moreover, the larger area of constraint violation hap-

pens with DE with Sobol initialization. All Qα plots suggests that the VEGA launch

vehicle may suffer over dynamic load under these uncertain conditions. Especially for

the condition obtained by DE with Sobol initialization, the larger area of violation (pro-

longed existence of performance limit violation) may be considered as higher risk for the

launch vehicle in it’s P80 phase.



Chapter 4. Robustness analysis 81

0 100 200 300 400 500 600 700 800 900 1000
2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9
x 10

5

The number of cost function evaluation

Q
_

α
 [
P

a
 d

e
g
]

 

 

DE

HDE

DE with Sobol

Monte Carlo

Figure 4.7: The convergence plot of Qα

4.4 Short Summary

Introducing the quasi-Monte Carlo method is our main contribution in this chapter.

Our experiment demonstrate that the quasi-Monte Carlo method in general outperform

the Monte Carlo method in robustness analysis based on the six objective functions.

Moreover, by introducing the quasi-Monte Carlo sequence to initialize the population

for Differential Evolution, the DE obtain a much better optimization result over the DE

without involving quasi-Monte Carlo sequence. These results show that the quasi-Monte

Carlo method is a ideal candidate approach for robustness analysis indecently or coop-

erated with other optimization scheme dependently. From other point of view, a good

distribution of samples is vital for robustness analysis.
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Figure 4.8: The worst case uncertainties (1 -30) for f1
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Figure 4.9: The worst case uncertainties (31 -60) for f1
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Figure 4.10: The worst case uncertainties (61 -90) for f1
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Figure 4.11: The worst case uncertainties (91 -118) for f1
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Chapter 5

Gaussian Process based global

optimization

In previous chapter, it was demonstrated that an efficient sampling strategy is poten-

tially able to improve the performance of worst case validation for both sampling based

methods and optimization based methods.

For a global optimization in terms of VEGA model, the number of function evaluations

is limited by power of computation capability. The term ‘efficient’ is already explained

above that it refers to obtaining an target worst case value in a lower computation cost

or obtaining a larger worst case value by carrying out a certain number of function

evaluations. Although an efficient sampling strategy is able to improve the worst-case

value, it still may be failure to explore the entire uncertainty space deeply with a limited

number of function evaluation. To address this issue, an challenge but a feasible way

is to construct a objective value surface by collecting the date from a small number

of evaluations. The surface needs to be able to be observed and accessed with little

computational effort. There are many types of emulator could approximate the objective

value surface, such as polynomial expression. But in this chapter, we introduce the

Gaussian Process to build a statistic model. The reason to employ a statistic model

to describe the objective value surface is due the high nonlinearity of its surface. One

important feature for a statistic model is that the observations at a give condition of

uncertainties would behave as a gaussian distribution. The key to using the statistic

model to approximate the objective surface and optimize the objective problem is to

87
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balance the error of model with the exploiting of the global optimum value. This chapter

is going to show how we overcome the trade-off problem.The general concept of Gaussian

Process is detailed in Chapter 2.4.

5.1 Model training procedure

Before carrying out the GP model training process, four most important matters needs to

be discussed and investigated. The four matters are the choices of ‘training points’,‘mean

function’, ‘covariance function’ and ‘prior information’. The quality of the GP model is

depended on these four key factors.

5.1.1 Training points

The chosen of training points in Gaussian process is also important. These training

points are not selected randomly. We hope the observations in terms of the training

points can provide good information of uncertainty space. Thus, the training points ide-

ally have a uniform distribution over the sampling space. In our experiment, we propose

the quasi-Monte Carlo to generate the training points and obtain the corresponding ob-

servations. There is question rose here: how many training points are sufficient enough

for the Gaussian process? It is easy to understand that the Gaussian process with more

training points inevitable generate a higher quality meta-model. However, from the

equation 2.46, the drawback of large number of training point is that the complexity

and computational burden for the calculation of posterior distribution are significantly

increasing. So our question becomes what is the trade-off number of training points for

Gaussian process? To unswear this question, we investigate the trade-off point experi-

mentally: Calculate the quality of the meta-model and computation time with different

number of training points. The details and example of the strategy are given in the test

case later.

5.1.2 Inference for mean function

A mean function in the Gaussian process is a scaler function and used to predict the

mean value of the noise free output over the uncertainty space. The inference for mean
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function is not exactly inference for the entire mean function 2.60, but is the inference

for the regression functions φ(x) in equation 2.49. The reason that we call the ‘inference

for mean function’ is that φ(x) is one of the important components in the mean func-

tion. The set of all regression functions are denoted as Φ(X) and Φ(X) are unknown

hyperparameters. The inference of Φ(X) is normally based on some knowledge of the

objective model.

5.1.3 Inference for covariance function

A covariance function is applied to calculate the covariance between two inputs X and

X∗. For posterior distribution, it measure the covariance between the training points

and predicted points. A good covariance function is able to improve the quality of

meta-model. But the inference normally is depended on the knowledge of the objective

model.

5.1.4 Inference for prior

The inference for prior ideally needs the expert knowledge of the objective model. In the

paper [16, 17], the authors discuss some strategies and issues for the prior distribution.

Normally, we expect the prior has zero mean function. So we week the prior distribu-

tion that is only depended on the unknown hyperparameter Σ2
p in our experiment. In

function-space view, the Σ2
p is also written as σf in the covariance function and described

as ‘signal variance’.

5.1.5 Model training

As the training points should have a good coverage for the uncertain space, the Sobol

sequence is employed in the test case for a uniformly distribution. But we have no idea

how many training points are needed for the Gaussian process in the first place. An

investigation for a proper number of training points with respect to an acceptable quality

of the meta-model. So the first step for the investigation is to define the measurement

of quality for the meta-model. The measurement that is introduced in the experiment
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is called: prediction residuals. It is derived from mean squared error(MSE).

The prediction residuals is defined as followed:

Qp(f, f∗) = 1−
∑n

i=1(fi − f∗i)2∑n
i=1(f̄ − fi)2

(5.1)

where f is the true observed value, f∗ is the predicted value, n is the number of testing

points, f̄ is the empirical mean. Ideally, the value of Qp is in range of [0,1] (will be

explained later)and small value of Qp stands for a poor quality model while large value

means a good model. Normally, an acceptable quality of meta-model requires a value

of Qp is greater than 0.8. A large value of Qp indicates that: (1) the most of predicted

value f∗i is very closed to the true observed value fi, so the noise in the model is very

small; (2) although the noise is even considerable that makes the difference between

the f∗i and fi, the effects of noise compared to the variance of observation are very

small and negligible. The advantage of the measurement of Qp is that it neutralizes

the effects of noise σ2n and suggests a good mean and variance of the meta-model. This

measurement is actually kind of ‘vague’. It cannot measure the effect of noise so that

the direct mapping from x∗ to f∗ may be very poor contrast the true observation. So

a good quality measured by Qp only means that the predicted mean and variance quite

match the true observations.

Unlike the measurement of prediction residuals, the mean squared error is more straight-

forward and ‘precisely’. The definition of mean squared error is given followed:

Qm(f, f∗) =
1

n

n∑
i=1

(f∗i− fi)2 (5.2)

From the definition of MSE, the effects of noise is directly considered in the measurement

of different between the predicted value and true observation. The quality of meta-model

obtained by MSE presents the quality of the mapping quality from inputs to outputs.

Thus, the value of Qm could be any value that is equal or greater than zero. A small

value of Qm means a good quality of meta-model. However, as the value of Qm could be

non-negative value, it is not easy to compare the qualities obtained by Qp and Qm and

not straightforward to make any statement about the quality according to the value of

Qm. For instance, the determinant of threshold of good quality with respect to the value
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of Qm is difficult. To address these issues, we derive the MSN to a modified version:

Qmn(f, f∗) =
1

n

∑n
i=1(f∗i − fi)2

V ar(f)

=

∑n
i=1(f∗i − fi)2∑n
i=1(fi − f̄)2

= 1−Qp

(5.3)

From this equation, assuming the meta-model is properly modeled, then the difference

between f∗i and fi is only dominated by the effects of noise. Thus, the variance of obser-

vations is guaranteed to be no smaller than the expected effects of noise. Then the range

of Qmn for a reasonable quality is [0, 1]. A smaller value of Qmn also means a better

quality of meta-model. Of course, a little improper modeled f∗ with small effects of noise

also are able to makes a small bias around fi for each f∗i so that the value of Qmn is till

than 1. But we believe it is a reasonable quality as well, especially the subject model

is a complex and nonlinear model. There is no necessary to worry about the effects of

noise that makes the bias of predicted value with respect to the true observation if the

value of Qmn is smaller than 1. Because the true subjective model itself may preserve

the nature of noise from the external. In Gaussian process, the hyperparameter σ2n is

exactly the parameter that is used to describe the effects of noise.

To generate the meta-model by Gaussian process, the inferences for mean and covari-

ance function are also needed. In our experiments, the projection function φ(x) is a

linear function and the covariance function is one of the Mátern class of covariance

function. The Mátern class of covariance function is a production of exponential and

a polynomial expression:

k(x, x∗) = σ2ffd(rd)e
(−rd), rd =

√
3

`
(x− x∗)T (x− x∗)

, fd(rd) = 1 + rd

(5.4)

The choices of projection function and covariance function are based on our tests and

experience about the model. It is not easy to make a good inferences for the functions

without any tests. There is also no guarantee that our choices for these functions are

the best ones.

To make the Gaussian process is applicable in practice, the determination of the hyper-

parameters are necessary. The choices of hyperparamters that are involved in the mean
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and covariance functions are variety and effect the quality of the meta-model. In our

experiments, we propose the method called Bayesian model selection [19] to determine

the hyperparameters. As we know the marginal distribution in the posterior distribution

is a normalized constant and independent to the posterior distribution of weight w. If

consider that the hyperparameters are also the conditions to the posterior distribution,

then the marginal likelihood is extended to:

p(y|X, θ) =

∫
p(y|X, θ, w)p(w, θ)dw (5.5)

where θ is the vector of hyperparameters. As the training points X and the corresponding

observations y in the equation is known, the hyperparameters θ are able to be determined

by Maximum Likelihood (ML) method. To address the integration issue in this equation,

the numerical method is employed. However, the hyperparameters are not determined

by directly implementing ML to solve the marginal likelihood in practice. Instead, the

marginal like is extended to the log marginal likelihood:

log p(y|X, θ) = −1

2
yTK−1y y − 1

2
log |Ky| −

n

2
log 2π (5.6)

where n is the number of training points, Ky = Kf +σ2nI is the covariance matrix for the

observation y with noise, Kf is the covariance matrix of the noise-free latent f . Then, by

maximizing the log marginal likelihood, the hyperparameters are able to be determined.

The optimization algorithm implemented in the maximizing the log marginal likelihood

is a local optimization algorithm and is called fmincon in Matlab. The details, such as

the mathematic expression of this function, can be found in the Chapter 4.

5.2 Gaussian Process based optimization

The Gaussian statistic model is built to make a predictive distribution for a given point

x. Suppose we are not sure about the value of y(x) that is observation of objective func-

tion y. As y(x) is not random but expensive to obtain by direct evaluating the objective

function y, an alternative way then is required to identify whether a given point x makes

any improvements of objective value by studying its distribution property. Thus, the

key of Gaussian Process based optimization is to define a proper ‘improvement function’
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by involving mean and variance from the predictor to substitute the direct observing of

y(x) and find the expect improvement in objective value for any given point x.

There are many kinds of improvement functions proposed by other researchers [56–

63]. In our research, an improvement function called ‘Expected loss’ which is introduced

in the paper [56] is applied.

Supports there is only one objective function evaluation left to end the optimization and

return the minimal objective value ymin. Denote the final observation from objective

function evaluation is y under the condition of uncertainty x and the minimal objective

value from previous evaluations η = min y0. Then the loss function is defined in a very

simply way:

λ(y) =


y; y < η

η; y ≥ η

So the minimal observation λ = min(y, η). However, as we mentioned above that the last

observation y(x) is unknown. We would like to find a condition of x that is assigned in

the objective function and obtain an smaller observation y over the η in return without

any objective function evaluation. By predicting the distribution from GP model over

y, the expected loss under a selected condition of x can be defined as

V (x|I0) =

∫
S
λ(y)p(y|I0)dy

= η

∫ ∞
η

N(y;m,C)dy +

∫ η

−∞
yN(y;m,C)dy

= η + (m− η)Φ(η;m,C)− CN(η;m,C)

(5.7)

where I0 is context of the prior knowledge of mean and covariance functions; m denotes

m(y|I0) and is the mean value of the selected point x from the prediction of GP model;

C denotes C(y|I0) and is the covariance of the selected point x from the prediction of

GP model; φ denotes the Gaussian cumulative distribution function and N denotes the

Gaussian probability sensitivity function. This expected loss equation parentally is in-

dependent with the observation value y in future and only dependent on the mean and

covariance value at the selected point x. Unlike the expected improvement functions

defined in [57, 63] only consider the distributed area that is smaller than the current

minimal value η, this expected loss function consider both effects from the distributed

values who are below the current minimal value η and who are greater than η although
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both improvement functions are quite similar. This expected loss function is also called

Bayesian expected loss.

According to this expected loss function, the condition of uncertainty x with the lowest

expected loss value is the global minimal. The value of expected loss will decrease while

the mean value m decreases and covariance value C increases. This expected loss func-

tion provides both exploitation and exploration due to the property of m and C. The

global minimal condition then will be assigned to the objective function y(x) for the last

function evaluation chance and be checked whether the last observation value y would

be smaller than previous minimal value η.

The minimization problem is shifted from minimizing the objective function y(x) to

minimizing the expected loss function V (x|I0). To minimize the expected loss, the min-

imal value can be explored by investigating the gradient and Hessian matrix in terms of

its analytics expression. But in practice with high dimensional problem, we use Monte

Carlo method to carry out the minimization problem in this research.

If there are more than one objective function evaluations left, then minimization of ex-

pected loss are carried out before each function evaluation. However, we do not know

what effects would be brought in when each decision is made of global optimal x after

each function evaluation. Thus, we would like to update the information to the expected

loss V after each function evaluation. In paper [56], the author updated the context in-

formation Ij (where j = 1, 2, ..., n, n is the total number of function evaluations) and

the Gaussian pdf(probability density function) information to give the probability when

the previous global minimal condition xj−1 is happened. These informations are cumu-

lated to expected loss function V (x|Ij)for every function evaluations. In our research,

the context information Ij is unchanged during the evaluations. So this information

will not be updated. However, as the remaining total number of function evaluations

would be very small (otherwise there is not necessary to use the Gaussian Process based

optimization), we will update the observations and condition of uncertainties after each

evaluation to improve the quality of the Gaussian statistic model because we won’t use

a large number of train set to obtain the Gaussian Process model by considering the

expensive cost for each function evaluation.

The pseudocode for the Gaussian Process based optimization is given below. Although

we take the effects from each decision made of each evaluation into account by follow-

ing the concept in [56], we still need to exam that whether a different start point can
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Pseudocode of GP based optimization

1 Begin
2 Input: the training points x0 and the corresponding observation y0
3 Find ybest = min(y0). xbest = argminx0(y0)
4 X ← x0, Y ← y0
5 p dis = 1
6 Repeat
7 Find posterior : θ ← argmaxθ(− log p(θ|X,Y ))
8 xnew best ← argmaxx(EV (x|X,Y, I, θ)× pdis)
9 ynew best ← y(xnew best)
10 if ynew best < ybest
11 then ybest = ynew best, xbest = xnew best

12 X ← [X|xnew best], Y ← [Y |ynew best]
13 p dis = p dis ∗N(ynew best;m(ynew best; |I), C(ynew best|I))
14 Until(stopping criteria satisfied)
15 return xbest and ybest
16 End

affect the results of optimization (especially applied this method to VEGA launch ve-

hicle model). This examination means the optimization scheme with multiply function

evaluations left could be tracked into a local minimum according to the concerns from

other authors, such as [57, 63] . Under this circumstance, if the number of function

evaluation left for optimization is fixed to a small number, then a tradeoff decision is

need to balance the number of start points with number of steps to forward in the GP

based optimization. In order to improve the efficiency of optimization, normally the

start points are selected by hand.

The scheme of the GP based optimization with multiply function evaluations left is

described in the Figure 5.1 below.

Figure 5.1: A GP based optimization scheme. The shaded nodes mean the informa-
tions are known.
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5.3 VEGA launch objective function

In this thesis, only the objective function f1 : max(Qα) is applied to GP based opti-

mization. The reason is that the procedure to train a GP model for different objective

function is same but may need much experience to understand basic statistic features of

observations for each objective function in order to provide proper prior information and

choose a suitable mean and covariance functions. The understanding process of each

objective function is time consuming and may need assistance from experts’ review.

The definition of the objective function f1 can be found in previous chapter. Because

there are 118 uncertainties involved in the function evaluations, training a good quality

of GP model with a limited number of training points could be a great challenge. The

relationship between the quality of GP model and the number of training potions is

under survey in this thesis.

With all the 118 uncertainties , the complexity to get a good quality meta-model is very

high. Although normally we would like to accept a statistic model with quality level

that is over 0.8, in practices, the expected quality level for a complex system is much

lower than this index. Then the GP model is said as an acceptable quality if an expected

objective goal is achieved.

In this case, the inferences and sampling strategy are implemented as the methods and

inferences mentioned above , the quality and time cost versus the different number of

training points are given in the Figure 7.9 followed. After 1000 sampling points, the qual-

ity of the statistic model is improved very little by increasing the number of sampling

points; on the other hand, the time cost for the model training is increased significantly.

From this figure, it indicates that simply increasing the number of training points is not

a effective solution to improve the quality of the meta-model. In our experiment, we

tried 6000 training point for model generation. The quality we obtained is 0.72. This

quality value is still lower than the minimum acceptable quality value. Moreover, the

model training process takes approximate 2 hours to complete. There is also no way

to keep increasing the number of training points due to the capability of the hardware.

The Matlab would display an error message if the number of training points exceeds

8000 to show that the Matlab is out of memory. In this case, the meta-model applied

to optimization is trained based on 500 training points.

With a selected number of training points, the next step for GP based optimization

is to determine the number of function evaluations remaining for the optimization. In
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Figure 5.2: The quality and time cost for model training based on different number
of training points

Chapter 4, the number of function evaluations for most of optimization cases are 1000.

The purpose of the GP based optimization is to find a global minimum with a much

small number of function evaluations. As we already have 500 function evaluations to

generate a training data set, the number of function evaluations remaining for GP based

optimization should not be a large value. In our research, we fixed this number for

remaining evaluations is 50.

Next step, we need to make a trade-off decision about the number of start points and

the number of function evaluations remaining under each start point. For example, if we

decide to employ 5 start points, there are 10 function evaluations left for an optimization

under each start point. Then the total number of function evaluations is 5 × 10 = 50.

In this thesis, we propose four cases given below and would like to observe whether the

number of start points would heavily affects results of optimization:

(1) 1 start point with 50 evaluations remaining under the single start point.

(2) 2 start points with 25 evaluations left under each start point.

(3) 5 start points with 10 evaluations left under each start point.

(4) 10 start points with 5 evaluations left under each start point.

For these start points, they are randomly generated by uniform random distribution.

The Table 5.1 followed is the optimization results based on the four cases. Note that the
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optimization is designed to find a global minimum. However, the objective function is

designed to look for a maximum objective value. To address the issues , we add a neg-

ative sign to the objective function. Then the objective function is transferred to find a

global minimum value. The tables and figures followed displays a positive value as we re-

assign a negative sign when we produce a post-process to generate the table and figures.

From the table, the maximum objective values obtained under each case are content

Tests cases Worst-case (Maximum dynamic loads)

Case 1 (1 start point) 3.2814× 105

Case 2 (2 start points) 3.2123× 105

Case 3 (5 start points) 3.3039× 105

Case 4 (10 start points) 3.2755× 105

Table 5.1: Worst-case validation GP model with different number of start points for
objective function f1(Maximum Dynamic loads)

because they achieve a larger objective value over the value obtained by sampling based

methods with Monte Carlo, Faure sequence and Halton sequence sampling strategies.

Although the maximum objective value obtain based GP optimization is a smaller than

the maximum objective value obtained by sampling based method with Sobol sequence

and by optimization method DE with Sobol initialization, it has little difference with the

maximum objective values obtained based on DE and HDE in previous chapter. Thus,

the GP based optimization in terms of the objective function f1(which is the maximum

dynamic load. Details can be found in Chapter 4.2.1) is demonstrated as a powerful tool

that it needs much fewer computation cost but achieves a good optimization result.

Computation Cost

Because the number of additional simulation only set to 50, the average computation

time only needs 14 minutes. Of cause, to make the GP model, it requires another 500

simulations. But both GP based optimization and GP based sensitivity analysis can

depend on it.

A study of the choice of trade-off decision mentioned above is also needed by ana-

lyzing the evolution process for each optimization scheme under different start points

and different number of evaluations of the four cases. Between each two cases in the

table, the difference of the worst-case values is very small. The maximum difference is

approximated 3%. The worst case results infer that the worst-case value based on a
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different number of start won’t be too much different. However, the results still cannot

explain whether the GP optimization could be tracked into a local optimal value. The

investigation of trade-off decision is given as followed.

For Case 1, the Figure 5.3 below describe the observations evaluated based on the se-

lected condition of uncertainties after each expected loss function calculated during the

evolution process of optimization. Meanwhile, the convergence of the entire optimization

is also provided. In this figure, the red line is the convergence plot of the optimization
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Figure 5.3: The convergence plot of the GP based optimization for Case 1

process. The black dash line with red diamond denotes the minimal observed value

obtained after each expected loss function is calculated. The blue line is the maximum

observed value from training date points. The global optimum value is converged after

15 function evaluations. A very fast convergence of optimum value happened in the first

7 evaluations. After 27 function evaluations, the new observations seem to be traced

into a range of small value and are all smaller than the minimal value from the training

date set.

Generally speaking, the optimization with such a few number of evaluations is very suc-

cessfully by achieved a relatively large objective value although a fast convergence in

the first 15 function evaluations makes the rest of evaluations with no efforts. The fast



Chapter 5. GP based optimization 100

convergence and the maximum objectives obtained in other 3 cases may infer that a

large number of evaluations from a single start point is not quite necessary.

For Case 2, the convergence plots and the minimal observation after each expected loss

calculated are given in the Figure 5.4 followed. In the figure, each optimization scheme

0 5 10 15 20 25
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

5

Number of function evaluation

Q
_

α
 [

P
a

 d
e

g
]

Convergence figure

Figure 5.4: The convergence plots of the GP based optimization for Case 2

with different start points is coordinated with a specified color. The red solid line and

the cyan solid line are the convergence plots of the GP based optimization scheme from

different start points. The black dash line with red diamond and black dash line with

cyan diamond denote the observations based on the chosen condition of uncertainties

after each expected loss calculated from different start points. The blue solid line is the

maximum observation from the training data set. The convergence of red solid line has

a smaller observation at the start point. but it is converged very fast and reaches its

global maximum value after 13 evaluations. In stead, the convergence of cyan solid line

has a larger observed value at the start point. The convergence rate is also fast in the

first a few evaluations. But its global maximum objective value is a little bit smaller

than the maximum observation from the training data set. This means the GP based

optimization from the cyan start point makes no effort at all. Thus, we can say that

if a global maximum from a start point is smaller than the maximum observation from
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training data set, then this optimization is failure of any improvement. Fortunately,

the optimization from the red start points achieve a much larger objective value than

the minimal observation from the training data set. For both optimization scheme from

both different start points, the observations at both start points are very small but the

maximums are converged very fast in the first 5 evaluations and quickly reach the global

maximum around 15 evaluations. The observed values obtained after 20 evaluation are

dropped very fast and suggest that a large number of evaluations from a single start

points may be unnecessary.This phenomenon is quite similar as the Case 1. It seems

that the maximum observation over the entire optimization could be obtained very fast

but traced into this maximum value in the rest of evaluations and very difficult to jump

out this ‘local maximum’. This phenomenon is more obvious in Case 1.

For Case 3, there are only 10 evaluations for each optimization scheme with different 5

start points. According to the phenomenon summarized in previous Case 1 and Case 2,

the convergence rates for each optimization scheme should be very fast and may only

left a few number of observations without making any improvement in objective value

after the global optimum is achieved. The convergence plots and all observations are

given in the Figure 5.5 below. In this figure, one specific color represents an optimization
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Figure 5.5: The convergence plots of the GP based optimization for Case 3
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scheme as well. The solid lines with red, purple, cyan, yellow and green color are con-

vergence plots in terms of different start points. The black dash lines with red, purple,

cyan, yellow and green diamonds are observations after each expected loss calculated

for every optimization schemes. In this case, four convergences behave as our expecta-

tion mentioned above that only a few number of observations left without making any

improvement after the global maximum is achieved. The reason is the total number of

function evaluations is small for each optimization scheme. So it is not obvious to tell

whether the optimization schemes are tracked into a local maximum. The only excep-

tion is that the convergence with yellow color reaches its maximum value at the second

observation. The optimization process is high likely traced into a local optimum point

in the very beginning and unable to jump out the point even after another 8 evaluations.

Overall, the convergence with red solid line obtains the largest objective value and keeps

finding a new larger value during the optimization scheme although it has the smallest

objective value at the start point.

For Case 4, it is difficult to put all 10 convergence plots in a single figure with friendly

interface. Thus, these 10 convergence plots are equally assigned to two subfigures. Each

subfigure has 5 plots. In this case, there is only 5 evaluations for each optimization

scheme. By observing from previous three convergence figures, we can find that only

one optimization scheme achieve a observed objective value larger than the maximum

observation from the training data set after 5 function evaluations. The rest of opti-

mization schemes obtain smaller observations over the maximum observation from the

training data set after 5 evaluations. Thus, the only 5 function evaluations could possibly

make the 10 optimization scheme obtain a smaller maximum value over the maximum

observation from the training data set. The convergence figure is given in the Figure 5.6

below.

In each subfigure, one specific color represents an optimization scheme. But for every

specific color, there are two optimization schemes represented by it. But these two op-

timization schemes are complete different and with different start points. The reason

is that we do not have that many of colors that could distinguish every optimization

schemes. In the two subfigures, the convergence plots are presented by red, purple,

yellow, green and cyan solid line. The observations in each optimization are given with

black dash line and diamond in specific color. In subfigure (A), the convergence rates for

every optimization scheme are fast. Nevertheless, three of them obtain a much smaller



Chapter 5. GP based optimization 103

1 1.5 2 2.5 3 3.5 4 4.5 5
2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

5

Number of function evaluation

Q
_

α
 [

P
a

 d
e

g
]

Convergence figure

(a) Convergence plots for the first 5 optimization schemes
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(b) Convergence plots for the other 5 optimization schemes

Figure 5.6: The convergence plots of GP based optimization for Case 4
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observed objective value after 5 function evaluations than the maximum objective value

in training data set. Similarly as the subfigure (A), four of the five optimization schemes

obtain a observed objective value below the maximum observation from training data

set after 5 evaluations in subfigure (B). In total, only 3 over the 10 optimization schemes

achieve the maximum objective value after 5 evaluations that are larger than the max-

imum observation from training data set. In summary, the fast convergence rates for

every optimization schemes lead no evidence to show that the optimization schemes are

tracked into a local optimum. However, most of the optimization schemes are failure to

make any improvement in objective value over the training data set. A highly possible

reason is that the number of evaluation left for optimization is too small.

In conclusion based on the analysis for the four test cases, a GP based optimization

scheme could be tracked into a local optimum with high possibility. Multiple start

points for the GP based optimization are recommended in order to increase the chances

to achieved a better optimum value. On the other hand, the number of evaluations left

for the optimization doesn’t have to be as large as possible. In this test example, the

number of evaluations left for optimization is ideally between 10 to 20.

5.4 Short Summary

In this chapter, our main contribution is implement the Gaussian Process to train a

meta-model for a probabilistic optimization scheme. We demonstrate that the GP based

optimization can save a significant computation cost without loss too much accuracy.

The Gaussian Process is seldom applied in aerospace industry. As our research subject

is a complex nonlinear model what is treated as a ‘black-box’ model, GP is a ideal can-

didate for mapping the relationship between input and out with a probabilistic sense.

This nature is used for probabilistic based optimization and the results also reveal its

advantage.



Chapter 6

Variance based sensitivity

analysis

Variance-based sensitive analysis is wildly used for a complicated nonlinear problem. In

most cases, the nonlinear problem is not able to expressed by one or a few linear/non-

linear algebraic functions, so the differential-based calculation is unable to implement

to identify the driven parameters. Variance based sensitivity, on the other hand, is

a powerful tool to screen out the driven parameters for a nonlinear problem. The

method of variance-based sensitivity analysis used in our research is called analysis of

variance(ANOVA); the principle of ANOVA based sensitive analysis is already given in

Chapter 2.5. In this chapter, the analysis results are presented in sequel.

6.1 Test Examples

6.1.1 Subjective model

The test subject is the VEGA launch vehicle. For a good distribution of the uncertainties

by quasi-Monte Carlo simulation, we know from Chapter 2 that the ideal minimum

number of points for a large dimensional case is 2n, where the n denotes the number

of dimensions. However, if all uncertain parameters are applied to the variance based

sensitivity analysis, the recommended number of points is 2118. The computation cost

based on the recommended number of points is unaffordable for us. The approximate

105
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time to carry out 2118 simulations is beyond measure. To verify whether or not the

Sobol indices comprise a good tool for sensitivity analysis for the VEGA launch vehicle,

we select 15 uncertainties out of 118 uncertainties.

The selected uncertainties are given in the following Table 6.1.

Category
Variable name in

VEGACONTROL
Description

Flag.IRSmountingX
IRS Mounting Error w.r.t X Body

Axis

IRS Flag.IRSmountingY
IRS Mounting Error w.r.t Y Body

Axis

Flag.IRSmountingZ
IRS Mounting Error w.r.t Z Body

Axis

Thrust Parame-

ters
Flag.dISP Stage 1 impulse scattering

Flag.dTc Scattering on time burn

Flag.SRM roll Scattering on P80 Roll Torque

Flag.disp CA
Dispersion on Stage 1 Axial coeffi-

cient

Flag.unc CA
Uncertainty on Stage 1 Axial coeffi-

cient

Flag.disp CN
Dispersion on Stage 1 Normal Coef-

ficient

Aerodynamics Flag.unc CN
Uncertainty on Stage 1 Normal Co-

efficient

Flag.disp Xcp Dispersion on Stage 1 Xcp

Flag.unc Xcp Uncertainty on Stage 1 Xcp

Atmosphere Flag.air density scat Atmosphere Density

wind Flag.h wind Synthetic wind gust altitude

Flag.azimuth wind angle Wind azimuth direction

Table 6.1: The description, category and variable name in VEGACONTROL of the
15 selected uncertainties
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The 15 uncertainties are not selected at random, but based on our understanding of the

VEGA launch vehicle. We believe that some of these uncertainties may potentially make

a significant contribution to the output responses. According to the sensitivity analysis

steps discussed in a previous section, the first step is to determine the uncertainty

distribution. In the test case, the mean value(or nominal value) of the uncertainties are

0, the normalized upper bound is 1, and the lower bound is -1. These values are provided

by an expert on the VEGA launch vehicle. The second step is to generate the sampling

points. The sampling points in the test case are generated using the Sobol sequence. In

order to obtain a good coverage, the number of sampling points is configured to be 215.

This is the maximum number of evaluations that we can afford in our laboratory. The

third step is to assign each condition of uncertainties (or each point) to the simulator

of the VEGA launch vehicle and carry out the simulation. It takes approximately 5

months to complete the simulations to obtain the sensitivity indices. The fourth step

is to present the uncertainty analysis results.The objective function f1 in this chapter

refers to the maximum dynamic load, which is detailed in Chapter 4.2.1.

6.1.2 Example 1: Maximum dynamic loads

The plot of cumulative distribution function is available in our first test example and

is given in the Figure 6.1. This figure shows that the low probability of the value of

dynamic loads is smaller than 2×105 and greater than 3.4×105. Thus, these conditions

of uncertainties that make the objective values smaller than 2 × 105 or greater than

3.4 × 105 are considered rare events. At this point, two questions arise for the CDF

plots: do we really need that many test points (215 = 32768), and what effect does

reducing the number of sampling points have on the CDF test plots?

The Figure 6.2 below demonstrates the CDF plots based on 1000,2500,5000,10000,20000

and 32768 sampling points that are generated by Sobol sequence. The colored curves

present the CDF plots in terms of different number of sampling points. they are:

- Blue curve: 32768 sampling points

- Blue dash curve: 20000 sampling points

- Black curve: 10000 sampling points

- Black dash curve: 5000 sampling points
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Figure 6.1: The cumulative distribution function of f1 based on 15 uncertainties

- Red dash curve: 2500 sampling points

- Red curve: 1000 sampling points

From this figure, we find that the shapes of each plot are almost identical. The CDF

plot based on 1000 sampling points (red solid line) is not that smooth compared to the

other CDF plots. This figure, even for a small number of sampling points generated

by the Sobol sequence, may also be able to approximately present the features of the

distribution of the output response. According to the CDF plots, we will introduce the

sensitivity indices based on different sampling sizes later. The final step is to present

the sensitivity results, the scatter plots and the sensitivity indices, for our test case.

Computation Cost

As a Sobol sequence is a deterministic sampling method, there is no need to obtain the

different number of sampling points respectively. Once the simulation results for the

32768 samples are obtained, the above-mentioned curves can be generated. The time

spent on the computation to obtain the objective values for the 32768 samples is ap-

proximately 19062 min, or approximately 318 h. This is the reason we can only afford

to solve the variance-based sensitivity analysis problem with 15 uncertain parameters.
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Figure 6.2: The cumulative distribution function of f1 in terms of different sampling
points

The scatter plot will reveal the linear or nonlinear relationship between the outputs

(objective values) and the inputs (uncertainties). The relationship may give us some

idea of how to reconstruct the distribution of the sampling points to improve the worst-

case results. If the distribution pattern of the objective values is varied along with

varying the uncertainty, then we can note that there is an obvious tendency toward this

uncertainty. Figure 6.3, 6.4 and 6.5 shows the scatter plots for every single uncertainty

(input) with respect to the maximum value of the dynamic loads (output).

From the figure, the relationships of each uncertainty and the objective value are all

nonlinear. However, the plots also suggest the tendency toward an objective value with

respect to the uncertainty. Unlike other subplots, the plots (E) in Figure 6.3, (C) in

Figure 6.4, and (C) in Figure 6.5 demonstrate an obvious tendency of the objective value

when the value of the uncertainty varies. For plot (E) in Figure 6.3, the mean value of

f1 at a given value of the uncertainty increases via the nominal increase of the value of

uncertainty. The maximum value then occurs at the value of the uncertainty close to

1. For plot (C) in Figure 6.4, the mean value of f1 at a given value of the uncertainty

decreases when the value of the uncertainty increases. The maximum objective value

occurs at the value of uncertainty close to -1. For plot (C) in Figure 6.5, the tendency is
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(a) IRSmountingX vs. f1 (b) IRSmountingY vs. f1

(c) IRSmountingZ vs. f1 (d) dISP vs. f1

(e) dTc vs. f1 (f) disp CA vs. f1

Figure 6.3: The Scatter plots of f1 - Part A

not as linear as plot (D) in Figure 6.3 and plot (C) in Figure 6.4. However, it is easy to

determine that the mean and maximum values of f1 occur when the value of the uncer-

tainty is close to -1. These tendencies can help narrow down the range of distribution

for the corresponding uncertainties. These uncertainties can also be generated using the

importance sampling strategy, or just simply by using the Monte Carlo method. The

dimension of the sampling space based on the Sobol sequence is then reduced.
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(a) disp CN vs. f1 (b) disp Xcp vs. f1

(c) air density scat vs. f1 (d) h wind vs. f1

(e) azimuth wind angle vs. f1 (f) unc CA vs. f1

Figure 6.4: The Scatter plots of f1 - Part B

The Sobol indices for the objective function f1 are given in the Table 6.2 followed. A

larger value in this table suggests the greater importance of the corresponding uncer-

tainty. Note that the values of the sensitivity index for the uncertainty‘Flag.IRSmountingZ’,

‘Flag.h wind’ and ‘Flag.azimuth wind angle’ are all zeros. The zero value means these

uncertainties make no contribution to the objective values, or that the contribution for

the objective function is very small. The sensitivity indices should be non-negative in
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(a) unc CN vs. f1 (b) unc Xcp vs. f1

(c) SRM roll vs. f1

Figure 6.5: The Scatter plots of f1 - Part C

Variable Names First order sensitivity index Total sensitivity index

Flag.IRSmountingX 3.8427 ×10−4 4.6756 ×10−4

Flag.IRSmountingY 0.0865 0.0594

Flag.IRSmountingZ 0 0.0928

Flag.dISP 0.0036 0.0020

Flag.dTc 0.1154 0.3117

Flag.disp CA 0.0035 4.5879 ×10−4

Flag.disp CN 0.0305 0.0257

Flag.disp Xcp 0.0346 0.0203

Flag.air density scat 0.1760 0.3555

Flag.h wind 0 0

Flag.azimuth wind angle 0 0

Flag.unc CA 0.0089 0.0034

Flag.unc CN 0.0032 0.0106

Flag.unc Xcp 4.6509 ×10−5 0.0116

Flag.SRM roll 0.1 0. 2519

Table 6.2: The first order and total sensitivity index based on f1
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theory. However, a negative value may be obtained in practice. The probable reasons for

this could be that the sampling size is not large enough, so that the sampling points do

not have good coverage in the uncertainty space. If a negative value was obtained, nor-

mally we would treat this value as zero because the effect of the objective function from

this uncertainty should be very small [64]. In our experiment, we obtained some negative

sensitivity indices, such as the first-order sensitivity indices for ‘Flag.IRSmountingZ’, but

with very low probability.

From the first-order sensitivity index, the uncertainties ‘Flag.dTc’ , ‘Flag.air density scat’,

and ‘Flag.SRM roll’ have larger sensitivity values than other uncertainties. These three

uncertainties could make a great contribution to the objective value. From the total sen-

sitivity analysis, only these three uncertainties have much larger sensitivity values com-

pared to other uncertainties. These uncertainties are ‘Flag.dTc’ , ‘Flag.air density scat’,

and ‘Flag.SRM roll’ . The total sensitivity index of the uncertainty ‘Flag.IRSmountingZ’

is not quite as large, but it is considerable compared to its first-order sensitivity indices.

This indicates that the contribution of the interaction between ‘Flag.IRSmountingZ’

and other uncertainties is large. Note that the total sensitivity indices should be greater

than the first-order sensitivity indices in theory. However, due to the coverage issues of

the uncertainty space, the total sensitivity indices for some uncertainties may be smaller

than the first-order sensitivity indices in practice. This issue occurs in our experiment

as well. The ways of addressing this issue could be (1) to enlarge the sampling size,

or (2) change the sampling method. However, to carry out a variance-based sampling

sensitivity analysis, the computational cost is very expensive. We can hardly afford

another contrast test to redo the simulations and obtain the objective values based on

a different sampling size or sampling method. Fortunately, the uncertainties that have

larger first-order sensitivity indices than their total sensitivity indices are not considered

the important variables, because the values of the first-order and total sensitivity indices

are very small.

In summary, the weight of each uncertainty can be ranked depended on the first-order or

total sensitivity index. To lower the redundancy of the sampling points, the first method

allows for the less important uncertainties to be neglected in the simulation (normally,

the less important uncertainties are fixed to the nominal value). Another method of
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reducing the redundancy is to re-order the uncertainties sequence when sampling the

points; this makes the more important uncertainties have a lower order/dimension in

the sequence. This method does not exactly reduce the dimension of the problem. How-

ever, since the Sobol sequence gives an excellent distribution for lower dimensions, the

reordered sequence has the potential to improve the performance of the worst-case val-

idation. Thus, only the first method is actually able to reduce the dimension of the

sampling space, but both methods are called dimension-reduction methods. A better

worst-case validation result is expected when a dimension-reduction method is applied.

To understand whether a small number of sampling points can achieve similar sensi-

tivity analysis results, we propose a small number of sampling points using a Sobol

sequence to carry out the sensitivity analysis. In this test case, the number of sampling

points is 1000. Table 6.3 lists the sensitivity indices based on 1000 sampling points.

From this table, although the values of the Sobol indices are slightly different from the

Variable Names First order sensitivity index Total sensitivity index

Flag.IRSmountingX 2.0014 ×10−4 0.0022

Flag.IRSmountingY 0.0700 0.0613

Flag.IRSmountingZ 0 0.0953

Flag.dISP 0.0090 0.0048

Flag.dTc 0.1068 0.3032

Flag.disp CA 0.0027 0.0011

Flag.disp CN 0.0203 0.0301

Flag.disp Xcp 0.0198 0.0166

Flag.air density scat 0.1816 0.3294

Flag.h wind 0 0

Flag.azimuth wind angle 0 0

Flag.unc CA 0.0182 0.0126

Flag.unc CN 0.0071 0.0182

Flag.unc Xcp 0.0055 0.0072

Flag.SRM roll 0.1069 0.2429

Table 6.3: The first order and total sensitivity index based on f1

values given in Table 6.2, the exact same conclusion regarding the sensitivity analysis is

made. Therefore, a small number of sampling points using a Sobol sequence is also able

to identify the important variables.

However, whether the sensitivity analysis results are good or not is verified by a sampling-

based worst-case validation test based on one of the dimension-reduction methods. We
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propose use of both dimension-reduction methods mentioned above. The sampling

points for the first worst-case validation test is generated by a Sobol sequence with

15 dimensions. The sequence of an uncertainty vector is reordered by the ranks. The

ranks of the uncertainties are based on the value of the total sensitivity index. A larger

value means a larger rank. The rank of uncertainties could be assigned based on the

values of the first-order sensitivity indices in this case because the ranks wound not be

vastly different, in contrast to ranks obtained using the total sensitivity indices. Thus,

the reordered sequence of uncertainties is given in Table 6.4. For the second-worst-case

Variable Names Order/ Rank

Flag.IRSmountingX 12

Flag.IRSmountingY 5

Flag.IRSmountingZ 4

Flag.dISP 11

Flag.dTc 2

Flag.disp CA 13

Flag.disp CN 6

Flag.disp Xcp 7

Flag.air density scat 1

Flag.h wind 14

Flag.azimuth wind angle 14

Flag.unc CA 10

Flag.unc CN 9

Flag.unc Xcp 8

Flag.SRM roll 3

Table 6.4: Ranks of uncertainties

validation, the first step is to determine which uncertainties are important. This step

is actually not straightforward, and the principles to determine the threshold of the

important uncertainty using the sensitivity indices is discussed later. To make this step

easier, we halve the dimension of the uncertainties in our experiments. Thus, we only

keep the uncertainties of rank not greater than 7. The value of those uncertainties with a

rank above 7 is fixed to zero. The seven most important uncertainties are distributed by

Sobol sequence. For the third-worst-case validation, the nonimportant uncertainties are

neglected. In the test case, the uncertainties with a rank above 7 are fixed to zero. From

Figures 6.3, 6.3 and 6.3, we know the linear tendency of the uncertainties ‘Flag.dTc’ and

‘Flag.air density scat’ and the nonlinear tendency of the uncertainty ‘SRM roll’. The

upper and lower bounds of these uncertainties can be narrowed down to a small value.

Instead of only using the Sobol sequece to generate the sampling points, we propose a
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hybrid sampling strategy. These three uncertainties with identical linear and nonlinear

tendencies are distributed using a Monte Carlo method and the other three uncertainties

are distributed using a Sobol sequence. The Sobol sequence can provide an excellent

distribution for the low-dimensional case, and the difference between the Monte Carlo

and quasi-Monte Carlo methods will not be significant when the range of distribution is

narrowed in this case. The number of sampling points for the three tests of worst-case

validation is 1000.

The results of worst-case validation are given in Table 6.5.

Tests Worst-case (Max Qα [Pa Deg])

No application of dimension reduction method 3.2469× 105

Test 1 (uncertainties sequence re-ordered ) 3.1522× 105

Test 2 (Sobol sequence for the 7 uncertainties) 3.3555× 105

Test 3 (hybrid sampling for the 7 uncertainties) 3.3719× 105

Table 6.5: Worst-case validation based on dimension reduction methods

From this table, the result of the first test indicates that the first dimension-reduction

method (reordered sequence of uncertainties) is not able to improve the worst-case vali-

dation result. However, the results of the second and third tests demonstrate the power

of the second dimension-reduction method. For the second dimension-reduction method,

the neglected uncertainties do not affect the maximum objective value at all. Instead,

without these redundant uncertainties, a larger objective value is achieved. Because the

worst-case validation based on the Sobol sequence is efficient for the 15-dimension prob-

lem, a small improvement in maximum objective value is expected when the dimension

of the problem is reduced to 7.

The sensitivity analysis successfully measures the weight of each uncertainty and pro-

vides the information for dimension reduction. The nonimportant uncertainties are free

to be neglected. The value of the first-order or total sensitivity indices of an uncer-

tainty decides whether the uncertainty is important or not. However, the boundary of

a sensitivity index to classify the important and nonimportant uncertainty is not easy

to determine. One principle by which the boundary can be determined is that in which

the result of worst-case validation with the minimum number of uncertainties involved

in the simulation is not smaller than the result of the worst-case validation when all

uncertainties are involved. Another principle can follow the definitions of superposition
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and truncation in terms of effective dimensions that are described in a previous chapter.

Not every sampling method (Halton, Faure, or Monte Carlo methods) is necessary to

be applied to the verification process above. The aim is to verify that variance-based

sensitivity analysis is applicable to the ELV launch vehicle. However, when all 118 un-

certainties are involved in the sensitivity analysis that will be studied later, the four

sampling methods need to be applied to the worst-case validation. According to the re-

sults of the sensitivity analysis, the variance-based sensitivity analysis successfully sorts

out the important uncertainties and removes the redundant variables. Note that, com-

pared to the worst-case validation results presented in Tables 4.1 and 6.5, the results

based on the Sobol sequence with 15 uncertainties has a larger objective value (maximum

dynamic load) than the result based on the Sobol sequence with all 118 uncertainties.

The worst-case validation based on the Sobol sequence under seven uncertainties further

improves the objective value. These results indicate there is much redundant informa-

tion generated when 118 uncertainties are involved in the simulation, which significantly

affects the objective value. In addition, the 15 selected uncertainties probably contain

most of the dominant variables. Thus, if variance-based sensitivity analysis is applied

to the ELV launch vehicle model with 118 uncertainties and some new dominant vari-

ables are identified, the sorted uncertainties with a high total sensitivity index value are

expected to make the worst-case validation obtain a larger objective value.

6.1.3 Example 2: Drift of velocity on Z axis

For the cost functions f2, the CDF plots with different number of simulation sam-

ples are given in the Figure 6.6 followed. From the figure, CDF plots based on the

1000,2500,5000,10000,20000 and 32768 sampling points are quite similar. It means that

even for the a smaller number of sampling points, such as 1000 sampling points, the

corresponding objective values also can present the statistic feature of the output distri-

bution. The objective values that is smaller than 2 and greater than 12 are considered

as rare events.

To reveal the relationship between inputs and outputs, the scatter plots for the objective

function f2 are given in the Figure 6.7, Figure 6.8 and 6.9 below.
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Figure 6.6: The cumulative distribution function of f2 in terms of different sampling
points

From this figure, all uncertainties are nonlinear to objective values. For plots (B),(C),(E)

in Figure 6.7 and (C) in Figure 6.9, the linear and nonlinear tendencies can be identified,

however, the linear tendencies are not strong. The tendencies are useful to narrowed

down the range of distribution and help the worst-case validation obtains a larger ob-

jective value. From the plot (C), the tendency is nonlinear. The most largest values are

scattered in which the value of uncertainty ‘Flag.SRM roll’ is slight than its nominal

value. From plots (B) and (E), the most largest objective values scattered in which

the value of the corresponding uncertainties are around the lower bounds. From the

plot (C), the most largest objective values scattered in which the value of uncertainty

‘Flag.IRSmountingZ’ around its upper bound.

The Sobol indices based on the objective function f2 are given in the Table 6.6 fol-

lowed. From the first order sensitivity index, only two uncertainties are considered as

the important variables: ‘Flag.IRSmountingY’ and ‘Flag.IRSmountingZ’. But from the

total sensitivity index, four uncertainties can be considered as the important variables:

‘Flag.IRSmountingY’, ‘Flag.IRSmountingZ’, ‘Flag.dTc’ and ‘Flag.SRM’. Two new un-

certainties are identified as the important variable compared the identified important
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(a) IRSmountingX vs. f2 (b) IRSmountingY vs. f2

(c) IRSmountingZ vs. f2 (d) dISP vs. f2

(e) dTc vs. f2 (f) disp CA vs. f2

Figure 6.7: The Scatter plots of f2 - Part A

variables based on the first order sensitivity index. This suggests that these two uncer-

tainties have strong interaction effect with other uncertainties. According to the total

sensitivity index, the ranks to present the importance of an uncertainty are given in the

Table 6.7 below. The rank of uncertainties is applied to the worst-case validation to

verify whether the sensitivity analysis is successful or not. Similar as the verification

process applied to f1, three worst-case validations with different sampling strategies are
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(a) disp CN vs. f2 (b) disp Xcp vs. f2

(c) air density scat vs. f2 (d) h wind vs. f2

(e) azimuth wind angle vs. f2 (f) unc CA vs. f2

Figure 6.8: The Scatter plots of f2 - Part B

carried out. For the first case of worst-case validation, all of the 15 uncertainties are

involved in the simulation with reordered sampling sequence. The reordered sequence is

same as the rank of each uncertainty. For the second case of worst-case validation, we

sort out 7 most important uncertainties and use the Sobol sequence to distribute the 7

uncertainties. The non-important uncertainties that have the rank above 7 are neglected

from the simulation and fixed to zero. For the third case of worst-case validation, the
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(a) unc CN vs. f2 (b) unc Xcp vs. f2

(c) SRM roll vs. f2

Figure 6.9: The Scatter plots of f2 - Part C

Variable Names First order sensitivity index Total sensitivity index

Flag.IRSmountingX 9.6286× 10−5 1.1888× 10−5

Flag.IRSmountingY 0.1180 0.3745

Flag.IRSmountingZ 0.1918 0.2945

Flag.dISP 0.0034 0.0059

Flag.dTc 0.0207 0.3677

Flag.disp CA 0.0012 0.0039

Flag.disp CN 0.0087 0.0165

Flag.disp Xcp 4.1661× 10−4 0.0073

Flag.air density scat 0.0031 0.0188

Flag.h wind 0 0

Flag.azimuth wind angle 0 0

Flag.unc CA 0.0012 0.0054

Flag.unc CN 0.0036 0.0297

Flag.unc Xcp 9.4434× 10−4 0.0183

Flag.SRM roll 0.0206 0.6729

Table 6.6: The first order and total sensitivity index based on f2
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Variable Names Order/ Rank

Flag.IRSmountingX 13

Flag.IRSmountingY 2

Flag.IRSmountingZ 4

Flag.dISP 10

Flag.dTc 3

Flag.disp CA 12

Flag.disp CN 8

Flag.disp Xcp 9

Flag.air density scat 6

Flag.h wind 14

Flag.azimuth wind angle 14

Flag.unc CA 11

Flag.unc CN 5

Flag.unc Xcp 7

Flag.SRM roll 1

Table 6.7: Re-ordered sequence

hybrid sampling strategy is employed. As the top four important uncertainties have

an identified tendency, the lower and upper bounds of these four uncertainties can be

narrowed down and sampled by Monte Carlo method. The remaining three important

uncertainties are sampled by Sobol sequence because the Sobol sequence has an excellent

distribution for low dimension problem. The non-important uncertainties are fixed to

zero as the second test case.

The results of the three test cases are given in the Table 6.8 below. From the table,

Tests Max drift of velocity(Z axis) [m/s]

No application of dimension reduction method 14.2137

Test 1 (uncertainties sequence re-ordered ) 14.8575

Test 2 (Sobol sequence for the 7 uncertainties) 16.5794

Test 3 (hybrid sampling for the 7 uncertainties) 16.7033

Table 6.8: Worst-case validation based on dimension reduction methods for objective
function f2

all of three test cases obtain a larger maximum objective value compared the result of

worst-case validation when none dimension reduction method applied. Especially the

dimension reduction method that neglects the none important uncertainties achieve a

much better performance according to the results of test 2 and 3. The variance based

sensitivity analysis is successfully applied to the ELV launch vehicle model with 15 un-

certainties. However, compared the results of worst-case validation in Table 4.1 when all
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118 uncertainties are involved, the maximum objective value obtained by the 7 uncertain-

ties are still much smaller than the maximum objective value when the 118 uncertainties

are applied. It means that some highly important variables are not included in the 7 un-

certainties. If the sensitivity analysis applied to the entire model with 118 uncertainties,

some new dominant variables are highly expected to be identified.

6.1.4 Example 3: Drift of position on Z axis

For the cost function f3, the CDF figure is firstly introduced. The CDF figure can be

found in Figure 6.10 below. From the figure, the shape of CDF plots with different
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Figure 6.10: The cumulative distribution function of f3 in terms of different sampling
points

number of sampling points basically are very similar. A small number of sampling

points also can present the statistic feature of the distribution of the objective values.

The objective values that are greater than 500 and smaller than 50 can be considered

as rare events.

To understand the relationship between each single input and the output of the ELV

launch vehicle, the scatter plots for each uncertainty are given in the Figure 6.11, Figure

6.12 and 6.13 followed.
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(a) IRSmountingX vs. f3 (b) IRSmountingY vs. f3

(c) IRSmountingZ vs. f3 (d) dISP vs. f3

(e) dTc vs. f3 (f) disp CA vs. f3

Figure 6.11: The Scatter plots of f3 - Part A

From the figure, all relationships between an uncertainty and objective are nonlinear.

However, one linear tendency and two nonlinear tendencies are identified. For the plot

(C) in Figure 6.11, the non-linear tendency is not that strong. The most largest values

distribute around the uncertainty value 1. For the plot (E) in Figure 6.11, the linear

tendency is not strong neither. But the most largest values are around the uncertainty

value -1.For the plot (C) in Figure 6.13, the nonlinearity is obvious and the most largest

values scatter around the nominal value 0 of the uncertainty. These tendencies can help
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(a) disp CN vs. f3 (b) disp Xcp vs. f3

(c) air density scat vs. f3 (d) h wind vs. f3

(e) azimuth wind angle vs. f3 (f) unc CA vs. f3

Figure 6.12: The Scatter plots of f3 - Part B

to narrow down the range of the distributed samples if the corresponding uncertainties

are identified as the important variables.

The followed Table 6.9 is the Sobol indices based on the objective function f3. The

first order sensitivity index and total sensitivity index for each uncertainty are pro-

vided. According to the first order sensitivity index of this table, only two most im-

portant uncertainties are identified(we consider an uncertainty with the value of first

order sensitivity index above 0.1 is important variable): ‘Flag. IRSmountingZ’ and
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(a) unc CN vs. f3 (b) unc Xcp vs. f3

(c) SRM roll vs. f3

Figure 6.13: The Scatter plots of f3 - Part C

Variable Names First order sensitivity index Total sensitivity index

Flag.IRSmountingX 2.5755× 10−5 3.0547× 10−4

Flag.IRSmountingY 2.8325× 10−4 0.2356

Flag.IRSmountingZ 0.2567 0.5337

Flag.dISP 0.0019 0.0129

Flag.dTc 0.0792 0.4985

Flag.disp CA 8.5510× 10−5 0.0071

Flag.disp CN 0.0031 0.0269

Flag.disp Xcp 8.5510× 10−4 0.0154

Flag.air density scat 0.0038 0.0298

Flag.h wind 0 0

Flag.azimuth wind angle 0 0

Flag.unc CA 0.0011 0.0111

Flag.unc CN 0.0042 0.0452

Flag.unc Xcp 4.0782× 10−4 0.0324

Flag.SRM roll 0.1631 0.7592

Table 6.9: The first order and total sensitivity index based on f3
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‘Falg.SRM roll’. However, from the total sensitivity index, beside the important un-

certainties identified by first order sensitivity index, two new important uncertainties

are identified: ‘Flag.IRSmountingY’ and ‘Flag.dTc’. Moreover, based on the difference

between first order sensitivity index and total sensitivity index of the four uncertainties,

it suggests the strong interaction effort between each important uncertainty and other

uncertainties. According to the value of total sensitivity index, the rank of each uncer-

tainty is given in the Table 6.10 followed.

Based on the rank of the uncertainties, the sequence of sampling points are able to

Variable Names Order/ Rank

Flag.IRSmountingX 13

Flag.IRSmountingY 4

Flag.IRSmountingZ 2

Flag.dISP 10

Flag.dTc 3

Flag.disp CA 12

Flag.disp CN 8

Flag.disp Xcp 9

Flag.air density scat 7

Flag.h wind 14

Flag.azimuth wind angle 14

Flag.unc CA 11

Flag.unc CN 5

Flag.unc Xcp 6

Flag.SRM roll 1

Table 6.10: Re-ordered sequence based on the Sobol indices of f3

re-ordered. A lower rank is in a lower order of dimension space. To verify whether the

sensitivity analysis is successful to the objective function f3, three worst-case valida-

tion test cases are applied with the two dimension reduction strategies. Similar as the

verification process for f1, three test cases are applied. For the first test case, the 15

uncertainties with re-ordered sequence of sampling points are involved in the simulation.

For the second test case, the uncertainties with the rank above 7 are removed form the

simulation (fixed to zero), the remaining uncertainties are sampled by reordered Sobol

sequence. For the third test case, only the uncertainties with the rank under 7 are ap-

plied to the simulation and the others are fixed to zero. The three uncertainties with

obvious tendencies are sampled by Monte Carlo method with narrowed upper and lower

bounds. The other 4 uncertainties are sampled by re-ordered Sobol sequence.

The results of the worst-case validation of the three test cases are given in the Table 6.11
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followed. From the table, the first test case with reordered sampling sequence to remove

Tests Max drift of position(Z axis) [m]

No application of dimension reduction method 550.9015

Test 1 (uncertainties sequence re-ordered ) 540.6460

Test 2 (Sobol sequence for the 7 uncertainties) 688.9805

Test 3 (hybrid sampling for the 7 uncertainties) 633.0633

Table 6.11: Worst-case validation based on dimension reduction methods for objective
function f3

the redundant information is not able to improve the performance of the worst case

validation. It obtains a smaller value than the worst case validation results without any

dimension reduction method. However, the second and third test cases by neglecting

the non-important uncertainties significant improve the results of worst case validation.

This time the hybrid sampling strategy doesn’t obtain the largest value of worst case

validation. The variance based sensitivity analysis is approved as an useful method to

reduce the redundant information. However, compared the worst case validation result

obtained by Sobol sequence with 118 uncertainties in the Table 4.1, the worst case val-

idation result is still much smaller with only 15 uncertainties. This means some very

important uncertainties are not included in the 15 uncertainties. When the sensitivity

analysis is applied to the 118 uncertainties, some new important uncertainties are ex-

pected to be identified.
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6.1.5 Example 4: Drift of velocity on Y axis

For the objective function f4, the CDF plots are provided in the Figure 6.14 below with

different number of sampling points. From the figure, the shapes of the CDF plots based
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Figure 6.14: The cumulative distribution function of f4 in terms of different sampling
points

on the 1000, 2500, 5000,10000, 20000 and 32768 sampling points are almost same. Thus,

a small number of sampling points, such as 1000 sampling points, are able to present the

statistic feature of the distribution of the output. The objective values that are larger

than 10 and smaller than 3 can be considered as the rare events.

To present the relationships between each uncertainty and the objective values, the

scatter plots are given in the Figure 6.15, Figure 6.16 and Figure 6.17 below.

From the figure, all the relationships are nonlinear. However, for plot (B), (C), (E) in

Figure 6.17 and (C) in Figure 6.17, the tendencies of the objective values are obviously

and associated with value of uncertainties. For plot (B), the most largest values are dis-

tributed around the upper and lower bounds of the uncertainty ‘Flag.IRSmountingY’.

For plot (C) in Figure 6.15, the maximum objective is highly happened around the up-

per bound of the uncertainty ‘IRSmountingZ’ in general speaking. For plot (E), the

most largest objective values are distributed around the lower bound of the uncertainty
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(a) IRSmountingX vs. f4 (b) IRSmountingY vs. f4

(c) IRSmountingZ vs. f4 (d) dISP vs. f4

(e) dTc vs. f4 (f) disp CA vs. f4

Figure 6.15: The Scatter plots of f4 - Part A

‘Flag.dTc’. For plot (C) in Figure 6.17, the tendency is highly nonlinear. the most

largest and smallest objective values are distributed around the nominal uncertainty

value 0. These tendencies are usefully to narrow down the distribution ranges of these

four uncertainties. If these uncertainties are identified as important variables, the nar-

rowed down lower and upper bounds are able to applied to the worst case validation

and potentially help to obtain a larger objective value.

The Sobol indices of the 15 uncertainties based on the objective function f4 are given in
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(a) disp CN vs. f4 (b) disp Xcp vs. f4

(c) air density scat vs. f4 (d) h wind vs. f4

(e) azimuth wind angle vs. f4 (f) unc CA vs. f4

Figure 6.16: The Scatter plots of f4 - Part B

the Table 6.12 followed. From the first order sensitivity index of the Sobol indices. two

important uncertainties can be indented: ‘Flag.IRSmountingZ’ and ‘Flag.SRM’. Both

uncertainties have a much larger value of first order sensitivity index compared to other

uncertainties. From the total sensitivity index, besides the two important uncertain-

ties that are identified by first order sensitivity index, another two uncertainties are

identified as the important uncertainties: ‘Flag.IRSmountingY’ and ’Flag.dTc’. For the
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(a) unc CN vs. f4 (b) unc Xcp vs. f4

(c) SRM roll vs. f4

Figure 6.17: The Scatter plots of f4 - Part C

Variable Names First order sensitivity index Total sensitivity index

Flag.IRSmountingX 1.4456× 10−4 9.8108× 10−5

Flag.IRSmountingY 0.0595 0.2649

Flag.IRSmountingZ 0.3227 0.3491

Flag.dISP 3.2064× 10−4 0.0066

Flag.dTc 0.0525 0.3716

Flag.disp CA 0.0027 8.3419× 10−4

Flag.disp CN 0.0058 0.0123

Flag.disp Xcp 0.0048 0.0083

Flag.air density scat 0.0021 0.0149

Flag.h wind 0 0

Flag.azimuth wind angle 0 0

Flag.unc CA 4.1773× 10−4 0.0053

Flag.unc CN 0.0033 0.0257

Flag.unc Xcp 2.8803× 10−4 0.0153

Flag.SRM roll 0.3702 0.6877

Table 6.12: The first order and total sensitivity index based on f4
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uncertainties ‘Flag.SRM’, ‘Flag.IRSmountingY’ and ’Flag.dTc’, the values of total sen-

sitivity index are much larger than values of first order sensitivity index. It means these

three uncertainties have strong interaction efforts with other uncertainties respectively.

For the uncertainty ‘Flag.IRSmountingZ’, the difference between the first order index

and total sensitivity index is very small. So the interaction effect of this uncertainty

with other uncertainties are very small. According to the total sensitivity index, the

ranks of each uncertainty are given in the Table 6.13 below. According to the ranks,

Variable Names Order/ Rank

Flag.IRSmountingX 13

Flag.IRSmountingY 4

Flag.IRSmountingZ 3

Flag.dISP 10

Flag.dTc 2

Flag.disp CA 12

Flag.disp CN 8

Flag.disp Xcp 9

Flag.air density scat 7

Flag.h wind 14

Flag.azimuth wind angle 14

Flag.unc CA 11

Flag.unc CN 5

Flag.unc Xcp 6

Flag.SRM roll 1

Table 6.13: Re-ordered sequence based on the Sobol indices of f4

the order of the sequence for the uncertainties generated by Sobol method is rearranged.

The uncertainty with lower rank is in a lower dimension order in the Sobol sequence.

The re-ordered sequence may be able to improve the performance of the worst case val-

idation when we apply this re-ordered sequence for the first test case to examine the

results of the variance based sensitivity analysis. For the second test case to examine the

result of sensitivity analysis, the uncertainties that have the rank above 7 are neglected

from the simulation and are fixed to 0. The remaining 7 uncertainties are sampled by

Sobol method.For the third test case, 7 uncertainties are remained for the simulation as

the second test case. These uncertainties are proposed by a hybrid sampling strategy.

The four uncertainties with identified tendencies from the scatter plots are sampled by

Monte Carlo method. The other three uncertainties are generated by Sobol sequence.

The results of the three tees cases are given in the Table 6.14 below. From the table, the

first test case with re-ordered sampling sequence is not actually improve the result of
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Tests Max drift of velocity(Y axis) [m/s]

No application of dimension reduction method 13.9594

Test 1 (uncertainties sequence re-ordered ) 12.7466

Test 2 (Sobol sequence for the 7 uncertainties) 15.1723

Test 3 (hybrid sampling for the 7 uncertainties) 15.7317

Table 6.14: Worst-case validation based on dimension reduction methods for objective
function f4

worst case validation. But the second and third case with only 7 selected uncertainties

have much larger objective value. This means the variance based sensitivity analysis is

applicable to the objective function f4 of the ELV launch vehicle. However, the objec-

tive values obtained by the test cases are still smaller than the objective value when all

the 118 uncertainties are involved in the worst case validation. Thus, some important

uncertainties are not include in the 15 uncertainties. If the variance based sensitivity

analysis is applied to the ELV launch vehicle model with 118 uncertainties, some new

important variables are expected to be identified.

6.1.6 Example 5: Drift of position on Y axis

To analyze the sensitivity of the ELV launch vehicle for the objective function f5, the

CDF plots with different number of sampling points are given in the Figure 6.18 below.

From the figure, all of the CDF plots are almost identical. This means a smaller number

of sampling points, such as 1000 samples, are able to reveal the statistic feature of the

distribution of the objective function f5. The objective values that are larger than 400

and smaller than 50 are considered as the rare events.

The scatter plots of the objective function f5 are given in the Figure 6.19, 6.20 and 6.21

followed.

The scatter plots is able to reveal the relationship between an uncertainty and the ob-

jective values. From this figure, all the relationships are nonlinear. However, there are

four nonlinear tendencies are identified. For plots (B),(C) and (E) in Figure 6.19, the

most objective values would become larger when the value of the corresponding uncer-

tainty is close to 1 and -1. But the tendencies are not very strong, especially for the
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Figure 6.18: The cumulative distribution function of f5 in terms of different sampling
points

plots (B) and (E). Thus, there is necessary to apply these tendencies to narrow down

the upper bounds and low bounds of the three uncertainties. For the plot (C) in Figure

6.21, the nonlinearity of the tendency is very strong. The most largest objective values

are distributed when then value of uncertainty ‘Flag.SRM roll’ is around -0.6 and 0.6.

The distribution range of the uncertainty ‘Flag.SRM roll’ can be narrowed down.

The followed Table 6.15 is the Sobol indices based on the objective function f5. From the

first order sensitivity index of this table, there is no uncertainty with a relatively large

value (we define the large value as the value is greater than 0.1). Only the values of the

uncertainties ‘Flag.IRSmountingZ’ and ‘Flag.dTc’ are close to 0.1. Unlike the results of

the first order sensitivity index for the previous objective functions, there isn’t any un-

certainty can be apparently identified as the important variable. However, from the total

sensitivity index, four uncertainties are able to be considered as the important variables:

‘Flag.IRSmountingY’,‘Flag.IRSmountingZ’,‘Flag.dTc’ and ‘Flag.SRM roll’. These four

uncertainties have much larger value of total sensitivity index. Compared to the small

values of the first order sensitivity index, the four uncertainties have a strong interacted

efforts with other uncertainties. According to the total sensitivity index, the ranks are

assigned to the uncertainties. An uncertainty with larger value has a smaller value of
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(a) IRSmountingX vs. f5 (b) IRSmountingY vs. f5

(c) IRSmountingZ vs. f5 (d) dISP vs. f5

(e) dTc vs. f5 (f) disp CA vs. f5

Figure 6.19: The Scatter plots of f5 - Part A

rank.

The Table 6.16 below gives the ranks for the uncertainties. Based on the ranks, the

sequence of the uncertainties of the samples are reordered. An uncertainty with smaller

rank is ordered in the lower dimension of the sequence. The reordered sequence is ap-

plied to the worst case validation and potential be able to improve the results of the

worst-case. To verify the variance based sensitive analysis results based on the objective

function f5, three sampling based robustness test cases are employed. The first test case
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(a) disp CN vs. f5 (b) disp Xcp vs. f5

(c) air density scat vs. f5 (d) h wind vs. f5

(e) azimuth wind angle vs. f5 (f) unc CA vs. f5

Figure 6.20: The Scatter plots of f5 - Part B

uses the reordered sequence of sampling points for the worst case validation. For the

second test case, the uncertainties with the corresponding rank above 7 are neglected

from the simulation. The remaining 7 uncertainties are sampled based on the reordered

sequence by Sobol method. For the third test case, only 7 uncertainties are kept for

the simulation as the second test case. A hybrid sampling strategy is applied. The un-

certainties ‘Flag.SRM roll’, ‘Flag.SmountingY’ and ‘Flag.SmountingZ’ are sampled by

Monte Carlo method with narrowed down ranges and the remaining uncertainties are
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(a) unc CN vs. f5 (b) unc Xcp vs. f5

(c) SRM roll vs. f5

Figure 6.21: The Scatter plots of f5 - Part C

Variable Names First order sensitivity index Total sensitivity index

Flag.IRSmountingX 2.6470× 10−4 3.2443× 10−4

Flag.IRSmountingY 0.0587 0.3887

Flag.IRSmountingZ 0.0939 0.3221

Flag.dISP 8.1770× 10−4 0.01276

Flag.dTc 0.0975 0.5298

Flag.disp CA 9.9756× 10−4 0.0052

Flag.disp CN 0.0040 0.0249

Flag.disp Xcp 0.0025 0.0150

Flag.air density scat 0.0014 0.0289

Flag.h wind 0 0

Flag.azimuth wind angle 0 0

Flag.unc CA 0.0022 0.0091

Flag.unc CN 0.0040 0.0485

Flag.unc Xcp 6.2553× 10−4 0.0295

Flag.SRM roll 0.0191 0.8805

Table 6.15: The first order and total sensitivity index based on f5
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Variable Names Order/ Rank

Flag.IRSmountingX 13

Flag.IRSmountingY 3

Flag.IRSmountingZ 4

Flag.dISP 10

Flag.dTc 2

Flag.disp CA 12

Flag.disp CN 8

Flag.disp Xcp 9

Flag.air density scat 7

Flag.h wind 14

Flag.azimuth wind angle 14

Flag.unc CA 11

Flag.unc CN 5

Flag.unc Xcp 6

Flag.SRM roll 1

Table 6.16: Re-ordered sequence based on the Sobol indices of f5

sampled by Sobol sequence.

The results of the three test cases are given in the Table 6.17 below. From the table,

Tests Max drift of position(Y axis) [m]

No application of dimension reduction method 542.7051

Test 1 (uncertainties sequence re-ordered ) 531.3844

Test 2 (Sobol sequence for the 7 uncertainties) 681.3836

Test 3 (hybrid sampling for the 7 uncertainties) 587.7482

Table 6.17: Worst-case validation based on dimension reduction methods for objective
function f5

the worst case validation with the 15 reordered Sobol sequence doesn’t obtain a larger

maximum objective value. This means the Sobol sequence reordered method is not

helpful in this case. However, the test case 2 and 3 with only 7 selected uncertainties

have a larger worst-case value. The worst case validation without the redundant infor-

mation improve the result of robustness analysis. The sensitivity analysis is applicable

to the objective function f5 of the ELV launch vehicle. Nevertheless, compared with

the worst-case results in the Table 4.1, the maximum objective value obtained based

on the 7 uncertainties are still much smaller. Thus, there exists some other important

uncertainties that are not included in the 15 selected uncertainties. If applied the sensi-

tivity analysis to Launch vehicle, new uncertainties are expected to be identified as the

important variables.
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6.1.7 Example 6: Total angle of attack

For the sensitivity analysis based on the last objective function f6, the CDF plots are

firstly introduced. The followed Figure 6.22 gives the CDF plots based on different

number of sampling points. The shapes of the CDF plots with different number of
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Figure 6.22: The cumulative distribution function of f6 in terms of different sampling
points

sampling points are very similar. This means a small number of sampling size is able to

present the statistic feature of the distribution of objective values. Unlike the previous

CDF figures based on other objective functions, in this figure, the most of objective

values are distributed in a relatively narrowed range: from the value 2.8 to 3.1. The

objective values with the value under 2.8 and above 3.1 are considered as the rare events.

The scatter plots given in the followed Figure 6.23, Figure 6.24 and Figure 6.25 provide

the relationships between every single uncertainty and objective values.

From the figure, all the relationships are nonlinear. Some linear and nonlinear tendencies

are also can be identified, such as plots (B), (E) in Figure 6.23 and (C) in Figure 6.25.
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(a) IRSmountingX vs. f6 (b) IRSmountingY vs. f6

(c) IRSmountingZ vs. f6 (d) dISP vs. f6

(e) dTc vs. f6 (f) disp CA vs. f6

Figure 6.23: The Scatter plots of f6 - Part A

However, the linearity and nonlinearity of the tendencies are not quite helpful. The

reason is that the most largest objective values could be happened at any value of the

uncertainties. In other words, the objective values are high possible non-sensitivity to a

small number of uncertainties. If the uncertainties are equally important, no dimension

reduction method is applicable.

The Table 6.18 below is the Sobol indices for the objective function f6. From the first

order sensitivity index, only two uncertainties are considered as the important variables
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(a) disp CN vs. f6 (b) disp Xcp vs. f6

(c) air density scat vs. f6 (d) h wind vs. f6

(e) azimuth wind angle vs. f6 (f) unc CA vs. f6

Figure 6.24: The Scatter plots of f6 - Part B

(with the value above 0.1): ‘Flag.dISP’ and ‘Flag.SRM roll’. However, from the total

sensitivity index, there are 10 uncertainties can be identified as the important variables.

It approves our inference made from the scatter plots above that the objective values is

non-sensitivity to a small number of uncertainties. Nevertheless, according to total sensi-

tivity index, two uncertainties have a much larger value compared to other uncertainties’

value. If we redefine the condition of being an important variable, such as value of total

sensitivity index is larger than 0.5, we can say there are only two important variables.
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(a) unc CN vs. f6 (b) unc Xcp vs. f6

(c) SRM roll vs. f6

Figure 6.25: The Scatter plots of f6 - Part C

Variable Names First order sensitivity index Total sensitivity index

Flag.IRSmountingX 0.0043 0.0045

Flag.IRSmountingY 0.1558 0.2028

Flag.IRSmountingZ 0.0074 0.3834

Flag.dISP 0.0703 0.1555

Flag.dTc 0.0966 0.8153

Flag.disp CA 0.0356 0.0937

Flag.disp CN 0.0246 0.1504

Flag.disp Xcp 0.0284 0.1065

Flag.air density scat 0.0183 0.0379

Flag.h wind 0 0

Flag.azimuth wind angle 0 0

Flag.unc CA 0.0565 0.2172

Flag.unc CN 0.0634 0.2002

Flag.unc Xcp 0.0329 0.2394

Flag.SRM roll 0.2164 0.7608

Table 6.18: The first order and total sensitivity index based on f6
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The assumption to redefine the condition of being an important uncertainty is exam-

ined by a worst case validation. Another assumption is that a set with small number

of uncertainties from the 10 important variables could makes the worst case validation

obtain a large objective value as well. This assumption is tested by another one worst

case validations. The last assumption is that the result of the worst case validation with

reduced dimensions is not likely to obtain a much larger value than the result of worst

case validation when all 15 uncertainties are involved. In summary, there are 3 test cases

in total. For test case 1, the worst case validation is assigned with the reordered Sobol

sequence of the 10 important uncertainties. For test 2, only the largest two uncertain-

ties ‘Flag.SRM roll’ and ‘Flag.dTc’ are involved in the simulation. For test 3, only the

uncertainties ‘Flag.IRSmountingY’,‘Flag.IRSmountingZ’, ‘Flag.unc CA’, ‘Flag.unc CN’

and ‘Flag.uc Xcp’ are involved in the simulation with reordered Sobol sequence. No

tendencies information are available to the worst case validation. The rank of the un-

certainties are given in the Table 6.19 below. For the reordered Sobol sequence, the

Variable Names Order/ Rank

Flag.IRSmountingX 13

Flag.IRSmountingY 6

Flag.IRSmountingZ 3

Flag.dISP 8

Flag.dTc 1

Flag.disp CA 11

Flag.disp CN 9

Flag.disp Xcp 10

Flag.air density scat 12

Flag.h wind 14

Flag.azimuth wind angle 14

Flag.unc CA 5

Flag.unc CN 7

Flag.unc Xcp 4

Flag.SRM roll 2

Table 6.19: Re-ordered sequence based on the Sobol indices of f6

uncertainty with lower value of rank is in the lower order sequence. The reordered se-

quence is applied to the worst case validation mentioned above.

The results of the three worst case validations are given in the Table 6.20 followed. From

the table, the values of worst-case obtained by the three test cases is little difference

and not exceed the worst-case value when the 15 uncertainties are involved. The test 2

with only 2 uncertainties also has a relatively large objective value. This means the two
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Tests Max total angle of attack [Deg]

No application of dimension reduction method 3.1406

Test 1 (Reordered sequence with 10 uncertainties) 3.1369

Test 2 (with the 2 uncertainties) 3.1400

Test 3 (with the 5 uncertainties) 3.1046

Table 6.20: Worst-case validation based on dimension reduction methods for objective
function f6

uncertainties are truly important and sensitivity analysis is quite useful. Nevertheless,

the test 3 with 5 uncertainty has a little smaller value compared to other cases. The

worst-case value of test 2 verify our assumption that the worst case validation with a

small number of uncertainties can also achieve a large worst-case value. The absence

of another 5 uncertainties does not significant affect the worst-case value. This means

even a few number of important uncertainties are able to make the worst case validation

obtain a large objective value.

6.2 Short summary

In this chapter, we propose variance-based sensitivity analysis to identify the driven

parameters of a launch vehicle problem. The ranking results demonstrate that the

five key parameters sorted out by this method exactly match our understanding of the

importance of these 15 selected parameters. To more clearly observe the ranking results,

we summarize all rankings with respect to the six objective functions in one place. The

summary table is given in Table 6.21 , which can facilitate easy identification of the

driving parameters overall.



Chapter 6. Variance based sensitivity analysis 146

Variable Names f1 f2 f3 f4 f5 f6

Flag.IRSmountingX 12 13 13 13 13 13

Flag.IRSmountingY 5 2 4 4 3 6

Flag.IRSmountingZ 4 4 2 3 4 3

Flag.dISP 11 10 10 10 10 8

Flag.dTc 2 3 3 2 2 1

Flag.disp CA 13 12 12 12 12 11

Flag.disp CN 6 8 8 8 8 9

Flag.disp Xcp 7 9 9 9 9 10

Flag.air density scat 1 6 7 7 7 12

Flag.h wind 14 14 14 14 14 14

Flag.azimuth wind angle 14 14 14 14 14 14

Flag.unc CA 10 11 11 11 11 5

Flag.unc CN 9 5 5 5 5 7

Flag.unc Xcp 8 7 6 6 6 4

Flag.SRM roll 3 1 1 1 1 2

Table 6.21: Ranks of uncertainties in all objective functions



Chapter 7

Gaussian process for sensitivity

analysis

The success of variance-based sensitivity analysis based on a launch vehicle (LV) model

with 15 uncertainties offers strong support for the application of such analysis to a LV

model with 118 uncertainties. However, if we exactly follow the procedure for variance-

based sensitivity analysis for the LV model with 15 uncertainties mentioned above to

study one with 118 uncertainties, the computational cost is too expensive. To address

this issue, we propose an emulator to approximate the ELV launch vehicle model. The

emulator should satisfy two conditions: (1) cheap computation and (2) high accuracy.

First, we tried to implement a method to generate a parametric model to accurately

map the relationship between the inputs and outputs, such as generating a surrogate

model. However, we realized that it is very difficult to quickly obtain a polynomial

function with high accuracy to describe the mapping relationship due to the complexity

and nonlinearity of an ELV launch vehicle. For example, when we considered a linear

surrogate model (with only first-order uncertainties), the linear model fails to both make

a good prediction and fit the training data. If we increased the order of the surrogate

model, i.e., implement the second surrogate mode, we obtain a very good model to fit

the training data, but it still has a poor prediction capability. To address these issues, a

statistical model provides an alternative method of presenting the mapping relationship.

Instead of directly finding a function of input variables to obtain accurate output, the

statistical model approximates the features of the distribution of the outputs in terms

147
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of the corresponding inputs. The distribution features normally include the probability

density, mean value, and deviation of the outputs. Thus, we propose a Gaussian process

to train the statistical model. These features are exactly the fundamental needs of the

variance-based sensitivity analysis as defined.

7.1 Gaussian Process

The Gaussian process (GP) is introduced in Chapter 2 and the details of the training

procedure are given in Chapter 5. Without introducing any new aspects of model train-

ing, the GP model training process for probability sensitivity analysis exactly follows the

principle used to train the model for optimization. The only new concept in this chap-

ter, then, is defining the approximation method used to estimate the variance of each

uncertainty parameter. With knowledge of the GP model, the probability sensitivity

analysis can be employed conveniently to screen out the dominant variables.

7.2 Probability sensitivity analysis

When the meta-model is trained using the Gaussian process and applied for the sensi-

tivity analysis, this application is also called probability sensitivity analysis, since the

Gaussian process itself is a collection of outputs of probability. Probability sensitivity

analysis has studied by many researchers, such as [18, 48, 65]. The concept of probabil-

ity sensitivity analysis is straightforward. However, its application for a complex system

with a high dimension of uncertainties is not that easy. The proper inferences for the

training points, mean functions, covariance function, main effect of an uncertainty, inter-

action effect of uncertainties, and variance of uncertainties are necessary to obtain good

results. The analytical way of calculating the expected variance for sensitivity analysis is

possible, but it is difficult and depends on the dimension of variables and on the inference

for the mean and covariance functions. In Oakley’s paper [18], a conditional meta-model

is derived using the Gaussian process and predicts the posterior distribution in order to

calculate the sensitivity indices in terms of some inferences. In other words, the meta-

model itself is extended to a conditional posterior distribution. In Oakley’s work, it is

easy to obtain the posterior distribution of the main and interaction effects of a variable
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in an analytical way, but the estimated sensitivity indices are ideally obtained using a

numerical method. Actually, although Oakley mentioned that the numerical method is

able to obtain the total sensitivity indices with low computation cost, the approximation

for the integration of the conditional distribution is not straightforward, and the quality

of total sensitivity indices is not good. In our experiment, we do not implement the

conditional meta-model. The meta-model in our experiment is not conditional, but the

predicted posterior distribution is. To avoid solving the multiple integration and inverse

matrices, we propose a numerical way of addressing these issues with proper inferences

and approximations. However, the drawback of the numerical method of approximating

the integration is that it is difficult to obtain good total sensitivity indices.

In the following subsections, we briefly introduce some important concepts for train-

ing the model using a Gaussian process. The method of generating the training points

and inferences for prior, mean, and covariance functions are same as the method and

inferences used to train the GP model for optimization. The only difference is that we

introduce an inference for variance.

7.2.1 Training points

The chosen of training points in Gaussian process is also important. These training

points are not selected randomly. We hope the observations in terms of the training

points can provide good information of uncertainty space. Thus, the training points ide-

ally have a uniform distribution over the sampling space. In our experiment, we propose

the quasi-Monte Carlo to generate the training points and obtain the corresponding ob-

servations. There is question rose here: how many training points are sufficient enough

for the Gaussian process? It is easy to understand that the Gaussian process with more

training points inevitable generate a higher quality meta-model. However, from the

equation 2.46, the drawback of large number of training point is that the complexity

and computational burden for the calculation of posterior distribution are significantly

increasing. So our question becomes what is the trade-off number of training points for

Gaussian process? To unswear this question, we investigate the trade-off point experi-

mentally: Calculate the quality of the meta-model and computation time with different

number of training points. The details and example of the strategy are given in the test

case later.
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7.2.2 Inference for mean function

A mean function in the Gaussian process is a scaler function and used to predict the

mean value of the noise free output over the uncertainty space. The inference for mean

function is not exactly inference for the entire mean function 2.60, but is the inference

for the regression functions φ(x) in equation 2.49. The reason that we call the ‘inference

for mean function’ is that φ(x) is one of the important components in the mean func-

tion. The set of all regression functions are denoted as Φ(X) and Φ(X) are unknown

hyperparameters. The inference of Φ(X) is normally based on some knowledge of the

objective model.

7.2.3 Inference for covariance function

A covariance function is applied to calculate the covariance between two inputs X and

X∗. For posterior distribution, it measure the covariance between the training points

and predicted points. A good covariance function is able to improve the quality of

meta-model. But the inference normally is depended on the knowledge of the objective

model.

7.2.4 Inference for prior

The inference for prior ideally needs the expert knowledge of the objective model. In the

paper [16, 17], the authors discuss some strategies and issues for the prior distribution.

Normally, we expect the prior has zero mean function. So we define the prior distribu-

tion that is only depended on the unknown hyperparameter Σ2
p in our experiment. In

function-space view, the Σ2
p is also written as σf in the covariance function and described

as ‘signal variance’.

7.2.5 Inference for variances

From the selection of training points and inferences for mean function, covariance func-

tion and prior above, they are all related to the quality of the meta-model. In this
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subsection, the inference for variances is implemented to calculate the sensitivity indices

si and sT i.

Recall the definitions for main effects, interactions from last chapter, the inference for

the main effects for a single variable is needed for the sensitivity analysis. The main

effects for a given function f(x) in a Bayesian model is expressed as:

E(f |xp) =

∫
χ−p

f(x)dG−p|p(x−p|xp) (7.1)

where the xp denotes the uncertain variable p only, χ−p is the entire uncertainty space

except the variable p, G−p|p(x−p|xp) actually denotes a conditional distribution for the

given variable xp in the uncertainty space. An uncertainty vector x is composed by xp

and x−p. In this thesis, we denote the posterior distribution for f(x) is accompanied

with a sign ∗. For instance, f(x)∗ or f∗ means the prediction of f(x)

Thus, the expectation of the posterior distribution of f(x) for the given xp based on

posterior mean in the equation 2.60 is expressed as:

E(f∗|xp)] =

∫
χ−p

K(X∗|Xp, X)[K(X,X) + σ2nI]−1y d−p|p(X−p|Xp)

=

∫
χ−p

φ∗Σpφ[φΣpφ+ σ2nI]−1y d−p|p(X−p|Xp)

(7.2)

where the φ = φ(X), φ∗ = φ(x∗|Xp), y is the objective values of testing points. From

the definition of the first order sensitivity indices, the inference for the variance of the

main effects is expressed as:

V arXp [EX−p(f∗|Xp)] = EXp [EX−p(f∗|Xp)
2]− EXp [EX−p(f∗|Xp)]

2

= EXp [EX−p(f∗|Xp)
2]− E(f∗)

2
(7.3)

The EXp [EX−p(f∗|Xp)
2] in this equation can be extended to the expression followed by

substituted the equation 7.2:

EXp [EX−p(f∗|Xp)
2]

=

∫
χp

∫
χ−p

∫
χ
′
−p

η(x∗)η(x
′
∗)dG−p|p(X−p|Xp)dG−p|p(X

′
−p|Xp)dGp(Xp)

(7.4)

where η(x∗) = φ∗Σpφ[φΣpφ + σ2nI]−1y, the uncertainty set X is composed by the set

Xp and its complementary set X−p, the X
′
−p and X−p are in depended uncertainty

sets but generated by same sampling method, the Gp(Xp) is a marginal distribution of
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variable xp. Similar strategy for the estimated expectation of the conditional posterior

distribution is also mentioned in [65].

The conditional posterior distribution of equation 7.4 is difficult to solve analytically

because of the quadratic term in the equation. Fortunately, the computational cost is

cheap to solve the equation by numerical method. In our experiment, we implement

the quasi-Monte Carlo sampling strategy to approximate the integration of the equation

7.4. The estimated expectation of the conditional posterior distribution is given as:

EXp [EX−p(f∗|Xp)
2] =

1

N

N∑
i=1

∫
χ−p

∫
χ
′
−p

η(x∗)η(x
′
∗)dG−p|p(X−p|xpi)dG−p|p(X

′
−p|xpi)

=
1

N

N∑
i=1

η(X∗|xpi)η(X
′
∗|xpi)

(7.5)

where Xp is a marginal distribution and its sampling set is defined as:

Xp = [xp1, xp2, ..., xpi, ..., xpN ] (7.6)

The distribution is also a uniform distribution; N is the dimension of the Xp; X∗ and

X
′
∗ are two independent uncertainty sets under the condition of Xp. These two sets are

applied to approximate the inter dual integrations in the above function. This approxi-

mation based on the independency of each uncertainties. The estimated expectation of

the conditional posterior distribution then is easy to applied for the numerical calcula-

tion in practice. However, the quality of the estimated expectation is highly depended

on the training points and inferences for the meta-model.

The posterior distribution of Si seems difficult to obtain. Nevertheless, the E(f∗)
2 in

equation 7.3 and V ar(f∗) is easy to obtain. Just simply divide the variance of expected

conditional posterior distribution of equation 7.3 by V ar(f∗), the approximated first

order sensitivity indices are achieved.

For the estimated total sensitivity indices, the most important part is to derive the vari-

ance of expected posterior distribution under the condition ofX−p : V arX−p [EXp(f∗|X−p)].

This variance of expected conditional posterior distribution has an exactly same format

as the equation 7.3. Just simply switch the position of Xp and X−p, the expression of
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the V arX−p [EXp(f∗|X−p)] is achieved:

V arX−p [EXp(f∗|X−p)] = EX−p [EXp(f∗|X−p)2]− EX−p [EXp(f∗|X−p)]2

= EX−p [EXp(f∗|X−p)2]− E(f∗)
2

(7.7)

Then the EX−p [EXp(f∗|X−p)2] is expressed as:

EX−p [EXp(f∗|X−p)2]

=

∫
χ−p

∫
χp

∫
χ′p

η(x∗)η(x
′
∗)dGp|−p(Xp|X−p)dGp|−p(X

′
p|X−p)dG−p(X−p)

(7.8)

To calculate the EX−p [EXp(f∗|X−p)2] numerically, we need to approximate the integra-

tion by discrete formate. Thus, the estimated expectation of the posterior distribution

under the condition of X−p is expressed as:

EX−p [EXp(f∗|X−p)2] =
1

N2

N∑
i=1

N∑
j=1

∫
χ−p

η(x∗|X−p, xpi)η(x∗|X−p, x
′
pj)dG−p(X−p)

=
1

N2

N∑
i=1

N∑
j=1

η(X∗|X−p, xpi)η(X∗|X−p, x
′
pj)

(7.9)

where the Xp and X
′
p are two independent uniform sampling sets. This approximation

is applicable only when every uncertainties are independent to each.

7.3 Example 1: with 15 dimensions

The test subject model in our experiment is the VEGA launch vehicle. The model is

known as a complex nonlinear model from previous chapters. Thus, the true effects of

each uncertainty are not able to be calculated analytically. One of several proper choices

for analyzing the quality of probability sensitivity analysis in our case is to compare the

probability sensitivity indices to the sensitivity indices obtained by a variance-based

method, introduced in the previous chapter, based, in turn, on the case of 15 uncertain-

ties. Therefore, the dimension of the VEGA launch vehicle is reduced to 15 manually,

with the selected uncertainty parameters listed in Table 6.1 in the previous chapter. An-

other choice for performing the quality analysis of the probability sensitivity indices is

to apply the most important variables that are sorted out by the probability sensitivity
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indices for worst-case validation. The result of the worst-case validation is also a good

indicator of the quality of the probability sensitivity analysis.

7.3.1 Model training

The GP model process used for the probability sensitivity analysis in this chapter is

same as the model training process used for GP-based optimization mentioned in Chap-

ter 5. Thus, the details of the model training process are not introduced here.

With the inferences and selected hyper-parameters, the meta-model can be obtained. As

we will investigate the variation of time spent in the training process based on different

numbers of training points, the number of iterations that are involved in the operation

of maximizing the log marginal likelihood is also able to affect the time spent in the

training process. In our experiment, we fixed this parameter at 300. To examine the

quality of the model, the amount of testing data is 10000 in our case.

Figure 7.1 presents the quality measured by Qp versus the different numbers of training

points. The time that is spent on the calculation of quality is also given in the figure.

It can be seen from this figure that when the number of training points is smaller than
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Figure 7.1: The quality and time cost for model training based on different number
of training points
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500, the quality of the training model is quickly improved when the number of training

points is increased. However, when the number of training points is larger than 500,

the quality improves, but at a slow rate. In contrast to the quality curve, the time-cost

curve exhibits a very slow rate of increase before the number of samplings reaches 1000.

However, then, after the number of training points is greater than 1000, the time spent

on model training increases exponentially One aim of probability sensitivity analysis is

that it expects a cheap computation cost to obtain the Sobol indices. Thus, an ideal

trade-off number of training points for acceptable quality and affordable computational

cost is between 500 and 1000. In this case, it was decided that 500 training points would

be applied to the Gaussian process.

7.3.2 Results of probability sensitivity analysis

With selected number of training points and the inferences for mean and cost functions,

the quality of Gaussian process measured by the equation 5.1 is :

Qp(f, f∗) = 0.93089

This quality is satisfied by the minimum requirement of the meta-model. According

to the meta-model with respect to this quality, the probability sensitivity indices are

obtained and given in Table 7.1. The number of points in the estimated predicted pos-

terior distribution is 10000. To calculate the probability sensitivity indices, we propose

10 independent experiments to obtain 10 results. The final results of the probability

sensitivity indices are the mean of the 10 results for each uncertain variable.

Note that the cost function f1 mentioned in this chapter refers to the maximum dy-

namic loads. The details of cost functions can be found in Chapter 4.2.1. From the

the estimate of the first-order sensitivity indices Ŝi and the first-order sensitivity indices

based on the variance-based sensitivity analysis in Table 6.2, the results of the first-

order probability sensitivity indices are very good, although the two most important

variables, ‘Flag.dTc’ and ‘Flag.air density scat ’ identified by Si, are overweighted (the

sum of first-order probability sensitivity indices for these two uncertainties are almost

equal to 1. Theoretically, the sum of all first-order sensitivity indices are equal or smaller
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Variable Names Ŝi ŜT i

Flag.IRSmountingX 0.0133 0.0027

Flag.IRSmountingY 0.0731 0.1759

Flag.IRSmountingZ 0.0030 0.0751

Flag.dISP 0.0051 0.0029

Flag.dTc 0.5329 0.8073

Flag.disp CA 0.0035 0.0074

Flag.disp CN 0.0308 0.0491

Flag.disp Xcp 0.03309 0.1734

Flag.air density scat 0.4241 0.3946

Flag.h wind 0 0

Flag.azimuth wind angle 0.0034 0

Flag.unc CA 0.0007 0

Flag.unc CN 0.0333 0.0645

Flag.unc Xcp 0.0284 0

Flag.SRM roll 0.0639 0.01725

Table 7.1: The probability sensitivity index based on f1(The maximum dynamic
loads)

than 1), and another important variable, ‘Flag.SRM roll’, identified by Si is slightly un-

derestimated. The reason for the overweighted and underweighted variables could be

diversity, but the actual reason is not easy to determine. For instance, the reason for

the underweighted variable ‘Flag.SRM roll’ could be that the linear projection function

φ(x) is unable to accurately describe the nonlinear tendency of its scatter plot in Figures

6.3, 6.4 ,and 6.5; or it could be the quality of the meta-model. However, the results for

the first-order probability are acceptable because the most important variables are iden-

tified and the effects of the ranks of each uncertainty used for dimension reduction are

insignificant. However, from the total probability sensitivity indices, the results are not

optimistic. The weight of the unimportant variable ‘ Flag.IRSmountingY’ seems to be

overestimated compared to the results obtained by variance-based sensitivity analysis,

while the weight of variable ‘Flag.SRM roll’ is heavily underestimated. Moreover, the

value of the total sensitivity indices for the uncertainties ‘Flag.unc CA’,‘Flag.h wind’,

‘Flag.azimuth wind angle’, and ‘Flag.unc Xcp’ are negative. However, the values of the

sensitivity indices are non-negative as mentioned in the previous chapter, and we must

assign zero value to the total probability sensitivity indices of these uncertainties. Gen-

erally speaking, the quality of the total probability sensitivity indices is not as good

as that of the first-order probability sensitivity indices. Thus, only the results of the

first-order probability sensitivity indices are applied for dimension reduction in sequel.
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The ranks of each uncertainties based on the first order probability sensitivity indices

are given in the Table 7.2 followed. The ranks are used to re-order the sequence of an un-

certainty vector. From the variance-based sensitivity analysis discussed in the previous

Variable Names Order/ Rank

Flag.IRSmountingX 9

Flag.IRSmountingY 3

Flag.IRSmountingZ 13

Flag.dISP 10

Flag.dTc 1

Flag.disp CA 11

Flag.disp CN 7

Flag.disp Xcp 6

Flag.air density scat 2

Flag.h wind 15

Flag.azimuth wind angle 12

Flag.unc CA 14

Flag.unc CN 5

Flag.unc Xcp 8

Flag.SRM roll 4

Table 7.2: Re-ordered sequence by ranks

chapter, we know that the scatter plots (Figure 6.3, 6.3, and 6.5) provide the ‘tendency’

information about an uncertainty. The ‘tendency’ can be treated as the expected ob-

jective values evaluated against the conditional variable xi associated with a variance of

noise. From this chapter, it is easy to understand that the concept of ‘tendency’ actually

is the expected conditional posterior distribution. The expected conditional posterior

distribution actually measures the ratio between an uncertainty and the predicted ob-

jective values. Thus, we can also provide a figure that contains the information about

the ‘tendency’ for each uncertain variable. The plots of expected conditional posterior

distribution Ei(f∗|Xi) are given in Figures 7.2, 7.3, and 7.4 below.

From the Figure 7.4, most of the expected conditional posterior distributions plot-

ted against each uncertain parameter are very similar to the ‘tendency.’ The great-

est difference is in the expected posterior distribution measured against the variable

‘Flag.SRM roll’ linear, whereas the ‘tendency’ of this variable in the scatter plot is non-

linear. The most likely explanation for this difference is that the inferences for projection

functions φ(x) are all linear and are not able to describe the nonlinear feature of the
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Figure 7.2: The expected posterior of EXi
(f∗|Xi) against the condition variable xi

of f1 - Part A

variables. However, in practice, we can obtain the ‘tendency’ information for each vari-

able by carrying out a relatively large set of sampling points. Then, the ‘tendency’

information can help the model trainer to examine the quality of the expected condi-

tional posterior distribution of each variable. However, the difficulty of finding a proper

projection function to describe the nonlinear ‘tendency’ is actually quite significant.
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Figure 7.3: The expected posterior of EXi
(f∗|Xi) against the condition variable xi

of f1 - Part B

To verify the results of the variance-based sensitivity analysis discussed in the previ-

ous chapter, the seven uncertain variables of ranks from 1 to 7 are selected as the

‘important variables,’ and are assigned to the worst-case validation. Although the num-

ber of important variables does not have to be seven, since we have not investigated this

point further, our focus is elsewhere at this moment. To maintain consistency with the

worst-case validation process discussed in the previous chapter, we keep the top seven
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Figure 7.4: The expected posterior of EXi
(f∗|Xi) against the condition variable xi

of f1 - Part C

uncertainties with the highest values of the first-order probability sensitivity indices. In

this case, two worst-case validations are carried out to verify the quality of the sensitivity

indices. The first worst-case validation employs the seven uncertainties sampled using a

Sobol sequence, whereas the second worst-case validation uses a hybrid sampling strat-

egy (see the previous chapter for details) to sample the seven uncertainties. Note that

the large ratios obtained from the expected conditional posterior distribution are consid-

ered in the sampling strategy to narrow down the sampling range of the corresponding

uncertainties. In this case, only the variables ‘Flag.dTc’ and ‘Flag.air density scat’ ex-

hibit the obvious large ratio.

The results of the two worst-case validations with a reduced dimension of uncertainties

are given in Table 7.3. The results of the two worst case validations with reduced dimen-

sion of uncertainties are given in the Table 7.3 followed. From the Table 7.3, the result

of test 1 obtains a slightly smaller worst-case value than the result obtained using no

dimension-reduction method, whereas the result of test 2 has a slightly larger worst-case
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Tests Worst-case (Max Qα [Pa Deg])

No application of dimension reduction method 3.2469× 105

Test 1 (Sobol sequence for the 7 uncertainties) 3.2242× 105

Test 2 (hybrid sampling for the 7 uncertainties) 3.2809× 105

Table 7.3: Worst-case validation based on dimension reduction methods for objective
function f1

value than the result involving no dimension-reduction method. These results indicate

that the neglected variables do not significantly affect the objective function. The prob-

ability sensitivity indices provide good information about the weight of the variables,

and the distribution properties of the original ELV launch vehicle model is successfully

reserved by the statistical meta-model based on 15 uncertainties.

7.4 Example 2: with expanded dimension

As the probability sensitivity analysis is demonstrated as a feasible method for dimen-

sion reduction, we would like to implement this method for sensitivity analysis based

on the a larger number of uncertainties. The driven variables identified from the 15

uncertainties case could have a smaller value of sensitivity indices, but the value are still

relative large. Due to the expanded dimension, the difficultly and complexity of training

the meta-model by Gaussian process are increased inevitably. To study a probability

sensitivity analysis with a larger dimension of uncertainties, we do not directly introduce

the entire 118 uncertainties but expand the dimension of uncertainties step by step. The

reasons are: (1) Training the statistic model with large dimensions becomes much more

complicated; (2) A small number of expanded uncertainties has fewer chance to com-

pletely change the weigh of the uncertainties in sensitivity indices. As we do not have

the empirical weight of the expanded uncertainties, it would be much easier to verify

the quality of the sensitivity analysis with the large dimension of uncertainties. In this

example, the number of dimension of uncertainties is doubled compared to example 1.

The uncertainties involved in the simulation is given is the Table 7.4 followed.
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Category
Variable name in

VEGACONTROL
Description

Flag.IRSmountingX
IRS Mounting Error w.r.t X Body

Axis

IRS Flag.IRSmountingY
IRS Mounting Error w.r.t Y Body

Axis

Flag.IRSmountingZ
IRS Mounting Error w.r.t Z Body

Axis

Thrust Parame-

ters
Flag.dISP Stage 1 impulse scattering

Flag.dTc Scattering on time burn

Flag.SRM roll Scattering on P80 Roll Torque

Flag.disp CA
Dispersion on Stage 1 Axial coeffi-

cient

Flag.unc CA
Uncertainty on Stage 1 Axial coeffi-

cient

Flag.disp CN
Dispersion on Stage 1 Normal Coef-

ficient

Aerodynamics Flag.unc CN
Uncertainty on Stage 1 Normal Co-

efficient

Flag.disp Xcp Dispersion on Stage 1 Xcp

Flag.unc Xcp Uncertainty on Stage 1 Xcp

Atmosphere Flag.air density scat Atmosphere Density

wind Flag.h wind Synthetic wind gust altitude

Flag.azimuth wind angle Wind azimuth direction

Bending modes Flag.flex freq Scattering on Bending frequencies

Flag.TMC PVP
Scattering on Translation at Pivot

Point

Flag.RMC PVP
Scattering on Rotation at Pivot

Point

Flag.TMC INS Scattering on Translation at INS

Flag.RMC INS Scattering on Rotation at INS

Continued on next page
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Table 7.4 – Continued from previous page

Category
Variable name in

VEGACONTROL
Description

Thrust offset Flag.TVC SF A Scattering on TVC gain Lane A

and Flag.TVC bias A Scattering on TVC Lane A

misalignment Flag.TVC SF B Scattering on TVC gain Lane B

Flag.TVC bias B Scattering on TVC Lane B

Flag.Thrust misA
Scattering on thrust misalignment

first lane

Flag.Thrust misB
Scattering on thrust misalignment

second lane

Flag.PvP offsetX Scattering on thrust offset in X

Flag.PvP offsetY Scattering on thrust offset in Y

Flag.PvP offsetZ Scattering on thrust offset in Z

Others Flag.backlash Scattering on backlash

Table 7.4: The description, category and variable name in VEGACONTROL of the
30 selected uncertainties

The inferences for mean function, covariance function and prior are exactly same as the

test case with 15 uncertainties. In the meantime, the training points are also sampled by

Sobol sequence. The optimal combination of hyperparameters are obtained by employing

the local optimization algorithm to find the minimal negative marginal likelihood as well.

The quality of the meta-model is measured by the equation 5.1. Due to the increased

dimension of uncertainties, more training points are needed in order to obtain a good

quality level compared to the test case 1 with only 15 uncertainties. The quality and

time cost versus the different number of training points are given in the Figure 7.5

below. From the figure, the quality of the statistic model grows very quickly in the first

500 training points. In the meanwhile, the time cost of training the model is largely

increased when the number of training points exceeds 500. Thus, a good candidate

number of training points is 500. The quality of the model with the 500 training points

reaches the acceptable level and the times cost is affordable as well. However, we have to
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Figure 7.5: The quality and time cost for model training based on different number
of training points

notice that the qualities for all candidate number of training points with 30 uncertainties

are smaller than the qualities with same candidate number of training points when

only 15 uncertainties are involved in the simulation in a certain degree. It shows the

expanded uncertainties obviously raise the complexity level of training a statistic model.

If there was no better inferences for Gaussian Process or distribution for training points,

the quality of the meta-model with the entire 118 uncertainties based on the current

inferences and sampling strategy is highly possible to drop below the acceptable quality

level (quality value is smaller than 0.8). In this case the quality of the meta-model with

500 training points is:

Qp(f, f∗) = 0.8311

According to this quality of statistic mode, the first order of probability sensitivity

indices is given in the Table 7.5 followed. As the total probability sensitivity indices

with 15 uncertainties is not in acceptable accuracy, the total probability sensitivity

indices with 30 uncertainties is not expected to achieve a good results. So the total

probability sensitivity indices is abandoned from the table. The drawback of abandoning

the total probability sensitivity indices is that the correlation between the uncertainties

are unknown. Some uncertainties with low main effects but strong interaction effect

other uncertainties are not able to be identified as driven variables. Because the same
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Variable Names Ŝi

Flag.IRSmountingX 0.0017

Flag.IRSmountingY 0.0703

Flag.IRSmountingZ 1.4224× 10−4

Flag.dISP 0.0331

Flag.dTc 0.4485

Flag.disp CA 0.0231

Flag.disp CN 0.0245

Flag.disp Xcp 0.0411

Flag.air density scat 0.4306

Flag.h wind 0.0028

Flag.azimuth wind angle 0.0020

Flag.unc CA 0.0123

Flag.unc CN 0.0105

Flag.unc Xcp 0.0031

Flag.SRM roll 0.1056

Flag.flex freq 0.0276

Flag.TMC PVP 0.0109

Flag.RMC PVP 0.0026

Flag.TMC INS 0.0094

Flag.RMC INS 0.0364

Flag.TVC SF A 0.0201

Flag.TVC bias A 0.0006

Flag.TVC SF B 0.0288

Flag.TVC bias B 0.0336

Flag.Thrust misA 0

Flag.Thrust misB 0.0102

Flag.PvP offsetX 0.0063

Flag.PvP offsetY 0

Flag.PvP offsetZ 0

Flag.backlash 0.0084

Table 7.5: The probability sensitivity index based on f1 with expanded uncertainties

inference and sampling strategy is employed in this case, all the approximation error is

reserved. From the table, the two variables ‘Flag.dTc’ and ‘Flag.air density scat’ are

still over weighted. But it doesn’t affect the results of sensitivity analysis. Generally

speaking, the driven variables that are identified based on the 15 uncertainties case

still have a relative large value of first order sensitivity indices. This indicates the

results of sensitivity analysis based on the current quality of meta-model is acceptable

and should be able to explain the importance of each uncertainty of its main effect

to the objective function(maximum dynamic loads). The rank of each uncertainty is

given in the Table 7.6 below. The rank of each uncertainties are used to re-order the
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Variable Names Rank/Order

Flag.IRSmountingX 25

Flag.IRSmountingY 4

Flag.IRSmountingZ 27

Flag.dISP 8

Flag.dTc 1

Flag.disp CA 12

Flag.disp CN 11

Flag.disp Xcp 5

Flag.air density scat 2

Flag.h wind 22

Flag.azimuth wind angle 24

Flag.unc CA 14

Flag.unc CN 16

Flag.unc Xcp 21

Flag.SRM roll 3

Flag.flex freq 10

Flag.TMC PVP 15

Flag.RMC PVP 23

Flag.TMC INS 18

Flag.RMC INS 6

Flag.TVC SF A 13

Flag.TVC bias A 26

Flag.TVC SF B 9

Flag.TVC bias B 7

Flag.Thrust misA 28

Flag.Thrust misB 17

Flag.PvP offsetX 20

Flag.PvP offsetY 28

Flag.PvP offsetZ 28

Flag.backlash 19

Table 7.6: The rank of each variable based on f1 with expanded uncertainties

sequence of sampling points. From the table of tank, we notice that three uncertainties

in the set of expanded uncertainties are ranked below 10. To further study the these

uncertainties, the uncertainties with the rank no greater than 10 are selected and involved

in the simulation in this case. Moreover, the expected posterior distributions against

each uncertainty are able to provide the ‘tendency’ information, we will investigate the

expected conditional posterior distribution for the selected 10 uncertainties. However,

to keep the consistent with previous test case, 15 plots of expected conditional poster

ion distribution are given in the Figure 7.6 , Figure 7.7 and Figure 7.8 followed.
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Figure 7.6: The expected posterior of EXi
(f∗|Xi) against the selected variable xi of

f1 - Part A

From the this figure, the uncertainties ‘Flag.dTc’ and ‘Flag.air density scat’ have obvious

increased and decreased ratios respectively. The ratios of uncertainties ‘Flag.SRM roll’

and ‘Flag. IRSmountingY’ are not significant, but are still considerable. These linear

increased or decreased information can be applied to the simulation to narrow down the

range of distribution.

To verify the quality of the probability sensitivity analysis, the worst case validation is
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Figure 7.7: The expected posterior of EXi
(f∗|Xi) against the selected variable xi of

f1 - Part B

employed based on the selected driven variables. In this case, two sampling strategies are

implemented to sample the 10 driven uncertainties: Sobol sequence and hybrid sampling.

The two sampling strategies are exactly same as the strategies used in previous test case.

The results of worst case validation based on these two sampling strategies are given in

the Table 7.7 below. From the table, the results of worst case validation based on the

reduced dimension have little difference with the result of worst case validation based
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Figure 7.8: The expected posterior of EXi
(f∗|Xi) against the selected variable xi of

f1 - Part C

Tests Worst-case (Max Qα [Pa Deg])

No application of dimension reduction method 3.3658× 105

Test 1 (Sobol sequence for the 10 uncertainties) 3.3416× 105

Test 2 (hybrid sampling for the 10 uncertainties) 3.3090× 105

Table 7.7: Worst-case validation based on dimension reduction methods for objective
function f1

on the entire 30 uncertainties. This means the neglected uncertainties have little effects

to the objective function. The 10 selected variables can be considered as the driven

variables. The probability sensitivity analysis is successfully identify the important

variables and the quality of the probability first order sensitivity indices is acceptable.

Note that the results obtained in Table 7.7 are larger than the results in Table 7.3 based

on the 15 uncertainties for each individual case of worst case validation. This indicates

that there exists some driven variables in the set of expanded uncertainties and these

uncertainties are successfully identified by the probability sensitivity analysis.
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7.5 Example 3: with all 118 uncertainties

When all the 118 uncertainties are involved in the simulation , the complexity to get

a high quality meta-model is increased significantly. When the same inferences and

sampling strategy are applied as the previous examples, the quality of the meta-model

based on the number of training points is expected to be much lower. If the value

of quality of the meta-model is below the acceptable value, the probability first order

sensitivity indices may not be able to give a good weight of each variable.

In this case, the same inferences and sampling strategy are implemented as well, the

quality and time cost versus the different number of training points are given in the

Figure 7.9 followed. After 1000 sampling points, the quality of the statistic model is
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Figure 7.9: The quality and time cost for model training based on different number
of training points

improved very little by increasing the number of sampling points; on the other hand, the

time cost for the model training is increased significantly. From this figure, it indicates

that simply increasing the number of training points is not a effective solution to improve

the quality of the meta-model. In our experiment, we tried 6000 training point for

model generation. The quality we obtained is 0.72. This quality value is still lower

than the minimum acceptable quality value. Moreover, the model training process takes

approximate 2 hours to complete. There is also no way to keep increasing the number
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of training points due to the capability of the hardware. The Matabl would display an

error message if the number of training points exceeds 8000 to show that the Matlab is

out of memory. In this case, the meta-model applied to sensitivity analysis is trained

based on 1000 training points. The corresponding quality of this model is:

Qp(f, f∗) = 0.67144

As this quality of model doesn’t satisfy the minimum quality level, the results of prob-

ability sensitivity analysis may not be very good. However, whether this model would

be rejected or not is depended on the results of sensitivity indices. The Table 7.8

below gives the probability first order sensitivity indices in terms of the meta-model

with above quality. To keep a good reading interface, only the selected fifteen vari-

ables in the first test case are given in the table. This is enough for us to ana-

lyze the quality of model. From this table above, the uncertainties ‘Flag.disp CN’,

Variable Names Ŝi

Flag.IRSmountingX 0.0014

Flag.IRSmountingY 0.0441

Flag.IRSmountingZ 0.0013

Flag.dISP 0.0025

Flag.dTc 0.4329

Flag.disp CA 0.0023

Flag.disp CN 0.0039

Flag.disp Xcp 0.0037

Flag.air density scat 0.4811

Flag.h wind 4.6356× 10−4

Flag.azimuth wind angle 0.0023

Flag.unc CA 0.0077

Flag.unc CN 0.0084

Flag.unc Xcp 0.0210

Flag.SRM roll 0.0533

Table 7.8: The probability sensitivity index for the selected 15 uncertainties based on
f1 with 118 uncertain parameters

‘Flag.disp Xcp’ and ‘Flag.SRM roll ’ are likely to be underestimated of weight compared

to the sensitivity indices obtained based on the variance based method. The uncertainties

‘Flag.dTc’, ‘Flag.air density scat’, ‘Flag.unc CN’ and ‘Flag.unc Xcp’ seem to be overes-

timated. Among these seven uncertainties, the ranks of ‘Flag.disp CN’, ‘Flag.disp Xcp’,

‘Flag.unc CN’ and ‘Flag.unc Xcp’ are heavily affected. However, the uncertainties
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‘Flag.IRSmountingY’, ‘Flag.dTc’, ‘Flag.air density scat’ and ‘Flag.SRM roll’ are still

in the top ranks. Although the quality of the statistic model doesn’t reach the accept-

able quality level, but the most important variables are also identified. Thus, the worst

case valuation would be able to give the answer that whether the result of probability

sensitivity indices is acceptable or not. Before the worst case validation is carried out,

we would like to identify the top 15 ranks of uncertainties over the entire 118 uncertain

parameters. The Table 7.9 followed lists the weights and ranks for the top 15 uncer-

tainties. Although the uncertainties ‘Flag.unc Xcp’ and ‘Flag.unc CN’ in this table are

Variable Names Ŝi Rank

Flag.air density scat 0.4811 1

Flag.dTc 0.4329 2

Flag.SRM roll 0.0533 3

Flag.IRSmountingY 0.0441 4

Flag.unc Xcp 0.0210 5

Flag.unc CN 0.0084 6

Flag.TVC SF A 0.083 7

Flag.RACSdxCOG 0.0080 8

Flag.unc CA 0.0077 9

Flag.Z9dJy 0.0077 9

Flag.TVC SF B 0.0052 10

Flag.Z9dyCOG 0.0050 11

Flag.Z23dxCOG 0.0045 12

Flag.disp CN 0.0039 13

Flag.disp Xcp 0.0037 14

Table 7.9: The probability sensitivity index for the 15 top ranks of uncertainties based
on f1 with 118 uncertainties

highly possible overestimated and should not be identified as important uncertainties,

the worst case validation would still employ these top 15 driven variables. The expected

conditional posterior distribution Ei(f∗|Xi) is given in the Figure 7.11 , Figure ?? and

Figure 7.12 below.

From the figure, only the expected probability posterior plots on the condition of

‘Flag.dTc’ and ‘air density scat’ have a obvious ‘tendency’ pattern with a relatively

large slope. Thus, the range of these two uncertainties can be narrowed down. For the

worst case validation, since the entire 118 uncertainties are considered in the sensitivity

analysis, five test cases are employed with different sampling strategies. Beside the two

strategies (Sobol and hybrid sampling) used in previous test examples, the Monte Carlo
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Figure 7.10: The expected posterior of EXi(f∗|Xi) against the condition variable xi
of f1 - Part A

method is also Implemented in this case. The extra cases are applied to compare the

efficiency with each sampling method and keep consistent with the worst case validation

described in Chapter 3 when all uncertainties are involved in the simulation. The Table

7.10 below contains the results of worst case validation. From the table above, the worst

cases of the maximum dynamic loads during the ascending phase of ELV launch vehi-

cle based on different sampling methods with the reduced dimensional space are larger

than the worst cases obtained when all 118 uncertainties are involved in the simulation

although some actually non-important variables are also identified as driven variables

and assigned to the simulation. Especially, for the results obtained by Sobol sequence,
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(b) RACSdxCOG vs. f1∗
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Figure 7.11: The expected posterior of EXi(f∗|Xi) against the condition variable xi
of f1 - Part A

the improvement of worst case value is about 10 percentage. The efficiency of the sam-

pling strategies are improved because of the reduced dimensions. Generally speaking,

the quasi-Monte Carlo still has a better efficiency in worst case validation compared to

Monte Carlo method in terms of the reduced dimensions. Nevertheless, the difference

between the Monte Carlo and quasi-Monte Carlo methods of worst case values is still

small based on the objective f1 (maximum dynamic loads).

Because the quality of the meta-model trained by the 118 uncertainties doesn’t satisfy

the acceptable level, a larger worst case value is expected if the quality of the statis-

tical model is improved. On the other hand, due to the results of the five worst case
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Figure 7.12: The expected posterior of EXi(f∗|Xi) against the condition variable xi
of f1 - Part C

Tests Worst-case (Max Qα [Pa Deg])

Monte Carlo method with 118 uncertainties 3.2002× 105

Sobol sequence with 118 uncertainties 3.1297× 105

Halton sequence with 118 uncertainties 3.3168× 105

Faure sequence with 118 uncertainties 3.2658× 105

Test 1 (Sobol sequence with the 15 uncertainties) 3.4910× 105

Test 2 (Hybrid method with the 15 uncertainties) 3.4382× 105

Test 3 (Monte Carlo method with the 15 uncertainties) 3.3836× 105

Test 4 (Halton sequence with the 15 uncertainties) 3.3699× 105

Test 5 (Faure sequence with the 15 uncertainties) 3.4474× 105

Table 7.10: Worst-case validation based on dimension reduction methods for objective
function f1

validations are good and reasonable, the quality of the probability sensitivity analysis is

acceptable.

From the three test cases, although the ranks of uncertainties are varied in each case, the

uncertainties ‘Flag.dTc’, ‘Flag.air density scat’, ‘Flag.SRM roll’, and ‘Flag.IRSmountingY’
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are always in the top four ranks. This phenomenon suggests that these four uncertain-

ties are actually the most driven variables and are less sensitive to the varying of the

quality of the meta-model compared to other uncertainties. The probability sensitivity

analysis based on the statistical model trained using the Gaussian process successfully

identifies the most weighted variables in general and facilitates the worst-case validation

more efficiently. Moreover, the quasi-Monte Carlo method still has a slight advantage

over the Monte Carlo method based on the objective function f1. Although we expect

a much more efficient sampling based on the quasi-Monte Carlo method in lower di-

mensions compared to the Monte Carlo method, the efficiency still could be negatively

affected by the surface of the objective function. According to the worst-case results

based on 118 uncertainties for all objective functions listed in Table 4.1, we believe the

quasi-Monte Carlo method would behave much more efficiently than the Monte Carlo

method based on the objective functions f2, f3, f4, and f5 if the probability sensitivity

analysis is applied to screen out the driven uncertainties for each objective function.

However, the time left for the research is limited and not sufficient for completing all of

the sensitivity analysis based on different objective functions. To train the meta-model

for other objective functions, only the same process used to train the meta-model based

on f1 needs to be followed. The only difficulty and difference are in the matters of mak-

ing inferences for mean and covariance functions. The rest of the sensitivity analysis

work could be left to future research. Nevertheless, the probability sensitivity analysis

is verified as an efficient and powerful tool.

7.6 Short Summary

In this chapter, we deduced a novel inference for estimating the probabilistic-based first-

order and total sensitivity indices. The results show that the first-order sensitivity index

successfully identified the key parameters. On the other hand, the total sensitivity index

is not good enough for identification. Nevertheless, our approach can be used to solve the

problem that variance-based sensitivity analysis is barely able to handle. The estimation

of sensitivity indices is based on 118 uncertain parameters rather than 15. Moreover, we

only need roughly 1/40 of the computing time to obtain the results that variance-based

sensitivity analysis requires.



Chapter 8

Conclusions and Future works

8.1 Conclusion

The robustness of the VEGA launch vehicle is assessed by the Monte Carlo, quasi-Monte

Carlo, and optimization-based methods. Although all of these methods are able to find

a worst-case value that violates its constraint in terms of different objective functions,

the efficiency of each method is different.

From the Chapter 3, the efficiencies of Monte Carlo and quasi-Monte Carlo based worst

case validation for a complex system are compared in the first place. From the theoret-

ical definitions, the quasi-Monte Carlo should be more efficient than the Monte Carlo

method for worst case validation, especially when the dimension of uncertainties is small

or the number of sampling points is small. The results of worst case validation based

on these two method with respect to different objective functions demonstrate that the

quasi-Monte Carlo indeed obtains a larger worst-case value contrast to the worst-case

values obtained by Monte Carlo method ‘in general speaking’. However, we have to note

that none of the three quasi-random sequences (Sobol, Halton and Faure sequence) is

able to guarantee the efficiency for all objective functions over the Monte Carlo method.

Monte Carlo method even obtains a larger mean worst-case value over worst-case value

obtained by some of quasi-random sequences in many cases, although we normally can

identify one or more quasi-random sequences obtain a larger worst-case value than the

worst-case values obtained by Monte Carlo method in most circumstances. This is also

the reason why we use the phrase ‘in general speaking’ above. In practice, both Monte

177
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Carlo and quasi-Monte Carlo method are ideally applied for worst case validation In

parallel, then a larger/smaller worst-case value then is guaranteed than only a single

method is implemented.

The optimization based worst case validation is often applied to compare the efficiency

to the Monte Carlo method. In this thesis, the optimization based worst case validation

is also introduced. However, the purpose is not to exhaustively implement many of

commonly used global optimization methods. We provide a modified DE for worst case

validation and verify any improvement of efficiency. The generation of initial population

of modified DE is replaced by Sobol method rather than the Monte Carlo method. This

idea is originated from the study of quasi-Monte Carlo as the quasi-Monte Carlo method

provides a better uniformity distribution over the Monte Carlo method. We believe a

good distribution of initial population of DE would be able to improve the efficiency of

worst case validation when the number of sampling points is small. Unlike the original

DE, the step-size in the configuration parameters of optimization is recommended to

select a small value. The reason is a large value of step-size would ruin the uniformity

of Sobol sequence. Moreover, a small value of step-size is potentially able to address

the issues that a bad 2-D projection happens between two variables in high dimensions.

The results of worst-case validation based on the modified DE are much larger than

the worst-case values obtained by conventional DE, Monte Carlo and quasi-Monte Carlo

methods. This means the modified DE has a better convergence with high efficiency.

We also investigate the effect of the wind for the robustness analysis. The worst-case

results show that the absence of wind greatly reduces the maximum dynamic loads, but

not apparently affects other objectives. It indicates that the effects of wind must be

considered in the simulation.

From the concept of effective dimension, the quasi-Monte Carlo based worst case valida-

tion should be more efficiency with a subset of uncertainties which are most important

to drive the objective functions. In Chapter 4, the variance-based sensitivity analysis is

approved as a good method to identify the driven variables in a complex system without

any understanding of the mathematical expression of the model. As the real sensitivity

indices of these variables are unknown, one of possible method is to employ the driven

variables for worst case validation. An ideal worst-case value should not be much smaller

than the worst-case value without any dimension reduced. However, the original pur-

pose is to carry out the sensitivity analysis for the entire 118 uncertainties. The test



Chapter 8. Conclusions and future works 179

case actually only has 15 uncertainties. We realized that we cannot afford such a large

computation cost for the entire 118 uncertainties. Thus, we selected 15 uncertainties.

These 15 uncertainties are not randomly selected, but based on our understanding of

the dynamic model that these uncertainties highly possible drives the dynamic loads

of the launch vehicle. The worst-case results based on these 15 uncertainties and the

driven variables demonstrate our inference. Inevitably, the worst-case value based on

the 15 uncertainties for other objective functions are heavily affected and much smaller

than the worst-case value when all 118 uncertainties are involved. Due to the expensive

computation of variance based sensitivity analysis for the 118 uncertainties, it drives us

to propose an cheap computation for sensitivity analysis.

So an emulator for the launch vehicle model is a possible solution to reduce the computa-

tional burden. In the early research stage, we tried a few methods to train a polynomial

model for the Launch vehicle model. However, all the polynomial models are unable

to give a good mapping between inputs and outputs. We realized that a polynomial

model may be very difficult to be a high quality emulator for a complex nonlinear sys-

tem. So our focus shift to the statistic model. The reason why a statistic model is also

potentially available for sensitivity analysis is that we know the variance based sensi-

tivity analysis only needs the informations of variance and mean value of the outputs.

These informations are exactly a statistic model provided. In Chapter 5, we success-

fully trained a statistic model based on the objective function f1 (Maximum dynamic

loads over the time) with the selected 15 uncertainties. The emulator provides a good

posterior distribution and the first order sensitivity indices are successfully estimated

with a good quality. However, the quality of total sensitivity indices is not optimistic.

The potential reasons are that: (1) the quality of model is not high enough;(2) and the

accuracy of approximation for the multiple integration to calculate the expectation of

posterior distribution is not very good.

The purpose of probability sensitivity analysis is to obtain a statistic model to identify

the driven variables for the ELV launch vehicle model based on the 118 uncertainties.

Unfortunately, we are not able to obtain an acceptable quality of Gaussian process model

at present based on the objective f1. The best quality we achieved so far is 0.74. An

unqualified statistic model, especially with a high dimension of uncertainties, brings a

huge approximate error for the expectation of posterior distribution. The difficulties of

getting an acceptable statistic model with such a high dimension of uncertainties are
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that (1) the number of training points are not sufficiently and properly cover the uncer-

tainty space; (2) an optimized set of hyperparameters are difficult to obtain with high

quality; (3) and good inferences for the mean and covariance functions are not easy to

make. These difficulties are actually not easy to address. For examples: (1) for the

first difficulty, it is impossible to simply increase the number of training points because

the Matlab will stop the simulation and an error message pops up to show that the

memory of Matlab is exceeded when the number of training points exceeds 8000; (2) for

the second difficulty, a global optimization algorithm is ideally to employed to find a set

of hyperparameters rather than a local optimization algorithm to avoid a local optimal

solution. Moreover, the number of iteration needs to be increased which means the time

spending on the optimization is also heavily increased. So the results of probability sen-

sitivity analysis based on the 118 uncertainties given in the thesis have a considerable

error. Nevertheless, the results of worst case validation based on the driven variables

identified by the probability sensitivity analysis is good and acceptable. Although the

error brought by the meta-model in probability sensitivity analysis leads a improper

rank for many uncertainties, the four most driven uncertainties are till remained in the

top four ranks. In the future research, more efforts are needed in order to obtain an

acceptable meta-model, including a better understanding of the launch model and the

properties of different mean and covariance functions. Moreover, the probability analysis

for other objective functions are able to carry out if necessary by repeating the process

of probability sensitivity analysis based on objective function f1.

8.2 Summary of contributions

The detailed contributions of this work are presented in Chapter 1.3. To summarize,

in our research we have proposed the use of the quasi-Monte Carlo method to perform

robustness analysis in the aerospace industry. We demonstrated that the quasi-Monte

Carlo method is superior to the Monte Carlo method that is currently in wide use in

that industry. We also showed that using the quasi-Monte Carlo method to generate the

initial population for different evolutions also significantly improves the performance of

robustness analysis.
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We also introduced the Gaussian process (GP) for probabilistic optimization in order to

further reduce the computational burden. We showed that GP-based optimization can

reduce computing time remarkably without losing too much accuracy.

Variance-based sensitivity analysis is a method of identifying the driven parameters

of a complex nonlinear model. However, its drawback is its heavy computational cost.

In our research, we proposed a novel strategy for computing the probabilistic sensitivity

indices based on the GP model. The results show that our method can successfully sort

out the key parameters of the first-order sensitivity indices.

8.3 Future Works

In this thesis, the meta-model generated by the Gaussian process employs only the linear

functions for the inference of polynomial functions Φ(x)1. This linear inference may not,

however, be able to sufficiently express the nonlinear relationship between inputs and

outputs.Thus, refining the quality of the meta-model is a goal of future work.

Moreover, for the current GP-based sensitivity analysis, we sorted out the driven pa-

rameters using the first-order sensitivity indices. Unfortunately, these indices do not

contain information on the interaction between each uncertain parameter (no higher-

order terms). The ideal sensitivity analysis results should be based on total sensitivity

analysis. In the current research, the results obtained by our inference for total sensi-

tivity analysis is not excellent, and, therefore, an improved inference for total sensitivity

analysis is a desired goal of future research in pursuit of more excellent results.

1Details can be found in Chapter 2.4



Appendix A

Results of robustness analysis

based on other objective functions

A.1 Other recommend objective functions

The f is objective function or cost function

They are:

(1) f1 = max(Qα(Mach)) - The maximum dynamic load over the speed (Mach), [Pa

Deg]

(2) f2 = max(DV Z(t)) - The maximum drift velocity of Z axis over the time, [m/s]

(3) f3 = max(DP Z(t)) - The maximum drift position of Z axis over the time ,[m]

(4) f4 = max(DV Y (t)) - The maximum drift velocity of Y axis over the time ,[m,s]

(5) f5 = max(DP Y (t)) - The maximum drift position of Y axis over the time , [m]

(6) f6 = max(AoAT (t)) - The maximum total angle of attack ,[Deg]

There are also 18 extended objective functions in terms of the 6 objective functions above

by cooperating with a function metric. Three types of function metrics are introduced

in our research. They are:

Metric type 1 (we will use Metric 1 in later sections) is defined as:

Metric 1 =


∑

(y(i)− y ref (i)|y(i)− y ref (i) > 0) if ∃y(i)− y ref (i) > 0∑
y(i)− y ref (i) if @y(i)− y ref (i) > 0

182
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where y is a discrete output of an objective over the time or speed, y ref is the reference

trajectory(also called constraint in our research) of that output over the time or speed.

Metric 1 is actually measures the summation of difference between the output of an

objective and reference trajectory of that output over the time or speed. However, we

only consider the positive difference if any positive difference exists; on the other hand,

all negative difference are considered if no positive difference exists.

In our research, the y can be:

y1 = Qα(Mach)

y2 = DV Z(t)

y3 = DP Z(t)

y4 = DV Y (t)

y5 = DP Y (t)

y6 = AoAT (t)

For all of the extended objective functions, we aim to find the maximum objective value.

For instance, the objective function based on Metric 1 for Qα(Mach) is:

Metric 1 = max


∑

(Qα −Qα ref |Qα −Qα ref > 0) if ∃Qα −Qα ref > 0∑
Qα −Qα ref if @Qα −Qα ref > 0

The Metric type 2 is defined as:

Metric 2 = max


√∑

[(Qα −Qα ref |Qα −Qα ref > 0)]2 if ∃Qα −Qα ref > 0

−
√∑

[Qα −Qα ref ]2 if @Qα −Qα ref > 0

The Metric 2 suggests that only each individual positive difference is considered if any

positive difference is confirmed; otherwise, all the negative difference are considered by

assigned with a negative sign ahead.

Similarly, the Metric type 3 only considers the maximum difference and is defined as:

Metric 3 = max(y − y ref ) (A.1)

Based on the equation A.1, the remaining 17 objective functions can be defined by

following this principle. The reason why we would like to introduce these extended

objective functions is that we want to investigate the violations happened during the

entire simulation.
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A.2 Results

The Table A.1 gives the results of worst case validation based on Metric 1, Metric 2 and

Metric 3 for Qα . Under each Metric, the worst values in terms of different sampling

methods that are mentioned above. Note that the sampling sequences are exactly same

based on Halton, Sobol and Faure method for all kind of cost functions because they

are deterministic sampling methods. From this table, it is clear that the differences

Qα Metric 1 Metric 2 Metric 3

Monte Carlo 3.6819× 105 9.3038× 104 3.2519× 104

Sobol 1.4329× 106 2.5548× 105 7.3935× 104

Halton 4.9686× 105 1.2030× 105 3.5292× 104

Faure 5.7623× 105 1.1765× 105 3.2336× 104

Table A.1: The worst case values based on different distribution methods for cost
function metric Metric 1 to Metric 3 in terms of Qα(mach)

of worst-case value between different sampling methods in terms of Metric 1, Metric 2

and Metric 3 are obvious. These differences suggest that the surface of the objective

functions are not flat and the strength of each sampling method could be demonstrated

by its worst-case value. In practices, Neither quasi-Monte Carlo and Monte Carlo can

guarantee the achievement of largest worst-case value based on the different objective

functions among those sampling methods. However, in this case, the quasi-Monte Carlo

method demonstrates that it has a better worst-case value over the Monte Carlo method

in general. Especially, the Worst-case values achieved by Sobol sequence is much larger

than any other method based on the three extended objective functions. This results

shown in this table suggest that the worst case results obtained by quasi-Monte Carlo

at least won’t be much worse than the results obtained by Monte Carlo method again.

By following the same analysis procedure for f1 above, we would like to plot the con-

vergence figures for each cost function based on different distribution methods to reveal

some additional information.

The Figure A.1 is the convergence plot for Qα in terms of the Metric 1. From the

figure, the Sobol sequence has the overall best performance of the convergence over

other methods and a good candidate for population initialization of DE in next section.

Faure sequence has a better cost value between the sampling number 100 and 150. The

eventual cost value is much difference between the Sobol sequence and other methods.
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Figure A.1: The convergence plot for Qα based on Metric 1

However, there is no direct information to present that this objective values is rated to

the robustness of the VEGA launch model because of the definition of the objective func-

tion. So it is no idea whether the launch vehicle is stable or not under these worst-case

conditions of variables. However, according the definition of Metric 1, we know that

it measures the sum of the difference between the output response and the reference

trajectory over the time. A positive summation only happens when the output response

is over the reference trajectory at some mach number. In this case, the objective values

are all positive which suggests the violation is happened during the ascending mission

in P80 stage of the ELV launch vehicle under the worst-case situation.

So the worst-case results can be expected to suggest one of the following two completely

different situations:

(1) The value of Qα at some time span (could be the entire time span )is much higher

than the reference value if a objective values are positive.

(2) The value of Qα at the entire time span is much smaller than the reference value if

a objective values are negative.

The convergence plot is able to provide the information about the worst-cases that be-

long to which situation. In fact, the Metric 1 is interested in finding a condition of

uncertainties that makes a large violation happened for a relatively long time period.
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Thus, two circumstances are greatly contributed to a large objective value: large volume

of violation and a long lasting time of violation. The way to find out which circumstance

plays a much more vital effects for the objectives can be analyzed by observing the Qα

plots over the mach number. For robustness analysis, the first situation mentioned above

is our expectation. We would like to find a condition of the uncertainties that makes the

Qα violates its constraint for a long time. This means the VEGA launcher may exceed

the load constraint for a longer time period of risk.

The perturbation bar plot of the uncertainties in terms of the worst-cases is given in the

Figure A.2. Except condition of worst-case uncertainty vector can be observed from the

bar plot, there is few extra information that could be inferred from this figure. Based on

the plots inn the Figure 4.2 and A.2, the biases for each uncertainties in the worst-case

of Faure, Halton and Sobol sequences are identical. it means the condition of worst-case

uncertainty vectors are exact same under the two different objective functions based on

Sobol, Halton and Faure sampling methods. Moreover, compared the biases of Faure

and Sobol sequence in this case, a large bias of some some uncertainty may plays a

dumpling effects for the objective functions because the worst-case value obtained by

Sobol sequence is much higher than the worst-case value obtained by Faure sequence.

Similarly as Figure 4.2, we can identify 12 uncertainties with pattern of interesting ac-

cording to their biases.

According to the analysis of the convergence plot, the Qα output response over the mach

number in Figure A.6 gives the answer that how much contribution is made by the two

circumstances ‘large volume of violation’ and ‘long lasting time of violation’ based on

worst-case results for each sampling method. From the figure, the values of Qα based on

all type of distribution methods are above the reference trajectory over a period. These

violations match the conclusions made by analyzing the objective values above. In the

figure, a large violation is occurred but only lasts for a short period under each worst-

case result. This phenomena infers that the circumstance ‘Large volume of violation’

affects the objective function most in this case. So the VEGA launcher only suffers a

shot time period of risk under a specific range of mach number during the ascending

phase. Especially for the Qα plot of Monte Carlo method, although the worst-case re-

sults doesn’t have the largest Qα value over the all sampling points, it has the largest
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(b) Variables from 16 to 30 under different worst-case scenario

Figure A.2: The worst case uncertainties (1 -30) for f1 in terms of Metric 1
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(b) Variables from 46 to 60 under different worst-case scenario

Figure A.3: The worst case uncertainties (31 -60) for f1 in terms of Metric 1
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(b) Variables from 76 to 90 under different worst-case scenario

Figure A.4: The worst case uncertainties (61 -90) for f1 in terms of Metric 1
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Figure A.5: The worst case uncertainties (91 -118) for f1 in terms of Metric 1
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Figure A.6: TheQα plot of the worst case in terms of Metric 1 by different distribution
methods

area that exceeds the constraint.

For other five criteria such as AoAT (t), the details of analysis for the worst-case re-

sults obtained based on the Metric 1 method is not provided in order to retain a friendly

reading interface of this thesis. The analysis procedure for the remaining five criteria in

terms of Metric 1 is exactly same as the procedure introduced in this case.

To analyze the worst-case results obtained based on the cost function constructed by the

method of Metric 2 in terms of the criteria y1, we just follow the steps of the analysis

for the worst-case results based on the cost function constructed by Metric 1 in terms of

y1. The convergence plot, perturbation bar plot and the Qα response plot are provided

respectively. It measures the root of the accumulative squared difference between the

output response and reference trajectory. Similar as Metric 1, the Metric 2 also consider

the violation prior. Only the violation part will be considered if the output response

exceeds the reference trajectory at some time being whereas a negative sign is assigned if

no violation happens during the entire simulation. The objective function is applied for
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maximization only. The difference between the Metric 1 and Metric 2 is that the Metric

2 weakens the effects made by a ‘impulse-shape’ output response in a short time window

for an objective function. A constant high volume of violation with a long lasting time

is more welcome by Metric 2 than Metric 1.

Similar as Metric 1, the worst-case results can also be expected to suggest one of the

followed two situations:

(1) The value of Qα at some time span (could be the entire time span )is much higher

than the reference value if a positive objective value exists.

(2) The value of Qα at the entire time span is much smaller than the reference value if

only the negative objective exists.

The convergence figure is provided in Figure A.7. From the figure, the convergence
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Figure A.7: The convergence plot for Qα based on Metric 2

based on Sobol sequence has the best overall performance. The maximum cost value

after the 150 evaluations of Sobol sequence is much larger than cost values based on

other methods. It also has a higher objective value in first 100 evaluations till the Faure

sequence takes the first place of largest objective value between 100 and 150 evaluations.

Thus, the Sobol is also ideally to initialize the population for DE in next chapter based

on cost function of Qα in terms of Metric 2. The Monte Carlo method is also performed
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not very well in this case. In summary, according to the convergence figure, the differ-

ence between the Monte Carlo method and quasi-Monte Carlo is obvious. Similar as

Metric 1, the cost function constructed by Metric 2 is also able to reveal any constraint

violation. A large positive cost value suggests that the value of Qα is much higher than

the constraint over a time span. The weights of two circumstances ‘large volume of

violation’ and ‘long time lasting of violation’ are still unknown until by observing the

Qα over the mach number which will be given later.

The figure followed is the bar plot of the uncertainties perturbation.

In Figure A.8, the biases of each uncertainty under the four worst-cases are exactly same

as the perturbations in Figure A.2. It means the worst-case values based on Metric 1

and Metric 2 of the four sampling methods have same condition of uncertainties. This

results indicates that the circumstance ‘large volume of violation’ still retain a vital po-

sition in contribution of the largest objective value.

The Qα figure is given below. There is not doubt that the Qα plots in Figure A.12 and

A.6 are identical because the worst-case is under the same condition of uncertainties.

This is not a bad at all even the worst-case results obtained by Metric 1 and Metric 1 are

exactly same. The reason is the Metric 2 still find out a condition of uncertainties that

makes the VEGA launch vehicle under a risk during the ascending phase. The results

in this case infer that the weight of circumstance ‘large volume of violation’ is too large

and it makes great contribution to the objective value even we try to reduce the effects

made by a large violation in a short time span.

The analysis for the results of worst case validation based on Qα by employing the

Metric 3 method still follows the same processes of the two cases mentioned above. The

Metric 3 is actually looking for a maximum difference between the output response and

reference trajectory.

Similar as Metric 1 and 2, the worst-case results can also be expected to suggest one of

the followed two situations:

(1) The value of Qα at a time point is higher than the reference value if the objective

value is positive.

(2) The value of Qα at the entire time span is smaller than the reference value if the

objective value is negative.
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(b) Variables from 16 to 30 under different worst-case scenario

Figure A.8: The worst case uncertainties (1 -30) for f1 in terms of Metric 2
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(b) Variables from 46 to 60 under different worst-case scenario

Figure A.9: The worst case uncertainties (31 -60) for f1 in terms of Metric 2
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(b) Variables from 76 to 90 under different worst-case scenario

Figure A.10: The worst case uncertainties (61 -90) for f1 in terms of Metric 2
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(b) Variables from 106 to 118 under different worst-case scenario

Figure A.11: The worst case uncertainties (91 -118) for f1 in terms of Metric 2
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Figure A.12: The Qα plot of the worst-case in terms of Metric 2 by different distri-
bution methods

Note that, the Metric 3 only consider the maximum difference at a single time point,

rather than a time span in Metric 1 and 2. When the reference trajectory is not straight

line, the point(condition of uncertainties) with a maximum Qα value over all of the eval-

uations doesn’t have to be the point of maximum difference. The maximum difference

could happens at any time spot. The maximum difference could also mean the volume

of the violation over the constraints is the maximum. The maximum violation is po-

tentially more dangerous for the VEGA launch vehicle in the P80 phase. On the other

hand, if the reference trajectory is a straight line, the point with the maximum Qα over

the entire evaluations must be the point with the maximum difference.

Firstly, the convergence plot is given in Figure A.13 From this figure, the Sobol sequence

has the overall best performance. The difference of maximum objective value between

the Sobol sequence and other sampling methods are obvious. The sobol sequence is a

better choice to generate the initial population for DE in the next section. The positive

objective during the evaluations suggests that the violation is existed.

The next figure is the bar plot of the uncertainties and is shown in Figure A.14.
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Figure A.13: The convergence plot for Qα based on Metric 3

The bar plots in this figure is exactly same as the plots in the Figure ??. This means the

condition of uncertainties of the worst-case is same. It also suggests that the point with

the maximum Qα value over the entire evaluations is same as the point with maximum

difference between the Qα and its reference trajectory.

The Qα plots based on Metric 3 is given in Figure A.18. From the worst-case results

based on the f1 and y1 by employing Metric 1,2 and 3, the same condition of uncer-

tainties are obtained for Sobol, Faure and Halton sequence. As each objective function

represents a different risk situation, these conditions of uncertainties should be really be

carefully to investigate in order to avoid any risk during the ascending phase.

For the remaining objective criteria, only the tables of cost values are given. The plots for

output response are not provided for a friend reading interface. The Table A.2 presents

the objective values DV Z(t) (The drift of velocity in Z axis)based on the different dis-

tribution methods. From the table, the Sobol sequence has an overall best performance.

But the advantage of the quasi-Monte Carlo is obvious but not extraordinary. Especially

the difference of the cost value for Metric 2 is very small. The remaining tables that

contains the objective values in terms of DP Z(t),DV Y (t), DP Y (t) and AoAT (t) are

given below.
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(a) Variables from 1 to 15 under different worst-case scenario
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(b) Variables from 16 to 30 under different worst-case scenario

Figure A.14: The worst case uncertainties (1 -30) for f1 in terms of Metric 3
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(a) Variables from 31 to 45 under different worst-case scenario
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(b) Variables from 46 to 60 under different worst-case scenario

Figure A.15: The worst case uncertainties (31 -60) for f1 in terms of Metric 3
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(a) Variables from 61 to 75 under different worst-case scenario
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(b) Variables from 76 to 90 under different worst-case scenario

Figure A.16: The worst case uncertainties (61 -90) for f1 in terms of Metric 3
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(a) Variables from 91 to 105 under different worst-case scenario
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(b) Variables from 106 to 118 under different worst-case scenario

Figure A.17: The worst case uncertainties (91 -118) for f1 in terms of Metric 3
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Figure A.18: The Qα plot of the worst-case in terms of Metric 3 by different distri-
bution methods

DV Z(t) Metric 1 Metric 2 Metric 3

MC 6.5858× 104 1.1904× 103 36.8863

Sobol 6.7640× 104 1.2265× 103 37.9781

Halton 6.2259× 104 1.1147× 103 41.7372

Faure 6.5842× 104 1.1931× 103 32.3711

Table A.2: The worst case values based on different distribution methods for cost
function metric Metric 1 to Metric 3 in terms of DV Z(t)

The Table A.3 presents the cost values in terms of the objective criterion DP Z(t) (The

position drift in Z axis ). The Table A.4 gives the cost values in terms of the objective

criterion DV Y (t)(Velocity drift in Y axis). The Table A.5 gives the cost value in terms

of the objective criterion DP Y (t)(Drift of position in Y axis). The Table A.6 presents

the cost values in terms of the objective criterion AoAT (t). According to the worst-case

results in the Table [4.1 ∼ A.6], the quasi-Monte Carlo demonstrate its effectiveness is

at least similar as the crude Monte Carlo for the VEGA launch vehicle worst-case vali-

dation with the high dimension of uncertainties. For all of objective functions, such as

f1,f3 and f5, the quasi-Monte Carlo has a much larger worst-case value than the Monte
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DP Z(t) Metric 1 Metric 2 Metric 3

MC 2.2243× 106 4.0377× 104 1.3490× 103

Sobol 2.1732× 106 3.9602× 104 1.3493× 103

Halton 2.0573× 106 3.6758× 104 1.6295× 103

Faure 2.0545× 106 3.7039× 104 1.2179× 103

Table A.3: The worst case values based on different distribution methods for cost
function metric Metric 1 to Metric 3 in terms of DP Z(t)

DV Y (t) Metric 1 Metric 2 Metric 3

MC 7.0524× 104 1.2847× 103 37.2564

Sobol 6.5656× 104 1.2216× 103 36.4732

Halton 6.3046× 104 1.1422× 103 41.7374

Faure 7.7164× 104 1.3866× 103 34.6496

Table A.4: The worst case values based on different distribution methods for cost
function metric Metric1 to Metric 3 in terms of DV Y (t)

DP Y (t) Metric 1 Metric 2 Metric 3

MC 2.1811× 106 3.9771× 104 1.4375× 103

Sobol 2.0774× 106 3.8075× 104 1.3230× 103

Halton 2.0288× 106 3.6399× 104 1.6026× 103

Faure 2.2993× 106 4.1653× 104 1.3258× 103

Table A.5: The worst case values based on different distribution methods for cost
function metric Metric1 to Metric3 in terms of DP Y (t)

AoAT (t) Metric 1 Metric 2 Metric 3

MC 6.0353× 103 109.3784 2.9997

Sobol 6.0779× 103 110.3587 2.9995

Halton 6.0244× 103 109.6962 2.9999

Faure 5.8920× 103 106.3448 2.9994

Table A.6: The worst case values based on different distribution methods for cost
function metric Metric 1 to Metric 3 in terms of AoAT (t)

Carlo. Although the difference of the worst-case value is small for most objective crite-

ria, the quasi-Monte Carlo obtains a better worst-case value than the value obtained by

Monte Carlo overall. Only there is a few cases that the Monte Carlo method obtains a

slightly better worst-case value than some methods of the quasi-Monte Carlo. Generally

speaking, the quasi-Monte Carlo has a better effectiveness for robustness analysis than

the crude Monte Carlo.
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