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ABSTRACT
We study the effect of dynamical tides associated with the excitation of gravity waves in an
interior radiative region of the central star on orbital evolution in observed systems containing
hot Jupiters. We consider WASP-43, OGLE-TR-113, WASP-12 and WASP-18 that contain
stars on the main sequence (MS). For these systems there are observational estimates regarding
the rate of change of the orbital period. We also investigate Kepler-91 that contains an evolved
giant star. We adopt the formalism of Ivanov et al. for calculating the orbital evolution. For the
MS stars we determine expected rates of orbital evolution under different assumptions about
the amount of dissipation acting on the tides, estimate the effect of stellar rotation for the
two most rapidly rotating stars and compare results with observations. All cases apart from
possibly WASP-43 are consistent with a regime in which gravity waves are damped during
their propagation over the star. However, at present this is not definitive as observational errors
are large. We find that although it is expected to apply to Kepler-91, linear radiative damping
cannot explain this dissipation regime applying to MS stars. Thus, a non-linear mechanism
may be needed. Kepler-91 is found to be such that the time-scale for evolution of the star is
comparable to that for the orbit. This implies that significant orbital circularization may have
occurred through tides acting on the star. Quasi-static tides, stellar winds, hydrodynamic drag
and tides acting on the planet have likely played a minor role.

Key words: hydrodynamics – celestial mechanics – planet–star interactions – binaries: close –
stars: oscillations – planetary systems.

1 IN T RO D U C T I O N

In recent years, the discovery of many extrasolar planets orbiting
in close proximity to their central stars has highlighted a situa-
tion where tidal interactions are likely to have been important in
determining the formation and subsequent orbital evolution of the
systems (e.g. Terquem et al. 1998; Barker & Ogilvie 2009).

In particular, hot Jupiters may be formed by a tidal capture into
a highly eccentric orbit followed by orbital circularization. During
this process tidal dissipation both in the planet and the star can
be significant (see e.g. Rasio & Ford 1996; Ivanov & Papaloizou
2007, 2010, 2011, and references therein). In the latter case the tidal
dissipation may lead to the planet merging with the central star at a
later stage of its evolution (e.g. Villaver & Livio 2009).

An understanding of these processes requires an analysis of the
tidal interaction of the planet with the central star and its calibration
through comparison with observations. In particular, the rate of
orbital evolution can be inferred from observed orbital period
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changes (see Hebb et al. 2009; Hellier et al. 2009; Hoyer et al.
2016a; Jiang et al. 2016; Maciejewski et al. 2016) making such a
calibration possible in principle. In order to proceed with this we
consider tides raised on the central star by planets on near-circular
orbits as these are relevant to observed systems. Orbital circular-
ization can also occur but tides raised on the planet could play a
role there. We also focus on dynamical tides as we anticipate that
quasi-static tides are unlikely to be important on account of the
mismatch of the tidal forcing frequency and the inverse convective
turn over time (see Section 5.2.1 below). Dynamical tides are found
to be associated with the excitation of potentially resonant gravity
or g modes.

Ivanov et al. (2013, hereafter IPCh) determined the tidal response
associated with the excitation of a regular dense spectrum of normal
modes, such as provided by the low-frequency rotationally modified
g modes, by a perturbing tidal potential. They obtained expressions
from which the orbital evolution could be obtained. These depend on
the amount of dissipation present. Two regimes were highlighted.
The regime of moderately large damping (MLD) for which the
excited waves are damped before reaching an appropriate bound-
ary, the centre for a radiative core and the surface for a radiative
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envelope. In this regime, the effect on the orbit is independent of the
details of the dissipation process. Note that the same assumption
of the validity of MLD regime is implied in the well-known the-
ory of dynamical tidal interactions of Zahn (1970, 1977) which is,
however, contrary to the IPCh approach, formally valid only in the
asymptotic limit of tidal forcing frequency tending to zero, and for
stars with an idealized structure. In addition, the expressions for the
orbital evolution are applicable to the case of very weak dissipation
where resonant responses may occur.

It is the purpose of this paper to apply the formalism of IPCh
for determining the effect of dynamical tides on orbital evolution to
observed exoplanet systems containing close orbiting hot Jupiters.
In particular we consider WASP-43, OGLE-TR-113, WASP-12 and
WASP-18 that contain stars on the main sequence (MS) with hot
Jupiter companions for which there are observational estimates of,
or upper bounds for, the magnitude of the rate of change of their
orbital periods. In addition, we consider the system Kepler-91 that
contains a star that has evolved up the giant branch and a hot Jupiter
companion.

For the MS stars we determine the expected rates of orbital evo-
lution, assuming the orbit to be circular, either under the assumption
that the MLD regime applies, or under the assumption that damp-
ing is weak with the system having evolved so that the tidal forcing
frequency is mid-way between neighbouring potentially resonant
normal mode frequencies and compare results with observations.
We also estimate the effect of rotation for the two most rapidly rotat-
ing cases by simply allowing for the shift of forcing frequency. All
cases apart from WASP-43 can be viewed as being consistent with
the MLD regime; however, it has to be emphasized that in general
limits on observational errors are large so that this is not definitive.
We remark that although it can be applied to the giant in Kepler-91,
we find that the MLD regime is not expected to operate in the MS
stars if linear radiative damping is the only available dissipation
mechanism. Thus, a non-linear mechanism may also be required.

Kepler-91 is found to be in a configuration where the time-scale
for evolution of the star is comparable to the time-scale for evo-
lution of the orbit. In particular this implies that significant orbital
circularization may have occurred as a result of tides in the past.

The plan of this paper is as follows. We begin by giving some ba-
sic equations and definitions in Section 2, moving on to present
the equations governing the evolution of orbital parameters in-
duced by tides in Section 2.1. We evaluate the decay rate due
to radiative damping of the high-order g modes, which are ex-
pected to be excited in tidal interactions, in Section 2.2, develop-
ing a criterion for the excited modes to be in the MLD limit in
Section 2.3.

We describe the procedure we use to obtain solutions of the equa-
tions determining orbital evolution under tides in Section 3, giving
properties of the stars, and the orbits of their planetary companions,
for the systems we study in this paper in Sections 4, 4.1 and 4.1.1.
The decay rates of the normal modes expected to be excited by tides
acting on the stars on the MS, and the appropriateness of the MLD
limit for them, are then considered in Section 4.1.2.

We move on to describe our modelling of the evolved star in
Kepler-91 in Section 4.2. We consider the properties of appropriate
normal mode decay rates in Section 4.2.1, establishing that the MLD
limit applies to the current configuration of star and planet.

We determine the expected tidal evolution for the systems we
study in Section 5, giving results for systems with stars on the MS
in Section 5.1 and for the orbital evolution of Kepler-91b in Section
5.2. For Kepler-91 we consider effects due to quasi-static tides, a
possible stellar wind and hydrodynamic drag, which are discussed

in Sections 5.2.1, 5.2.2 and 5.2.3, respectively. Finally, we discuss
our results and conclude in Section 6.

2 BA S I C D E F I N I T I O N S A N D E QUAT I O N S

We consider a binary system consisting of a star of mass M with
radius R∗ that is orbited by a planet of mass m, the mass ratio being
q = m/M. The star may in principle be rotating, but we assume that
angular velocity of rotation is much smaller than the characteristic
angular frequency of the normal modes excited by tides, the latter
being expected to be comparable to the orbital mean motion.

The planet moves around the star on an approximately circular
orbit with period Porb of the order of days. The orbital semimajor
axis is a = (GM/�2

orb)1/3, where G is gravitational constant and
�orb = 2π/Porb is the Keplerian mean motion or angular velocity.
The orbital eccentricity, e, is such that e � 1. We assume that the
stellar rotation axis is aligned with the direction of orbital angular
momentum, and that the star rotates uniformly and relatively slowly
with angular velocity, �, such that � � �orb � �∗, where we
have introduced a characteristic frequency associated with the star,
�∗ = √

GM/R3∗ .

2.1 Evolution of orbital parameters induced by tides

Following IPCh we write the equations governing the evolution of
the semimajor axis a, and the eccentricity e, as

ȧ

a
= − 2

Ta

and
ė

e
= − 1

Te

, (1)

where Ta and Te are characteristic time-scales for the evolution of
the semimajor axis and eccentricity, respectively. For a non-rotating
primary and near-circular orbit IPCh give expressions for Ta and
Te in terms of quantities characterizing the orbit and the star in the
form

Ta = 40T∗
3π

[
Q−2D−1

]
2

and Te = 20

π
T∗/F (�orb). (2)

Here

F (�orb) =
{

49

18

[
Q2D

]
3
− 3

4

[
Q2D

]
2
+ 15

2

[
Q2D

]
1

}
(3)

and

T∗ = 1

16π3

(1 + q)5/3

q

(
Porb�∗

2π

)4/3 ∣∣∣∣dωj

dj

∣∣∣∣
j=j (k)

P 2
orb. (4)

Quantities enclosed in square brackets [..]k, with the subscript k,
being an integer, are functions of an eigenfrequency ωj=j(k). This is
found by evaluating the frequency offset �ωj,

�ωj = k�orb − 2� − ωj , (5)

for each normal mode eigenfrequency, ωj (j = 1, 2, . . . ) and choos-
ing j(k) to be the value of j for which the magnitude of the frequency
offset is minimal. This corresponds to selecting the particular mode
that is closest to being resonant with a component of the perturbing
tidal potential. Note that only the modes that are actually excited for
a specified k should be considered in this determination. Let us stress
that in practice we always have |�ωj=(k)| � k�orb − 2� ≈ ωj=j(k),
corresponding to a sufficiently dense spectrum of eigenmodes.

The quantity Qk in equations (2) and (3) is the overlap integral
evaluated for the normal mode with ω = ωj=j(k) (see equation 47
of IPCh and the discussion that follows there). In principle, stellar
rotation affects the form of expressions (2)–(4), see IPCh. However,
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as we have indicated above, we consider only the case of a rela-
tively slowly rotating star, and, therefore, take into account only the
dominant effect for high-order modes, namely, the frequency shift
due to the presence of � in equation (5) (e.g. Goodman& Dickson
1998).

We set |dωj/dj|j=j(k) ≡ ωj+1 − ωj, the frequency difference be-
tween two neighbouring modes such that k�orb − 2� lies between
ωj and ωj+1. This is written as a derivative that is appropriate in the
limit of modes of high order (j � 1). It was explicitly evaluated in
IPCh for the case of high-order g modes in Sun-like stars. In this
case the expression (4) can be rewritten as

T∗ = (1 + q)5/3

√
6q

(
Porb�∗

2π

)4/3 (∫
D

dr

r
N

)−1

, (6)

where N is the Brunt–Väisälä frequency and the integral is over
a domain D that defines a radiative region in which g modes can
propagate. Note that we assume that k = 2 in equation (6) and below.
Thus, we use equation (6) when considering stars with radiative
interior and convective envelope, and in all other cases a more
general expression (4) is used.

We remark that equations (2)–(4) with D = 1 corresponding to
the limit of ‘moderately large viscosity’, or MLD described below,
can be found from equations (128), (131), (137) and (138) of IPCh.
The function D accounts for the influence of mode damping rate,
γ , assumed to originate from the action of either linear radiative
damping1 or non-linear effects. Note that γ replaces ν j(k), the decay
rate of a normal mode, as used in IPCh. Explicitly, D has the form

D = sinh(πκ) cosh(πκ)

sinh2(πκ) + sin2(πδ)
, (7)

where δ = |�ωj|/|dωj/dj|j=j(k), κ = γ /|dωj/dj|j(k). We remark that
D may be written as D = (κ/π)Aκ , where Aκ is given by equation
(44) of IPCh.

When κ > 1, D ≈ 1. In this MLD limit, tidal evolution does not
depend on the mode damping rate. Physically, this corresponds to
a situation when a wave packet excited in a star by tides decays in
course of its propagation over the star. This limit was implied in the
old theory of dynamic tides (Zahn 1970, 1977). Expressed quantita-
tively, the condition to be in this regime is that the time for a gravity
wave to propagate through the radiative region should exceed the
mode damping time (for more detail see below). When this is not
satisfied, the full expression for D must be used in equations (2) and
(3). In what follows we discuss whether the MLD limit applies, both
from the theoretical point of view, and whether this is supported by
observational data on the orbital evolution of exoplanetary systems
containing hot Jupiters, under the assumption that this evolution is
caused by tides.

We first make theoretical estimates in order to determine the
applicability of the MLD limit to systems with exoplanets. We
find that although the mechanism of radiative damping allows us to
justify it in the case of evolved stars this is inadequate for our models
of MS stars. In the latter case some non-linear mechanism of mode
energy dissipation has to be invoked to justify it. In the absence of
such a mechanism the opposite limit κ � 1 corresponding to weak
dissipation is valid. Then we have

D ≈ πκ

(πκ)2 + sin2(πδ)
. (8)

1 But note that any dissipative process that results in a radiation boundary
condition for waves propagating through the radiative domain of interest
leads to behaviour corresponding to the MLD regime (see IPCh).

We see from the tidal evolution equations (1)–(4) that in this case
tidal evolution rate is proportional to the mode damping rate unless
the system is very close to an exact resonance such that δ � κ . This
can be extremely rapid, but only near the centre of a resonance.
In such cases unless resonances can be maintained by a locking
process (see Witte & Savonije 1999, 2002; Fuller, Luan & Quataert
2016) systems would rapidly evolve away from such a configuration
so that they would be most likely to be found between resonances.
From the definitions just below equation (7), we see that mid-way
between resonances δ = 1/2 and accordingly in the limit of weak
dissipation,

D = πκ = πγ /|dωj/dj |j=j (k). (9)

This is the factor by which the evolution rates assuming that the
MLD limit holds has to be multiplied when the system is in fact in
the regime of very weak dissipation.

If resonances can be maintained through locking, tidal dissipa-
tion and evolution can be very rapid. This cannot occur in the MLD
regime as standing waves and strong resonances cannot be set up.
We remark that Witte & Savonije (1999, 2002) find that this mech-
anism is effective mainly for eccentric orbits and then it can lead
to efficient circularization. For short-period planets in near-circular
orbits, they find that orbital period evolution occurs on long time-
scales and is very much slower than expected the MLD regime
to operate. We now go on to develop estimates for the magnitude
of radiative damping that may be used to determine the regime of
dissipation that applies and evaluate D when dissipative effects are
very small.

2.2 Decay rate due to radiative damping

The decay rate is given of a g mode with frequency ω is given by
Unno et al. (1989) as

γ = 1

2ω2

∫
V

(δρ∗/ρ)(�3 − 1)∇ · F′dτ∫
V

ρ|ξ |2 dτ
. (10)

The density is ρ and the radiation flux is F. Eulerian perturbations
are donated with a prime and the Lagrangian variation is indicated
by a preceding δ. The normal modes we consider are such that
the angular dependence of ρ ′ is through a spherical harmonic with
indices l = |m| = 2. This will be taken as read in what follows. All
quantities in the integrals may in principle be expressed in terms of
ξ . This is facilitated in the quasi-adiabatic approximation. We then
have

δρ = ρ ′ + ξ · ∇ρ = 1

�1P
ρ(P ′ + ξ · ∇P ), (11)

where P is the pressure and �1 the first adiabatic exponent. We
remark that for g modes in the asymptotic low-frequency limit we
can set P′ = 0 in the above, then after use of hydrostatic equilibrium
we obtain

δρ = 1

�1P
ρξ · ∇P = −ρ2(�1P )−1ξ · g, (12)

where g is the acceleration due to gravity. We also have

δT = T ′ + ξ · ∇T = (�2 − 1)T (�2P )−1(P ′ + ξ · ∇P ), (13)

where T is the temperature and �2 and �3 are the second and third
adiabatic exponents, respectively. In the low-frequency asymptotic
limit this similarly yields

δT = −(�2 − 1)ρT (�2P )−1ξ · g. (14)
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The radiative flux is given by

F = −4acT 3

3κρ
∇T , (15)

where κ is the opacity, a is the radiation constant and c is the speed
of light. Linearizing and noting that as very short radial wavelengths
are expected in the limit of low-frequency g modes, we may retain
only the highest order radial derivatives of perturbations, we may
write

F′ → −4acT 3

3κρ
∇T ′ (16)

and

∇ · F′ → −4acT 3

3κρ
∇2T ′ → 4acT 3

3κρ
k2

r T
′, (17)

where kr is the radial wavenumber. Making use of the above approx-
imations in equation (10) we estimate the damping rate through

γω2
∫

V

ρ|ξ |2dτ

= 2
∫

V

ρξ ∗ · g(�3 − 1)ack2
r T

4ξ · g(−∇ + ∇ad)

3�1P 2κ
dτ, (18)

where ∇ = d log T/d log P and ∇ad = (�2 − 1)/�2. Note that the
integral on the right-hand side contains only the radial component
of the displacement, ξ r, whereas the integral on the left-hand side
contains in addition ξ⊥ ≡ |ξ − ξr r̂| ≡ |ξ ⊥| and we expect ξ⊥
� |ξ r|. For g modes in the asymptotic low-frequency limit we
have |krξr |2 ∼ |∇ · ξ⊥|2 and we may set |ξ |2 ∼ (k2

r r
2/(l(l + 1)) +

1)|ξr |2.
Using this in equation (18), we get

γω2
∫

V

ρ(r2k2
r + l(l + 1))|ξr |2dτ = 2l(l + 1)

×
∫

V

ρ|ξr |2g2(�3 − 1)ack2
r T

4(−∇ + ∇ad)

3�1P 2κ
dτ. (19)

To proceed further, we note that from the WKBJ approximation
(see e.g. IPCh),

k2
r = l(l + 1)

r2

(
N2

ω2
− 1

)
, (20)

and that for real kr,

ξr ∝ ρ−1/2r−3/2(N2/ω2 − 1)−1/4 exp(i�). (21)

Here the proportionality factor includes the angular dependence of
the mode through a spherical harmonic and the phase

� =
∫ r

r0

krdr + C0, (22)

with r0 and C0 being constants depending on the boundary condi-
tions.

Using equations (20) and (21) in equation (19) we obtain an
expression from which the decay rate may be readily calculated in
the form

γ

∫
D

N2

r(N2/ω2 − 1)1/2
dr = 2l(l + 1)

×
∫
D

g2(�3 − 1)acT 4(−∇ + ∇ad)(N2/ω2 − 1)1/2

3�1r3P 2κ
dr. (23)

In this work the domain of integration D is restricted to the wave
propagation region in the interior radiative region for which k2

r > 0
and we recall that for the modes of interest l = 2.

2.3 Criterion for being in the MLD limit

In order for the quasi-adiabatic approximation to be applicable to
a mode, we require γ /ω � 1. However, the condition for a dis-
turbance excited externally to be damped before it passes through
the radiative region where g modes can propagate is that the time
to move across the region with the group velocity be �γ −1. This
condition for being in the regime of MLD can be satisfied while the
quasi-adiabatic approximation is valid. An expression for estimat-
ing it can be found by first noting that in the WKBJ approximation
the normal modes satisfy (see e.g. IPCh)
∫
D

krdr = nπ + δ, (24)

where n is a positive integer and δ is a constant determined through
the boundary conditions and WKBJ connection formulae. Making
use of equation (20), from equation (24) we find that

dω

dn

∫
D

∂kr

∂ω
dr = π. (25)

Thus

πγ /(dω/dn) = γ

∫
D

(
∂ω

∂kr

)−1

dr. (26)

The right-hand side of equation (26) is the product of the time
to propagate through the region with the group velocity and the
mode decay rate. Accordingly we shall adopt the criterion to be in
the moderately dissipative regime that γ /(dω/dn) > 1. When it is
marginally satisfied a wave pulse has an amplitude reduction by a
factor, exp(π), on propagating through the propagation zone. We
remark that when γ /(dω/dn) = 1, at the centre of a resonance, from
equation (7) we find consistently that D = coth π = 1.004.

3 SO L U T I O N O F TH E E QUAT I O N S
D E T E R M I N I N G T H E E VO L U T I O N
O F T H E O R B I T U N D E R T I D E S

Equations (1)–(4), which govern the evolution of the orbital ele-
ments, are solved numerically according to the following procedure
(Chernov 2017). We initially generate a stellar model with param-
eters appropriate to a particular system we wish to study. We then
calculate eigenfrequencies and overlap integrals corresponding to
normal modes with frequencies in the range required to evaluate the
terms in equations (1)–(4), for the range of orbital periods of inter-
est, using the approach described in Christensen-Dalsgaard (1998).
Since these are relatively low-frequency modes they belong to g
mode branch of stellar pulsations. For these modes, self-gravity
plays a minor role and we neglect it, thus adopting the Cowling
approximation (Cowling 1941).

We then integrate equations (1)–(4) numerically in order to de-
termine the tidal evolution of the orbit after having specified initial
values for the orbital period, eccentricity and age of the system. In
this paper we consider tidal evolution in systems containing both
MS stars and evolved stars that have moved off the MS and along the
giant branch. In the latter situation the stellar evolution time-scale
can be comparable with the time-scale for orbital evolution under
tides. For such cases we generate a grid of models with different
ages so that time derivatives of a and e can be calculated for a stellar
model that self-consistently has the correct age.
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Table 1. Mass, radius, metallicity, effective temperature and an estimate of the age of the stars: WASP-43 (see Hoyer et al. 2016a; Jiang et al.
2016); OGLE-TR-113 (see Adams et al. 2010; Hoyer et al. 2016a); WASP-12 (see e.g. Hebb et al. 2009; Maciejewski et al. 2016) and WASP-18
(see Hellier et al. 2009). In each case the same quantities obtained from our numerical models of the stars are given below the observational
parameters. Note that for WASP-12 and WASP-18 there are two models A and B.

M R∗ [Fe/H] Teff Age

WASP-43 0.717 ± 0.025 M� 0.667 ± 0.01 R� −0.01 ± 0.012 4520 ± 120 K >0.4 Gyr
Model 0.717 M� 0.667 R� −0.011 4384 K 0.75 Gyr
OGLE-TR-113 0.78 ± 0.02 M� 0.765 ± 0.025 R� 0.14 ± 0.14 4751 ± 130 K 0.7
Model 0.78 M� 0.721 R� 0.14 4753 K 0.69 Gyr
WASP-12 1.35 ± 0.14 M� 1.599 ± 0.071 R� 0.3 ± 0.1 6300 ± 150 K 1.7 ± 0.8 Gyr
Model A 1.32 M� 1.631 R� 0.243 6445 K 1.53 Gyr
Model B 1.32 M� 1.696 R� 0.243 6350 K 1.77 Gyr
WASP-18 1.25 ± 0.13 M� 1.216 ± 0.067 R� 0.0 ± 0.09 6400 ± 100 K 1.0 ± 0.5 Gyr
Model A 1.24 M� 1.245 R� 0.0 6279 K 0.68 Gyr
Model B 1.24 M� 1.358 R� 0.19 6398 K 1.08 Gyr

Table 2. Mass, radius, orbital period and the observed rate of change of orbital period of exoplanets: WASP-43b (see Hoyer et al. 2016a;
Jiang et al. 2016); OGLE-TR-113b (see Hoyer et al. 2016a); WASP-12b (see Hebb et al. 2009; Maciejewski et al. 2016; Patra et al. 2017) and
WASP-18b (see Hellier et al. 2009). In the case of WASP-43b the larger value of the orbital decay rate quoted was taken from Jiang et al. (2016)
and the smaller value was obtained from Hoyer et al. (2016b).

m Rpl Porb dPorb/dt

WASP-43b 2.052 ± 0.0534 MJ 1.036 ± 0.019 RJ 0.8135 d −0.0289 ± 0.0077 s yr−1; −0.00002 ± 0.0066 s yr−1

OGLE-TR-113b 1.24 ± 0.17 MJ 1.11 ± 0.05 RJ 1.4325 d −0.001 ± 0.006 s yr−1

WASP-12b 1.404 ± 0.099 MJ 1.736 ± 0.092 RJ 1.0914 d −0.0256 ± 0.0040 s yr−1; −0.029 ± 0.003 s yr−1

WASP-18b 10.30 ± 0.69 MJ 1.106 ± 0.072 RJ 0.9415 d <0.02 s yr−1

4 PRO P E RTI E S O F TH E S TA R S A N D T H E I R
P L A N E TA RY C O M PA N I O N S IN TH E S Y S T E M S
STUDIED

4.1 Main-sequence stars

In this section we consider the three systems containing MS stars,
WASP-43, OGLE-TR-113 and WASP-12 in some detail. Each of
these systems contains a planet with mass of around one Jupiter
mass. There is also a measured rate of change of orbital pe-
riod with time. In order to construct models we use the publicly
available stellar evolution code Modules for Experiments in Stel-
lar Astrophysics (MESA; see Paxton et al. 2011, 2013, 2015, and
http://mesa.sourceforge.net/). We give the main observational pa-
rameters for the stars we have considered in Table 1 together with
the corresponding quantities for our associated numerical models.
In Table 2 we show masses, radii, orbital periods and their published
observed rates of change, Ṗorb, together with corresponding error
bars.

Additionally, we consider the system WASP-18. For this system
only an upper limit for orbital change is available, see Wilkins
et al. (2017). We check whether or not this upper limit is consistent
with the assumption that MLD regime operates. Main observational
parameters of the star and the planet and properties of our two
numerical stellar models are shown in Tables 1 and 2. In order to
obtain the upper limit for Ṗorb given in Table 2, we use the estimate
of Wilkins et al. (2017) that the effective modified tidal quality
factor, Q

′
, should be larger than 106 together with the expression

from for the rate of change of semimajor axis due to tides given by
Birkby et al. (2014). This gives |Ṗorb| < 0.02 s yr−1.

We show the dependence of the density and Brunt–Väisälä fre-
quency on radius for each of the stellar models in Figs 1 and 2. One
can see that the models of WASP-12 and WASP-18 are more cen-
trally condensed than those of the others. The difference between

Figure 1. Distributions of the ratio of the density ρ to the mean density
ρ∗ = 3M/(4πR3∗) shown as functions of the dimensionless radius r/R∗.
Solid, dashed, dotted, dot–dashed, dot–dot–dashed and dot–dashed–dashed
lines correspond to WASP-43, OGLE-TR-113b, models A and B of WASP-
12 and models A and B of WASP-18, respectively.

the models of WASP-12 and WASP-18 and those of WASP-43
and OGLE-TR-113b is even more prominent when the respective
distributions of the Brunt–Väisälä frequency are compared. The
Brunt–Väisälä frequency is expressed in units of the inverse of
the characteristic stellar dynamical time-scale �∗ = √

GM/R3∗ .
While the latter models have convective envelopes and radiative
cores, and are in general similar to solar models, the former models
have small convective cores and radiative envelopes. This distinction
is a consequence of the difference in stellar masses and is expected
for stars on the MS. The masses of WASP-43 and OGLE-TR-113b
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Figure 2. Same as for Fig. 1, but the distributions of the square of the
Brunt–Väisälä frequency are shown.

are approximately equal to 0.7 M�, while WASP-18 and WASP-12
are significantly more massive, having masses M ≈ 1.2–1.3 M�.

4.1.1 Stellar rotation

For OGLE-TR-113, WASP-12 and WASP-18 we use the data on
projected rotational velocities listed in Schlaufman (2010) and as-
sume that the inclination angle between rotational axes and the
line of sight is close to π/2. We thus respectively obtain rota-
tional periods, Pr, approximately equal to 7.79, 37 and 5.39 d for
these systems. In the case of WASP-43 we use the result quoted in
Hellier et al. (2011) that Pr ≈ 15.6 d. Of these, the rotation periods
of OGLE-TR-113 and WASP-18 are closest to the orbital period,
thus indicating that for these two systems there is a possibility that
the effect of rotation could weaken tidal interactions appreciably.
Accordingly, we consider this effect only for these two systems
below.

In addition we remark that there are indications that the orbit of
WASP-12 is strongly misaligned with the stellar equatorial plane
(Albrecht et al. 2012). This means that additional tidal effects to
those we consider can play a role. However, the stellar rotation
period is estimated to exceed the orbital period by more than an
order of magnitude. Accordingly, as indicated above, it should be
reasonable to neglect rotation when considering orbital decay. None
the less the misalignment will result in tidal forcing associated with
azimuthal mode number, m = 1, in addition to that with m = 2
considered in this paper. This will excite stellar modes leading to
dissipation that is expected to cause evolution towards alignment
(see e.g. Papaloizou & Pringle 1982). As long as tides remain linear
this effect should be decoupled from orbital decay.

4.1.2 Properties of normal mode decay rates

Following the procedure outlined in Sections 2.2 and 2.3 we evalu-
ated the normal mode decay rates as a function of forcing frequency,
ω, corresponding to the excited mode frequency. This is twice the
orbital angular velocity in the case of a circular orbit, which will
be assumed for the purpose of estimating whether the MLD limit
applies in this section.

The ratio of the decay rate of a normal mode to its angular fre-
quency, γ /ω, and the ratio of the decay rate of a normal mode

to the mode angular frequency interval, γ /(dω/dn), are shown for
MS models as a function of the putative orbital period 4π/ω in
Fig. 3. Note that these are considered as continuous functions of
ω, even though the normal modes take on discrete values. How-
ever, the frequency interval separating consecutive modes is small
such that viewing the relevant quantities as continuous functions is
reasonable.

The models considered are for WASP-43, OGLE-TR-113, model
A for WASP-12 and model A for WASP-18. We remark that mod-
els B give very similar results to models A. We see that the models
for WASP-43 and OGLE-TR-113 produce similar results as do the
models for WASP-12 and WASP-18. The latter pair have values
for γ /ω and γ /(dω/dn) that are characteristically 30 more at a
given orbital period than those appropriate for the former pair. For
all models and periods less than 100 d, γ /ω < ∼0.03, indicat-
ing validity of the quasi-adiabatic approximation. However note
that this quantity <∼10−8 at periods of ∼3 d, characteristic of hot
Jupiters. The quantity γ /(dω/dn) that we use to indicate whether
the MLD regime applies exceeds unity only for periods exceeding
about 80 d in the case of WASP-43 and OGLE-TR-113 and for pe-
riods exceeding about 35 d in the case of WASP-12 and WASP-18.
Thus the MLD limit does not apply to any of these systems for the
period range appropriate to hot Jupiters if linear radiative dissipation
alone is considered.

4.2 Kepler-91: an example of an evolved star

We now consider Kepler-91 which is an example of a star that
has evolved off MS to move along the giant branch. The main pa-
rameters of the observed star are summarized in Table 3 and the
physical and orbital parameters of its companion close-in planet,
Kepler-91b, are given in Table 4. The evolution of the radius of
Kepler-91 as a function of time is illustrated in Fig. 4. It will be
seen that Kepler-91 is currently evolving with a rapidly increasing
radius. Therefore, as indicated above it is important to consider a
set of models with different ages, Tage, and to calculate the over-
lap integrals and orbital evolution rates corresponding to this set
of models. We have checked that tidal evolution is essentially in-
significant for Tage < 3.5 Gyr. Accordingly we consider 14 stellar
models with ages in the range 3.51 < Tage < 4.26 Gyr, with the time
interval between them decreasing at later times to account for more
rapid evolution of the star (see Fig. 4). In Figs 5 and 6 we show,
respectively, the density and Brunt–Väisälä frequency as a function
of radius. Solid, dashed, dotted and dot–dashed curves correspond
to Tage = 4.26, 4.21, 4.11 and 3.7 Gyr, respectively. One can see
that at the latest time the stellar structure assumes a typical red
giant form with a highly centrally condensed core and an extended
convective envelope.

4.2.1 Properties of normal mode decay rates

Following the procedure outlined in Sections 2.2 and 2.3 we evalu-
ated the normal mode decay rates as a function of forcing frequency,
ω, for the model of Kepler-91 listed in Table 3. For reference pur-
poses we also did this for the model of HD 32518, also listed in
Table 3. This is also on the giant branch. The ratio of the decay
rate of a normal mode to its angular frequency, γ /ω, and the ratio
of the decay rate of a normal mode to the mode angular frequency
interval, γ /(dω/dn), are shown as a function of ω for these models
in Fig. 7.

For Kepler-91, γ /ω < ∼0.1, for periods less than 10 d justi-
fying validity of the quasi-adiabatic approximation. Note that this
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Figure 3. Each of the panels shows the ratio of the decay rate of a normal mode to its angular frequency, γ /ω (black curve) and the ratio of the decay rate of
a normal mode to the mode angular frequency interval, γ /(dω/dn) (red curve) for stellar models in the vicinity of the MS, as functions of the orbital period
4π/ω in days. The upper left-hand panel corresponds to WASP-18, the upper right-hand panel to WASP-12, the lower left-hand panel to WASP-43 and the
lower right-hand panel to OGLE-TR-113, respectively.

Table 3. Same as for Table 1, but for the stars Kepler-91 (see e.g. Lillo-Box et al. 2014) and HD 32518 (see
Döllinger et al. 2009).

M R∗ [Fe/H] Teff Age

Kepler-91 1.31 ± 0.1 M� 6.3 ± 0.16 R� 0.11 ± 0.07 4550 ± 75 K 4.86 ± 2.13 Gyr
Model 1.31 M� 6.30 R� 0.10 4735 K 4.26 Gyr
HD 32518 1.13 ± 0.18 M� 10.22 ± 0.87 R� −0.15 ± 0.04 4580 ± 70 K 5.83 ± 2.58 Gyr
Model 1.13 M� 10.20 R� −0.15 4612 K 6.76 Gyr

Table 4. Same as for Table 2, but for the exoplanets Kepler-91b (see e.g. Barclay et al. 2015; Lillo-Box et al.
2014) and HD 32518b (see Döllinger et al. 2009).

m Rpl Porb e

Kepler-91b 0.73 ± 0.13 MJ 1.384 ± 0.054 RJ 6.2466 d 0.066 ± 0.013
HD 32518b 3.04 ± 0.68 MJ N/A 157.54 d 0.01 ± 0.03

quantity ∼0.03 at a period of 6.25 d corresponding to Kepler-91b.
The quantity γ /(dω/dn) > 1 for periods exceeding 1.5 d indicating
that the MLD regime applies for orbital periods characteristic of
hot Jupiters. In the case of HD 32518, γ /ω < ∼ 1 for periods <8 d

with γ /(dω/dn) > 1 for periods of a few days showing again that
the MLD regime holds. Note that for an orbital period of 157.5 d
corresponding to HD 32518b, γ /ω ∼ 104 demonstrating a dramatic
failure of the quasi-adiabatic approximation. In this case g modes
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Figure 4. The evolution of the radius of Kepler-91 (shown in units of the
solar radius) as a function of time. Circles show the positions of particular
stellar models used in our computations.

Figure 5. The dependence of density of the model of Kepler-91 specified
in Table 3 expressed in units of the mean density ρ∗ on dimensional radius
r/R∗. See the text for a description of particular curves.

Figure 6. Same as for Fig. 5, but for the square of the Brunt–Väisälä
frequency.

are not excited indicating that an equilibrium tide approach should
be followed.

5 T I DA L E VO L U T I O N

5.1 Results for main-sequence stars

In order to calculate the orbital evolution by solving equations (1)–
(4) it is necessary to evaluate the overlap integrals for the stellar
model under consideration (Chernov 2017). We show overlap in-
tegrals, Qk, obtained for our models of MS stars in Fig. 8. For all
models, Qk is found to sharply decrease as ωj=j(k) decreases.

In the case of WASP-43 and OGLE-TR-113 the shape of the
curves is very similar to what is obtained from a solar model, while
in the case of WASP-12 and WASP-18 the results are closer to those
obtained for more massive stars (see e.g. Chernov, Papaloizou &
Ivanov 2013, hereafter ChIP). At a given frequency, Qk is markedly
smaller in the latter case as compared to the former case. This is
attributed to a smaller relative size of the convective envelope in the
models of WASP-12 (see ChIP).

We also give, for a reference, the values of the forcing frequency
ω = k�orb and the frequency difference between two neighbouring
modes for the mode that is closest to resonance, |dωj/dj|j(k), for
the stellar models considered in detail in Table 5. We take k = 2,
which is the case of interest for our calculations and neglect the
effect of rotation. We note that the decay rate of the mode nearest to
resonance is given by γ = κ|dωj/dj|j(k). From Table 5 we see that
|dωj/dj|j(k) � 2�orb is small corresponding to a dense spectrum of
modes, thus justifying the use of formalism developed in IPCh.

We use these overlap integrals in equations (1)–(4) to enable the
orbital evolution to be calculated together with the time derivative
of orbital period, Ṗorb. Results of the calculations of Ṗorb, together
with data inferred from observations, are shown in Fig. 9, 10 and
11 for the models of WASP-43b, OGLE-TR-113b and WASP-12b,
respectively. Solid, dashed, dotted and dot–dashed curves, respec-
tively, correspond to a formally infinite value of κ making D = 1,
implying the MLD regime, κ = 0.1, 0.01 and 0.001. We have
checked that the result corresponding to κ = 1 gives a curve al-
most indistinguishable from the solid one. In addition, for values of
κ < 0.001, Ṗorb ∝ κ, as follows from equation (8).

Two different values of Ṗorb obtained from analysis of obser-
vational data are indicated in Fig. 9. A relatively large value of
|Ṗorb| ∼ 0.03 s yr−1 was reported by Jiang et al. (2016), whereas
Hoyer et al. (2016b) claim that |Ṗorb| is significantly smaller and
consistent with zero. As shown in Fig. 9, the larger value of |Ṗorb|
can easily be explained as resulting from tidal evolution in the MLD
regime. On the other hand if the result of Hoyer et al. (2016b) holds,
the action of tides in this systems is very much weaker than that
predicted within the framework of that regime.

In the limit of weak dissipation, when the system is mid-way
between resonances, the evolution rates, including |Ṗorb|, have to
be multiplied by a factor πκ = πγ /(|dωj/dj |j=j (k)) (see equation
9 and discussion above). For WASP-43 we find that this quantity
is ∼4 × 10−8 resulting in an extremely small |Ṗorb| ∼ 10−9 s yr−1.
Thus, the observational result of Hoyer et al. (2016b) is consis-
tent with tides being in the linear regime with radiative damping
operating in the weakly dissipative limit.2

2 In this connection we remark that much larger values of |Ṗorb| could be
formally obtained by bringing the system closer to resonance but non-linear
effects should then be considered.
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Figure 7. The left-hand panel shows γ /ω (black curve) and γ /(dω/dn) (red curve) as functions of the orbital period in days (see the caption to Fig. 3) for the
model of Kepler-91 listed in Table 3. The corresponding plots for the model of HD 32518 also listed in Table 3 are shown in the right-hand panel.

Figure 8. Overlap integrals as functions of mode eigenfrequency for the MS
stellar models for which orbital evolution was considered. Solid, dashed, dot-
ted, dot–dashed, dot–dot–dashed and dot–dashed–dashed curves correspond
to WASP-43, OGLE-TR-113, WASP-12 (models A and B), and WASP-18
(models A and B), respectively.

Table 5. Values of the forcing frequency and the frequency
separation between successive normal modes in its vicinity
for some non-rotating stellar models per second.

ω = 2�orb |dωj/dj||j(k)

WASP-43 1.7879e-4 1.1086e-5
WASP-12A 1.3326e-4 3.7050e-06
WASP-12B 1.3326e-4 4.0569e-06
OGLE-TR-113 1.0153e-4 3.4381e-6

In the case of OGLE-TR-113b, which is a relatively fast rotator,
we show Ṗorb calculated in the MLD regime for a non-rotating star,
and for a star with rotational period Pr = 7.79 d in Fig. 10, with
solid curves taking on, respectively, smaller and larger values at a
given Porb. Note that in the latter case we assume that the resonant
frequency is expressed in terms of the orbital frequency and the
angular frequency of rotation, �r = 2π/Pr, through ω = 2(� − �r).

In the case of OGLE-TR-113b, Fig. 10 shows that the value
of |Ṗorb| obtained from observations is consistent with the system

Figure 9. Results related to our model of WASP-43 are shown. Different
curves represent the time derivative of orbital period, Ṗorb, in units of s yr−1

as functions of orbital period in days, for different values of the quantity
κ parametrizing mode dissipation rate. See the text for a description of
particular curves. The black circle and red square show the positions of
two proposed values of Ṗorb inferred from analysis of observational data by
Jiang et al. (2016) and Hoyer et al. (2016b), respectively.

operating in the MLD regime, with the mean value being very close
to the theoretical curve for the non-rotating case. However, the
reported observational errors are so large that even positive values
of Ṗorb are not excluded. Accordingly, no definite conclusion about
the regime in which tides operate can be made in this case.

The results presented in Fig. 11 for WASP-12 indicate that the
MLD regime is fully compatible with the available data. Model A
gives a slightly smaller value of |Ṗorb| than that is obtained from
observation, while model B gives a slightly larger value. It is ev-
ident that one could obtain a perfect agreement using a model of
WASP-12 with parameters intermediate to those have been em-
ployed in models A and B.

Since WASP-12 is a star possessing a convective core, albeit a
small one, as a matter of interest we can apply the theory of Zahn
(1970, 1977) to this star and compare results. This comparison is
shown in Fig. 12, where we plot absolute values of Ṗorb calculated
in the framework of our formalism, under the assumption of the
MLD regime, as solid and dashed lines and in the Zahn theory as
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Figure 10. Same as Fig. 9, but for the star OGLE-TR-113. Note that in
this case there are two solid curves corresponding to the MLD regime, the
curve taking on smaller (larger) values at a given Porb corresponds to the
non-rotating (rotating) star. The value of Ṗorb obtained from observations
and its error bar are taken from Hoyer et al. (2016a).

Figure 11. Same as Fig. 9, but for the star WASP-12. The solid curve
with smaller (larger) |Ṗorb| corresponds to model A (B). The other curves
correspond to model A. The indicated positions of the value of Ṗorb obtained
from observations and their error bars are taken from Maciejewski et al.
(2016) and Patra et al. (2017), with smaller and larger absolute values of
Ṗorb corresponding to the former and latter references, respectively.

dotted and dot–dashed lines, for models A and B, respectively. One
can see that our approach gives very much larger tidal evolution
rates, being ∼109 times larger than given by the Zahn theory. This
result is, however, expected since this discrepancy arises because
the Zahn theory is based on the modes being excited at the outer
boundary of convective core, which has small radius (see Fig. 2),
whereas in our case the important region is near the inner boundary
of the convective envelope, see also Goodman& Dickson (1998).

Finally, let us discuss the system WASP-18. For this system
we present theoretical dependencies of Ṗorb on Porb in Fig. 13.
All curves are obtained assuming that the MLD regime oper-
ates. We see that the results obtained for the non-rotating star
are clearly incompatible with the observational limits. However,
when the effect of stellar rotation is taken into account both models

Figure 12. |Ṗorb| as a function of orbital period. Solid and dashed curves,
obtained with the use of our formalism, respectively, correspond to models
A and B for WASP-12. The dotted and dot–dashed curves are calculated
according to the Zahn prescription, applied to models A and B, respectively.
All curves have been calculated in the assumption that the MLD regime
applies.

Figure 13. Ṗorb as a function of orbital period calculated for the system
WASP-18. The vertical solid line indicates the published observational limits
on the orbital evolution of the system. All theoretical curves are calculated
assuming the MLD regime. Solid and dashed lines show the theoretical
results for models A and B and assuming a non-rotating star, respectively.
The dotted and dashed lines are, respectively, for models A and B but with
the star assumed to have Pr = 5.39 d.

considered are within the limits. Interestingly, these models pre-
dict |Ṗorb| ≈ 0.01–0.015 s yr−1, which is just slightly smaller than
the published upper bound |Ṗorb| < 0.02 s yr−1. Thus, observations
should allow us to either confirm or discard the possibility that tidal
interactions occur in the MLD regime in this system in the near
future.

In summary, the limited observations available suggest that MS
stars orbited by close giant companions could sometimes be in the
MLD regime and sometimes not. The latter case is what would be
expected from the linear theory of tides for which radiative damping
operates. In the former case non-linearity needs to be invoked in
order to provide adequate dissipation (see e.g. Barker & Ogilvie
2011). It is clear that more observations are needed in order to make
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a robust conclusion about whether and how often tidal evolution
operates in the MLD regime in systems containing MS stars and
close-in hot Jupiters.

5.2 Kepler-91b

We now consider the tidal evolution of Kepler-91b. As can be seen
from Figs 5 and 6 the star Kepler-91 is a red giant with an extended
convective envelope. This means that in addition to g modes being
excited by tides there could be other significant factors influencing
orbital evolution including effects due to quasi-static tides, as well
as effects associated with a powerful stellar wind, namely stellar
mass loss, mass accretion by the planet and hydrodynamic drag
exerted on the planet by the wind. To take account of these, we
write the equations governing orbital evolution in the form

ȧ

a
= − 2

Ta

− 2

Ta,QSt
+

(
ȧ

a

)
W

and
ė

e
= − 1

Te

− 1

Te,QSt

+
(

ė

e

)
W

, (27)

where Ta and Te are given by equations (2)–(4) and the quanti-
ties subscripted with QSt and W represent rates of change of the
orbital parameters due to the action of quasi-static tides and the stel-
lar wind, respectively. We note that as discussed in Section 4.2.1,
the MLD regime is expected to apply for the current model of
Kepler-91 and the orbital periods we have considered. Thus stand-
ing waves and resonant modes cannot be set up (see Section 2.1).
This means that resonance locking is not expected to be occurring
at the present evolutionary stage. We go on to discuss quasi-static
tides and the stellar wind in turn.

5.2.1 Quasi-static tides

We follow Zahn (1977) and assume that tidal dissipation takes place
as a result of turbulent viscosity acting on the quasi-static equilib-
rium tide in the convective envelope. We treat quasi-static tides
in the simplest possible approximation using the results of Zahn
(1989), namely, we use equation (17) of that paper for the evolution
of semimajor axis and equation (18) of that paper for the evolu-
tion of eccentricity. We set the angular velocity of stellar rotation
and the orbital eccentricity to zero in the right-hand side of these
equations. The characteristic time-scales of orbital evolution due to
quasi-static tides, Ta,QSt and Te,QSt, are shown in the appendix as
equations (A1) and (A2), respectively. They depend on parameters
λl defined in equations (A3) and (A4), for l = 1, 2, 3, where l are
numbers of Fourier harmonics in the decomposition of the perturb-
ing potential in Fourier series in time. They in turn depend on the
quantities ηl = 2ltf/Porb. Here tf is the characteristic time of turnover
of convective eddies defined as

tf =
(

M∗R2
∗

L

)1/3

. (28)

The weakening of turbulent viscosity in the regime of ηl � 1 as
noted by e.g. Goldreich & Nicholson (1989) results in reduction of
λl with increasing ηl. The form of the dependence of λl on ηl that
should be used is unknown. In the past a power-law dependence with
either λl ∝ η−2

l (e.g. Goldreich & Nicholson 1989) or λl ∝ η−1
l ( e.g.

Zahn 1989) has been assumed. However, the actual situation may
be more complex with the effective viscosity even being negative
in some cases (see Ogilvie & Lesur 2012). Here, for simplicity, we
shall treat this dependency in the simplest possible way. Namely,

when ηl < 1 we use equation (13) of Zahn (1989) when calculating
λl. Then these quantities are found not depend on ηl and l so we
may write λl ≡ λ. When ηl > 1 we adopt λl = λ/ηl.

In order to calculate λ we use parameters such as radius of the base
of convective envelope, etc. for a grid of models with different ages,
which is used for our calculation of the effect of dynamic tides on
the orbit. We find Ta,QSt and Te,QSt for these models and use linear
interpolation to obtain them for intermediate ages of the star. In
following the procedure outlined above, we stress the considerable
uncertainty in estimating the effects of turbulence acting on quasi-
static tides and that the effective turbulent viscosity and consequent
effects on orbital evolution may be significantly overestimated.

5.2.2 Stellar wind

In order to evaluate the rate of mass loss from stellar wind, ṀW, we
use the Reimers law (Reimers 1975):

ṀW = 4 × 10−13ηR

(
L

L�

) (
M

M�

) (
R�
R∗

)
M� yr−1, (29)

where L is the stellar luminosity. From the conservation of angular
momentum it follows that the semimajor axis will evolve as a result
of the mass loss according to(

ȧ

a

)
W

= ṀW

M
. (30)

Thus it will take on larger values as a result of a positive rate of
mass loss.

One can see that the change of the gravitational field of the star
due to mass loss does not lead to an appreciable change of orbital
eccentricity since both the eccentricity and the angular momentum
are adiabatic invariants when the orbit changes on account of the
changing mass of the central star. Accordingly, we set ėW = 0.

5.2.3 Hydrodynamic drag

Let us estimate the effect of hydrodynamical drag exerted on
the planet. We first calculate the ratio of Bondi–Hoyle radius
RBH = 2Gm/(v2

k + c2
s ), where vk is Keplerian velocity taken to be

vk = √
GM/a for a near-circular orbit, and cs the sound speed of

the wind, to the planet radius Rpl. This is easily done with help of Ta-
bles 3 and 4 together with the assumption that cs ∼ 30 km s−1 � vk,
with the result that RBH/Rpl ∼ 0.16.3

This means that gas trajectories are not significantly deflected
by the planet’s gravitational field before meeting the planet. Thus,
to make a rough estimate of the rate of energy exchange with the
planetary orbit per unit of time, ĖHD, we can simply calculate the
rate of energy flow due to gas elements moving with Keplerian
velocity through a target with cross-section equal to πR2

pl. This
gives

ĖHD ∼ −π

2
ρR2

pl

(
GM

a

)3/2

= −1

8

(
Rpl

a

)2 (
GM

a

)3/2 1

vW
ṀW,

(31)

3 The ratio of the gravitational drag force to the hydrodynamic drag force is
proportional to the product of the square of RBH/Rpl and the usual Coulomb
logarithm, see e.g. Thun et al. (2016). Assuming that the largest and the
smallest scales in the problem are, respectively, the semimajor axis and Rpl,
which have a ratio ∼100, the ratio of two drag forces is found to be of order
∼0.1.
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where the negative sign occurs because hydrodynamic drag de-
creases the orbital energy, ρ is the wind density and we have used
the law of mass conservation for the wind in the form ρ = ṀW/

(4πa2vW). The rate of change of orbital semimajor axis is then
found from setting

ĖHD = GmM

2a2
ȧHD, (32)

where ȧHD is the rate of change of semimajor axis due to hydrody-
namic drag. Combining equations (31) and (32) we obtain
(

ȧ

a

)
HD

∼ −1

4

(
Rpl

a

)2
vk

vW

ṀW

m
. (33)

It is convenient to express (ȧ/a)HD in terms of (ȧ/a)W by writing
(ȧ/a)HD = −f (ȧ/a)W, where the explicit form of the parameter f
follows from equations (30) and (33) as

f = 1

4

(
Rpl

a

)2
vk

vW

M

m
≈ 0.1

(
30 km s−1

vW

)
, (34)

where we have used the parameters given in Table 4 in order to
obtain the last equality.

Equation (34) tells us that effects due to hydrodynamic drag are
expected to be smaller than those associated with the change of
mass of the star unless the wind velocity is unrealistically small
vW < 3 km s−1. Therefore, we shall neglect hydrodynamic drag in
our analysis of the orbital evolution of Kepler-91b.

5.2.4 Orbital evolution

As already stated above we calculated Ta and Te for the set of models
of Kepler-91 with different ages and linearly interpolated them to
be able to find these time-scales at an arbitrary intermediate age.
Then, we integrated equation (27) numerically, taking into account,
in addition to the excitation of g modes in the MLD regime, the
effect of quasi-static tides in the approximation specified above,
and the effect of changing gravitational field of the star due to mass
loss. The results for the evolution of orbital period and eccentricity
are, respectively, shown in Figs 14 and 15.

Our evolutionary tracks depend on the values of the orbital period
and eccentricity adopted at the initial time taken to be when the age
of the star was Tin = 3.5 Gyr. These were chosen in such a way
that the solid curves in Figs 14 and 15 reproduce the observed
values, Porb(Tfin) ≈ 6.25 d and e(Tfin) ≈ 0.066 at final time when
the age of the star was Tfin = 4.26 Gyr as currently estimated (see
Table 3). This requires Porb(Tin) ≈ 6.8 d and e(Tin) ≈ 0.36. Thus tidal
evolution can diminish a rather large value of initial eccentricity to
the small observed value, while the value of orbital period changes
by less than 10 per cent. Dashed and dotted curves show the results
corresponding to slightly smaller and slightly larger initial orbital
periods, Porb(Tin) ≈ 6.4 and ≈7.2 d, respectively. One can see from
Figs 14 and 15 that the evolution looks rather different for these
cases as compared to the case fitting the data. While the case with
smaller initial period shows a violent tidal evolution at late times
leading to a strong decrease of orbital period, the case with larger
initial period is such that the period increases at late times due to
the effect of mass loss from the star. This feature could lead to an
understanding of the present-day orbital parameters of Kepler-91b,
since tidal and mass loss effects on the evolution of the semimajor
axis can be nearly balanced, while at the same time, tidal effects
lead to significant decrease of eccentricity. Note that the results
plotted in Figs 14 and 15 show that quasi-static tides considered in

Figure 14. The evolution of orbital period obtained using our model of
the tidal interaction of Kepler-91b. Solid, dashed and dotted curves corre-
spond to different initial orbital periods taken when the age of the star was
Tin = 3.5 Gyr and evolution of the system was derived from equation (27).
The dot–dashed curves are for the same initial periods, but with the influ-
ence of effects associated with the stellar wind and quasi-static tides being
neglected.

Figure 15. Same as Fig. 14, but for the evolution of eccentricity with time.
The initial eccentricity ein was taken to be equal to 0.36 in all cases.

our approximation, which we argued are likely to be overestimated,
do not significantly influence the evolution of the system.

Finally, for reference and comparison with the MS models, we
show the dependence of the absolute value of Ṗorb on the orbital
period for a system containing a star with parameters appropriate
to the present-day state of Kepler-91 and a planet with the mass of
Kepler-91b in Fig. 16. Only dynamic tides in the MLD regime are
taken into account in this calculation. One can see that at orbital
periods of ∼6 d corresponding to Kepler-91b, |Ṗorb| is rather small,
being of the order of 0.001 s yr−1. Note too that the effect of mass
loss would reduce it still further.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper we have applied our general formalism for determining
effects due to dynamical tides developed by IPCh to calculate the
expected orbital evolution in observed systems containing a hot
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Figure 16. |Ṗorb| as a function of orbital period for a star with parameters
of the present-day model of Kepler-91 and a planet with the mass of Kepler-
91b.

Jupiter. Our formalism is based on the normal mode approach to
the problem, it contains within it the well-known Zahn theory of
dynamical tides. Contrary to the Zahn theory, which applies only in
the asymptotic limit of small tidal forcing frequencies and only for
hot stars with convective cores and radiative envelopes (see Zahn
1970, 1977), our formalism allows one to consider more general and
realistic stellar models together with forcing frequencies that are not
asymptotically small. We pay special attention to the question of
whether or not the assumption that the propagation time of wave
trains excited by tides through propagation zones is longer than
their dissipation time, corresponding to the regime of MLD, which
is supported by the analysis of present-day observations. We note
in passing that the Zahn theory is applicable in this regime also.

We consider several MS stars with hot Jupiter companions, for
which either the rate of change of orbital period, Ṗorb, or an upper
limit for it have been reported, as well as the evolved star Kepler-91,
which has a Jupiter mass companion, Kepler-91b, on a close-in orbit.
We demonstrate that although the linear mechanism of radiative
damping of tidally excited modes is not effective enough to justify
the assumption of the MLD regime for the systems containing a MS
star, it results in the Kepler-91 system evolving in the MLD regime.
We recall that in cases for which the MLD regime does not operate,
relatively weak dissipation is implied unless there is a resonance
with a normal mode.

6.1 Systems with stars on the main sequence

The systems containing MS stars and hot Jupiters we consid-
ered in Section 5.1 were WASP-43, OGLE-TR-113, WASP-12 and
WASP-18. The former two contain Sun-like stars with radiative in-
teriors and convective envelopes, while the latter two are relatively
more massive and have the complimentary structure with convec-
tive cores and envelopes that are for the most part radiative with
there being a relatively small convective region near the surface.
We remark that on account of their low mass and the mismatch
between the convective turn over time and the inverse tidal forc-
ing frequency, tidal dissipation in these envelopes is expected to be
ineffective (see e.g. Barker & Ogilvie 2011). In addition, the stars
OGLE-TR-113 and WASP-18 appear to be rotating sufficiently
rapidly that the effect of rotation should to be taken into account
when calculating Ṗorb. Note that this weakens the tidal interaction

when the angular momentum vectors associated with stellar rota-
tion and the orbital motion are aligned as has been assumed in
this paper.

Values of Ṗorb have been obtained for WASP-43 by Jiang et al.
(2016) and Hoyer et al. (2016b). Although the former authors give
an absolute value of Ṗorb, which is consistent the assumption of
MLD regime, the value given by the latter authors is too small to
be consistent with it. WASP-43 appears to be a slow rotator, and,
therefore, the inconsistency of this assumption with the analysis of
Hoyer et al. (2016b) cannot be alleviated by taking rotation into
account. On the other hand, it is consistent with being in a weak
dissipation regime and the tidal forcing frequency being mid-way
between neighbouring normal mode frequencies.

In the case of OGLE-TR-113, models with tides operating in
the MLD regime with and without rotation are consistent with the
present observations. However, error bars are so large that even
positive values of Ṗorb are not necessarily excluded.

WASP-12 appears to show the best consistency with the assump-
tion of being in the MLD regime. Errors bars are small enough in
this case to accommodate results provided by both of our models
for this star. Note, however, that Patra et al. (2017) also consider
another scenario for the observed changes in occulation times based
on apsidal precession giving it less probability than the one based
on the orbital decay due to tides. It is of interest to note that a direct
application of the Zahn theory to this system gives values of Ṗorb

that are orders of magnitude smaller (see Fig. 12).
Finally, in the case of WASP-18 only an upper limit given by

|Ṗorb| < 0.02 s yr−1 is inferred from the lower limit on the modified
tidal quality factor, Q

′
> 106, recently published by Wilkins et al.

(2017). Although this limit certainly excludes MLD tides operating
in non-rotating stars, MLD tides in the star rotating with rotational
period ∼5.4 d are in marginal agreement with the published bound
on |Ṗorb| giving |Ṗorb| ≈ 0.01–0.015 s yr−1, depending on the stellar
model. Thus in the case of this system, a relatively minor reduction
in the magnitude of the observational error could either confirm or
exclude the MLD regime.

As we have discussed in Section 4.1.2, the assumption of the
MLD regime cannot be justified assuming the theory of linear
damping of tidally excited modes due to radiative diffusion applies
to the considered MS stars. Thus, some mechanism of non-linear
mode damping must be invoked to account for the possibility of
this regime applying for these objects. Since both WASP-43 and
OGLE-TR-113 are Sun-like we can check whether or not they sat-
isfy the criterion for wave breaking in their radiative cores given
by Barker & Ogilvie (2011). We found out that this criterion is not
satisfied, with characteristic mode amplitudes near the centre being
several orders of magnitude smaller than needed. This is explained
by relatively young ages of WASP-43 and OGLE-TR-113. As dis-
cussed in Barker & Ogilvie (2011) the wave amplitude near the
centre of a MS star is proportional to a positive power of the gradi-
ent of the Brunt–Väisälä frequency, and this is relatively small for
young MS stars. A possible non-linear mechanism that could work
in the objects with the considered parameters is mode decay through
non-linear interactions that produce a large number of ‘daughter’
modes. This was recently discussed by Essick & Weinberg (2016),
who indeed found that it can operate in systems with hot Jupiters
with periods of the order of 1 d.

In summarizing our results for MS stars, we would like to stress
that the possibility of the MLD regime operating generically in
systems containing hot Jupiters with periods of the order of 1 d has
not been definitively established at the present time. When theory
and observation are compared, it seems that all except WASP-43 are
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consistent with being in the MLD regime. However, observational
error bars are large so this may not in fact be the case. However in
the case of WASP-18, observational bounds on |Ṗorb| are very close
to theoretically predicted values, so that a modest improvement in
the former could provide important clarification on this issue.

6.2 Evolved stars

We considered the case of an evolved star with a close-in compan-
ion of approximately 1 MJ, Kepler-91, in Section 4. For this star
we have shown in Section 4.2.1, the existence of linear radiative
damping implies that the MLD regime holds. This is because of
the dense normal mode spectra found for the models of this star, in
the frequency ranges of interest leading to a resonant mode of very
high order. Accordingly, dynamical tides associated with g modes
of very high order are expected to play a role in the orbital evolution
of this system.

We found that the time-scale for orbital evolution induced by
these tides becomes comparable to the time-scale for evolution of
the star during the later stages. Therefore, stellar evolution must be
fully incorporated in the calculations of the evolution of the orbit
that will be significant over the lifetime of the star. We found that
quasi-static tides appear to give only a minor contribution, at least
within the framework of the simple model adopted. This assumed
that the effective turbulent viscosity is reduced by the ratio of tidal
forcing period to the characteristic turnover time of convective ed-
dies, when this ratio is less than unity. Note that it has been argued
that there should be a quadratic reduction in the efficiency of tur-
bulent viscosity in this regime (see Section 5.2.1; e.g. Goldreich &
Nicholson 1989; Villaver & Livio 2009). In that case orbital evolu-
tion due to quasi-static tides would be completely negligible for this
system. The effect of stellar wind could have been significant for
a planet, with present-day orbital period slightly larger than that of
Kepler-91b, through the effect of mass loss from the system. On the
other hand, the effects of hydrodynamic drag exerted on the planet
by the wind and gas accretion on to the planet appear to play only a
minor role. Note, however, that these effects have been considered
having adopted a procedure that may have been oversimplified (see
Section 5.2.2). This deserves further investigation and a possibly
influence of mass loss from the planet due to e.g. its heating by the
star.

We find the following orbital evolution is likely to have taken
place during the lifetime of Kepler-91b (see Section 5.2.4). It starts
to become significant when the star is approximately 3.5 Gyr old
with the orbital period Porb ∼ 6.8 d being only slightly larger than the
current value Porb ∼ 6.2 d, and the eccentricity being rather large
∼0.35. Since the time-scale for the evolution of the eccentricity
is shorter than that for the evolution of the semimajor axis, the
eccentricity relaxes to its present-day small value ∼0.066, while
the orbital period changes only by a small amount.

We remark that this circularization occurs independently of ef-
fects due to tides raised on the planet that are also expected to lead
to circularization. However, in this context we note that the current
orbital period of Kepler-91b is large enough that such tides may
not have operated significantly during the lifetime of the star (see
e.g. Ivanov & Papaloizou 2007, 2010). Note that for slightly larger
and slightly smaller initial orbital periods the evolution would be
qualitatively different. In the former case, the orbital period actu-
ally increases during the late stages of stellar evolution due to the
effect of mass loss from the system. In the latter case, dynamical
tides are very efficient and the orbit rapidly shrinks during the later
evolutionary stages. Thus, the orbital parameters of the present-day

Kepler-91b are rather special, since within the framework of our
model, only for such parameters do we expect efficient orbital cir-
cularization, while strong prior evolution of the semimajor axis is
not expected.

AC K N OW L E D G E M E N T S

We are grateful to G. I. Ogilvie for his important remarks and
suggestions. SVC and PBI were supported in part by RFBR grants
15-02-08476 and 16-02-01043, by programme 7 of the Presidium
of Russian Academy of Sciences and also by Grant of the President
of the Russian Federation for Support of the Leading Scientific
Schools NSh-6595.2016.2.

R E F E R E N C E S
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APPENDIX: TIME SCALES OF TIDA L
EVOLUTION DUE TO QUASI-STATIC TIDES

Here we show, for completeness, the time-scale for the evolution of
the semimajor axis, Ta,QS, and the eccentricity, Te,QS, due to quasi-
static tides, following the paper of Zahn (1989). They have the
form

Ta,QS = 1

6λ2

(
M∗
m

) (
a

R∗

)8

tf (A1)

and

Te,QS = 1

3

(
5

8
λ1 − λ2 + 49

8
λ3

)−1 (
M∗
m

) (
a

R∗

)8

tf , (A2)

where

λl = 1

max (1, ηl)
λ (A3)

and

λ = 0.8725E2/5
∫ 1

xc

x22/3(1 − x)2dx. (A4)

The dimensionless radius is x = r/R∗, with xc being its value cor-
responding to the inner boundary of the convective envelope. Note
that we set the mixing length parameter α

′
as defined in Zahn (1989)

to be unity in equation (A4). The factor E entering equation (A4)
is obtained by matching the density ρc at the convective envelope
boundary to that obtained from a density distribution in the enve-
lope region, which is assumed to correspond to the structure of an
n = 1.5 polytrope, thus

E = 3
ρc

ρ̄

(
5

2

xc

1 − xc

)3/2

, (A5)

where ρ̄ = (3/4π)(M∗/R3
∗) is the mean density. We obtain ρc, xc,

R∗ and ρ̄ using the set of numerical stellar models described above.
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