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Abstract—The Dendritic Cell Algorithm (DCA) has been
described in a number of different ways, sometimes resulting
in incorrect implementations. We believe this is due to previous,
imprecise attempts to describe the algorithm. The main contri-
bution of this paper is to remove this imprecision through a new
approach inspired by purely functional programming. We use
new specification to implement the deterministic DCA in Haskell
- the hDCA. This functional variant will also serve to introduce
the DCA to a new audience within computer science. We hope
that our functional specification will help improve the quality
of future DCA related research and to help others understand
further its algorithmic properties.

I. INTRODUCTION

Artifical Immune Systems (AIS) are an example of bio-
inspired, where we focus on understanding the protective
abilities of the human immune system and abstract these prop-
erties for a computational purpose.While some AIS focus on
optimisation e.g. Clonal Selection based algorithms, a number
of AIS concentrate on the detection of anomalies, often for
computer security based applications. One such algorithm is
the Dendritic Cell Algorithm [1]. It captures the behaviour of
dendritic cells, whose responsibility in the immune system is
to detect anomalies, to determine whether an immune response
is required. Similarly, we wish to monitor information about
computer systems in order to determine whether a response to
unusual behaviour is required.

A key challenge thus far has been to find a clear specifi-
cation of the DCA. The problem is twofold: firstly, explana-
tions of the algorithm focus too heavily on the underlying
biology and secondly, previous formal specifications have
been imprecise and cluttered with implementation details.
Imprecisions in previously published specifications are caused
by the lack of explicit data flow, no types, and undefined
functions. Different specifications of the algorithm have been
presented for example in [1], [2], [3] and [4], which have led
to some confusion in exactly the nature of the algorithm.

A better way to specify natural processes is offered by
purely functional programming: the declarative nature of this
paradigm allows to describe processes, rather than the imple-
mentation of those processes. Additionally, the flow of data
has to be made explicit. In other words, functions need to be
pure in the mathematical sense: they cannot have side-effects
such as the mutation of global state. This provides an elegant
platform for clear specifications of algorithms which can easily

be translated into code. For example, the deterministic variant
of the algorithm, the dDCA, can be defined as

dca = analyse ◦ process

to mean that the algorithm consists of a processing stage,
followed by an analysis stage. This gives us a high-level
overview of the algorithm, which we may then break down fur-
ther by inspecting the definitions of the process and analyse
functions. Our goal is to give a full specification of the DCA
using this declarative style and to show how it can be applied
in practice using the purely functional language, Haskell.

The main contribution of the paper is to present a definitive
declarative specification of the algorithm and to show the
validity of the functional haskell-based variant (hDCA). A
secondary effect is to extend the interested audience for AIS by
making the algorithm accessible to a different area of computer
science by targetting an audience of functional programmers.

II. RELATED WORK

A. The DCA: A History

The first DCA was presented in [5]. In this introductory
paper a prototype of the DCA is presented, implemented
in object oriented C++. The results of this study indicate
that the algorithm is suitable for classification of preferably
time ordered data. A full implementation of the algorithm
was produced in [6] designed to work in soft realtime. This
implementation is referred to as the ‘original DCA’. In related
work, the first formal description of the algorithm given in [2].
This system was refined and applied to the detection of port
scans [1] and botnets [7].

The original DCA has 18 tunable parameters, including
antigen sampling buffer sizes, probability of signal binding
events, the signal processing weights, and cell attributes in-
cluding migration threshold values. Many of these parameters
had a stochastic element associated including random sam-
pling of the input streams. This resulted in a system with
high complexity from many tunable parameters and random
elements. It challenging to see which parts of the system are
responsible for what aspects of the algorithm’s function. The
resulting sensitivity analysis published in [1] gave some insight
into the parameter relationships. However, theoretical analysis
was difficult to perform due to the large parameter set. This
motivated the development of a deterministic variant (dDCA),
so that a more concise and correct formal definition could be
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derived. The dDCA was presented in [3] as an evolution of
the original DCA. However, it has a much reduced parameter
set, resulting in a more controllable variant of the algorithm.
This is the algorithm which we use to create the hDCA in this
paper.

In 2010, [8] proposed FDCM, the fuzzy dendritic cell
method. The two signal model is augmented and the FDCM
employs fuzzy sets to transform the input stream data. This
modification explores the boundaries of the cells decision
variables. In their model this is translated into linguistic
variables which are analysed using fuzzy subsets in place of
the original method of using the signal transformation equation
shown in [2]. Their experiments on real data have shown that
an improvement in performance can be achieved using this
method.

In his thesis, [9] presented an extended version of the
DCA (xDCA). This variant introduced automatic signal pre-
selection and preprocessing, with antigen segmentation for
large datasets. The data sources for the signal streams are
automatically selected via feature selection mechanism, using
principal component analysis (PCA). The hDCA as described
in this paper uses a single invocation of the analysis pro-
cess, however the xDCA includes dynamic invocation of the
analysis component. The xDCA uses a dynamic time window
of n events per analysis function invocation, or the analysis
function is called every n seconds. The duration calculus is
used to analyse the real time properties of the xDCA in this
research.

B. Theoretical Research

A body of theoretical DCA research has emerged in par-
allel with the evolution of the algorithm. The first formal
description of the DCA was given in [2] and led to scrutiny
of the algorithm. The first paper to analyse the algorithmics
of the DCA is [10]. Filtering and noise reduction properties
of the algorithm are exposed, and linear classifier properties
suggested. Based on the filtering properties, the research is
extended to study the DCA’s behaviour under uncertainty in
[11]. A robust detection architecture is presented which may
remedy some of the linear classification issues previously seen
with the DCA.

The linear classifier aspects of the DCA are studied in detail
in [12]. Models of the signal processing phase are constructed
using the dot product, and the linear classifier properties are
demonstrated. The results indicate that the DCA may suffer
from the same problems as linear classifiers. This includes
errors at classification boundaries and impaired performance
for problems with complex or dynamic hyperplanes. These
limitations are based on a variant of the DCA which does not
require an antigen stream, and so only explores the signal
processing aspect of the algorithm. Their conclusions are
discouraging, that the DCA is not an effective classification
technique and is not worthy of further research.

In response to the conclusions drawn in [12], [13] replaces
the linear classification stage with a linear Support Vector Ma-
chine. Both the modified and deterministic DCA is applied to

a synthetic dataset alongside a standard linear classifier and a
filtered linear classifier. The average performance of the DCA
fell somewhere in-between the filtered and unfiltered linear
classifier. The results also show that the DCA’s filtering prop-
erties increase its performance when applied to noisy stream
data, but shows poorer performance on traditional machine
learning datasets. Their conclusions are also unfavourable and
suggest that the DCA requires a training phase and additional
classification components to increase its efficacy.

The limitation with the previously described studies is the
lack of attention to the antigen or event stream and its influence
on the final classifications. Muselle is the only author to have
studied the influence of the event stream in the DCA [14]. In
this work, a model of event stream behaviour is presented and
validated using two synthetic datasets. A set of probability
distributions are constructed. These distributions map to an
alphabet of event types, generating different frequencies of
event types. As the distributions are altered, the effect on the
classification values is recorded. The study concludes that the
DCA is robust to delays between stream data and motivated
the use of streams in our fucntional specification, presented as
the hDCA in the next section.

III. SPECIFICATION

Haskell is a purely functional programming language where
the specification of a program is interpreted as its imple-
mentation. It was chosen for the specification of the hDCA,
being a popular functional language, and for its use of a type
system which can reduce bugs in implementation. The hDCA
specification consists of pure mathematical functions on sets,
unlike in previous work, where the algorithm was presented
using a sequence of abstract steps. We provide a concrete
definition for each function from which an implementation
can be derived. As a result, this specification is suitable for
implementations in most programming languages, but can also
be used to formally reason about the algorithm.

There are two parts to this specification. In the first part we
describe set representations of objects used by the algorithm,
such as cells and events. For an implementation, this part
of the specification can be used to construct, for example,
classes in object-oriented programming languages or algebraic
data types in functional languages. The first part lays the
foundation for the second part, where we describe the function
definitions. This is achieved by defining the functions as
mappings between sets from the first part.

Different variants of the DCA have used different signal
models. In other words, depending on the application of
the algorithm, there may be different numbers of values we
observe about the environment. To accommodate for this in the
specification, we refer to the number of signal categories as
λ. For example, in the 2-signal model we have λ = 2. This is
described in the previous literature based on the danger theory
model of “apoptotic” and “necrotic” signals. The intuition is
that one signal represents “danger” and the other represents
the “safe” signal. For example, when monitoring a server,
“danger” may be associated with the amount of network traffic



which is received while “safe” may be associated with low
CPU usage [3].

The algorithm processes potentially infinite streams of input
data, in an online style, which drive the iterative update of
a circular queue of artificial dendritic cells. We refer to the
number of iterations as n. In the original stochastic implemen-
tation described in [6], the DCA is implemented as a real-time
classifier used to analyse network data. When monitoring real-
time data, n is the length of the monitored session, ensuring
that results are analysed after n-many iterations. If the DCA
is applied to a previously captured dataset, n is the size of the
dataset. Reducing the value of n further results in a technique
termed antigen segmentation[1].

A. Preliminaries

In many embedded systems, such as network routers, there
is not enough memory available to store large sets of data
about, for example, network traffic [15]. At the same time, it
would be desirable to process this data on a router. An elegant
solution to this problem comes in the form of functional
streams. A stream is just an infinite list. We define both
structures inductively, beginning with lists. The set of lists
over an arbitrary set X , denoted by ListX , is defined using
two cases:

1) The empty list ε is an element of ListX .
2) If x ∈ X and xs ∈ ListX , then x : xs ∈ ListX . We

read x : xs as “x cons xs”.
It follows that the empty word ε is an element of the set of lists
over any set X . As long as X has at least one element, ListX
has an infinite number of elements. This is the case, because
we can add each element in X to the start of any list in ListX
using the second case. For example, suppose X = {1} then
1 : ε ∈ ListX , and 1 : (1 : ε) ∈ ListX and so on. For every
list x : xs, we refer to x as the head and xs as the tail. As
a convention we name all variables using single lower-case
characters, unless they represent lists in which case we name
them using a lower-case character followed by ‘s’. We will
adopt the same conventions for streams.

Since streams are lists which are always infinite, we can
describe them inductively in the same way as lists, but with
the case for the empty list removed. The set of streams over
an arbitrary set X , denoted by StreamX , is therefore given
by:

1) If x ∈ X and xs ∈ StreamX , then x / xs ∈ StreamX .
Here we also read x/xs as “x cons xs”. The different symbol
is used so that we can distinguish between lists and streams
more easily.

B. Inputs

There are two inputs to the hDCA, both of which are
streams, based on the inputs defined for the dDCA implemen-
tation. The first stream is referred to as the event or antigen
stream. Events are elements of E × T , where E is the set of
event types and T is the set of timestamps. The elements of
E are domain specific. In the port scanning example, E could
be the set of port numbers, which would likely be represented

by the set of natural numbers or, in an implementation, by
unsigned 16-bit integers.

Timestamps are any total order with no upper bound which
can be used to order inputs. For example, the natural numbers
would be a suitable choice for T as we can tell that, for
example, an event which took place at time 25 occurred before
an event at time 26. We define the set of antigen streams as

A = Stream(E×T)

In the algorithm, we will have to inspect the timestamps of
events. For convenience, we define a projection function which
extracts the timestamp from an event:

tA : E × T → T
tA(e, t) = t

The second input is referred to as the signal stream. This
stream’s elements are members of T × R1 × . . . × Rλ. We
define the set of signal streams as

S = Stream(T×R1×...×Rλ)

Similarly to the antigen stream, we will need to inspect the
timestamps of signals. We define the following projection
function for this purpose:

tS : T × R1 × . . .× Rλ → T
tS(t, . . .) = t

C. Cells

Dendritic cells receive input signals and use them to calcu-
late three decision signals: the activation signal, the inhibition
signal, and the migratory signal. The process of calculating
these signals is referred to as transduction. We represent the
three signals using triples of real numbers:

Ω = R× R× R

Each dendritic cell consists of three components: a set of
events; three signal values; and a migration threshold. The set
of events is used as a buffer for the events which a cell encoun-
ters during its lifetime. The signal values described above are
also represented. The migration threshold determines a cell’s
lifespan. We define the set of cell as:

Cell = P(E × T )× Ω× R

For convenience, we define a handful of ‘helper’ functions
related to cells at this point. These allow us to give more
concise and meaningful definitions later on. The first of these
functions, new, initialises a new cell for a given migration
threshold. The event buffer of the new cell is initially empty,
while the decisions signals are set to 0.0:

new : R→ Cell
new(d) = (∅, (0.0, 0.0, 0.0), d)

In order to determine whether a cell’s migratory signal has ex-
ceeded the cell’s migration threshold, we define the following



function which evaluates to true if this has happened or false
if not:

dead : Cell → B
dead(es, (ωA, ωI , ωM ), d) = ωM ≥ d

If dead evaluates to true for some cell, we may then use
the reset function on the same cell to reset its event buffer
and decision signals. The cell will keep its original migration
threshold:

reset : Cell → Cell
reset(es, os, d) = new(d)

We define a projection function called events to obtain the set
of events a dendritic cell has encountered during its lifetime:

events : Cell → P(E × T )
events(es, os, d) = es

When a cell’s lifespan has reached its migration threshold, we
wish to calculate an interim anomaly score for the cell, which
is then assigned to each event in the cell’s event buffer. There
are two alternative methods which can be used to calculate the
interim score. The boolean metric was referred to as the mature
context antigen value (MCAV) in previous DCA literature,
and the real metric referred to as Kα. This metric returns a
probability of a particular event being classified as anomalous.
We define it as follows:

scoreB : Cell → R

scoreB(es, (ωA, ωI , ωM ), ts) =

{
1.0 ωA > ωI
0.0 otherwise

If the activation signal ωA is greater than the inhibitory signal
ωI , then the cell classifies the events in its buffer as anomalous.
The second anomaly metric used with the dDCA is the real
metric, formerly known as the Kα value. To calculate the real
metric for a cell, we subtract ωI from ωA:

scoreR : Cell → R
scoreR(es, (ωA, ωI , ωM ), ts) = ωA − ωI

The larger the number calculated by scoreR, the greater
likelihood that the events in the cell’s buffer are anomalous.

The algorithm maintains a population of cells, which is
represented using an element of ListCell . Whenever a signal
is processed, the decision signals of all cells in the population
will be updated and their lifespan will be increased. If an
antigen is encountered, only the cell at the head of the
population will be updated before it is put at the end of the
list. This behaves somewhat like a circular queue in that we
use a different cell for each event and loop back to first cell
once the last has been used. We describe this process in more
detail in section III-E. For now, we define N to be the set of
cell populations:

N = ListCell

We assume that there exists an initial population of cells
initPop ∈ N in which each element is constructed using new.
The number of cells and their migration thresholds are the two
key parameters in the dDCA and are tuneable. However, in all

implementations of the DCA, the number of cells present in
the population at any one time is a constant number throughout
the running of the algorithm. Previous research suggests that
there is an optimum number of cells in terms of classification
performance as shown in [16].

There can be a number of different approaches to selecting
and setting the cells’ migration thresholds. As with the cell
numbers, there is an optimum migration threshold range,
though we do not know the exact function to determine this
parameter value. Uniform, gaussian or random values have all
been used previously to distribute migration threshold values
throughout the cell population. A maximum migration thresh-
old parameter is used to set the distribution. This maximum
migration threshold is termed µ. Migration thresholds are
examined in both [1] and in [4].

D. Output

Ultimately we are interested in obtaining a single anomaly
score for each type of event the hDCA encounters. We
represent the results using a set of pairs of event types and real
numbers. For example, if the algorithm is monitoring processes
in an operating system, a pair (4815, 23.42) could mean that
the process with ID 4815 has a normalised anomaly score of
23.42. We name the set of sets containing such pairs Θ:

Θ = P(E × R)

Intermediate results are members of a different set Φ. In this
set, we pair up anomaly scores with events (as opposed to
event types). We consider events to be instances of particular
types of events. This allows us to distinguish between interim
anomaly scores for the same event. It is possible that the same,
interim anomaly score is calculated for the same event type
more than once. If we would discard the timestamp of the
event, we would end up with duplicate elements.

Φ = P((E × T )× R)

E. Algorithm

Now we have defined set representations for all data which
is used by the algorithm. We proceed by describing the
functions which form the hDCA. As described previously, the
algorithm maintains a population of cells – an element of N .
Together with the two inputs, this forms the initial state of the
algorithm. Since the functions in our specification are pure,
we need to explicitly keep track of this state, using a structure
which we term the hypervisor. For convenience, we give a
name to the set of hypervisors:

H = A× S ×N

From a high-level perspective, the algorithm is a function
which maps a pair consisting of an event and a signal stream
to a set containing an amaly score for each event type:

dca : A× S → Θ
dca = analyse ◦ run

We define this function as the composition of two other
functions: run and analyse . We read the composition as



“analyse after run”. The former of the two functions takes the
two input streams as arguments and maps them to an element
of the set of intermediate results Φ:

run : A× S → Φ
run(a, s) = process((a, s, initPop), 0)

This function is primarily a wrapper for process which is
given two arguments in addition to the two input streams:
the initial population of dendritic cells initPop and an initial
value for a counter. Since the input streams are infinite, we
need to be able to decide when the algorithm should stop
examining inputs and terminate. There are two key solutions:
the first, which we will describe here, examines n-many events
and signals combined, where n is a pre-determined constant.
The second examines infinitely-many items from both inputs,
but yields results after every n-many iterations. In [17], time
based segmentation is also used where n is substituted for a
time based counter.

The behaviour of the first approach is implemented in the
recursive process function. If the counter variable i is greater
or equal than n, then terminate is called using the state of
the hypervisor h to generate an element of Φ. This case ends
the recursion. Otherwise, we perform one iteration using the
update function which will update the state of the hypervisor
and may return intermediate results. The results are combined
with those of a recursive call to process with the updated state
and an incremented counter:
process : H × N→ Φ

process(h, i) =

{
terminate(h) i ≥ n
φ ∪ process(h′, i+ 1) otherwise
where

(φ, h′) = update(h)

Once i is greater or equal to n, process is terminated. At
this point, some cells in the population may still have events
in their event buffers. In order to obtain anomaly scores for
these events, we inspect the event buffers of all cells in the
population and calculate interim scores for them in terminate:

terminate : H → Φ
terminate(as, ss, cs) = {(e, score(c)) | c ∈ cs,
e ∈ events(c)}

An iteration of the algorithm leads to either an event update
or a signal update. The update function decides which of the
two updates should be performed based on the timestamps of
the first elements in both input streams. If the first event a
has a timestamp lower than that of the first signal s, an event
update is performed. If the timestamp of s is lower or equal
to that of a, then a signal update is invoked.

It is worth noting that the theoretical specification of streams
shown in III-A can be implemented as shown if there is
guaranteed to be no delay in accessing elements of both
streams. In an implementation where elements in the streams
are generated as data is received from e.g. a network, it may be
desirable to extend the stream data structure with a flag which
indicates whether data is available or not. The two timestamps
may then only be compared if elements are at the heads of

both streams. Otherwise, it is safe to proceed with whichever
stream has data in it or to wait if neither stream has available
data.

update : H → Φ×H

update(a / as, s / ss, cs) =

{
(∅, (as, s / ss, updateA(a, cs))) tA(a) < tS(s)
(r, (a / as, ss, cs′′)) otherwise
where

cs′ = updateS (s, cs)
r = results(cs′)
cs′′ = migrate(cs′)

Event updates result in an update of the population of
dendritic cells. This is calculated by the updateA function. It
is given the event, an element of E × T , which has triggered
the update and the current cell population. We take the first
cell in the population and extract its event buffer es, decision
signals os, and its migration threshold ts. The event e is then
added to the event buffer. Finally, we append the updated cell
to the end of the list of cells in the population and return the
updated population:

updateA : (E × T )×N → N
updateA(e, (es, d, t) : cs) = append(cs, ({ e } ∪ es, os, ls))

This function is the only part of the algorithm which changes
the order of cells in the population. Since we always take the
first cell for an event update and add it back to the end of the
population, the cells are used in a circular fashion where we
only use the same cell again after all other cells have also been
used. Note that the definition of append has been omitted as its
definition is the usual, recursive one used by many functional
programming languages.

Signal updates consist of three steps which are represented
by the three equations in the where-clause in the definition
of update: we begin by updating the decision signals of all
cells in the population using the signal values obtained from
the first element in the signal stream. This is done in updateS .
Updating the decision signals results in an increased migratory
value for each cell i.e and increase in ωM . As a result, we have
to test for which cells this value has exceeded the respective
migration threshold. Cells whose lifespan has exceeded their
migration threshold generate intermediate anomaly scores for
each event in their event buffer using the results function.
We then reset these cells in migrate to generate an updated
population.

Since we are working with signals, the following definitions
change with the number of signals in the model. We give the
definitions for the 2-signal model where λ = 2, but they can
easily be extended for models with more signal categories by
increasing the tuple sizes. The first step takes the form of a set
comprehension in which we iterate through all cells in the old
population and update their decision signals using the signal
values:

updateS : (T × R1 × R2)×N → N
updateS (( , s0, s1), p) =

{(es, accumulate(d, transduction(s0, s1)), t) | (es, d, t) ∈ p }



The process of updating the decision signals is split into two
functions: transduction maps the signal values to decision
signals and accumulate adds those to the cell’s previous
decision signals. The first of these two functions is an element
of the following set:

transduction : (R,R)→ Ω

In order to calculate the decision signals, a linear function
is applied. We use formulas of the form ω = w0 ∗s0 +w1 ∗s0
where ω is the decision signal which is being calculated, si for
some i are the input signals, and wj for some j are weights.
The following weights have been obtained from experiments
with natural DCs:

ωA ωI ωM

s0 1.0 0.0 1.0
s1 −2.0 1.0 1.0

TABLE I
Results of a Paired Two Sided Wilcox Test comparing each population size
against the default value for each event type, using the results across ten

sessions as the comparable data

The exact weights used in the algorithm do not change the
behaviour, as long as the signs of the values are preserved.
Inserting the weights from Table I leaves us with the following
equations for the decision signals:

ωA = s0 + (−2.0) ∗ s1
ωI = s1
ωM = s0 + s1

We use these equations for the definition of transduction:

transduction(s0, s1) = (s0 + (−2.0) ∗ s1, s1, s0 + s1)

Once we have calculated values for the decision signals
from the two input signals, we need to add them to a cell’s
current values for the decision signals:

accumulate : Ω× Ω→ Ω
accumulate((ωA, ωI , ωM ), (ω′A, ω

′
I , ω
′
M )) =

(ωA + ω′A, ωI + ω′I , ωM + ω′M )

The second and third step in the signal update are the same,
regardless of how many signal categories there are. Each cell
whose lifespan has exceeded the respective migration thresh-
old is used to calculate an anomaly score for all the events
in its event buffer. This is done using a set comprehension
in the definition of results . This function is largely the same
as the terminate function which we have defined previously,
except for one difference: we only iterate through the events
in a cell’s event buffer if dead evaluates to true for that cell:

results : N → Φ
results(p) = {(e, score(c)) | c ∈ p, dead(c),
e ∈ events(c)}

Given the same population we have used as an argument
for results and the helper functions which we have defined
in section III-C, the process for resetting cells whose lifespan
has exceeded their migration threshold is defined as follows:

migrate : N → N
migrate(cs) = {if dead(c) then reset(c)
else c | c ∈ cs}

This set comprehension iterates through all cells in the
population and tests if their migration threshold has been
exceeded using dead. If dead succeeds, the cell is reset
by reset which clears the cell’s event buffer and sets its
decision signals to 0. The migration threshold of the cell is
left untouched.

After n-many iterations, we stop processing inputs and
return a set of events mapped to anomaly scores – an element
of Φ. This set is passed to the analyse function. At this point,
we may have multiple interim anomaly scores for the same
event type. In analyse we calculate the average anomaly score
for each event type:

analyse : Φ→ Θ

analyse(φ) = {(e,
∑
ν

|ν|
) | e ∈ E}

where
ν = {s | ((e′, t), s) ∈ φ, e = e′}

Note that ν is calculated for each e ∈ E. In an implemen-
tation, it may not be feasible to enumerate all event types if
they are represented by, for example, 32-bit integers. Instead,
it is possible to calculate a set of event types which are in use
from φ by enumerating its elements. A suitable function for
this purpose would be:

enumerate : Φ→ P(E)
enumerate(φ) = {e | ((e, t), s) ∈ φ}

The set returned by analyse contains one anomaly score for
each event type. For example, running the algorithm on a data
set containing network traffic generated by different processes
in a system may be produce a set such as:

{(bash,−108.15), (nmap, 8.16), (pts,−23.4)(sshd ,−42.0)}

This result would indicate that the nmap process is behav-
ing anomalously while the other three processes are not. In
this section we have produced a comprehensive specification.
This has shown specifically what the algorithm is, and acts as
a template for future implementations. In this definition we do
not state why certain elements feature within the algorithm or
insight into how to apply the algorithm as this is outside of
the scope of this paper.



IV. VALIDATION EXPERIMENTS: DDCA VS HDCA

A. Domain Interfacing

The majority of traditional machine learning approaches
rely on the classification of data points in n-dimensional hy-
perspace. Such approaches use a feature vector representation
for the dataset attributes. As we can see from the hDCA
specification, the algorithm does not use feature vector input,
but relies on the correlation between a set of signal streams
and an event stream.

There are semantic differences between the kind of data
mapped to the signal versus the event streams. The event
stream contains events of specific types, which we wish to
classify as normal or anomalous. In event log correlation the
event stream is the capture of system calls from running
processes. An event is represented as a process ID, each
mapped as a single event type. The signal stream is composed
of contextual data in which the event occurred. In applying the
hDCA or indeed dDCA, the most crucial aspect is abstracting
the signals as context information and not as direct attributes
related to individual events. Ideal applications for the DCA
are yet to be characterised, but experimental research shows
that the algorithm can be applied to various two-class discrim-
ination and correlation problems.

B. SCAN Dataset

Experiments in this section are performed on a dataset we
term SCAN, first published in [2]. The problem is to detect
if a host machine has been compromised and being used as
a scanning relay. This is simulated through the running of
an ICMP ping scan on a medium size network through a
remote login. This scenario is used to create the dataset. This
dataset consists of ten ICMP ping scans performed through
a ssh remote login session using the network scanner, nmap
[18]. A ping scan is chosen as it produces similar network
reactions to scanning malware including scanning worms,
but does not cause any damage to the network. Ping scans
are extremely lightweight and so would also not denial of
service the monitored network, yet would provide the essential
changes in network behaviour to form an interesting dataset.

An event log is created containing the process ID for each
system call invoked. A demon program is written to capture
the network attributes. In this example we capture the rate of
tcp packet sending and also record the rate of change of this
variable using a moving average. Each scan session is between
45 and 60 sections in duration. A signal sampling rate of 1Hz
is used. The frequency of event generation is variable, between
0 and 200Hz, depending on the process activity. Each dataset
uses the same scenario protocol of “log in via ssh, initiate ping
scan, wait for results, discover live hosts and logout”.

Data is generated for the signal streams by monitoring
network attributes throughout the scenario. The signal stream
contains two categories: a danger and a safe signal. These
attributes are captured through the refresh of the data in the
proc filesystem contained within unix systems. The danger
signal is derived from the rate of TCP packet sending. The raw

Fig. 1. A sample of the two signals varying over time during a single session.
The grey line is the ‘safe signal’; the black line is the ‘danger’ signal.

values are scaled using min-max nomralisation within a range
of 0 and 100. This in the SCAN dataset the danger signal
operates at 1Hz and contains a real value of between 0 and
100 for every instance.

A good choice of safe signal is to have a real value which
increases in proportion to the observation of normal behaviour
in the monitored system. In the SCAN dataset, we use the
burstiness or rate of change of tcp packet sending as a safe
signal. This signal is also processed: min-max normalisation
is used to transform the data into the range of 0 to 100. The
normalised value is inverted so that the safe signal is zero
when the burstiness level is high. Low burstiness is assumed
to be an indicator of normal system behaviour, based on our
expert knowledge of the problem domain. As a result we are
left with two signal streams sampled at the same time and
used as input to the dDCA and hDCA for this comparison.

To capture the data, demon programs are developed to listen
to the outbound network traffic through capturing attributes
of the tcp stream. Network data is captured from the proc
filesystem. A graph of one of the datasets is shown in Figure1.

We are interested in classifying four different event types
in the SCAN dataset. Two of the event types are part of the
port scan program. There are two anomalous event types, the
nmap scan process and its parent the pts process. Two other
normal event types feature in this dataset, the sshd process
which manages the remote login and the bash process which
controls the running of the opened remote shell.

C. DCA Implementations

Haskell is chosen as the implementation language for the
hDCA used in these experiments. Given the declarative style of
the specification, Haskell is the obvious choice. The code used
is available from http://www./github.com/mbg/dca in literate
Haskell. In terms of algorithm parameters, weights for signal
categories are given in Table I. The maximum migration
threshold is 100, as is the population size set to 100 as in
[19].

The implementation is validated against a previously pub-
lished C version in [3]. We obtained the code used in this 2008
study and are able to directly compare results between the C
and Haskell versions. As the algorithm is deterministic, we
were able to produce identical results when applied to a small
testing dataset and the SCAN dataset with the specified default
parameters. With the new Haskell implementation of hDCA
we are able to reproduce previously published results exactly.
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Fig. 2. Results using the real analysis method for the default setting of 100
cells with a maximum migration threshold of 100. Values are presented as
medians across 10 port scan data sessions, shown for each event type. The
nmap and pts are the anomalous processes, the bash and sshd are normal
processes.

The results of applying the hDCA with the default parameters
are shown in Figure 2. A clear discrimination between the
normal and anomalous processes is shown.

V. CONCLUSIONS AND FUTURE WORK

Our main contribution in this paper is a novel and definitive
specification of the dDCA inspired by functional program-
ming. We used the declarative nature of the paradigm to
specify the behaviour of the algorithm and avoided obscuring
it with implementation details. We also focused on the inter-
actions between different parts of the algorithm by showing
how data flows through the algorithm. All functions in our
specification are annotated with the sets to which inputs,
outputs, and intermediate values belong to. Despite our choice
to reduce implementation details, we were able to use the
new specification to produce a working implementation in
Haskell within minutes. We took our Haskell implementation
and applied it to the previously used port-scanning to validate
hDCA against dDCA. We hope that, together with the new
specification, this will act as a guide for developers who wish
to apply the DCA to problems in their respective domains.

Our new specification clearly distinguishes between differ-
ent components of the algorithm. [11] suggested that the analy-
sis stage of the algorithm offers room to improve classification
performance. Since our functions are pure, it is easy to replace
them with different functions of the same type. This would
allow us to modify the analysis function without having to
change any other part of the algorithm. Indeed, once we have
a new definition, we may use equational reasoning to prove
properties about it with respect to the old definition.

Some details of our specification are designed to be simple,
not computationally efficient. For example, the update func-
tion traverses the cell population three times. This could likely
be accomplished in just one traversal, which would be an easy
(albeit not as neat) change to make. If we wish to use the
hDCA in embedded systems such as network routers, analysis
of the runtime performance will be required. This includes
benchmarks as well as comparisons with other classification
algorithms.

We hope that the use of purely functional programming
to provide clear algorithmic specifications will inspire other
algorithms in Natural Computing to be specified in the same
way. We also believe that it will allow novel AIS to be
described in a functional manner, thus making them more
quickly accessible to a greater audience. Indeed, this would
also simplify comparisons between different algorithms as we
can use their specifications for equational reasoning, poten-
tially providing a more theoretical grounding for future AIS.
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