
DRAFT 1

AR Identification of
Latent-variable Graphical Models

Mattia Zorzi, Rodolphe Sepulchre

Abstract—The paper proposes an identification procedure for
autoregressive Gaussian stationary stochastic processes under the
assumption that the manifest (or observed) variables are nearly
independent when conditioned on a limited number of latent (or
hidden) variables. The method exploits the sparse plus low-rank
decomposition of the inverse of the manifest spectral density
and the efficient convex relaxations recently proposed for such
decompositions.

Index Terms—Latent-variable graphical models, system iden-
tification, convex relaxation, convex optimization.

I. INTRODUCTION

Gaussian processes and their representation by graphical
models have gained popularity through science and engineer-
ing, [1], [2]. The objective of the present paper is to derive
an identification procedure for Gaussian stochastic processes
whose manifest (observed) variables are correlated primar-
ily through a restricted number of latent (hidden) variables.
The resulting graphical model (or equivalently latent-variable
graphical model) has a two layer structure, one layer for the
manifest (observed) nodes and one layer for the latent (hidden)
nodes. The hope is that in many applications of interest,
the few extra nodes in the hidden layer allow for a drastic
reduction of edges in the observed layer, because the observed
nodes become nearly independent when conditioned on the
hidden nodes. As a consequence, allowing for latent variables
in the identification of the stochastic model may improve
scalability and robustness of the algorithm. This paradigm was
exploited in the framework of Gaussian random vectors in
the recent paper [3]. The authors exploited the sparse plus
low-rank (S+L) decomposition of the manifest concentration
matrix (the inverse of the covariance matrix corresponding to
the manifest variables) to propose an efficient formulation of
the identification problem.

The present paper focuses on the generalization of this ap-
proach to autoregressive (AR) Gaussian stationary processes,
exploiting the analog sparse plus low-rank decomposition of
the inverse of the manifest spectral density (the spectral density
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of the manifest variables). It thereby connects the extensive
recent research on convex regularization of sparsity and low-
rank constraints [3], [4], [5], [6], [7] to the classical covari-
ance extension approach for the identification of Gaussian
stationary processes [8], [9]. It also provides a generalization
of recent contributions that introduced sparsity constraints
(but no latent variables) in the identification of autoregressive
processes [10], [11], [12].

The paper is organized as follows. After mathematical
preliminaries, Section II introduces the main ideas of the
proposed identification scheme in non technical terms. The
identification of the graphical model and the identification
of the autoregressive model are formulated as two distinct
optimization problems. The first one uses sparsity and low-
rank regularizers to recover the model structure. It is further
analyzed in Section III. The second one solves an exact
covariance extension problem for a fixed graphical model.
It is further analyzed in Section IV. Finally, in Section V
we discuss an illustrative example and test our method to
international stock return data.

Notation

We endow the vector space Rm×m with the usual inner
product 〈X,L〉 = tr(XLT ). Qm denotes the vector space
of symmetric matrices of dimension m, if X ∈ Qm is
positive definite (semi-definite) we write X � 0 (X � 0).
A matrix A ∈ Rl×m(n+1) with l ≤ m will be partitioned
as A =

[
A0 A1 . . . An

]
with Aj ∈ Rl×m. Mm,n

is the vector space of matrices Y :=
[
Y0 Y1 . . . Yn

]
with Y0 ∈ Qm and Y1 . . . Yn ∈ Rm×m. The corresponding
inner product is 〈Y,Z〉 = tr(Y ZT ). The linear mapping
T : Mm,n → Qm(n+1) constructs a symmetric Toeplitz matrix
from its first block row in the following way:

T(Y ) =


Y0 Y1 . . . Yn

Y T1 Y0
. . .

...
...

. . . . . . Y1

Y Tn . . . Y T1 Y0

 .
The adjoint of T is a mapping D : Qm(n+1) →Mm,n defined
as follows. If X ∈ Qm(n+1) is partitioned as

X =


X00 X01 . . . X0n

XT
01 X11 . . . X1n

...
...

...
XT

0n XT
1n . . . Xnn


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then D(X) =
[

D0(X) . . . Dn(X)
]

where

D0(X) =

n∑
h=0

Xhh, Dj(X) = 2

n−j∑
h=0

Xh h+j , j = 1 . . . n.

We define the index set Em ⊆ Vm × Vm with Vm :=
{1, 2, . . .m}, and its complement set is denoted by Ecm. The
cardinality of Em is denoted by |Em|. The projection map
PEm : Rm×m → Rm×m is defined as follows

PEm(X) =

{
(X)kh, (k, h) ∈ Em
0, otherwise (1)

where (X)kh is the entry of X in position (k, h). Similarly,
PEm(Y ) with Y ∈Mm,n denotes[

PEm(Y0) PEm(Y1) . . . PEm(Yn)
]
.

Functions on the unit circle {eiϑ s.t. ϑ ∈ [−π, π]} will be
denoted by capital Greek letters, e.g. Φ(eiϑ) with ϑ ∈ [−π, π],
and the dependence upon ϑ will be dropped if not needed,
e.g. Φ instead of Φ(eiϑ). Lm×m2 denotes the space of Cm×m-
valued functions defined on the unit circle which are square
integrable. Given Φ ∈ Lm×m2 , the shorthand notation

∫
Φ

denotes the integration of Φ taking place on the unit circle
with respect to the normalized Lebesgue measure. Then, the
inner product in Lm×m2 is 〈Φ,Σ〉 = tr

∫
ΦΣ∗. Similarly,

PEm : Lm×m2 → Lm×m2 is defined as in (1) where X is
replaced by Φ(eiϑ). Moreover, σk(Φ(eiϑ)) denotes the k-
th largest singular value of Φ(eiϑ) at ϑ, i.e. σ1(Φ(eiϑ)) ≥
σ2(Φ(eiϑ)) ≥ . . . ≥ σm(Φ(eiϑ)) for each ϑ ∈ [−π, π]. Am
denotes the linear space of Cm×m-valued analytic functions
on the unit circle. Given Λ ∈ Am, we define the norm

‖Λ‖ = sup
ϑ∈[−π,π]

σ1(Λ(eiϑ))

and the (normal) rank

rank(Λ) := max
ϑ∈[−π,π]

rank(Λ(eiϑ)).

If Φ(eiϑ) is positive definite (semi-definite) for each ϑ ∈
[−π, π], we will write Φ � 0 (Φ � 0). Sm denotes the family
of functions Φ such that Φ = Φ∗ and c1I � Φ � c2I for
some c1, c2 > 0. We define the following family of matrix
pseudo-polynomials

Qm,n =


n∑

j=−n
e−ijϑRj s.t. Rj = RT−j ∈ Rm×m

 .

The shift operator is defined as

∆(eiϑ) :=
[
Im eiϑIm . . . einϑIm

]
.

Given X ∈ Qm(n+1), by direct computation we get

∆(eiϑ)X∆(eiϑ)∗

= D0(X) +
1

2

n∑
j=1

e−ijϑDj(X) + eijϑDj(X)T , (2)

therefore ∆X∆∗ ∈ Qm,n. On the other hand, any element in
Qm,n may be parameterized as (2) because D is a surjective
map. We conclude that

Qm,n = {∆X∆∗ s.t. X ∈ Qm(n+1)}. (3)

II. PROBLEM FORMULATION

A. AR Model Identification

Let Lm2 (Ω,A, P ) be the Hilbert space of Rm-valued Gaus-
sian random vectors defined in the probability space {Ω,A, P}
and having finite second order moments. An Rm-valued
Gaussian stochastic process xm is an ordered collection of
random vectors xm = {xm(t); t ∈ Z} in Lm2 (Ω,A, P ).
Moreover, we assume xm is zero mean, stationary and purely
nondeterministic. It is completely described by its spectral
density

Φm(eiϑ) =

∞∑
j=−∞

e−ijϑRj

where Rj := E[xm(t+ j)xm(t)T ] denotes the j-th covariance
lag. An empirical estimate R̂j of Rj is computed from a
finite-length realization of xm, i.e. xm(1), xm(2), . . . xm(N),
as follows

R̂j =
1

N

N−j∑
t=0

xm(t+ j)xm(t)T . (4)

The estimate Φ̂◦m of Φm that maximizes the entropy rate, [13],
and that matches the first n covariance lags is the solution of
the following convex program [8]:

Φ̂◦m = arg max
Φm∈Sm

∫
log det Φm

subject to
∫

∆Φm = R̂ (5)

The matrix R̂ :=
[
R̂0 R̂1 . . . R̂n

]
∈ Mm,n satisfies

T(R̂) � 0, [14]. Φ̂◦m is usually referred to as maximum-
entropy covariance extension. Because (Φ̂◦m)−1 � 0 belongs
to Qm,n, it admits the spectral factorization Φ̂◦m = ΓΓ∗ where
Γ = (A∆∗)−1, A ∈ Rm×m(n+1), is a shaping filter for the
estimated process, x̂◦m, [15]. This means that x̂◦m is the output
of Γ fed by white Gaussian noise (WGN), say e, with zero
mean and variance equal to the identity:

x̂◦m(t) =

n∑
j=0

Aj x̂
◦
m(t− j) + e(t)

therefore the maximum entropy estimate is an autoregressive
process. In [16], [17] it has been shown that the dual of (5) is

min
Φ−1

m ∈Qm,n

∫ (
− log det Φ−1

m +
〈

Φ−1
m , Φ̂m

〉)
subject to Φm � 0 (6)

where Φ̂m(eiϑ) :=
∑n
j=−n e

−ijϑR̂j is the n-length windowed
correlogram of xm, [14]. Φ̂m is not necessarily positive semi-
definite on the unit circle. Finally this identification paradigm
can be extended to ARMA models, see [18], [19], [20].

B. Spectral Density of Latent-variable Graphical Models

We consider a real, zero-mean, stationary, purely nonde-
terministic, full-rank, Gaussian process x = {x(t); t ∈ Z}
with m manifest variables and l latent variables, that is
x :=

[
(xm)T (xl)T

]T
where xm :=

[
x1 . . . xm

]T
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and xl :=
[
xm+1 . . . xm+l

]T
. Let I ⊂ Vm+l be an

arbitrary index set. We denote as

XI = span{xj(t) s.t. j ∈ I, t ∈ Z}

the closure in Lm+l
2 (Ω,A, P ) of the vector space of all finite

linear combinations (with real coefficients) of xj(t) with j ∈ I
and t ∈ Z, [21, page 21]. The shorthand notation

X{k} ⊥ X{h} | XVm+l\{k,h} (7)

means that X{k} and X{h} are conditionally independent given
XVm+l\{k,h}, see [12]. Therefore, (7) signifies that xk and xh
are conditional independent given the space linearly generated
by xj with j ∈ Vm+l \ {k, h}. Conditional dependence
relations among the variables of the process x define an
interaction graph G = (Vm+l, Em+l) whose nodes represent
the variables x1, x2, . . . , xm+l and edges represent conditional
dependence:

(k, h) /∈ Em+l ⇐⇒ k 6= h, X{k} ⊥ X{h} | XVm+l\{k,h}.

The graph G leads to a latent-variable graphical model of the
Gaussian process. It admits the two layer structure illustrated
in Figure 1: latent nodes are in the upper level, and manifest

x1 x2 x3 x4 x5 x6

x7 x8

1

Fig. 1. Example of a latent-variable graphical model: x1, x2, . . . x6 are
manifest variables x7, x8 are latent variables.

nodes are in the lower level.
The graphical structure of x translates into a particular

decomposition of its spectral density Φ ∈ Sm+l. Starting form
the block decomposition

Φ =

[
Φm Φ∗lm
Φlm Φl

]
, Φ−1 =

[
Υm Υ∗lm
Υlm Υl

]
we obtain the relationship

Φ−1
m = Υm −Υ∗lmΥ−1

l Υlm. (8)

where we used the Schur complement pointwise.
Our main modeling assumptions are that l ≤ m and the

conditional dependence relations among the manifest variables
are mostly through this limited number of latent variables. This
means that the corresponding graphical model G has few edges
between the manifest nodes, and few latent nodes. This leads
to a S+L structure for (8), that is,

Φ−1
m = Σ− Λ, Λ � 0 (9)

where Σ is sparse and Λ is low-rank.
We make the additional assumption that Σ and Λ belong to

Qm,n, in this way Φ−1
m ∈ Qm,n that is xm is an AR process

of order n. Thus, the support of Σ, denoted by Em, contains

few elements, and there exists G ∈ Rl×m(n+1) with l � m
and full row rank such that Λ = ∆GTG∆∗. Accordingly, Φ−1

m

may be decomposed into the following two finite dimensional
vector subspaces

VEm := {Σ ∈ Qm,n s.t. PEcm(Σ) = 0}
VG := {∆GTHG∆∗ s.t. H ∈ Ql}. (10)

The sparsity of Σ reflects the presence of few edges among
the manifest nodes of G because of the relationship

(Φ(eiϑ)−1)kh = 0, ∀ϑ ∈ [−π, π] ⇔
X{k} ⊥ X{h} | XVm+l\{k,h}

which has been shown in [12], see also [22], [23]. The nonzero
entries of Σ therefore correspond to the (few) conditional
dependence relations among the manifest variables. Accord-
ingly, the sparsity of Σ is a direct measure of the conditional
independence of the manifest variables. Since l ≤ m, the rank
of Λ = Υ∗lmΥ−1

l Υlm coincides with l, that is the number of
latent variables. Accordingly, the rank is a direct measure of
the number of latent variables chosen to model the statistical
conditional dependencies of the data. It is worth noting that
(8) is a dynamical generalization of the static decomposition

R−1
m = Km −K∗lmK−1

l Klm

for a zero mean Gaussian random vector x =[
(xm)T (xl)T

]
∼ N (0, R) with

R =

[
Rm RTlm
Rlm Rl

]
, R−1 =

[
Km KT

lm

Klm Kl

]
,

see [3]. Finally, in the case Σ is diagonal the S+L model (9)
can be understood as a factor model with idiosyncratic noise,
[24], [25], because conditional dependence relations among
the manifest variables are only through the latent variables (or
factors).

C. AR Identification of Latent-variable Graphical Models

Let x :=
[

(xm)T (xl)T
]T

be a zero-mean, stationary,
purely nondeterministic, full-rank, autoregressive, Gaussian
process. We assume that a finite-length realization of xm

is available, i.e. xm(1), xm(2), . . . xm(N). We insist that xl

are hidden variables, i.e. only a realization of the manifest
variables xm is available from the data. From the data, we
can compute the n-length windowed correlogram Φ̂m of xm.
The conceptual idea is therefore to solve the optimization
problem (6) for the spectral density Φm of xm under the
structural assumption (9) with Σ,Λ ∈ Qm,n, but not knowing
in advance the supporting subspaces (10). This leads us to
estimate VEm and VG first, and then estimate Φm consistently
with the identified vector subspaces. Since the resulting es-
timate of the spectral density of xm, say Φ̂m, is such that
Φ̂−1

m = Σ◦ − Λ◦ ∈ Sm with Σ◦ sparse and Λ◦ low rank, it is
then possible to compute an estimate of Φ as

Φ̂ =

[
Υ̂m Υ̂∗lm
Υ̂lm Υ̂l

]−1

(11)
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where Υ̂m = Σ◦, Υ̂lm and Υ̂l ∈ Sl are such that Λ◦ =
Υ̂∗lmΥ̂−1

l Υ̂lm. It is worth noting that given Λ◦, Υ̂lm and Υ̂l

are known up to an l × l invertible function. This symmetry
is consistent with the fact that the optimization problem is
in terms of the manifest spectral density only. Finally, it
is worth noting that Φ̂ ∈ Sm+l because Υ̂l ∈ Sl and
Υ̂m− Υ̂∗lmΥ̂−1

l Υ̂lm ∈ Sm. Accordingly, the estimated process
is full-rank.

S+L Subspace estimation: We propose to estimate the
subspaces (10) by solving a regularized version of (6), that
is,

(Σ̃, Λ̃) = arg min
Σ,Λ∈Qm,n

∫ (
− log det(Σ− Λ) +

〈
Σ− Λ, Φ̂m

〉)
+λ (γφ1(Σ) + φ∗(Λ))

subject to Σ− Λ � 0

Λ � 0 (12)

Here, λ > 0 and the regularizer is a combination of two
penalty functions φ1 and φ∗ inducing sparsity and low-rank
on Σ and Λ, respectively. The balance between the two
regularizers is tuned by γ > 0. Since (Σ̃ − Λ̃)−1 represents
a regularized estimate of Φm, VEm is given by the support
of Σ̃ and VG by Λ̃ = ∆GTG∆∗. Note that, for n = 0, Σ,
Λ and Φ̂m are matrices, i.e. the model reduces to a Gaussian
random vector. In this particular situation, (12) boils down to
the regularization problem studied in [3] for Gaussian random
vectors with latent variables: in that case, φ1(Σ) is the `1-norm
of Σ and φ∗(Λ) the nuclear norm of Λ.

AR model identification: For a fixed graphical model struc-
ture, that is, once the subspaces VEm and VG have been
identified, the optimal AR model is the solution to (6), which
becomes

(Σ◦,Λ◦) = arg min
Σ,Λ∈Qm,n

∫ (
− log det(Σ− Λ) +

〈
Σ− Λ, Φ̂m

〉)
subject to Σ− Λ � 0

Λ � 0

Σ ∈ VEm
Λ ∈ VG (13)

and the optimal estimate of Φm is Φ̂◦m = (Σ◦ − Λ◦)−1.
Because the identified subspaces VEm and VG depend on the

regularization parameters, a general identification procedure is
as follows:

i) Estimate the first n covariance lags of the manifest
process as in (4)

ii) For each (λk, γk) in a given regularization path
{(λk, γk)}Mk=1:
• Estimate the vector subspaces VEm and VG
• Compute an AR estimate Φ̂◦m of Φm such that

(Φ̂◦m)−1 ∈ VEm + VG
iii) Score the identified models through a function that

trades off the adherence to the data and the com-
plexity of the models and choose the model with the
minimum score

iv) From the chosen optimal solution Φ̂◦m, an estimate
of Φ is given by (11).

Remark 2.1: Since (Σ̃ − Λ̃)−1 represents a regularized
estimate of Φm, one could question about the benefit in solving
(13). This will be clarified in Section IV where it will be shown
that Φ̂◦m is the maximum entropy solution of a covariance
extension problem.

The remainder of the paper is organized as follows: the
optimization problem (12), leading to the estimation of the
sparsity and low-rank subspaces VEm and VG, respectively,
is studied in Section III. The optimization problem (13),
leading to the AR model for a fixed graphical model structure,
is studied in Section IV. Finally, Section V provides an
illustration of the full identification procedure.

III. S+L SUBSPACE ESTIMATION

A. Primal formulation

A matrix formulation of the program (12) uses (3), which
allows to parametrize Σ− Λ and Λ ∈ Qm,n as

Σ− Λ = ∆X∆∗ ∈ Qm,n
Λ = ∆L∆∗ ∈ Qm,n (14)

where X and L are now matrix variables in the vector space
Qm(n+1). Note that Σ = ∆(X +L)∆∗. Next we reformulate
(12) in terms of X and L.

1) Positivity constraints Σ− Λ � 0 and Λ � 0:
Lemma 3.1: Let Λ ∈ Qm,n. Then Λ � 0 if and only if there

exists L ∈ Qm(n+1) such that L � 0.
The proof is provided in Appendix A.

In view of Lemma 3.1, we replace the condition Λ � 0 with
L � 0 and Σ−Λ � 0 with X � 0. The latter only guarantees
that Σ−Λ � 0. However, we will show that X � 0 is sufficient
to guarantee that Σ− Λ � 0 at the optimum of (12).

2) The objective function: Since Σ − Λ = ∆X∆∗ with
X � 0, then there exists A ∈ Rm×m(n+1) such that X =
ATA. By using Jensen’s formula, [26, p. 184], we obtain∫

log det(Σ− Λ) =

∫
log det(∆ATA∆∗)

= log det(AT0 A0) = log detX00.

Clearly, the relation above holds provided that X00 � 0.
Moreover,〈

Σ− Λ, Φ̂m

〉
=

〈
∆X∆∗, Φ̂m

〉
=

〈∫
∆∗Φ̂m∆, X

〉
=
〈

T(R̂), X
〉

where we exploited the fact that∫
∆∗Φ̂m∆ = T(R̂). (15)

We conclude that the objective function of (12) admits the
matrix formulation∫ (

− log det(Σ− Λ) +
〈

Σ− Λ, Φ̂m

〉)
= − log detX00 +

〈
T(R̂), X

〉
. (16)
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3) The sparsity regularizer: Let Σ ∈ Qm,n be such that
Σ(eiϑ) =

∑n
j=−n e

−ijϑSj . Then,

PEcm(Σ) = 0 ⇐⇒ PEcm(Sj) = 0 j = 0 . . . n.

Recall that Σ = ∆(X + L)∆∗. In view of (2), we obtain

PEcm(Σ) = 0 ⇐⇒ PEcm(D(X + L)) = 0. (17)

We conclude that the sparsity regularizer must induce the same
sparsity on the matrices Yj := Dj(X + L) with j = 0 . . . n.
In [10], the following regularizer for Y ∈ Mm,n has been
proposed:

h∞(Y ) =
∑
k>h

max

{
|(Y0)hk|, max

j=1...n
|(Yj)hk|, max

j=1...n
|(Yj)kh|

}
.

Let vkh, with k > h, be the vector of (k, h) and (h, k) entries
of the coefficients Yj with j = 0 . . . n. Therefore,

h∞(Y ) =
∑
k>h

‖vkh‖∞

where ‖·‖∞ denotes the `∞-norm. On the other hand, h∞(Y )
is the `1-norm of the vector having (nonnegative) entries
‖vkh‖∞ with k > h. Accordingly, h∞(Y ) encourages sparsity
among vkh’s, that is induces the same sparsity on the matrices
Yj j = 0 . . . n.

4) The low-rank regularizer:
Proposition 3.1: Given Λ ∈ Am, we define the convex

function

φ∗(Λ) :=

m∑
k=1

∫
σk(Λ) (18)

and the restricted rank function

rank′(Λ) :=

{
rank(Λ), ‖Λ‖ ≤ 1
+∞, otherwise.

Then, the convex hull of rank′(Λ) is{
φ∗(Λ), ‖Λ‖ ≤ 1
+∞, otherwise. (19)

The proof is provided in Appendix B.
We conclude that φ∗(Λ) defined in (18) is the adequate

regularizer of rank(Λ). Since Λ � 0, σk(Λ(eiϑ)) represents
the k-th eigenvalue of Λ(eiϑ). Thus, φ∗(Λ) = tr

∫
Λ. Finally,

φ∗(Λ) = tr

∫
∆L∆∗ = tr

(
L

∫
∆∗∆

)
= tr(L)

where we exploited the fact that∫
eijϑ =

{
1, j = 0
0, j 6= 0.

5) Primal Formulation: By collecting the results in 1)-4)
and in view of (14), we rewrite (12) as

(X◦, L◦) = arg min
X,L∈Qm(n+1)

− log detX00 +
〈

T(R̂), X
〉

+λγh∞(D(X + L)) + λ tr(L)

subject to X00 � 0, X � 0, L � 0 (20)

Formulation (20) and (12) are equivalent provided that
∆X◦∆∗ � 0. Finally, it is worth noting that (20) is a

generalization of the regularized problem studied in [10].
The problem formulations coincide when L = 0, that is for
estimating an AR process having a sparse graphical model but
no latent variables.

B. Dual formulation

We show that (20) does admit a solution by exploiting
duality theory. First, note that (20) is strictly feasible (pick
X = I and L = I), thus Slater’s condition holds. Accordingly,
the duality gap between (20) and its dual problem is equal to
zero. We introduce a new variable Y ∈Mm,n in (20) to obtain
the following equivalent problem

arg min
X,L∈Qm(n+1)
Y∈Mm,n

− log detX00 +
〈

T(R̂), X
〉

+ λγh∞(Y ) + λ tr(L)

subject to X00 � 0, X � 0, L � 0

Y = D(X + L)

The Lagrangian is

L(X,L, Y, U, V, Z)

= − log detX00 +
〈

T(R̂), X
〉

+ λγh∞(Y ) + λ tr(L)

−〈U,X〉 − 〈V,L〉+ 〈Z,D(X + L)− Y 〉
= − log detX00 +

〈
T(R̂)− U,X

〉
+ 〈λI − V,L〉

+λγh∞(Y )− 〈Z, Y 〉+ 〈T(Z), X + L〉
= − log detX00 +

〈
T(R̂) + T(Z)− U,X

〉
+ 〈λI + T(Z)− V,L〉+ λγh∞(Y )− 〈Z, Y 〉

where U, V ∈ Qm(n+1) such that U, V � 0 and Z ∈Mm,n.
The dual function is the infimum of L over X , L and Y .
We start by minimizing with respect to Y . The Lagrangian L
depends on Y only through the term

λγh∞(Y )− 〈Z, Y 〉 , (21)

which was shown, [10], to be bounded below only if

diag(Zj) = 0, j = 0 . . . n (22)
n∑
j=0

|(Zj)kh|+ |(Zj)hk| ≤ λγ, k 6= h, (23)

in which case the infimum is equal to zero. The partial
minimization of the Lagrangian over Y is therefore

inf
Y
L =


− log detX00 +

〈
T(R̂) + T(Z)− U,X

〉
+ 〈λI + T(Z)− V,L〉 (22), (23)

−∞ otherwise.

Likewise, the Lagrangian L depends on L only through the
term 〈λI + T(Z)− V,L〉, which is bounded below only if

λI + T(Z)− V = 0, (24)

in which case the infimum is equal to zero. Thus,

inf
L,Y
L =

{
− log detX00 +

〈
T(R̂) + T(Z)− U,X

〉
(22)-(24)

−∞ otherwise.
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Finally, the terms in X00 are bounded below if and only if

(T(Z) + T(R̂)− U)00 � 0 (25)

and if (25) holds, they are minimized by X00 = (T(Z) +
T(R̂) − U)−1

00 . The Lagrangian is linear in the remaining
variables Xkh, and therefore bounded below (and identically
zero) only if

(T(Z) + T(R̂)− U)kh = 0 ∀ (k, h) 6= (0, 0). (26)

The final expression for the dual functional is

inf
X,L,Y

L =

{
log det(T(Z) + T(R̂)− U)00 +m (22)-(26)
−∞ otherwise.

(27)
The dual problem consists in maximizing the dual functional
(27) with respect to U , V and Z subject to the constraints
U � 0 and V � 0. Moreover, eliminating the slack variables
U and V , and adding the variable W := (T(Z)+T(R̂)−U)00

the dual problem takes the final form

max
W∈Qm
Z∈Mm,n

log detW +m

subject to W � 0

T(R̂) + T(Z) �
[
W 0
0 0

]
diag(Zj) = 0, j = 0 . . . n
n∑
j=0

|(Zj)kh|+ |(Zj)hk| ≤ λγ, k 6= h

λI + T(Z) � 0 (28)

Proposition 3.2: Problem (28) admits a solution.
The proof is provided in Appendix C.

From the next statement we conclude that Problem (12)
admits a solution.

Proposition 3.3: Problem (20) admits a solution (X◦, L◦)
such that ∆X◦∆∗ � 0. Accordingly (12) and (20) are
equivalent. Moreover, X◦ is unique.
The proof is provided in Appendix D.

It is worth noting that (28) is easier to solve than (20),
because the objective function in (28) is smooth.

C. Estimation of the Vector Subspaces

The vector subspace VEm is given by the support of Σ̃ =
∆(X◦ + L◦)∆∗. In view of (2), we obtain

Ecm = {(k, h) ∈ Vm × Vm s.t. (D(X◦ + L◦))kh = 0} (29)

and hence also VEm . Since Λ̃ = ∆L◦∆∗, the vector subspace
VG is the column space of L◦, given by the decomposition
L◦ = GTG where G is a full row rank matrix.

Next, we show how to recover (X◦, L◦) from an optimal
solution (W ◦, Z◦) of the convex optimization program (28).
Such a recovering scheme also provides sufficient conditions
for the uniqueness of the two vector subspaces. Regarding X◦,
let B ∈ Rm×m(n+1) the solution of the Yule-Walker equation

(T(R̂) + T(Z◦))BT =

[
W ◦

0

]
, B0 = I

then X◦ = BT (W ◦)−1B, see Appendix D for more details.
Next, we deal with the recovering of L◦. Because of the strong
duality between (20) and (28), we have

〈V ◦, L◦〉 = 0 (30)

where V ◦ := λI+T(Z◦), see (24). If V ◦ is a full rank matrix
then, in view of (30), L◦ = 0 is the unique solution, VG =
{0} and VEm is univocally characterized by (29). Otherwise,
let l > 0 be the dimension of the nullspace of V ◦. Then
there exists a full row rank matrix G ∈ Rl×m(n+1) such that
V ◦GT = 0. Since V ◦, L◦ � 0, from (30) it follows that

L◦ = GTHG

where H , unknown, belongs to Ql and H � 0. Therefore,
L◦ is known up to the (scaling) factor H . The minimization
of (21) under constraints (22) and (23) is equivalent to the
minimization of the non-negative function

max{|(Y0)kh|, max
j=1...n

|(Yj)kh|, max
j=1...n

|(Yj)hk|}

×

λγ − n∑
j=0

|(Zj)kh|+ |(Zj)hk|

 , (31)

for each k > h, subject to the constraint that their sum is
bounded by λγh∞(Y ) − 〈Z, Y 〉. Since the optimal value of
(21) is always equal to zero, then the optimal value of (31)
is equal to zero for each k > h. Thus, if

∑n
j=0 |(Zj)kh| +

|(Zj)hk| < λγ then

max{|(Y0)kh|, max
j=1...n

|(Yj)kh|, max
j=1...n

|(Yj)hk|} = 0

and (Yj)kh = (Yj)hk = 0 with j = 0 . . . n. Since Y = D(X+
L),

∑n
j=0 |(Zj)kh| + |(Zj)hk| < λγ implies that (Dj(X +

L))kh = (Dj(X+L))hk = 0 with j = 0 . . . n. Accordingly, H
is obtained by solving the following system of linear equations

(Dj(X
◦ +GTHG))kh = 0 j = 0 . . . n, ∀ (k, h) ∈ I. (32)

where

I :=

(k, h) s.t. k 6= h,

n∑
j=0

|(Zj)kh|+ |(Zj)hk| < λγ

 .

Note that (32) is a system of (n + 1) × |I| equations with
l(l + 1)/2 unknowns (i.e. the number of independent pa-
rameters in H). For λγ and γ sufficiently large, |I| would
be sufficiently large and l sufficiently small, respectively,
so that (32) admits a unique solution. We stress that the
solution of (32) is not guaranteed to be unique even when
l(l+1)/2� (n+1)×|I|. As observed in [3], this degeneracy
may occur when VG contains sparse elements, that is the latent
variables are not sufficiently “diffuse” across the manifest
variables, or VEm contains elements with a low degree of
sparsity, that is there are manifest variables conditionally
dependent on too many other manifest variables. Both cases
may lead to a non-identifiability of the AR model solution to
Problem (13) because some sparse and low-rank components
are not distinguishable.



DRAFT 7

As discussed in [3, Section 3], identifiability has the geo-
metric interpretation that VEm and VG have transverse inter-
section. The transversality condition means that any element
of VEm + VG admits a unique decomposition into the two
subspaces.

Proposition 3.4: If (32) admits a unique solution, then VEm
and VG are unique and have transverse intersection, i.e. VEm∩
VG = {0}.
The proof is provided in Appendix E.

We will see in Section IV that transversality condition
guarantees the uniqueness of the solution to Problem (13).

IV. AR MODEL IDENTIFICATION

The convex formulation of the convex optimization Problem
(13) parallels the developments in the previous section. We
adopt the parametrization

Σ− Λ = ∆X∆∗

Λ = ∆L∆∗ = ∆GTHG∆∗

where the matrix unknowns are X ∈ Qm(n+1) and H ∈ Ql.
Note that Σ = ∆(X +GTHG)∆∗. The positivity conditions
Σ − Λ � 0 and Λ � 0 are replaced by X � 0 and H � 0,
respectively. Also in this case X � 0 only guarantees that
Σ − Λ � 0. In view of (17), condition Σ ∈ VEm is replaced
by PEcm(D(X + GTHG)) = 0. Clearly condition Λ ∈ VG
follows from the chosen parametrization. Finally, the objective
function is given by (16) provided that X00 � 0. The convex
program (13) thus admits the matrix formulation

min
X∈Qm(n+1)

H∈Ql

− log detX00 +
〈

T(R̂), X
〉

subject to X00 � 0, X � 0, H � 0

PEcm(D(X +GTHG)) = 0 (33)

Both formulations are equivalent provided that the optimal
solution, say (X◦, H◦), is such that ∆X◦∆∗ � 0.

Proposition 4.1: Problem (33) does admit a solution. More-
over, ∆X◦∆ is unique and such that ∆X◦∆ � 0.
The proof is provided in Appendix F.

The optimal spectral density Φ̂◦m thus admits the matrix
decomposition

(Φ̂◦m)−1 = ∆X◦∆∗ = ∆(X◦ +GTH◦G)∆∗︸ ︷︷ ︸
∈VEm

−∆GTH◦G∆∗︸ ︷︷ ︸
∈VG

which is unique when VEm and VG have transverse intersec-
tion.

Corollary 4.1: The AR latent-variable graphical model
solution to Problem (13) is unique when VEm and VG are
estimated from (12) with λγ and λ sufficiently large.

We now give an important interpretation of the optimal
solution of (13). Consider the following covariance extension
problem.

Problem 1: Find Φm ∈ Sm such that

PEm

(∫
∆Φm − R̂

)
= 0∫

G∆∗Φm∆GT � GT(R̂)GT .

The condition ∫
∆Φm = R̂ (34)

implies that PEm

(∫
∆Φm − R̂

)
= 0. Moreover, (34)

is equivalent to
∫

∆∗Φm∆ = T(R̂) which implies that∫
G∆∗Φm∆GT � GT(R̂)GT . Accordingly, Problem 1 is a

relaxation of the classic covariance extension problem. The
next theorem shows that Φ̂◦m is the maximum entropy solution
of Problem 1.

Theorem 4.1: Problem (13) is the dual of the convex
optimization problem

max
Φm∈Sm

∫
log det Φm

subject to PEm

(∫
∆Φm − R̂

)
= 0∫

G∆∗Φm∆GT � GT(R̂)GT (35)

Proof. Note that, (35) is a relaxation of (5). Moreover, (5)
admits solution (and thus it is feasible), because T(R̂) � 0.
Accordingly, (35) is feasible. Moreover, we only have linear
inequality constraints in (35) which implies the refined Slater’s
condition [27]. Thus we have strong duality for (35) and its
dual. The Lagrange functional is:

L(Φm, S,H) =

∫
log det Φm −

〈
PEm

(∫
∆Φm − R̂

)
, S

〉
+

〈∫
G∆∗Φm∆GT −GT(R̂)GT , H

〉
where H ∈ Ql such that H � 0, and S ∈Mm,n. Moreover,

L(Φm, S,H)

=

∫
log det Φm −

〈∫
∆Φm − R̂,PEm (S)

〉
+

〈∫
G∆∗(Φm − Φ̂m)∆GT , H

〉
=

∫
log det Φm −

〈∫
∆Φm − R̂,PEm (S)

〉
+
〈

Φm − Φ̂m,∆G
THG∆∗

〉
where we exploited (15) and the fact that PEm is a
self-adjoint operator. By defining Σ := PEm(S0) +
1
2

∑n
j=1 e

−ijϑPEm(Sj) + eijϑPEm(Sj)
T ∈ VEm and Λ :=

∆GTHG∆∗ ∈ VG such that Λ � 0, we obtain the following
compact notation for the Lagrangian

L(Φm,Σ,Λ)

=

∫ (
log det Φm −

〈
Φm − Φ̂m,Σ

〉
+
〈

Φm − Φ̂m,Λ
〉)

.

Since L(·,Σ,Λ) is strictly concave over Sm, its unique max-
imum point is given by annihilating its first variation in each
direction δΦm ∈ Lm×m2 :

δL(Φm,Σ,Λ; δΦm) = tr

∫ (
(Φ−1

m − Σ + Λ)δΦm

)



DRAFT 8

Note that Φ−1
m −Σ+Λ ∈ Lm×m2 , thus the first variation is zero

for each δΦm if and only if Φ−1
m − Σ + Λ = 0. Accordingly,

if Σ−Λ � 0 then the unique maximum point of L(·,Σ,Λ) is

Φ̂◦m := (Σ− Λ)
−1 (36)

with Σ ∈ VEm and Λ ∈ VG such that Λ � 0. Then, by
substituting (36) in the Lagrangian we obtain, up to a constant
term, the objective function of (13).

The interpretation of the convex program (13) as the dual of
a covariance extension problem is insightful. First, it coincides
with the problem considered in [12] for the AR case, since
the solution satisfies G = 0 when the inequality constraint
in (35) is removed. On the other hand, it is worth noting
that [12] considers ARMA models which are more general
than the AR ones. Second, both constraints in (35) have a
clear interpretation: the equality constraint imposes that the
optimal spectral density Φ̂◦m matches the estimated covariance
lags R̂0 . . . R̂n in the positions specified by Em. Regarding
the inequality constraint, consider the stochastic process

y(t) =

n∑
j=0

Gjx
m(t− j)

whose variables are linear combinations of the m manifest
variables in a time window of length n. Accordingly, y encodes
information about xm. It is readily checked that

E[y(t)y(t)T ] =

n∑
k,h=0

GkRh−kG
T
h = GT(R)GT .

The inequality constraint therefore imposes that the covariance
matrix of y is lower bounded by the one estimated from the
data, i.e. GT(R̂)GT .

V. NUMERICAL EXAMPLES

A. Synthetic Example

We consider an AR latent-variable graphical model of order
n = 1 with m = 15 manifest variables, l = 1 latent
variable. Its interaction graph is depicted in Figure 2(a). We
generate a data sequence of length N = 500 for the manifest
process and we apply the identification procedure outlined at
the end of Section II-C. In Figure 2(b) we depict the latent-
variable graphical models obtained for different values of λ
and λγ. Not surprisingly, increasing the rank regularization
parameter λ favors few latent variables, whereas by increasing
the sparsity regularization parameter λγ favors few conditional
dependence relations among the manifest variables.

To discriminate among models, we consider the following
score function:

f(Em, l, Φ̂
◦
m, Φ̂C) = D(Φ̂C‖Φ̂◦m)× p. (37)

Here, Φ̂C is the smoothed correlogram of xm computed from
the data by using the Bartlett window, [14]. The cost

D(Φ̂C‖Φ̂◦m) :=
1

2

(∫ (
log det(Φ̂−1

C Φ̂◦m)

+
〈

Φ̂C , (Φ̂
◦
m)−1

〉)
−m

)
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ϑ
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eΛ

Fig. 3. Normalized estimation errors eΣ(eiϑ) =
‖Σ(eiϑ)−Σ◦(eiϑ)‖2

‖Σ‖ and

eΛ(e
iϑ) =

‖Λ(eiϑ)−Λ◦(eiϑ)‖2
‖Λ‖ as a function of ϑ ∈ [0, π] for the data set

in Section V.

is the relative entropy rate, [13], between Φ̂C and Φ̂◦m. Thus,
it ranks the adherence of Φ̂◦m to the data. The term

p = (|Em| −m) +ml

is the total number of edges in the latent-variable graphical
model. Thus, p places a penalty on models with high com-
plexity. An alternative choice for the score function would
be D(Φ̂C‖Φ̂◦m) + α(N)p where the weighting α(N) is the
trade-off parameter between the adherence to the data and
the complexity of the model. Typically α(N) is a decreasing
function in N because the data should reveal the simple
structure as N increases. The authors of [11] recommend the
choices α(N) = N−1 and α(N) = N/ logN . In contrast, the
authors of [12] recommend the score function (37) because it
is robust to scaling. Based on (37), the minimum value of f
is equal to 15,2 reached with λ = 1.02 and λγ = 0.53. Its
interaction graph coincides with the true one. Figure 3 provides
a graph of the normalized estimation errors of Σ and Λ at each
frequency:

eΣ(eiϑ) =
‖Σ(eiϑ)− Σ◦(eiϑ)‖2

‖Σ‖

eΛ(eiϑ) =
‖Λ(eiϑ)− Λ◦(eiϑ)‖2

‖Λ‖
.

We found similar results by varying the sample data. Finally,
we applied the same identification procedure with n = 0,
i.e. by estimating a Gaussian random vector. The estimated
interaction graph in Figure 2(c) does not recover the generated
model. This suggests the potential benefit of AR modeling in
the estimation of latent-variable graphical models.

B. International Stock Markets

The data used in this simulation consists of a time series of
daily stock markets indices at closing time, in terms of local
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λγ= 0.18
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f= 15.4
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l=1l=0
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(c)

(a)

optimal

Fig. 2. (a) Interaction graph of the generated model. (b) Interaction graphs of optimal models estimated for n = 1 and for different values of λ and λγ. (c)
Interaction graph of the optimal model estimated with n = 0. Each figure shows the interaction graph for the manifest variables: grey denotes an edge, white
denotes no edge, and black denotes a manifest node. The number of latent variables and the value of the score function is indicated on the top of each figure.

currency units, of twenty-two financial markets. The twenty-
two countries an their respective price indices are: Australia
(All Ordinaries index denoted AU), New Zealand (50 Gross
index denoted NZ), Singapore (STI index denoted SG), Hong
Kong (Hang Seng index denoted HK), China (SSE Composite
index denoted CH), Japan (Nikkei225 index denoted JA), Ko-
rea (KOSPI Composite index denoted KO), Taiwan (Weighted
index denoted TA), Brazil (IBOVESPA index denoted BR),
Mexico (IPC index denoted ME), Argentina (Merval index
denoted AR), Swiss (SMI index denoted SW), Greece (Athen
Composite index denoted GR), Belgium (BFX index denoted
BE), Austria (ATX index denoted AS), Germany (DAX index
denoted GE), France (CAC 40 index denoted FR), Netherlands
(AEX index denoted NL), United Kingdom (FTSE 100 index
denoted UK), Unites States (S&P500 denoted US), Canada
(S&PTSX Composite index denoted CA) and Malaysia (KLCI
index denoted MA). The data are obtained from the website at
http://finance.yahoo.com/. The sample period is from 4th Jan-
uary 2012 up to 31th December 2013. Following the setting in
[28], for each index we compute the return between the trading
day t− 1 and t as log differences rt = 100(log pt− log pt−1)
with pt closing price on day t. In cases of national holidays in
some country, the missing index value is replaced by the last
trading day’s value, that is the return is zero. The obtained data
sequence has length N = 518. We applied the identification

procedure of Section V-A with n = 1. In Figure 4(b) we
depict the estimated graphical model from the financial stock
returns data. We found one latent variable and the total
number of edges is equal to 29. It is interesting to observe
that the latent variable is not sufficient to characterize the
conditional dependence relations of Europeans markets (with
the exception of Greece) and the that the optimized model
includes direct edges between them. This can be explained
by the commencement of the economic and monetary union,
see [28]. In Figure 4(a) we depict the estimated graphical
model without latent variables which is characterized by 49
edges among the markets. The interpretation of the data seems
therefore simplified with the use of one latent variable. It is
also interesting to note that, without the presence of the latent
variable, there are stock returns which are independent from
the others. This suggests that the two methods approximate the
stock returns with different conditional dependence relations.
Finally, it is worth noting that D(Φ̂C‖Φ̂◦m) ∼= 3.9 for both
models, that is both models have the same adherence degree
to the data.

We consider the estimated joint spectral density Φ̂ of the
manifest and latent variables in (11) where we choose Υ̂l = 1.
Its partial coherence is defined as

Φ̃−1 = diag(Φ̂−1)−1/2Φ̂−1diag(Φ̂−1)−1/2.
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(a)

AU NZ SG HK CH JA KO TA BR ME AR SW GR BE AS GE FR NL UK US CA MA

(b)

AU NZ SG HK CH JA KO TA BR ME AR SW GR BE AS GE FR NL UK US CA MA

2

Fig. 4. Graphical models for the international financial stock returns data: (a) Best model without latent variables (b) Best model allowing latent variables.

Its entry in position (k, h) describes conditional dependence
relations, in the frequency domain, between xk and xh condi-
tioned on XVm+l\{k,h}. We partition the partial coherence as
follows

Φ̃−1 =

[
Υ̃m Υ̃∗lm
Υ̃lm 1

]
.

Figure 5 illustrates the absolute value of the entries of Υ̃lm,
which describes how conditional dependence relations (up to
time delays) between the latent variable and the stock returns
are distributed in the frequency domain.
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Fig. 5. Absolute value of the partial coherence between the latent variable
and the stock returns.

VI. CONCLUSIONS

In this paper we dealt with the identification of AR latent-
variable graphical models. The inverse of the manifest spec-
tral density of these models admits a sparse plus low-rank
decomposition, captured in two distinct vector subspaces. We
presented a two-step procedure for estimating such models.

A first optimization problem uses sparsity and low-rank regu-
larizers to estimate the two vector subspaces. A second opti-
mization problem performs the AR identification restricted to
those vector subspaces. Through duality, the second problem
provides a novel covariance extension problem. We provided
a simulation study to illustrate the proposed methodology.
Finally, we tested our method to international stock return data
where the introduction of a latent variable led to a simpler
graphical model.

APPENDIX

A. Proof of Lemma 3.1
If L � 0, then there exists C such that L = CCT . Ac-

cordingly, ∆(eiϑ)L∆(eiϑ)∗ = (∆(eiϑ)C)(∆(eiϑ)C)∗ which
is positive semi-definite for each ϑ ∈ [−π, π]. Thus, Λ =
∆L∆∗ � 0. Conversely, if Λ ∈ Qm,n is such that Λ � 0, then
it admits the spectral factorization Λ = ΓΓ∗ where Γ = ∆AT

such that A ∈ Rm×m(n+1), [14]. Hence, Λ = ∆ATA∆∗. We
conclude that Λ = ∆L∆∗ with L = ATA � 0.

B. Proof of Proposition 3.1
Consider an extended-real valued functional f : Am →

[−∞,+∞]. Its conjugate f? : Am → [−∞,+∞] is defined
as

f?(Φ) = sup
Λ∈Am

(〈Φ,Λ〉 − f(Λ))

In view of Theorem 5 in [29], the biconjugate f??, i.e. the
conjugate of the conjugate, is equal to the convex hull of f .

Let f(Λ) = rank′(Λ). We prove the statement by showing
that f?? coincides with (19). The proof consists of two steps.

Step 1. Let D := {Λ ∈ Am s.t. ‖Λ‖ ≤ 1}. Since f(Λ) =
+∞ for Λ /∈ D, then its conjugate is

f?(Φ) = sup
Λ∈D

(〈Φ,Λ〉 − f(Λ))

= sup
Λ∈D

(
tr

∫
ΦΛ∗ − f(Λ)

)
where Φ ∈ Am. By applying pointwise the von Neumann’s
trace theorem [30], we obtain∫

tr(ΦΛ∗) ≤
∫ m∑

k=1

σk(Φ)σk(Λ)
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and equality holds if and only if Φ and Λ admit the fol-
lowing pointwise SV Ds: Φ(eiϑ) = Γ(eiϑ)ΘΦ(eiϑ)Υ(eiϑ)∗

and Λ(eiϑ) = Γ(eiϑ)ΘΛ(eiϑ)Υ(eiϑ)∗. Accordingly, f? is
independent of Γ and Υ, therefore

f?(Φ) = sup
Λ∈D

(∫ m∑
k=1

σk(Φ)σk(Λ)− f(Λ)

)
.

If Λ = 0, we have f?(Φ) = 0 for each Φ. If f(Λ) = l,
with 1 ≤ l ≤ m, then the supremum is achieved by choosing
σk(Λ(eiϑ)) = 1 with k = 1 . . . l, ϑ ∈ [−π, π], and f?(Φ) =∫ ∑l

k=1 σk(Φ)− l. Thus, f? can be expressed as

f?(Φ) =

∫
max

{
0, σ1(Φ(eiϑ))− 1, . . . ,

l∑
k=1

σk(Φ(eiϑ))− l,

. . . ,

m∑
k=1

σk(Φ(eiϑ))−m

}
and the largest term of this set is the one that sums all positive
quantities. We conclude that

f?(Φ) =

∫ r∑
k=1

(σk(Φ)− 1) ,

where r(ϑ) ∈ {0, 1, . . .m} is such that{
r(ϑ) = 0, if σ1(Φ(eiϑ)) ≤ 1
σr(ϑ)(Φ(eiϑ)) > 1 and σr(ϑ)+1(Φ(eiϑ)) ≤ 1, otherwise.

(38)
In particular, f?(Φ) = 0 for ‖Φ‖ ≤ 1.

Step 2. We now compute the conjugate of f? which is
defined as

f??(Λ) = sup
Φ∈Am

(〈Λ,Φ〉 − f?(Φ))

where Λ ∈ Am. Proceeding as in Step 1, we have

f??(Λ) = sup
Φ∈Am

(∫ m∑
k=1

σk(Λ)σk(Φ)− f?(Φ)

)
.

Next we consider two cases: ‖Λ‖ > 1 and ‖Λ‖ ≤ 1.
• Case ‖Λ‖ > 1. We have,

f??(Λ) = sup
Φ∈Am

(∫ ( m∑
k=1

σk(Λ)σk(Φ)−
r∑

k=1

(σk(Φ)− 1)

))

= sup
Φ∈Am

(∫ ( r∑
k=1

σk(Φ)(σk(Λ)− 1)

+

m∑
k=r+1

σk(Φ)σk(Λ) + r

))
.

Let ϑ̄ ∈ [−π, π] such that ‖Λ‖ = σ1(Λ(eiϑ̄)) > 1, thus
σ1(Λ(eiϑ̄)) − 1 > 0. Since Λ ∈ Am, then σk(Λ(eiϑ))s are
continuous on ϑ ∈ [−π, π], thus we can choose σ1(Φ(eiϑ))
large enough in a neighborhood of ϑ̄ so that f??(Λ) = +∞.
• Case ‖Λ‖ ≤ 1. If ‖Φ‖ ≤ 1, then f?(Φ) = 0 and
the supremum is achieved by choosing Φ = I , accordingly
σk(Φ(eiϑ)) = 1 for each ϑ ∈ [−π, π], k = 1 . . .m, and

f??(Λ) =

m∑
k=1

∫
σk(Λ).

Finally, in the case ‖Φ‖ > 1 the argument of the sup is always
smaller than or equal to the above value:∫ ( m∑

k=1

σk(Λ)σk(Φ)−
r∑

k=1

(σk(Φ)− 1)

)

=

∫ ( m∑
k=1

σk(Λ)σk(Φ)−
r∑

k=1

(σk(Φ)− 1)

−
m∑
k=1

σk(Λ)

)
+

m∑
k=1

∫
σk(Λ)

=

∫ ( m∑
k=1

σk(Λ)(σk(Φ)− 1)−
r∑

k=1

(σk(Φ)− 1)

)

+

m∑
k=1

∫
σk(Λ)

=

∫  r∑
k=1

(σk(Λ)− 1)︸ ︷︷ ︸
≤ 0 ϑ ∈ [−π, π]

(σk(Φ)− 1)︸ ︷︷ ︸
> 0 ϑ ∈ [−π, π]

+

m∑
k=r+1

σk(Λ) (σk(Φ)− 1)︸ ︷︷ ︸
≤ 0 ϑ ∈ [−π, π]

+

m∑
k=1

∫
σk(Λ)

≤
m∑
k=1

∫
σk(Λ)

where we exploited (38).
We conclude that

f??(Λ) =

{ ∑m
k=1

∫
σk(Λ), ‖Λ‖ ≤ 1

+∞, otherwise.

C. Proof of Proposition 3.2

Before proving the statement, we establish the following
lemma.

Lemma A.1: Let C be a closed convex subset of {Z ∈
Mm,n s.t. tr(Z0) = 0}, c be a constant term. If the following
convex optimization problem is feasible

max
W∈Qm
Z∈Mm,n

log detW + c

subject to W � 0

T(R̂) + T(Z) �
[
W 0
0 0

]
Z ∈ C

then it admits a solution.
Proof: By assumption, the optimization problem is fea-

sible, i.e. there exist W̄ ∈ Qm and Z̄ ∈Mm,n satisfying the
constraints, and such that | log det W̄ + c| <∞. Accordingly,
the above problem is equivalent to maximize log detW over
the set

D := {(W,Z) ∈ Qm ×C s.t. W � 0,

T(R̂) + T(Z) �
[
W 0
0 0

]
, log detW ≥ log det W̄

}
.
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Next we show that D is a compact set. Since log detW is
continuous over D, it follows from Weierstrass’ theorem that
log detW admits a maximum on D.

To prove the compactness of D, we show that it is bounded
and closed. Let {(Z(k),W (k))}k∈N be a sequence belonging to
D. Since the minimum singular value of the map T is strictly
positive, if ‖Z(k)‖ → ∞ as k → ∞, then ‖T (Z(k))‖ →
+∞. Since T(Z(k)) is a symmetric matrix, T(Z(k)) has at
least one eigenvalue tending to infinity in modulus. Moreover
tr(T(Z(k))) = 0 because Z ∈ C. Thus T(Z(k)), and hence
T(R̂) + T(Z(k)), has at least one eigenvalue tending to −∞.
This is not possible because Z(k) must satisfy inequality

T(R̂) + T(Z(k)) �
[
W 0
0 0

]
� 0.

Thus, ‖Z(k)‖ < ∞. Moreover, ‖W (k)‖ < ∞ because
0 ≺ W (k) � (T(R̂) + T(Z(k)))00. Therefore D is bounded.
Let ∂D denote the subset of the boundary of D not contained
in D. Since C is a closed subset of Mm,n, ∂D is at most the
set of elements (Z,W ) such that W is positive semi-definite
and singular. Since lim(Z,W )→∂D log detW = −∞ and
W must satisfy the inequality log detW ≥ log det W̄ , we
conclude that ∂D is an empty set. Accordingly, D is closed.

We proceed to prove Proposition 3.2. Since T(R̂) � 0,
Problem (28) is feasible (it is sufficient to pick W = αI and
Z = 0 where α > 0 is the minimum eigenvalue of T(R̂)).
Then, by applying Lemma A.1 with

C := {Z ∈Mm,n s.t. diag(Zj) = 0 j = 0 . . . n,
n∑
j=0

|(Zj)kh|+ |(Zj)hk| ≤ λγ k 6= h, λI + T(Z) � 0}

we conclude that (28) admits a solution. Finally, it is worth
noting the objective function in (28) is strictly convex with
respect to W , thus the optimal solution W ◦ is unique.

D. Proof of Proposition 3.3

Our proof uses the following lemma whose proof can be
found in [11].

Lemma A.2: Let Z ∈Mm,n, W ∈ Qm. If W � 0 and such
that

T(Z) �
[
W 0
0 0

]
then T(Z) � 0 and the unique solution to the Yule-Walker
equations, [31], T(Z)BT =

[
W
0

]
, B ∈ Rm×m(n+1)

B0 = I

is such that B∆∗ has zeros inside the unit circle.
We proceed to prove Proposition 3.3. Note that the duality

gap between (20) and (28) is equal to zero. In particular,

〈U◦, X◦〉 = 0 (39)

where U◦ ∈ Qm(n+1), U◦ � 0 maximizes (27). Note that U◦

can be expressed in the following way

U◦ = T(R̂) + T(Z◦)−
[
W ◦ 0
0 0

]
where W ◦ � 0 and Z◦ ∈Mm,n are solution to Problem (28).
By Lemma A.2, we have that T(R̂)+T(Z◦) � 0, accordingly
U◦ has rank at least equal to mn. Since U◦, X◦ � 0, (39)
implies that X◦ has rank at most equal to m. On the other hand
rank(X◦) ≥ m because X◦00 = (W ◦)−1 � 0. We conclude
that rank(X◦) = m. Hence, there exists A ∈ Rm×m(n+1) full
row rank such that X◦ = ATA with X◦00 = AT0 A0. Since
U◦, X◦ � 0, (39) implies(

T(R̂) + T(Z◦)−
[
W ◦ 0
0 0

])
AT = 0.

By defining B ∈ Rm×m(n+1) such that B = A−1
0 A we obtain

(T(R̂) + T(Z◦))BT =

[
W ◦

0

]
, B0 = I. (40)

Since T(R̂) + T(Z◦) � 0, the Yule-Walker equations (40)
admits a unique solution such that B∆∗ has zeros inside the
unit circle. Accordingly, there exists X◦ such that

∆X◦∆∗ = ∆ATA∆∗ = (∆BT )(W ◦)−1(B∆∗) � 0.

Finally, uniqueness of X◦ follows from the uniqueness of W ◦

and B. It remains to be shown the existence of L◦. In view
of (20), we have

L◦ = arg min
L∈Qm(n+1)

λγh∞(D(X◦ + L)) + λ tr(L)

subject to L � 0

where the objective function is continuous. Since L = 0 is a
feasible point, we can restrict L to belong to

D := {L ∈ Qm(n+1) s.t. L � 0,

λγh∞(D(X◦ + L)) + λ tr(L) ≤ λγh∞(D(X◦))}.

It is not difficult to show that D is a closed and bounded set,
therefore by Weierstrass’ theorem L◦ does exist.

E. Proof of Proposition 3.4

By Proposition 3.3, X◦ is unique. If (32) admits a unique
solution H , then L◦ = GTHG is unique. Therefore, VEm and
VG are unique because the uniqueness of X◦ and L◦. Equation
(32) may be written in the compact form

Ay = b

where the vector y ∈ Rl(l+1)/2 contains the independent
parameters of H , A ∈ R(n+1)|I|×l(l+1)/2 only depends on
G and b ∈ R(n+1)|I| only depends on X◦. If (32) admits a
unique solution, then it is obtained in the following way

y = (ATA)−1AT b
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and changing b (i.e. X◦) such a solution is still unique. Ac-
cordingly, the uniqueness of the solution to (32) is equivalent
to the uniqueness of the decomposition

Φ−1
m = Σ− Λ

with Φ−1
m ∈ VEm + VG, Σ ∈ VEm and Λ ∈ VG. Therefore,

VEm ∩ VG = {0}.

F. Proof of Proposition 4.1

The statement can be proved by duality theory along the
same line of the proof of Proposition 3.2 and Proposition 3.3,
respectively.
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[31] T. Söderström and P. Stoica, System Identification. UK: Prentice-Hall,
1989.

Mattia Zorzi received the M.S. degree in Automa-
tion Engineering and the Ph.D. degree in Informa-
tion Engineering from the University of Padova in
2009 and 2013, respectively. He held a postdoctoral
position with the Department of Electrical Engineer-
ing and Computer Science, University of Liege (BE)
in 2013-2014. He held a visiting position with the
Department of Electrical and Computer Engineering,
U.C. Davis (USA), and with the Department of Engi-
neering, University of Cambridge (UK), in 2011 and
2013-2014, respectively. He is currently an Assistant

Professor with the Department of Information Engineering, University of
Padova. His current research interests include Machine Learning, Robust
Estimation, Graphical Models and Identification Theory.

Rodolphe Sepulchre (M’96-SM’08-F’10) received
the engineering degree in 1990 and the Ph.D. degree
in 1994, both in mathematical engineering, from
the Universite Catholique de Louvain, Belgium. He
was a BAEF Fellow in 1994 and held a postdoc-
toral position at the University of California, Santa
Barbara from 1994 to 1996. He was a Research
Associate of the FNRS at the Universite Catholique
de Louvain from 1995 to 1997. Since 1997, he
has been Professor in the Department of Electrical
Engineering and Computer Science at the Universite

de Liege. He held visiting positions at Princeton University (2002-2003) and
the Ecole des Mines de Paris (2009-2010) and part-time positions at the
University of Louvain (2000-2011) and at INRIA Lille Europe (2012-2013).
Since 2013, he is Professor of Engineering in the Department of Engineering,
University of Cambridge, Cambridge, U.K. Dr. Sepulchre was awarded the
IEEE Control Systems Society Antonio Ruberti Young Researcher Prize in
2008. He is a IEEE CSS Distinguished Lecturer since 2010.


