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Surveillance and identity:  

Conceptual framework and formal models 

 

Victoria Wang1 and John V Tucker2 

 
Abstract 

 

Surveillance is recognised as a social phenomenon that is commonplace, employed by 
governments, companies and communities for a wide variety of reasons. Surveillance is 
fundamental in cybersecurity as it provides tools for prevention and detection; it is also 
a source of controversies related to privacy and freedom. Building on general studies of 
surveillance, we identify and analyse certain concepts that are central to surveillance. 
To do this we employ formal methods based on elementary algebra. First, we show that 
disparate forms of surveillance have a common structure and can be unified by abstract 
mathematical concepts. The model shows that (i) finding identities and (ii) sorting 
identities into categories are fundamental in conceptualising surveillance. Secondly, we 
develop a formal model that theorizes identity as abstract data that we call identifiers. 
The model views identity through the computational lens of the theory of abstract data 
types. We examine the ways identifiers depend upon each other; and show that the 
provenance of identifiers depends upon translations between systems of identifiers.  
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1. Introduction 

Surveillance is an integral part of everyday life as many technologies employed in our 

physical and virtual environments have long been capable of monitoring and recording our 

activities cf. [1]. The ubiquitous cameras that monitor our physical environment, in order to 

improve the safety and security of people and property, are but the most visible tip of the 

surveillance iceberg. The invisible bulk is made of software that record data about actions 

and events cf. [2].  Our professional lives have long been conducted through software 

systems, and recently, our personal lives have become dependent on software systems 

through social media. Our home and neighbourhood environments are next to succumb to 

software, through the internet of things, e.g., [3, 4, 5]. That our lives are being captured and 

represented by digital data, collected by many independent sources for different purposes, is 

an important sociological phenomenon. The translation of all kinds of data into digital form, 

and the aggregation and unification of all kinds of data sources through computer networks 

are important technological phenomena. 

 

Surveillance is enormously controversial as it impacts on the multitude of notions that make 

up privacy and freedom for individuals; on the conduct of economic and social life of 

societies; and on the legal, political, and military foundations of the state [6,7]. With this 

broad view, David Lyon has given a general description of surveillance as “the focused, 

systematic and routine attention to personal details for purposes of influence, management, 

protection or detection” [8: 14]. In establishing surveillance as a general social issue, Lyon 

has proposed that surveillance has three main purposes [8]:  

(i) keeping control, which is the historic purpose pursued by employers, police, and 

government;  

(ii) social sorting, pursued by companies in marketing and managing customers; and  

(iii) mutual monitoring, pursued in peer to peer in social networks, real and virtual.  

Thanks to the ubiquity of digital technologies, the aims and methods of social sorting – the 

categorisation of personal data – is becoming most prominent.  

 

In this paper, we examine theoretically the general ideas of surveillance and one of its 

component concepts that of identity. Identity is fundamental to contemporary surveillance 

practices [9,10,11]. Surveillance technologies rely on identity management systems to 



3 
 

provide information, which vary in accuracy.3 For instance, for social sorting to work, 

identity needs to be just precise enough to enable categorisations to be useful in an 

application.  

 

We seek completely abstract models that can be formalised and analysed mathematically. 

First, we develop a general definition of surveillance that captures the notion in diverse 

situations, and we illustrate the general definition with some disparate examples. This 

definition shows that the three main types of surveillance have the same structures, and that 

the essence of surveillance is indeed sorting and categorisation. Our analysis applies to 

entities that are objects or people, real or virtual, belonging to a specific context.  

 

A most important component idea of our definition of surveillance is that of the identity of 

the people or objects observed. We introduce the general concept of identifiers, which are 

data designed to recognise an entity. Here is our idea: 

 

Informal Definition. An identifier for an entity is data that is associated with the entity for 

the purposes of distinguishing it among other entities in some context and for some purpose.  

 

Identifiers are the main focus of our paper. As a starting point for our conceptual analysis, we 

assume that: 

 

Principle.  Entities are recognised only through the data that act as their identifiers for a 

context. Entities are observed only through the data that represent their behaviour in a 

context.  

 

This hypothesis is widely applicable.  First, the surveillance context is determined by 

selecting aspects of an entity’s behaviour that can be captured in data, and by observations 

                                                

3 For example, in the UK, accurate identification of an individual usually depends on a 

passport [11], a driver’s licence (DVLA) and, for some, the National Identity Register [12]. 

Accuracy increases if identification involves fingerprints [13], iris scans [14] and DNA [15]; 

see also [16].  
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made by testing for attributes of the data. Secondly, the identity of an object is reduced to 

measurements, and the identity of a person is reduced to forms of evidence that are also data, 

including records of personal testimony and formal registration, as well as biometrics 

[15,16,17]. The idea is simpler and more palatable when one considers the virtual world, 

which creates hugely many more contexts that are, and can only be, made of data. Users have 

many identities, some of which they create in a state of anonymity. The Principle is perfectly 

at home in the virtual world of cybersecurity. 

 

Technically, the operations and tests on identifiers combine to make systems of identifiers. 

Although designed for specific contexts, they often have unforeseen applications. Since 

identifiers are data, clearly the systems of identifiers are actually examples of what computer 

scientists call abstract data types [18, 19]. The theory of abstract data types characterises data 

through its operations and tests, which may be specified by axioms to make them close to the 

application domain and independent of implementations. The theory uses algebra to model 

any form of data, and tools to design and build software. The idea of a general theory of 

identity based on abstract data types is new. 

 

Foremost among identifiers are those that are supposed to identify people. The notion of a 

personal identifier proves to be as informative as it is subtle. To understand identity we need 

to examine the ways identifiers are issued and how they depend upon other identifiers. We 

show that the provenance of identifiers is an essential idea. We consider principles of how 

identifiers are to be compared and when they might be deemed equivalent; this requires 

notions of translations between different systems of identifiers.  

 

All of these concepts are motivated by some informally described examples, and then 

formalised mathematically using elementary algebra. The examples of surveillance and 

identity we use refer to situations both in everyday life and in cybersecurity. The everyday 

examples make the point our concepts apply to traditional forms of identity and security.  The 

cybersecurity examples give a glimpse of the abundance of identity issues in securing 

software systems. Identity is a central concept in hashing, encryption, communication 

protocols, certification, and their roles in the maintaining the trustworthiness of transactions, 

encoding of access controls, tracing events, forensics, etc. In their mathematical form, the 

concepts create precise and general definitions that cover a great range of examples.  
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The paper is in two parts: on surveillance (Sections 2-4) and on identity (Sections 5-10). 

Section 2 exemplifies the central ideas informally; their formalisation begins in Section 3.  

 

But why formalise? Formalisations make notions precise. They uncover and classify the 

possible structures and interpretations of ideas. Our formalisation can be likened to the way 

formal logic has long been used in philosophy to clarify the nature of truth, arguments and 

reasoning. Later, we reflect on the role of abstract concepts and formal methods to give 

insights in sociological contexts (Section 10.2). 

 

Our aim is to discover general concepts and principles associated with surveillance and to 

analyse them, mapping their inter-connections and implications by means of mathematical 

ideas and structures. Formalisation has proved to be a fundamental practical tool in the 

development of software. Formal models are needed by technologists designing surveillance 

systems and their safeguards, in order to develop tools for testing and reasoning. Such formal 

methods play a role in software engineering where security by design is an objective. We 

believe that raising the status of identity and modelling identity using abstract data types will 

be useful in making and maintaining cybersecurity software.  

 

The mathematical pre-requisites are modest.4  To address a readership from different 

disciplines and professions, we explain some very basic mathematical ideas. Whilst this will 

seem laborious and unnecessary to those familiar with formal methods, others may benefit 

when ideas are shown to arise naturally in thinking about identity, and appreciate more 

readily the benefits that formalisation delivers.   

 

 

 

 

 

 
                                                
4 The mathematical ideas we use use to launch our models are sets, functions and relations, 

which are described in any number of textbooks on discrete mathematics, e.g., [20, 21]. The 

theory of abstract data types is more demanding algebraically, e.g., [18]. 



6 
 

2. What is surveillance? 

 
Let us begin with an abstract informal description of a large class of surveillance systems. 

 

Informal Definition. A surveillance system observes the behaviour of people and objects in a 

context that may be real or virtual. The surveillance system classifies behaviours by means of 

attributes, and identifies people and objects with those attributes. A surveillance system 

consists of the following components and methods: 

1. Entity. Entities that possess behaviour in space and time. 

2. Observable behaviour. Methods for obtaining and recording data about behaviours.  

3. Attribute. Methods for defining and recognising attributes of behaviour data.  

4. Identity. Methods for generating data that identifies entities in the context.  

 

In practice, what is observable about the behaviour are the attributes of data; these 

characterise the context for the surveillance. Depending upon the context, we may expect the 

attributes to be based upon laws, rules, norms, conventions, policies, practices, expectations, 

etc.  Indeed, when the purpose of surveillance is control, they may seek to catch deviations. 

The definition is neutral and does not imply deviance. The definition does require precise 

formulations of attributes for a process of categorisation. The data that is used to identify 

entities can be numbers, texts, sounds and images. Here are three simple examples to prepare 

for our abstract formalisations. 

 

Example 1: Control – Motor Vehicles.  Automatic Number Plate Recognition (ANPR) is a 

technology that observes vehicles and records registration marks. Typical applications are 

checking on vehicle speed, managing car parking and collecting tolls, cf. [22]. The 

technology was functioning in the late 1970s. Today, ANPR is a component of hundreds of 

thousands of surveillance systems owned by both public and private organisations.  

 

Consider some ANPR applications in terms of our abstract definition. In such surveillance 

systems, the entities are vehicles at a particular location and time. The vehicles may be in 

motion (as with speed checks), or may be arriving or leaving a location (as with car parking 

and congestion zones in cities). The vehicles are observed by cameras that create images and 

the software that processes the images varies according to the behavioural attributes under 
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observation (e.g., breaking an average speed limit over a stretch of road, or overstaying a 

parking time limit). In particular, optical character recognition establishes the registration 

mark of vehicles. A registration mark is an alpha-numeric name that identifies a vehicle 

uniquely in a human-centred way in a national register of vehicles. The mark links to 

information about the characteristics of the vehicle. Thus, to the surveillance system, the 

identity of an entity is this registration mark. For example, a surveillance system for car 

parking based on an ANPR has the form:  

 

Entity: Cars 

Observable Behaviour: The registration mark, its time of arrival and departure at the location 

Attributes: Duration of stay above a particular limit 

Identity: Registration marks  

 

Following the ANPR stages described above, the registration mark is communicated to a 

database relevant to the application. For example, the database may be used to check an 

attribute, such as a payment (tax, charge or toll), having been made for that registration mark.  

 

The surveillance system knows the identity of the car, but not necessarily the driver. 

Suppose we take the entities to be people. To find the driver, an independent process 

involving only personal identities begins. The vehicle is registered to a person called the 

keeper of the vehicle, who must be located and contacted. In the UK, the operator of the 

surveillance system communicates the registration mark to the Driver and Vehicle Licensing 

Agency (DVLA), or to one of its approved agents, to determine the name and address of the 

keeper. The output of these actions is the identity of the keeper. Indeed, in this necessary 

second stage, there is a transformation of identity data from the registration mark to the name 

and address of the keeper. Note that finding the actual driver may require further independent 

action. In the case of speeding, where laws are involved, the driver’s record will contain 

characteristics such as a driving penalty history. 

 

Example 2: Social Sorting – Customer Accounts.  Consider a client’s e-account with some 

provider, such as a bank or shop. Typically, an account has the following components: an 

account number that identifies the account; a user name and password as a form of identity 

used to gain access to the account; a set of characteristics of the account, such as personal 
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details and the scope and limits of services; and an account history that records past 

transactions and allows for new transactions, queries, preferences, etc.  The account history is 

the behaviour of the account; it is observed to check that terms and conditions are met by the 

client, or that no unusual pattern of transactions has been carried out, or to generate 

suggestions for new products and services. Observations might also include standard 

monitoring data about user logins and login attempts, duration, location, etc. For example:  

 

Entities: Credit card accounts  

Observable Behaviour: Transactions: date, payee, location, sum, etc.   

Attributes: Credit limit, minimum payments, unusual transactions   

Identity: Credit card number  

 

Example 3: Mutual Monitoring – Social Media Accounts.  Social media connect people 

who have personal or professional interests in common. Systems such as Facebook, Twitter, 

WeChat, Instagram, LinkedIn, and Academia.edu attract large numbers of users. Individuals 

register with a system and create an account and a network of other users to suit their needs. 

Abstractly, an account has a structure similar to that of a customer account for a bank or 

shop. The behaviour of the account is a history of postings, status updates, linkages and 

interactions. In social networking, individuals voluntarily reveal very detailed information 

about themselves to their networks, including their personal history, tastes, opinions and 

activities; the behaviours could be termed personas. From the point of view of surveillance, 

two phenomena are of interest: (i) individuals can and do ‘watch over’ people in their 

networks, and (ii) the data of the account holders belong to companies that can collect and 

use the information for commercial or other purposes. Illustrating the components:  

 

Entities: Member accounts  

Observable Behaviour: Personal declarations, posts, comments, connections, location, etc.   

Attributes: Targeted opinions in posts on specific topics, interactions with other members, 

unusual interactions  

Identity: Usernames  
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3. A formal model of surveillance 
 
We have defined surveillance informally as a process that identifies entities on detecting 

certain properties of their behaviour. We will define this process formally.  

 

3.1 Context: Entities and their behaviour 

 
Let Entity be a set of entities whose behaviour is to be observed. Let Behaviour be the set of 

all possible behaviours in space and time of all the entities of Entity. The nature of behaviour 

and its models we consider in stages. 

 

Deterministic Behaviour. Suppose that each entity e ∈ Entity has one and only one 

behaviour in space and time, i.e., its behaviour is deterministic.  In this case, there is a single-

valued mapping  

[[_]]: Entity → Behaviour 

such that  

[[e]] = the behaviour of the entity e ∈ Entity. 

The mapping provides a formal model or semantics for the behaviour of the entity. Taken 

together we have formalised a context for the surveillance as an algebraic structure: 

Context = (Entity, Behaviour | [[_]]: Entity → Behaviour). 

 

Non-deterministic Behaviour.  Suppose that each entity has more than one possible 

behaviour in space and time, i.e., its behaviour is non-deterministic. In this case, there is a 

relation 

[[_]]: Entity × Behaviour 

such that  

[[e, b]]  ⇔  b  ∈ Behaviour is a possible behaviour of the entity e ∈ Entity. 

The context for the surveillance is a relational structure 

Context = (Entity, Behaviour | [[_]]: Entity × Behaviour). 

Alternately, in the non-deterministic case, if the elements of Behaviour are sets of possible 

behaviours of an entity, the relation can be replaced with a map returning sets.  
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We will focus on the deterministic case. The behaviours need to be modelled formally. How 

might this be done? There are several options.  

 

3.2 Behaviour as streams of data 
 

A way to formalise behaviours is to think of entities performing a sequence of actions or 

events taking place in time.  

 

Let Time be a set of time points generated by a clock of some kind; for example, say Time = 

{0, 1, 2, … , t, …}. Let Action be a set of actions or events characteristic of the entities. The 

behaviour of an entity is conceived of as a stream 

a(0), a(1), a(2), . . . , a(t), . . . 

of actions or events in time, where a(t) ∈ Action for all t ∈ Time. Such sequences will be 

termed traces: 

 

Definition. A trace is an association of actions or events to time points and is formalised by a 

total mapping 

a: Time → Action 

such that for all t ∈ Time 

a(t) = the action or event taking place at time t ∈ Time. 

Let Trace be the set of all possible traces.  

 

Now in many cases, the space Behaviour of all possible behaviours of the entities can be 

taken to be a subset of the set Trace of all possible traces; thus,  

Behaviour ⊆ Trace. 

When applying the behaviour mapping [[_]] to an entity e ∈ Entity we get a trace, which is a 

map 

[[e]]: Time → Action. 

Therefore, for e ∈ Entity and t ∈ Time, we have 

[[e]](t) = the action or event of entity e taking place at time t ∈ Time. 
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Example: Twitter. Twitter processes data called tweets. At the heart of a tweet is a message 

made from at most 140 characters, but a tweet is composed of more data. For simplicity, a 

tweet can be thought of as a vector of data drawn from sets of the following kind: 

Text The text that is the status update.5  

Identity A string that uniquely labels the tweet. 

Contributor The author(s) of the tweet. 

Time  The time when this Tweet was created.6 

Location  The geographic location (longitude, latitude) of this Tweet as reported by the 

user or application.7 

Retweet Status and number of retweets. 

Favourite Number of favourites. 

We let the set of all possible tweets be 

Tweet = Text × Identity × Contributor × Time × Location × Retweet × Favourite. 

Now Twitter generates and processes streams of tweets, i.e., sequences of tweets indexed by 

time. Thus, the behaviour can be modelled by traces that are streams of tweets of the form  

a(0), a(1), a(2), … , a(t), …  ∈ Tweet, 

which is represented by a map a: Time → Tweet.  Let Behaviour be the set of all possible 

traces of these kinds. Typical user operations on tweets are embedding tweets, responding to 

tweets, and favouring, unfavouring, and deleting tweets, which induce operations on traces. 

 

Depending upon the circumstances, monitoring tweet feeds is called curation, filtering, or 

surveillance.  Monitoring Twitter can be done in a number of ways via application 

programming interfaces (APIs), which define instructions for developers to build new 

systems. Twitter’s Search API allows users to define criteria (keywords, usernames, 

locations, named places, etc.) to search among existing tweets. Twitter’s Streaming API 

redirects a sample of tweets, based upon a user’s criteria, as these tweets appear. The sample 

is less than 1% [23]. Twitter’s Firehose API delivers 100% of all publicly available tweets 

that match users’ criteria as they are made. The Twitter Firehose is complex and requires a 

subscription. Twitter’s monitoring services have tools to detect non-compliance with Twitter 

policies (e.g., aggressive following and unfollowing).  

 
                                                
5 Using the UTF-8 representation for Unicode. 
6 Measured by Coordinated Universal Time (UTC). 
7 Using the geoJSON standard. 
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3.3 Identity: Identifying entities 

 

To identify entities in a context whose behaviours have certain properties, the entities need to 

be labelled, marked or named in some way. Our notion of identifier, defined in the 

Introduction, is designed to do just this. 8 

 

Each entity e ∈ Entity has an identifier that is used to denote the entity in a context. The 

association of identifiers with entities can be complicated as we will see shortly. In order to 

formalise surveillance, we must formalise the assignment of identifiers to entities. 

 

Definition. Let Identifier be a set of possible identifiers for the entities of Entity. There is a 

relation  

id ⊆  Identifier × Entity 

such that  

id(i, e)  ⇔   the data i ∈ Identifier is assigned to entity e ∈ E. 

If id(i, e) then we say that identifier i names entity e. Let anon be a datum that is not in the set 

Identifier of identifiers for the entities; anon indicates anonymity, i.e., an entity not named. 

We will need the set Identifier ∪ {anon}.  

 

We will develop the notion of identifiers in the second part of the paper (Section 5 onwards). 

Here, let us note that since the association of identifiers to entities is a relation, thus many 

identifiers can be allocated to an entity and, conversely, many entities can have the same 

identifier.  Later, in Section 5, we will simplify the discussion, focussing on the case that the 

association is a function id: Identifier → Entity. 

 

 

                                                
8 In computing, the term identifier is well established. It is data made of syntax that names or 

labels a computational entity; commonly, it is an alphanumeric string that defines 

components in a programming language, such as variables, operators, procedures, programs 

etc.  Our adoption of the word for data associated with a context is essentially a large-scale 

generalisation.  The purpose of the notion is close to that of the idea of a pure name in [24]. 

The term is in use occasionally in some social discussions of identity. 
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3.4 Surveillance: Detecting attributes 

 

The elements of Behaviour formalise the activity of the entities under surveillance. To 

formalise what it is we are to detect, we suppose that Prop = Prop1, … , Propk  is a collection 

of sets of behaviours, i.e., for 1 ≤ i ≤ k, 

Propi  ⊆  Behaviour. 

The entities of interest are those whose behaviours lie in some Propi; in symbols, 

Entity(Propi) = {e ∈  Entity : [[e]]∈  Propi}. 

 

General Case. Entities in a context are known by their identifiers. Formulations of 

surveillance can seek for any entity e satisfying a Propi,   

(i) at least one identifier i for e; 

(ii) a subset of the identifiers of e; or 

(iii) all of the identifiers of e. 

These options have the form of a selection or choice operation 

selectid : Entity → P(Identifier) 

where P(Identifier) is the set of all subsets of Identifier, and  

selectid(e) ⊆ {i ∈ Identifier | id(i, e)}. 

 

Definition. Surveillance is formulated as follows: for 1 ≤ i ≤ k define, 

Surv(Propi): Entity → P(Identifier)  

for e ∈ Entity by 

Surv(Propi)(e)  = selectid(e)   if  [[e]]∈ Propi 

= ∅   if  [[e]]∉ Propi .  

Note that entities whose behaviours do not lie in Propi are mapped to the empty set ∅, and 

are ignored and not identified, i.e., they will remain anonymous.  

 

Definition. An entity e in a context is anonymous under surveillance with attributes  

Surv(Prop) if Surv(Propi)(e) = ∅ for 1 ≤ i ≤ k. 

 

Minimal Case. Consider surveillance that seeks just one identifier for any entity whose 

behaviour satisfies some Propi. This view of surveillance is reformulated thus: 
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Definition. Surveillance is defined as follows: for 1 ≤ i ≤ k define, 

Surv(Propi): Entity → Identifier ∪ {anon} 

for e ∈ Entity by 

Surv(Propi)(e)  = (some i) id(i,e)  if  [[e]]∈ Propi 

= anon    if  [[e]]∉ Propi .  

 

Thus, given the collection Prop = Prop1, … , Propk  of properties, surveillance is specified by 

a collection of functions: for 1 ≤ i ≤ k,  

Surv(Propi): Entity → Identifier ∪ {anon}. 

If convenient, these may be combined as a k-tuple, 

Surv(Prop): Entity → (Identifier ∪ {anon})k 

where 

Surv(Prop)(e) = (Surv(Prop1)(e), … , Surv(Propk)(e)). 

Combining these ideas, we define formally a very general notion of a surveillance system. 

 

Definition. A surveillance system for entities in a context is a structure of the form  

SurvSys(Prop) = (Entity, Identifier ∪ {anon}, Behaviour | anon, id, [[_]], Propi, Surv(Propi) 

1 ≤ i ≤ k), 

consisting of the non-empty sets  

Entity, Identifier, Behaviour, 

the constant 

anon, 

and the k+1 relations 

id ⊆ Identifier × Entity, 

Propi, 

and the k+1 mappings  

[[_]]: Entity → Behaviour 

Surv(Propi): Entity → Identifier ∪ {anon} 

for 1 ≤ i ≤ k. 
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The definition expresses a minimal general form of a surveillance system as an algebraic 

structure, which is a semantic model of an abstract data type [18]. The theory of abstract data 

types was created to model the essential components of any computing system in a precise 

way. Thus, designers can use algebraic methods when thinking formally about the processes 

of user specification and subsequent technological implementation [25]. Of course, any actual 

surveillance system will involve many technologies to obtain and process data. These 

technologies may suggest some new abstract components that need to be formalised and 

understood theoretically. Roughly speaking, system design has the following form:  

 

Design Problem. The essence of the design problem is: 

1. Specification. To define the desired surveillance system by specifying an abstract data 

type for SurvSys(Prop). 

2. Implementation. To choose technologies to generate data 

a. represent the behaviours of the entities; 

b. represent the identities of the entities; 

c. observe behaviours and detect those behaviours having the attributes in Prop; 

d. recognise the identity of entities having the properties in Prop. 

 

4. Surveillance and social sorting 
 

In surveillance studies, social sorting is the categorization of people and results in a 

classification used to treat people differently [26]. Although originally formulated to 

understand the social impact of surveillance by companies and institutions, our formal 

definition shows that sorting is essential to the abstract conception of surveillance and, 

therefore, that sorting is inherent in the surveillance of entities of all kinds. We will formalise 

the sorting of entities using simple notions of categorization and partition; however, sorting 

can be problematic because the sorting of identifiers is more complex than the sorting of 

entities. 

 

4.1. Sorting entities 

 
In our definition of surveillance the collection Prop of properties of entities lead to a 

categorization of entities that can be treated differently. What is a categorization? 
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Definition.  Let Entity be a set of entities. A categorization of entities is a collection of 

subsets  

S1, S2,  … , Sk ⊆ Entity 

that include all the entities, i.e.,   

S1 ∪ S2 ∪   … ∪ Sk  = Entity. 

 

An entity e lies in at least one of the sets and possibly several. In this loose idea, we may have 

categories overlapping and having interesting internal structure, e.g., they may be nested and 

form a hierarchy under the set inclusion ordering.  Commonly, and most simply, we may 

want the sets not to overlap so that an entity e lies in one, and only one, of the sets: 

 

Definition. The categorization is a partition if for 1 ≤n,m≤ k, we have Sn∩Sm = ∅. 

 

4.2 Sorting identifiers 
 

Surveillance observes data about behaviours of entities – not entities – and recognises only 

identifiers for entities – not the entities themselves.  Thus, surveillance delivers a 

categorization of identifiers, not a categorization of entities, which makes the notion subtle. 

 

Definition.  Let Identifier be a set of identifiers. A categorization of identifiers is a collection 

of subsets  

S1, S2,  … , Sk ⊆ Identifier 

that includes all the identifiers, i.e.,   

S1 ∪ S2 ∪   … ∪Sk  = Identifier. 

 

Again, an identifier i lies in at least one of the sets and possibly several. A categorisation of 

identifiers is less likely to be a partition. However, the structure must also be measured 

against the entities that the identifiers name. Given an entity e there can be identifiers i and j 

for e that lie in different sets. This means that the categorization of identifiers does not lead 

directly to a neat categorization of entities. Distinctions between different identifiers for the 

same entity may be “ambiguities” that are meaningful. For example, data integration 

combines sets of identifiers from different contexts that share the same entities. 
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Categorizations of identifiers arise in many ways, not least by the analysis of data sets using 

clustering and classification techniques in machine learning [27].  Ideally, our categorization 

of identifiers can be transformed into one that corresponds with the entities: 

 

Definition. The categorization S1, S2,  … , Sk  of identifiers is complete for the entities if for 

all i,  j ∈ Identifier, and any 1 ≤ n ≤ k,  

if i ∈ Sn and i and j name the same entity then j ∈ Sn 

 

Our definition of surveillance delivers a categorisation of identifiers, namely:  

Sn = image(Surv(Propn)) – {anon}. 

To make a complete categorisation is a process that depends upon knowledge of the equality 

of identifiers for entities (see section 6.2).  We now turn to theorising identity. 

 

5. What is identity? 
 

Identity has become almost purely a matter of data. People and objects are named, numbered, 

labelled or otherwise denoted by data relevant to a context. People belong to many contexts: 

they can be citizens, patients, drivers, voters, employees, customers, crime suspects, etc., 

each with different identities managed by different kinds of identity management systems. 

Physical or virtual, each identity system is based on an abstract data type of some kind. 

 

To distinguish between entities in a context, identifiers need not reflect any aspect of the 

entity or have any meaning at all, however in practice they are loaded with information. Case 

studies reveal that the following processes are fundamental: 

(i) creation and re-creation of identifiers; 

(ii) comparison of identifiers; 

(iii) inter-dependence of identifiers; 

(iv) transformation of identifiers; 

(v) revocation of identifiers.  

Identifiers are composite objects: identifiers are commonly built from other identifiers. 

 

Personal identifiers are those that we rely upon to distinguish uniquely a human being.  They 

are guarantees of peoples’ identities in contexts that demand physical identity. In the UK, the 
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basic, most rigorous personal identifiers are associated with birth, marriage and death 

certificates, passports, medical and dental records, driving licenses, National Insurance (NI) 

records, tax records, etc. Biometric data – such as photographs, fingerprints, iris scans, blood 

groups, and DNA – are also involved. Biometric data are physical measurements, but they are 

represented and processed digitally. 

 

In this section, we examine informally some concepts, principles, and examples of identity 

prior to providing a formal definition and the outline of a theory in the next sections.  

Recall from the Introduction that identifiers can be any data intended to separate entities in a 

context. What is this data? For example, a name for an entity is an identifier. By a name for 

an entity we commonly mean data made from symbols. In computing systems, there are 

many syntactic schemes for naming hardware and software entities using alphanumeric 

strings; usually, the aim is to make a symbolic identifier unique to the entity in a context.  

 

The relationship between entities and identifiers can be complicated. Consider these four 

identifier-entity ratios: 

1. Many – One Associations. Each identifier is assigned to one entity, but different 

identifiers can be assigned to the same entity.  

2. One – One Associations. Different identifiers are assigned to different entities.  

3. One – Many Associations. An identifier can be assigned to more than one entity but 

each entity has only one identifier.  

4. Many – Many Associations. An identifier is assigned to more than one entity and, 

vice versa, an entity can be assigned more than one identifier. 

 

Surveillance returns identifiers that can narrow the search for entities but may not pin down 

the particular entity of interest. Searches take place on identifiers and, as we have noted, the 

an identifier can easily point to many distinct entities. Thus, many-to-one associations are 

important because:  

 

Search Principle. If an association is many-one then to find an entity, we can search for any 

one of a set of alternate identifiers for that entity. If an association is one-one then there is 

one and only one identifier for that entity.  
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The following point about narrowing the search for identifiers is obvious but certainly is 

profoundly important practically:  

 

Enumeration Principle. The addition of a number, reference code, extension tag, time 

stamp, or hash code may turn a many-one association into a one-one association.  

 

The use of numbers to uniquely distinguish entities in a context is old and universal, helping 

to determine uniquely all sorts of entities, such as people (by membership numbers); 

invoices, orders and payments (by reference numbers); and consumer products (by serial and 

barcode numbers). Reference codes do the same using alphanumerical strings. The use of 

extension tags often structures identifiers as paths in a tree and, like time stamps, separate 

entities, narrow searches, and can isolate entities uniquely. Hashing produces long binary or 

hex numbers as code for an identifier.  

 

Example 1: Cars. Recall Example 1 in Section 2 which illustrates one-one and many-one 

associations. In the UK, each car is assigned a registration mark; the current system was 

introduced on 1st September 2001. In general, each registration mark consists of seven 

characters with a defined format. From left to right, the characters consist of: (i) a local 

memory tag or area code, consisting of two letters that indicates the local registration office; 

(ii) a two-digit age identifier, which changes twice a year, in March and September; and (iii) 

a three-letter sequence which uniquely distinguishes each of the cars displaying the same 

initial four-character area and age sequence. The association of registration marks to cars is 

one-one at any time. However, with permission of the DVLA, registration marks can be 

transferred from one vehicle to another. Thus, the marks are unique identifiers that are time 

dependent; they are not permanent unique identifiers for the vehicles. There are identifiers for 

vehicles that are permanent: in the UK, the vehicle identification number (VIN) consists of 17 

characters that identify the manufacturer (three characters), the type of vehicle (six 

characters), and finally distinguishes each of the cars with these characteristics (eight 

characters). The VINs obey some international standards. 

 

A car has one and only one registered keeper. The registered keeper is the person who is 

legally responsible for the car, and need not to be the owner of the vehicle. One purpose of 

the mark is to identify the keeper: thus, the association of a registration mark to a keeper is 
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unique. However, a person can be a registered keeper of as many cars as he/she wants. Thus, 

the association of registration marks to keepers is many-one. The registration document (V5) 

for a car identifies the car by registration mark and VIN, and its keeper. 

 

Many people have insurance policies that enable them to drive any car with the owner’s 

permission. Thus, the driver of a car on a particular occasion may be only loosely connected 

to the keeper. The association between registration marks and drivers is complicated being 

one-many and time dependent, and incomplete in terms of formal documentation. 

 

Example 2: Communications. This example demonstrates both many-one and many-many 

associations. When connecting a computer to the Internet, a number is needed called an 

Internet Protocol (IP) address that uniquely identifies the machine in the network; this 

number is 32 bits under Internet Protocol Version 4.9 In some computer networks, such as 

networks local to an organisation or company, there is an IP address for the machine that 

does not change; these are called static IP addresses. In this context, the association of 

computers to IP addresses is one-one. More commonly, at home, IP addresses are generated 

by an Internet Service Provider in response to a customer’s need for Internet access. Thus, 

over time IP addresses can change and the association of IP addresses to a particular 

computer is many-one. Developing this example, if more than one computer is accessing the 

Internet at the same time in a period, from the same service, then the association between IP 

addresses and computers is many-many. The changing status seems to be natural in time-

dependent associations of identifiers. However, each computer does have an identifier, called 

its MAC address (48 bits under IEEE 802), that identifies the device uniquely throughout its 

life. So, the association is one-one and time independent.  

 

Example 3: Addresses. This example demonstrates a one-many association. In the UK,  

between 1959-1974, a system of postal codes was introduced to enable the automation of 

postal services. Typically, each address or location is assigned at most one postcode but a 

postcode can be assigned to more than one unit or building. The association between 

postcodes and buildings/addresses is one-many.  Thus, postcodes are a system of identifiers 
                                                
9 In the Internet of Things, processors are embedded in products and places of all kinds. Thus, 

there is a need for many more IP addresses, prompting an upgrade of standards from Internet 

Protocol Version 4 to Internet Protocol Version 6 [28]. 
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that do not uniquely determine addresses. Local authorities determine addresses. Postcodes 

have found many uses and are used routinely in commercial transactions, navigation, and, 

more significantly, in calculating insurance, designing social policy and funding, and 

academic social studies – all of which are examples of social sorting.  

 

For any system of identifiers for entities in a context, the questions arise: 

 

Identifier Generation. How does the system create and delete identifiers for entities?  

Identifier Authentication. Given two identifiers, how do we decide whether or not they are 

associated with the same entity? 

Entity Authentication. Given an entity and identifier, how do we verify whether or not the 

identifier is associated with the entity?  

 

Entity authentication is stronger than identifier authentication. The notion is attractive but not 

subtle for what does it mean to be “given an entity”?  In much theory and practice, the entity 

is actually “given” by means of another identifier. We examine the relationship between 

identifiers in Section 9. 

 

Example 4: Physical Verification of Entities. A biometric is an identifier that is designed to 

be verified by means of a physical process of identity authentication. The physical process 

involves instruments that make measurements, which are processed by software, and whose 

specification involve probability theory. Questions arise about accuracy, equivalence across 

authenticating equipment, software portability, and, indeed, the probabilistic assumptions. 

However, the intention is clear: through biometrics, physical reality verifies personal identity. 

 
6. A formal model of identity 
 

We now consider formally the idea of a system of identifiers for the entities under 

observation. There are three aspects arising from our discussion of examples: assigning 

identifiers, comparing identifiers and basic personal identifiers. We will continue to use the 

formal notations introduced earlier in our formal definition of surveillance in Section 3.3.  
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6.1 Assigning identifiers.   

 

Definition. Let Identifiers be a non-empty set of identifiers and Entity a non-empty set of 

entities. Suppose that identifiers have been assigned to entities by means of a relation  

id ⊆ Identifier × Entity 

such that  

id(i, e) ⇔ the data i ∈  I, called an identifier, is assigned to entity e ∈ E. 

We define the set of entities named by identifier i by 

ent(i) = {e ∈ Entity | id(i, e) } 

and the set of all identifiers naming entity e by 

id(e) = {i ∈ Identifier | id(i, e) }. 

These sets are projections of the relation id. 

 

The maps ent(i) and id(e) are needed to formalise the types of association in Section 5. This 

idea is our most general definition: 

 

Definition. A system of identifiers is a structure, 

IdSys = (Identifier, Entity | id ⊆ Identifier × Entity). 

 

Example 1: Post Codes and Passwords. Recall Example 3 in section 5: a postcode can be 

assigned to more than one building so the association is a one-many relation postcode: 

Postcode × Address. Similarly, accounts are assigned one password, but passwords can be 

common to different accounts (e.g., proper names, birthdays, etc.). The association is a one-

many relation password: Password × Username. 

 

Examples suggest that the following special case is most important. 

 

Definition. A system of identifiers IdSys is said to satisfy the many-one property if each 

identifier is assigned to one and only one entity but an entity may have more than one 

identifier. In this case, the relation becomes a single-valued mapping  

id: Identifier → Entity 

such that  

id(i) = the entity e ∈ Entity named by the data i ∈ Identifier. 
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The structure becomes an algebra:  

IdSys = (Identifier, Entity | id: Identifier→ Entity). 

 

Recalling the Search and Enumeration Principles in Section 5,  we will focus on systems 

having this many-one property. Since the purpose of the identifiers is to recognise the entities 

that we are interested in, the following equivalence relation on Identifier is basic:  

 

Definition. For any i1 and i2 ∈ Identifier, we say that they are entity-equivalent if they are 

associated with the same entity: in symbols,  

i1 ≈en i2  if, and only if, id(i1) = id(i2). 

 

The identifier captures and narrows down detection of entities. Thus, we can strengthen the 

system of identifiers if we can satisfy this condition: 

 

Definition. A system of identifiers IdSys is said to satisfy the one-to-one property if the map 

id satisfies: for any i1 and i2 ∈ Identifier, 

if id(i1) = id(i2)  then  i1 = i2. 

The map id is one-to-one or injective, and entity-equivalence ≈en is =. 

 

Example 2: Cars. Recalling Example 1 in Section 5, the association of registration marks to 

cars is one-one. 

 
6.2 Generating identifiers 

 

How are identifiers generated for a set of entities in practice?  First, some input data is 

presented to the system that has to be examined and approved according to some set of rules. 

 

Definition. Let the initial data presented to a system in order to create an identifier be called a 

form.  Let Form be the set of all possible forms for the system. The creation of an identifier is 

a mapping of the type:  

generate: Form → Identifier. 

A form f ∈ Form is the background data needed to create the identifier generate(f).  
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We can refine this idea by separating the processing of the data from the release of the 

identifier. Let the processing of the form be represented by a function 

check: Forms → {0, 1} 

that tests the data in a form f ∈ Form for consistency against the system’s rules. We assume 

that check(f) = 1 means the form is accepted and check(f) = 0 means the form is rejected. 

 

We represent the next stage – if and when an identifier is to be issued – by a function  

issue: Forms → Identifier 

which uses some or all of the data in f ∈ Form to make an identifier. 

 

The two stages are represented by composing the functions to make the new function 

generate: Forms → Identifier ∪ {reject} 

where 

generate(f) = if check(f)=1 then issue (f) else reject. 

 

The idea of the form is seen in the familiar procedures of enrolment and registration required 

when applying to join organisations, schemes and services etc. 

 

7. Personal identity  
 

Of greatest interest is surveillance in which the entities are people. A fundamental problem is 

how identifiers can actually identify a specific individual. An individual’s identity involves 

many characteristics – social, biographical, psychological and biometric – all of which can be 

presented digitally. A person identifier is very special data as it is fundamental to theories of 

trust, privacy and surveillance.  Consider some examples of assigning data to individuals. 

 

7.1 Examples 

 
Example 1: Biometrics. Biometric identifiers are measurable qualities that can be used to 

describe and label the physical characteristics of individuals and enable the automatic 

recognition of people. Physiological and behavioural characteristics are related to the body, 

and there are many: some 9 leading biometrics, and a further 17 biometrics under 

development, are discussed in [16]. All of these physical measurements end up in software. 
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The association of a biometric to people is expected to be highly reliable because it is 

expected to be one-one. Biometric digital technologies emerged in the 1960s with automatic 

fingerprint recognition [29, 30] – perhaps, the best understood automatic process [31]. 

 
The operational tests used to measure biometrics are of course, approximate, due to technical 

constraints, error margins and costs. Thus, that biometric data manifests a one-one identity 

association is a matter of probability, especially high probability. Increasingly accurate 

measurements are desirable or necessary. Although identical twins share very similar DNA, 

they are not identical [32]. The environment affects the genetics, possibly even in the womb. 

But the complexity of testing is considerable and is a research area [33].  Recently, public 

attention was drawn to these points when identical twins were identified by DNA evidence as 

suspects in a series of sexual assaults, in Marseille, France, and soon after in Reading, 

England.  In the case of Marseille, after 10 months incarceration, one of the twins confessed 

[34]; in the case of Reading, mobile phone evidence revealed the offender [35]. At the time 

advanced DNA tests were not applied to separate the twins. 

 

Example 2: Citizenship. In the UK, for example, an individual can or must register with 

state organisations devoted to health, employment, citizenship, and transport, and with local 

government organisations devoted to residence and elections. Everyone registered with the 

National Health Service has his/her unique number, which is linked to his/her health record. 

Each NHS number is made up of 10 alpha-numerics.  Everyone gets a National Insurance 

(NI) number just before he/she turns 16. An individual’s NI number makes sure his/her NI 

contributions and taxes are only recorded against her/her name. The format of the number is 

two prefix letters, six digits, and one suffix letter. In the new style red passport, in addition to 

the biometrics, there is a passport number that must be nine characters and all characters must 

be numeric. Finally, each driving licence has a number made up of 18 alpha-numerics, which 

codes part or all of (i) the surname; (ii) the date of birth; (iii) the first names; (iv) sex; (v) 

licence issue; and (vi) checks. In these cases of registration, numbers are added to identifiers 

in order to ensure that each of these associations is one-one. The ways in which the British 

state knows its citizens is complicated; plans in 2006 for (re-)introducing a national identity 

register were abandoned in 2011 [36, 37].   
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7.2 Formal personal identifiers.  

 

We have emphasised how systems of identity are designed to separate entities in contexts, 

how they are established with widely varying standards of rigour, and that they are combined 

and compared in all sorts of unanticipated ways. The fundamental personal identifiers 

mentioned in Section 7.1 are much used because they carry weight: with the authority of the 

state, people are identified in basic contexts for citizenship, employment, tax, and health.  

 

Definition. A personal identity system has the form  

PIdSys = (Identifier, Person | pid: Identifier→ Person) 

and satisfies the uniqueness property, namely two different people are assigned different data 

and the function pid is one-one. 

 

In practice, the data assigned to a person invariably includes a number or alpha-numeric code 

precisely in order to enforce the uniqueness property. All systems of identity need to be 

analysed by studying comparisons that involve mapping between different systems of 

identity, but this is especially true of personal identity systems.  

 

8. Provenance of identifiers  

 
8.1 Generating identifiers using other identifiers 
 

Creating identifiers is an everyday occurrence: we open accounts, register for services, buy 

products, etc. For many of these actions, we rely on a handful of pre-existing identifiers. In 

the UK, to open a bank account, we give a proof of our identity and our current address, e.g., 

using a passport and a recent utility bill. To order a product or service, an address and a credit 

card account number are usually sufficient for the vendor to dispatch: notice the dependency 

on the bank identifier. At face value, the quality of a bank identifier is guaranteed by the 

databases of the state (passport, driver’s licence) and local organisations (utility providers, 

local authorities). The passport provides a high quality identifier based on a birth certificate, a 

photograph and possibly other biometric data. Example after example, illustrates the general 

point that: 
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Principle. The creation of new identifiers is dependent upon pre-existing identifiers.  

 

The quality of an identifier is essentially a matter of its reliability, which in turn depends on 

(i) its provenance, i.e., the process involved in establishing the identifier; and  

(ii) scope, i.e., the context(s) in which it is accepted.  

In the case of people, a passport and a driving licence are standard examples of high-quality 

identifiers with a rigorous provenance and wide application [38, 39]. In the case of a bank, 

where it is a now a priority to check on identity of existing customers, the process of 

identification can be clumsy and discriminatory, as women can experience when using both 

their maiden name (in their profession) and married name (in their personal life), which are 

often not linked rigorously in practical ways. 

 

The dependence of one identifier upon another may be illustrated in an identity dependence 

tree.  

 

Example 1: Bank Account. Consider the role of identifiers in opening a bank account (in the 

UK), which is depicted in Figure 1. Establishing the identifier ID1 of the account holder 

involves providing evidence using five other identifiers: the validity of ID1 depends upon, or 

is reduced to, the validities of ID2-ID6. Some of these identifiers have a special status, in that 

they are designed to reliably denote an individual. In the example, these personal identifiers 

are guaranteed by the state (ID4) and biometric data (ID3); in the latter case, ID6 is used to 

allow a passport to be issued by post, without face-to-face interaction. ID2 is used to confirm 

the validity of the account holder’s address.  

 

The identifiers that appear in the nodes of the tree suggest that there can be quite complicated 

dependencies between systems of identifiers for the same or, more commonly, different 

contexts. The identifier is made by aggregating pre-existing identifiers: the bank identifier in 

Figure 1 is the sum of the identifiers for current address, birth and image, etc.  
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Figure 1: Dependency tree of identifiers 

Since identifiers are often built from other identifiers, of central importance is the process of 

comparing identifiers and relating one type of identifier to another. Indeed, there must be 

translations between distinct systems for these identifiers for such methods to work. All of 

these observations and ideas can be formalised to make a precise and general mathematical 

framework for analysing identifiers. The identity dependence tree is a flexible notion with 

many more applications than proving personal identity. 

 

Example 2: Namespaces. Namespaces are sets of identifiers that use symbols to label, 

organise and classify entities by names. The names can have a tree structure that enables 

them to be reused and to form a hierarchy. For example, the names for directories, folders, 

files, and web domains, etc. are made by concatenating names and denote paths in a tree: the 

web address 

http://www.swansea.ac.uk/library/archive-and-research-collections/hocc 

for the History of Computing Collection is a node belonging to the archives which in turn 

belong to the library of Swansea University. Indeed, there is no shortage of computing 

contexts where identity dependence trees are used. Domain name systems (e.g., URLs), 

directory services for networks (e.g., Microsoft’s Active Directory), email addresses (e.g., 

X500), authentication systems (e.g., Kerberos), and public key infrastructures (e.g., 

blockchains) are natural sources of rules and structures for creating identifiers.  

 

ID1 = Bank Account 

ID2 = Present Address ID3 = Passport 

ID4 = Birth Certificate ID5 = Photo 

ID6 = Independent Authentication 
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Example 3: Identity Fraud. The creation of new personal identities requires many 

identifiers to be fabricated: birth certificates, driving licences, employment histories, etc. The 

practicalities for the USA are discussed extensively in Kevin Mitnick’s memoir [40]. When a 

fugitive, his method for creating a new identity in different states can be depicted as an 

identity dependence tree.  More generally, Mitnick’s success at social engineering is based on 

his extensive preparation, which focussed on researching identifiers that he would use in 

masquerades in the technical, commercial and government contexts of phone system 

companies, computer and phone manufacturers, and state agencies. 

 

The complexity of computing systems suggests that tracing the provenance of a component 

may lead to circularity and so there may be a need for graphs of identifiers with cycles.   

 

8.2. Generating identifiers from identifiers 

 

Now suppose that to generate an identifier for an entity the input data involves other 

identifiers that must be presented to verify some of the new data (such as personal identity). 

The general ideas of Section 6.2 can be reformulated with provenance in mind. We revise the 

processing of the form with a function with new variables: 

check: Forms × Identifier1 × … × Identifierk → {0, 1} 

that tests the data in a form f ∈ Form and the information available from identifiers i1, … , ik 

for consistency against the system’s rules. Again, we assume that check(f, i1, … , ik) = 1 

means that the form is accepted and check(f, i1, … , ik) = 0 means that the form is rejected.  

 

The identity of an entity with identifier i depends upon the identifiers i1, … , ik. This idea is 

formalised by re-representing the function  

generate: Forms → Identifier ∪ {reject} 

(in 6.2) by the new function 

generate: Forms × Identifier1 × … × Identifierk→ Identifier. 

There are now two ways of creating the identifiers and defining generate, defined by two 

principles: 
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Provenance Principle: Verification. The data in f ∈ Form is sufficient to create an    

identifier i. The data in the identifiers i1, … , ik  are used only to confirm or validate the data 

in f.  

 

Here the function has the form 

generate(f, i1, … , ik) = if check(f, i1, … , ik)=1 then issue (f) else reject 

noting that issue (f) does not need to know the validation identifiers. Secondly, we have the 

more demanding case: 

 

Provenance Principle: Inheritance. The data in f ∈ Form to create an identifier i is 

inherited from the data in the identifiers i1, … , ik.  

 

In this case, the function has the form  

generate(f, i1, … , ik) = if check(f, i1, … , ik)=1 then issue (f, i1, … , ik) else reject. 

 

9. Comparing identifiers 
 

Access to data belonging to different contexts is desirable in surveillance, intelligence 

analysis and academic research; it is undesirable in social and personal contexts as it 

undermines privacy and freedom. Access is regulated by legal instruments. 

 

9.1 Reductions between systems of identifiers  
Consider the case where a set Entity of entities has two systems of identifiers: 

IdSys1 = (Entity, Identifier1 | id1: Identifier1→Entity), 

IdSys2 = (Entity, Identifier2 | id2: Identifier2→Entity). 

How can we relate or compare these systems?  

 

One simple case is when the identifiers in Identifier1 can be associated or matched with one 

or more identifiers in Identifier2, and vice versa.  This means that given an identifier i ∈ 

Identifier1 of an entity e ∈ Entity, we can find corresponding identifiers in Identifier2 that are 

also identifiers for e. This is formalised as follows: 

 

Definition. Let IdSys1 and IdSys2 be systems of identifiers for Entity. A matching relation  
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r: Identifier1  × Identifier2 

for the systems of identifiers IdSys1 and IdSys2 compares identifiers as to whether or not they 

are associated with the same entity in the following sense: for every i ∈ Identifier1 and j ∈ 

Identifier2, 

r(i, j) if, and only if, id1(i) = id2(j). 

 

Different conditions on a matching relation can be found in examples, depending upon the 

properties of id1 and id2. An important and common case is: given an identifier i ∈ Identifier1 

of an entity e ∈ Entity, we can find some corresponding identifier in Identifier2 that is also an 

identifier for e. This is formalised as follows: 

 

Definition. Let IdSys1 and IdSys2 be systems of identifiers for Entity. The system of 

identifiers IdSys1 is said to reduce to the system of identifiers IdSys2 if there is a single-valued 

reduction mapping 

f: Identifier1  →Identifier2 

that calculates for each identifier in Identifier1 a corresponding identifier in Identifier2 for the 

same entity in the following sense: for every i ∈ Identifier1, 

id1(i) = id2(f(i)). 

We write IdSys1 ≤ IdSys2 or, more simply and conveniently, id1 ≤ id2 (see: Figure 2).  

 

 
Figure 2: Transformation of identifiers 

 
This is but one formalisation of the process of comparing the identifiers of Identifier1 to those 

of Identifer2. Another option would be to return a selection, or all, of the equivalent 

identifiers. Because the notion of identifier is so abstract, the notion of reduction is very 

general. Mappings between identifiers are ubiquitous in computing systems and employ 
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many algorithmic techniques.  Reductions can be found in situations where alternate terms 

like translating, binding, matching, and tracing are used.  

 

Example 1: Tracing. Consider the set Keep of keepers of vehicles in the UK and two 

systems of identity for this set of entities. Suppose, for simplicity, each keeper has one car 

and each keeper has a unique address. Each car has a registration mark. Let the first system 

be 

Reg = (Keep, Regmk | reg: Regmk → Keep). 

Every keeper has an address assigned by the postal service so let 

Add = (Keep, Address | addr: Address → Keep). 

Then the Driver and Vehicle Licensing Agency (DVLA) is responsible for the determining 

the keeper’s address from the registration mark, which is defined formally by the reduction 

map red: Regmk → Address such that for every registration mark r ∈ Regmk, 

reg(r) = addr(red(r)). 

We say that the system of identities Reg is reducible to Add. 

 

Example 2: Hashing. In cybersecurity, hashing techniques provide examples of reductions. 

For example, consider hashing in managing passwords. Hashing involves a one-way function 

h: Password → {0, 1}k where h(w) is a data used to separate w in some context.10 There are 

many hashing algorithms, such as the secure hash algorithms SHA-256 and SHA-512; and 

there are methods to enhance their security such as salting, where random strings are added to 

the passwords to separate common passwords from each other. Thus, hash codes are 

identifiers and the hash function and salting qualify as reductions. 

 

Example 3: Binding.  Connections between computing entities require various degrees of 

reliability and, in secure contexts, trust. In computing, a binding is a mapping associating 

distinct entities in hardware or software. Commonly, bindings are mappings between 

syntactic spaces (e.g., namespaces) enabling binding to connect syntactic and semantic 

entities, or to create layers in software stacks, or create secure chains of identity in 

cryptography. The term binding has general application and several common forms of 

binding qualify as reductions between systems of identifiers in our sense.  

 
                                                
10 A one-way function is easy to compute but hard to invert. 
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Example 4: Certification. Certification is a security process that seeks to increase trust in 

identity. It is intended to reduce risks of man-in-the-middle vulnerabilities. In 

communications, such as calling a webpage, certification can flag doubts about a website. In 

cryptography, a public key certificate is used to confirm the ownership of a public key. The 

certificate validates the binding of a public-private key pair to an entity, using a digital 

signature generated by a certificate authority.  

 

Definition. The system of identifiers IdSys1 is said to be equivalent to the system of 

identifiers IdSys2 if there are reduction mappings 

f: Identifier1  → Identifier2 and g: Identifier2  →Identifier1 

that can exchange identifiers in Identifier1 and corresponding identifiers in Identifier2. We 

write IdSys1 ≈ IdSys2 or, more simply and conveniently, id1 ≈ id2.  

 
9.2 Structuring the space of identifiers 
Reductions are an important concept that occur widely. To conclude, we introduce some 

concepts and propositions to reveal the richness of the reduction notion and signal the 

possibility of advanced classification methods.  
 

In Section 8, we discussed the combination of identifiers.  The process of creating new 

identifiers from old introduces algebraic operations on spaces of identity systems.  One 

choice of algebraic structure, the semilattice, organises the space of all possible identity 

systems using reduction.  

 

Lemma. Let IdSys(Entity) be the set of all identity systems for the non-empty set Entity of 

entities. The reduction relation ≤ on IdSys(Entity) is reflexive and transitive; and ≈ is an 

equivalence relation on IdSys(Entity). 

 

Proof.  Let IdSys = (Entity, Identifier | id: Identifier → Entity).  Trivially, id ≤ id using the 

identity function Identifier → Identity as reduction map; so reduction is reflexive. 

To show transitivity, let  

IdSys1 = (Entity, Identifier1 | id1: Identifier1→Entity), 

IdSys2 = (Entity, Identifier2 | id2: Identifier2→Entity), 

IdSys3 = (Entity, Identifier3 | id3: Identifier3→Entity). 
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and suppose 

id1 ≤ id2  by  f: Identifier1→ Identifier2  and id2 ≤ id3 by g: Identifier2→ Identifier3. 

Then, for i ∈ Identifier1, and j ∈ Identifier2, we have 

id1(i) = id2(f(i)) and id2(j) = id3(g(j)). 

Composing, f and g we have, 

id1(i) = id3(g(f(i))) 

and id1 ≤ id3.  It is easy to show that ≈ is symmetric.  

 

Using the equivalence relation ≈ on IdSys(Entity), we define the set of equivalence classes: 

IdSys(Entity) = IdSys(Entity)/≈. 

The equivalence classes have the standard form of [id] for id ∈ IdSys(Entity). The ordering 

relation ≤ on IdSys(Entity) induces ordering relation ≤ on IdSys(Entity) by  

[id1] ≤  [id2] ⇔ id1 ≤ id2. 

It is easy to check that ≤ is a partial ordering on IdSys(Entity). Furthermore, the ordering ≤ 

has the least upper bound property: for any [id1], [id2] ∈ IdSys(Entity), there is an element 

[id] such that 

(i) [id] is an upper bound: [id1] ≤ [id] and [id2] ≤ [id]; 

(ii) no lower element is a bound: if [id1] ≤ [id0] ≤ [id] then either [id1] = [id0] or [id0] = 

[id]. 

To show this we construct an identity system as follows. Given id1, id2 ∈ IdSys(Entity), take 

the disjoint union Identifier1 ⊕ Identifier2 of the sets of Identifier1, and Identifier2 and define  

id1 ⊕ id2 : Identifier1 ⊕ Identifier2 → Entity. 

wherein given i ∈ Identifier1 ⊕ Identifier2, 

(id1 ⊕ id2)(i)  = id1(i) if i ∈ Identifier1 

(id1 ⊕ id2)(i)  = id2(i) if i ∈ Identifier2. 

It is easy to show that [id1 ⊕ id2] satisfies conditions (i) and (ii).  The construction  

(Identifier1 ⊕ Identifier2 | id1 ⊕ id2) 

is called a co-product of the identity systems. If the sets Identifier1 and Identifier2 are disjoint 

(as is often the case) then the carrier is their union. 

 

Example: Combining Identifiers.  Integration of identity data can be tentatively explored 

using coproducts. Consider making a system of identifiers for entities that are contracts, for 
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which personal identity and current location must be validated. A space of identifiers may be 

built using the coproducts of pairs of validating systems of identifiers: passports, driver 

licences, identity cards for identity, and utility bills, local tax declarations for addresses.  

 

A partial ordering with the least upper bound property is called an upper semilattice [41]. 

Thus, gathering together these arguments we have the theorem: 

 

Theorem. The reduction relation ≤ on IdSys(Entity) forms an upper semilattice.  

Corollary. The process of creating new identifiers by inheriting existing identifiers forms an 

algebraic structure IdSys(Entity) that is an upper semilattice under the reduction relation. 

 

Equivalently, any upper semilattice can be reconstructed as an algebraic structure with a 

binary operation ∧ that is associative, commutative and idempotent [40]. In this form we 

would have the structure  

IdSys(Entity) = (IdSys(Entity)/≈ | ∧) 

with binary operation of least upper bound defined by 

[id1] ∧ [id2]  = [id1 ⊕ id2]. 

Further properties of the upper semilattice IdSys(Entity) can be developed depending upon 

properties of the associations and reductions. 

 

10. Concluding remarks  
 

Employing simple examples and arguments from first principles, we have used formal 

methods to analyse precisely concepts involved in surveillance and identity. The formal 

analysis shows that disparate forms of surveillance can be unified by abstract mathematical 

definitions, and that (i) finding identities, and (ii) sorting identities into categories, are 

fundamental in conceptualising surveillance. The formal analysis of identity shows that the 

idea of identity can be considered to be exclusively a matter of data, and its diversity can be 

unified by abstract mathematical definitions. It also shows that (i) comparing identifiers, and 

(ii) translating between systems of identifiers, are fundamental to understanding identity.  
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10.1 Developing a theory of identity 

 
The theoretical analysis presented here is intended to analyse examples and formalise 

intuitions and ideas.  This formal approach is new and inevitably modest, but it can serve as a 

basis for further conceptual and mathematical investigations relevant to the making and 

regulation of surveillance systems. Two conceptual and four technical further directions seem 

to us to be desirable. Conceptually, our theory of identifiers could be used to theorise privacy, 

interpreted as the control of identity. (A formal notion of anonymity was included in Section 

3.4.) The second direction is to use identifiers to explore secure access control policies in 

computer systems (e.g., role-based access control). 

 

Turning to technical directions, first the notion of context in Section 3.2 can be developed 

with various semantic models. Further behavioural features can be formalised, such as the 

interaction of entities. There are options for formalising streams – infinite or finite, total or 

partial streams in discrete or continuous time –  and for behaviours modelled as non-

deterministic and concurrent processes [42].  Secondly, logics can be used to develop 

specification and reasoning about attributes. There are several candidates, such as many 

sorted first order logic and its many derivatives and its extensions – equational, Horn, and 

temporal logic [43]; and many valued logics [44]. Logics bring with them tools that would 

expand the scope of the theory and applications. 

 

Third, the idea of a system of identifiers needs to be developed mathematically. For example, 

identifiers commonly reference characteristics of the entities that may be essential to their 

deployment and application; this information is an additional component that would enrich 

the mathematical structure of contexts and their identifiers. The idea of the form does provide 

background initial information, but the characteristics of an entity may need updating 

because of the behaviour of the entity in time.  Systems of identifiers are instances of abstract 

data types [25], whose extensive general theory based on many sorted algebras and equations 

[18,19,45,46] can add significantly to the theory and practice of identity.  

 

Fourth, identifiers are assumed to be digital objects. To model this aspect, identifiers must 

themselves be coded by bits, i.e., by finite binary strings over {0, 1}. This introduces a new 

digital layer beneath the identifiers in which all computation actually takes place, simulating 
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functions on user data by functions on binary numbers. This digital layer is a source of 

constraints on the theory of identifiers. The digital layer can be modelled by maps of the form 

code: Numbers → Identifier. 

Classical computability theory is a mathematical theory of what can and cannot be computed 

on numbers [47], especially binary and decimal, etc. It has been applied to establish the scope 

and limits of computation on arbitrary data using such maps as code; these maps are called 

numberings in computability theory [48]. Thus, there is a second ready-made theory that can 

applied to develop this three-layer model: 

id ! code: Numbers →  Identifier → Entity 

and theorise what is, and what is not, computable about systems of identifiers. The 

conception of identity analysed here is inspired by and abstracts ideas about abstract data 

types and encodings cf. [49].  

 

10.2 Formalising identity and social theory 

 

Ours is an investigation into ideas about surveillance and identity, wherein our models are 

developed from first principles. It may seem far from the world implied by the revelations of 

Snowden, with its surveillance tools (XKeyscore, Tempora, etc.) for target discovery and 

development. Let us observe that new surveillance contexts arise – or are recognised – as 

more of our professional and social activities are carried out by abstract technological 

systems rather than by direct face-to-face interactions. To make use of these systems, an 

individual needs to give over some of his/her identity to distinguish himself/herself from 

other users in the context. Thus, rather than having a single and holistic identity, individuals 

now have many separated and overlapping identities, which amplifies hugely the scope of a 

theory of identifiers.  

 

The physical and the virtual are converging; indeed, it seems that the physical world is being 

sucked into the virtual and a virtual world is being created that is self-contained.  It certainly 

exerts a strong influence on the physical world, and shows signs of autonomy. Thus, the 

components of monitoring and surveillance – context, entity, observable behaviour, attribute 

and identity – will seem natural in a world held together by data and software.  
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The multiplicity of contexts and identities, and the possibility of the autonomy of the virtual 

world, requires the nature of identity to be theorised. The formal framework we offer here is a 

rigorous analysis of the conceptual structure of surveillance; there ought to be others.  What 

can formalisation contribute? Guided by the theory of abstract data types, our formalisation 

of identity aspires to:  

(i) establish and explore principles that assume identity is a matter of data and their 

implications;  

(ii) make precise essential concepts and classify abstractly methods of identification;  

(iii) provide a unified point of view that illuminates the design of many real systems;  

(iv) explore the role of identity in aspects of security studies, including monitoring and 

surveillance, personal privacy and trusted translations and interactions. 

At this stage, these aims require a great deal of further work.  

 

Finally, let us observe that if a social science topic is closely associated with abstract 

technologies that collect and process data effectively then the specification of the software 

tools –  i.e., what the tools are designed to do for users – can be formalised in the same way 

as we have approached the problem here. Thus, sociological notions that motivate, shape and 

are ultimately represented in software, can be defined in a formal framework which can be 

mathematically analysed. In short, sociological theories about human activities that are 

closely associated with abstract software systems can be expected to have formal models, 

mathematical theories, as well as oodles of data arising from their use. 

 

To isolate, define and analyse ideas is the raison d’être of formal methods, though in new 

areas their mathematical nature presents obstacles to their reception and appreciation. The use 

of formal methods to express and analyse general notions is established in areas of 

philosophy and linguistics but seems to be rare in social studies. Given software’s 

colonisation of professional and social life, and its promotion of monitoring and Big Data, the 

role of formal methods to theorise social concepts and problems is destined to grow. 

 

Acknowledgement.  
We thank two anonymous referees for valuable suggestions that improved an earlier version 

of this paper. This research was partially supported by the EPSRC project Data Release - 

Trust, Identity, Privacy and Security (EP/N028139/1 and EP/N027825/1). 



39 
 

 

References 
1. Haggerty, K, Ericson, R. The surveillance assemblage. British Journal of Sociology 2000; 

51(4): 605-62.   

2. Introna, L, Wood, D. Picturing algorithmic surveillance: the politics of facial recognition 

systems. Surveillance & Society 2004; 2(2/3): 177-198.   

3. Evans, D. The Internet of Things: How the Next Evolution of the Internet Is Changing 

Everything. CISCO White Paper, 2011.  

4. Hopper, A. Sentient Computing. Philosophical Transactions of the Royal Society 2000; 

358: 2349-358. 

5. Thrift, N. The ‘sentient’ city and what it may portend. Big Data & Society 2014; 1: 1-21. 

6. Foresight. Future Identities Changing identities in the UK: The next 10 years (Final 

Project Report). Government Office for Science, 2013. 

7. Anderson, D. A Question of Trust. Report of the Investigatory Powers Review. HM 

Stationary Office, 2015. 

8. Lyon, D. Surveillance Studies: An Overview. Polity Press, 2007. 

9. Ball, K, Haggerty, KD, Lyon, D. The Routledge Handbook of Surveillance Studies. 

Routledge, 2012. 

10. Wills, D. Surveillance and Identity: Discourse, Subjectivity and the State. Ashgate, 2013. 

11. Torpey, J. The Invention of the Passport: Surveillance, Citizenship and State. Cambridge 

University Press, 2000. 

12. UK Government. The Identity Card Act 2006: Elizabeth II. Chapter 11. The Stationary 

Office, 2006. 

13. Cole, S. Suspect Identities: A History of Fingerprinting and Criminal Identification. 

Harvard University Press, 2001. 

14. Lyon, D. Under my skin: from identification papers to body surveillance. In: Caplan, C 

(ed). Documenting Individual Identity: The Development of State Practices in the Modern 

World. Princeton University Press, 2001.   

15. Wallace, H. The UK National DNA Database – Balancing crime detection, human rights 

and privacy. Science & Society 2006; EMBO reports 7: S26-S30.  

16. Vacca, J. Biometric Technologies and Verification Systems. Elsevier, 2007. 



40 
 

17. van der Ploeg, I. Biometrics and the body as information: narrative issues of the socio-

technical coding of the body. In: Lyon, D (ed). Surveillance as Social Sorting: Privacy, 

Risk and Digital Discrimination. Routledge, 2003.   

18. Ehrich, HD, Loeckx, J, Wolf, M. Specification of Abstract Data Types. Wiley, 1996.  

19. Goguen, J, Thatcher, J, Wagner, E. An initial algebra approach to the 

specification, correctness and implementation of abstract data types. In: Yeh, R (ed). 

Current Trends in Programming Methodology, IV. Prentice-Hall, 1978.  

20. Lipschutz, S, Lipson, M. Discrete Mathematics. Third Edition, Schaum, 2009. 

21. Makinson, D. Sets, Logic and Maths for Computing. Springer, 2012. 

22. Pieri, E. Emergent policing practices: Operation Shop a Looter and urban space 

securitisation in the aftermath of the Manchester 2011 riots. Surveillance & Society 2014; 

12(1): 38-54. 

23. Morstatter, F, Pfeffer, J, Huan L, Carley, KM. (2013). Is the Sample Good Enough? 

Comparing Data from Twitter’s Streaming API with Twitter’s Firehose. Arxiv, 2013. 

http://arxiv.org/abs/1306.5204v1 (14 March 2017, accessed).. 

24. Needham, RM. Names. In: Mullender S. (ed.). Distributed Systems. ACM Press, 1989, 

89-101. 

25. Liskov, B, Zilles, S. Programming with abstract data types. In: Proceedings of the ACM 

SIGPLAN Symposium on Very High Level Language. ACM Press, 1974, pp. 50-59.  

26. Lyon, D. (ed) Surveillance as Social Sorting: Privacy, Risk and Digital Discrimination. 

Routledge, 2003.  

27. Chen, M, Mao, S and Liu, Y. Big Data: A Survey. Mobile Network and Applications. 

2014; 19: 171-209.  

28. Minoli, D. Building the Internet of Things with IPv6 and MIPv6: The Evolving World of 

M2M Communications. Wiley, 2013.   

29. Trauring, M. On the automatic comparison of fingerprint ridge patterns. Nature 1963; 

197: 938-40. 

30. Wayman, JL. The scientific development of biometrics over the last 40 years. In: Leeuw 

K, Bergstra, JA (eds). The History of Information Security: A Comprehensive Handbook. 

Elsevier, 2007, 263-274.  

31. Maltoni, D, Maio, D, Jain, A, Prabhakar, S. Handbook of Fingerprint Recognition. 

Springer, 2009. 



41 
 

32. Choi, CQ. Copy That: Identical twins are not genetically identical. Scientific 

American. 298 (May 2008), 24-26.  

33. Twin DNA test: Why identical criminals may no longer be safe, 5 January 2014. 

http://www.bbc.co.uk/news/magazine-25371014 (14 March 2017, accessed). 

34. Mystery of which identical twin committed a series of rapes in France is finally solved as 

one brother confesses after he was given away by a stutter. 

http://www.dailymail.co.uk/news/article-3225467 (14 March 2017, accessed). 

35. Identical twins need never be tried for same crime after DNA breakthrough. 

http://www.telegraph.co.uk/news/science/science-news/10511087/Identical-twins-need-

never-be-tried-for-same-crime-after-DNA-breakthrough.html (14 March 2017, accessed). 

36. Caplan, J, Torpey, J (eds). Documenting Individual Identity: The Development of State 

Practices since the French Revolution. Princeton University Press, 2001.  

37. Higgs, E. Identifying the English: A History of Personal Identification 1500 to the 

Present. Bloomsbury, 2001. 

38. Lloyd, M. The Passport: The History of Man’s Most Travelled Document. Queen Anne’s 

Fan, 2016.  

39. Castile, M. Driver’s License. Bloomsbury, 2015.  

40. Mitnick, K. Ghost in the Wires. Little Brown & Company, 2011. 

41. Birkhoff, G. Lattice Theory. Third Edition, American Mathematical Society, 1995.  

42. Bergstra, JA, Ponse, A and Smolka, SA. (ed) Handbook of Process Algebra. Elsevier, 
2001. 

43. Manzano, M. Extensions of First-Order Logic. Cambridge University Press, 2005. 

44. Gottwaldov, S. A Treatise on Many-Valued Logics. Studies in Logic and Computation, 

vol. 9, Research Studies Press, 2001. 

45. Meseguer, J, Goguen, JA. Initiality, induction, and computability. In: Nivat, M, Reynolds, 

JC (eds). Algebraic Methods in Semantics. Cambridge University Press, 1986.  

46. Meinke K and Tucker JV. Universal algebra. In: Abramsky, S, Gabbay, D, Maibaum, T 

(eds). Handbook of Logic in Computer Science. Volume I: Mathematical Structures. 

Oxford University Press, 1992, 189-411. 

47. Griffor, ER. Handbook of Computability Theory. Elsevier, 1999. 

48. Ershov, Y. Theory of Numberings. In: Griffor ER (ed). Handbook of Computability 

Theory. Elsevier, 1991, 473-503. 



42 
 

49. Stoltenberg-Hansen, V, Tucker, JV. Effective algebras. In: Abramsky, S, Gabbay, D, 

Maibaum, T (eds). Handbook of Logic in Computer Science. Volume IV: Semantic 

Modelling. Oxford University Press, 1995, 357-526. 

 

 

 


