

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Journal of Cybersecurity

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa37276

Paper:

Tucker, J. & Wang, V. Surveillance and Identity: Conceptual Framework and Formal Models. Journal of Cybersecurity

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/132613969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa37276
http://www.swansea.ac.uk/library/researchsupport/ris-support/

1

14 September 2017

Accepted for Journal of Cybersecurity

Surveillance and identity:

Conceptual framework and formal models

Victoria Wang1 and John V Tucker2

Abstract

Surveillance is recognised as a social phenomenon that is commonplace, employed by
governments, companies and communities for a wide variety of reasons. Surveillance is
fundamental in cybersecurity as it provides tools for prevention and detection; it is also
a source of controversies related to privacy and freedom. Building on general studies of
surveillance, we identify and analyse certain concepts that are central to surveillance.
To do this we employ formal methods based on elementary algebra. First, we show that
disparate forms of surveillance have a common structure and can be unified by abstract
mathematical concepts. The model shows that (i) finding identities and (ii) sorting
identities into categories are fundamental in conceptualising surveillance. Secondly, we
develop a formal model that theorizes identity as abstract data that we call identifiers.
The model views identity through the computational lens of the theory of abstract data
types. We examine the ways identifiers depend upon each other; and show that the
provenance of identifiers depends upon translations between systems of identifiers.

Keywords: surveillance, social sorting, identity, abstract data types, formal methods.

* Senior Lecturer on Security and Cybercrime, Institute of Criminal Justice Studies, Faculty
of Humanities and Social Sciences, University of Portsmouth.
Address: St George’s Building, 141 High Street, Portsmouth, UK, PO1 2HY
Email: victoria.wang@port.ac.uk; Tele: (+44) (0)2392 843900

* Professor of Computer Science, Department of Computer Science, College of Science,
Swansea University.
Address: Faraday Building, Swansea University, Singleton Park, Swansea, UK, SA2 8PP
Email: j.v.tucker@swansea.ac.uk; Tele: (+44) (0)1792 295649

2

1. Introduction

Surveillance is an integral part of everyday life as many technologies employed in our

physical and virtual environments have long been capable of monitoring and recording our

activities cf. [1]. The ubiquitous cameras that monitor our physical environment, in order to

improve the safety and security of people and property, are but the most visible tip of the

surveillance iceberg. The invisible bulk is made of software that record data about actions

and events cf. [2]. Our professional lives have long been conducted through software

systems, and recently, our personal lives have become dependent on software systems

through social media. Our home and neighbourhood environments are next to succumb to

software, through the internet of things, e.g., [3, 4, 5]. That our lives are being captured and

represented by digital data, collected by many independent sources for different purposes, is

an important sociological phenomenon. The translation of all kinds of data into digital form,

and the aggregation and unification of all kinds of data sources through computer networks

are important technological phenomena.

Surveillance is enormously controversial as it impacts on the multitude of notions that make

up privacy and freedom for individuals; on the conduct of economic and social life of

societies; and on the legal, political, and military foundations of the state [6,7]. With this

broad view, David Lyon has given a general description of surveillance as “the focused,

systematic and routine attention to personal details for purposes of influence, management,

protection or detection” [8: 14]. In establishing surveillance as a general social issue, Lyon

has proposed that surveillance has three main purposes [8]:

(i) keeping control, which is the historic purpose pursued by employers, police, and

government;

(ii) social sorting, pursued by companies in marketing and managing customers; and

(iii) mutual monitoring, pursued in peer to peer in social networks, real and virtual.

Thanks to the ubiquity of digital technologies, the aims and methods of social sorting – the

categorisation of personal data – is becoming most prominent.

In this paper, we examine theoretically the general ideas of surveillance and one of its

component concepts that of identity. Identity is fundamental to contemporary surveillance

practices [9,10,11]. Surveillance technologies rely on identity management systems to

3

provide information, which vary in accuracy.3 For instance, for social sorting to work,

identity needs to be just precise enough to enable categorisations to be useful in an

application.

We seek completely abstract models that can be formalised and analysed mathematically.

First, we develop a general definition of surveillance that captures the notion in diverse

situations, and we illustrate the general definition with some disparate examples. This

definition shows that the three main types of surveillance have the same structures, and that

the essence of surveillance is indeed sorting and categorisation. Our analysis applies to

entities that are objects or people, real or virtual, belonging to a specific context.

A most important component idea of our definition of surveillance is that of the identity of

the people or objects observed. We introduce the general concept of identifiers, which are

data designed to recognise an entity. Here is our idea:

Informal Definition. An identifier for an entity is data that is associated with the entity for

the purposes of distinguishing it among other entities in some context and for some purpose.

Identifiers are the main focus of our paper. As a starting point for our conceptual analysis, we

assume that:

Principle. Entities are recognised only through the data that act as their identifiers for a

context. Entities are observed only through the data that represent their behaviour in a

context.

This hypothesis is widely applicable. First, the surveillance context is determined by

selecting aspects of an entity’s behaviour that can be captured in data, and by observations

3 For example, in the UK, accurate identification of an individual usually depends on a

passport [11], a driver’s licence (DVLA) and, for some, the National Identity Register [12].

Accuracy increases if identification involves fingerprints [13], iris scans [14] and DNA [15];

see also [16].

4

made by testing for attributes of the data. Secondly, the identity of an object is reduced to

measurements, and the identity of a person is reduced to forms of evidence that are also data,

including records of personal testimony and formal registration, as well as biometrics

[15,16,17]. The idea is simpler and more palatable when one considers the virtual world,

which creates hugely many more contexts that are, and can only be, made of data. Users have

many identities, some of which they create in a state of anonymity. The Principle is perfectly

at home in the virtual world of cybersecurity.

Technically, the operations and tests on identifiers combine to make systems of identifiers.

Although designed for specific contexts, they often have unforeseen applications. Since

identifiers are data, clearly the systems of identifiers are actually examples of what computer

scientists call abstract data types [18, 19]. The theory of abstract data types characterises data

through its operations and tests, which may be specified by axioms to make them close to the

application domain and independent of implementations. The theory uses algebra to model

any form of data, and tools to design and build software. The idea of a general theory of

identity based on abstract data types is new.

Foremost among identifiers are those that are supposed to identify people. The notion of a

personal identifier proves to be as informative as it is subtle. To understand identity we need

to examine the ways identifiers are issued and how they depend upon other identifiers. We

show that the provenance of identifiers is an essential idea. We consider principles of how

identifiers are to be compared and when they might be deemed equivalent; this requires

notions of translations between different systems of identifiers.

All of these concepts are motivated by some informally described examples, and then

formalised mathematically using elementary algebra. The examples of surveillance and

identity we use refer to situations both in everyday life and in cybersecurity. The everyday

examples make the point our concepts apply to traditional forms of identity and security. The

cybersecurity examples give a glimpse of the abundance of identity issues in securing

software systems. Identity is a central concept in hashing, encryption, communication

protocols, certification, and their roles in the maintaining the trustworthiness of transactions,

encoding of access controls, tracing events, forensics, etc. In their mathematical form, the

concepts create precise and general definitions that cover a great range of examples.

5

The paper is in two parts: on surveillance (Sections 2-4) and on identity (Sections 5-10).

Section 2 exemplifies the central ideas informally; their formalisation begins in Section 3.

But why formalise? Formalisations make notions precise. They uncover and classify the

possible structures and interpretations of ideas. Our formalisation can be likened to the way

formal logic has long been used in philosophy to clarify the nature of truth, arguments and

reasoning. Later, we reflect on the role of abstract concepts and formal methods to give

insights in sociological contexts (Section 10.2).

Our aim is to discover general concepts and principles associated with surveillance and to

analyse them, mapping their inter-connections and implications by means of mathematical

ideas and structures. Formalisation has proved to be a fundamental practical tool in the

development of software. Formal models are needed by technologists designing surveillance

systems and their safeguards, in order to develop tools for testing and reasoning. Such formal

methods play a role in software engineering where security by design is an objective. We

believe that raising the status of identity and modelling identity using abstract data types will

be useful in making and maintaining cybersecurity software.

The mathematical pre-requisites are modest.4 To address a readership from different

disciplines and professions, we explain some very basic mathematical ideas. Whilst this will

seem laborious and unnecessary to those familiar with formal methods, others may benefit

when ideas are shown to arise naturally in thinking about identity, and appreciate more

readily the benefits that formalisation delivers.

4 The mathematical ideas we use use to launch our models are sets, functions and relations,

which are described in any number of textbooks on discrete mathematics, e.g., [20, 21]. The

theory of abstract data types is more demanding algebraically, e.g., [18].

6

2. What is surveillance?

Let us begin with an abstract informal description of a large class of surveillance systems.

Informal Definition. A surveillance system observes the behaviour of people and objects in a

context that may be real or virtual. The surveillance system classifies behaviours by means of

attributes, and identifies people and objects with those attributes. A surveillance system

consists of the following components and methods:

1. Entity. Entities that possess behaviour in space and time.

2. Observable behaviour. Methods for obtaining and recording data about behaviours.

3. Attribute. Methods for defining and recognising attributes of behaviour data.

4. Identity. Methods for generating data that identifies entities in the context.

In practice, what is observable about the behaviour are the attributes of data; these

characterise the context for the surveillance. Depending upon the context, we may expect the

attributes to be based upon laws, rules, norms, conventions, policies, practices, expectations,

etc. Indeed, when the purpose of surveillance is control, they may seek to catch deviations.

The definition is neutral and does not imply deviance. The definition does require precise

formulations of attributes for a process of categorisation. The data that is used to identify

entities can be numbers, texts, sounds and images. Here are three simple examples to prepare

for our abstract formalisations.

Example 1: Control – Motor Vehicles. Automatic Number Plate Recognition (ANPR) is a

technology that observes vehicles and records registration marks. Typical applications are

checking on vehicle speed, managing car parking and collecting tolls, cf. [22]. The

technology was functioning in the late 1970s. Today, ANPR is a component of hundreds of

thousands of surveillance systems owned by both public and private organisations.

Consider some ANPR applications in terms of our abstract definition. In such surveillance

systems, the entities are vehicles at a particular location and time. The vehicles may be in

motion (as with speed checks), or may be arriving or leaving a location (as with car parking

and congestion zones in cities). The vehicles are observed by cameras that create images and

the software that processes the images varies according to the behavioural attributes under

7

observation (e.g., breaking an average speed limit over a stretch of road, or overstaying a

parking time limit). In particular, optical character recognition establishes the registration

mark of vehicles. A registration mark is an alpha-numeric name that identifies a vehicle

uniquely in a human-centred way in a national register of vehicles. The mark links to

information about the characteristics of the vehicle. Thus, to the surveillance system, the

identity of an entity is this registration mark. For example, a surveillance system for car

parking based on an ANPR has the form:

Entity: Cars

Observable Behaviour: The registration mark, its time of arrival and departure at the location

Attributes: Duration of stay above a particular limit

Identity: Registration marks

Following the ANPR stages described above, the registration mark is communicated to a

database relevant to the application. For example, the database may be used to check an

attribute, such as a payment (tax, charge or toll), having been made for that registration mark.

The surveillance system knows the identity of the car, but not necessarily the driver.

Suppose we take the entities to be people. To find the driver, an independent process

involving only personal identities begins. The vehicle is registered to a person called the

keeper of the vehicle, who must be located and contacted. In the UK, the operator of the

surveillance system communicates the registration mark to the Driver and Vehicle Licensing

Agency (DVLA), or to one of its approved agents, to determine the name and address of the

keeper. The output of these actions is the identity of the keeper. Indeed, in this necessary

second stage, there is a transformation of identity data from the registration mark to the name

and address of the keeper. Note that finding the actual driver may require further independent

action. In the case of speeding, where laws are involved, the driver’s record will contain

characteristics such as a driving penalty history.

Example 2: Social Sorting – Customer Accounts. Consider a client’s e-account with some

provider, such as a bank or shop. Typically, an account has the following components: an

account number that identifies the account; a user name and password as a form of identity

used to gain access to the account; a set of characteristics of the account, such as personal

8

details and the scope and limits of services; and an account history that records past

transactions and allows for new transactions, queries, preferences, etc. The account history is

the behaviour of the account; it is observed to check that terms and conditions are met by the

client, or that no unusual pattern of transactions has been carried out, or to generate

suggestions for new products and services. Observations might also include standard

monitoring data about user logins and login attempts, duration, location, etc. For example:

Entities: Credit card accounts

Observable Behaviour: Transactions: date, payee, location, sum, etc.

Attributes: Credit limit, minimum payments, unusual transactions

Identity: Credit card number

Example 3: Mutual Monitoring – Social Media Accounts. Social media connect people

who have personal or professional interests in common. Systems such as Facebook, Twitter,

WeChat, Instagram, LinkedIn, and Academia.edu attract large numbers of users. Individuals

register with a system and create an account and a network of other users to suit their needs.

Abstractly, an account has a structure similar to that of a customer account for a bank or

shop. The behaviour of the account is a history of postings, status updates, linkages and

interactions. In social networking, individuals voluntarily reveal very detailed information

about themselves to their networks, including their personal history, tastes, opinions and

activities; the behaviours could be termed personas. From the point of view of surveillance,

two phenomena are of interest: (i) individuals can and do ‘watch over’ people in their

networks, and (ii) the data of the account holders belong to companies that can collect and

use the information for commercial or other purposes. Illustrating the components:

Entities: Member accounts

Observable Behaviour: Personal declarations, posts, comments, connections, location, etc.

Attributes: Targeted opinions in posts on specific topics, interactions with other members,

unusual interactions

Identity: Usernames

9

3. A formal model of surveillance

We have defined surveillance informally as a process that identifies entities on detecting

certain properties of their behaviour. We will define this process formally.

3.1 Context: Entities and their behaviour

Let Entity be a set of entities whose behaviour is to be observed. Let Behaviour be the set of

all possible behaviours in space and time of all the entities of Entity. The nature of behaviour

and its models we consider in stages.

Deterministic Behaviour. Suppose that each entity e ∈ Entity has one and only one

behaviour in space and time, i.e., its behaviour is deterministic. In this case, there is a single-

valued mapping

[[_]]: Entity → Behaviour

such that

[[e]] = the behaviour of the entity e ∈ Entity.

The mapping provides a formal model or semantics for the behaviour of the entity. Taken

together we have formalised a context for the surveillance as an algebraic structure:

Context = (Entity, Behaviour | [[_]]: Entity → Behaviour).

Non-deterministic Behaviour. Suppose that each entity has more than one possible

behaviour in space and time, i.e., its behaviour is non-deterministic. In this case, there is a

relation

[[_]]: Entity × Behaviour

such that

[[e, b]] ⇔ b ∈ Behaviour is a possible behaviour of the entity e ∈ Entity.

The context for the surveillance is a relational structure

Context = (Entity, Behaviour | [[_]]: Entity × Behaviour).

Alternately, in the non-deterministic case, if the elements of Behaviour are sets of possible

behaviours of an entity, the relation can be replaced with a map returning sets.

10

We will focus on the deterministic case. The behaviours need to be modelled formally. How

might this be done? There are several options.

3.2 Behaviour as streams of data

A way to formalise behaviours is to think of entities performing a sequence of actions or

events taking place in time.

Let Time be a set of time points generated by a clock of some kind; for example, say Time =

{0, 1, 2, … , t, …}. Let Action be a set of actions or events characteristic of the entities. The

behaviour of an entity is conceived of as a stream

a(0), a(1), a(2), . . . , a(t), . . .

of actions or events in time, where a(t) ∈ Action for all t ∈ Time. Such sequences will be

termed traces:

Definition. A trace is an association of actions or events to time points and is formalised by a

total mapping

a: Time → Action

such that for all t ∈ Time

a(t) = the action or event taking place at time t ∈ Time.

Let Trace be the set of all possible traces.

Now in many cases, the space Behaviour of all possible behaviours of the entities can be

taken to be a subset of the set Trace of all possible traces; thus,

Behaviour ⊆ Trace.

When applying the behaviour mapping [[_]] to an entity e ∈ Entity we get a trace, which is a

map

[[e]]: Time → Action.

Therefore, for e ∈ Entity and t ∈ Time, we have

[[e]](t) = the action or event of entity e taking place at time t ∈ Time.

11

Example: Twitter. Twitter processes data called tweets. At the heart of a tweet is a message

made from at most 140 characters, but a tweet is composed of more data. For simplicity, a

tweet can be thought of as a vector of data drawn from sets of the following kind:

Text The text that is the status update.5

Identity A string that uniquely labels the tweet.

Contributor The author(s) of the tweet.

Time The time when this Tweet was created.6

Location The geographic location (longitude, latitude) of this Tweet as reported by the

user or application.7

Retweet Status and number of retweets.

Favourite Number of favourites.

We let the set of all possible tweets be

Tweet = Text × Identity × Contributor × Time × Location × Retweet × Favourite.

Now Twitter generates and processes streams of tweets, i.e., sequences of tweets indexed by

time. Thus, the behaviour can be modelled by traces that are streams of tweets of the form

a(0), a(1), a(2), … , a(t), … ∈ Tweet,

which is represented by a map a: Time → Tweet. Let Behaviour be the set of all possible

traces of these kinds. Typical user operations on tweets are embedding tweets, responding to

tweets, and favouring, unfavouring, and deleting tweets, which induce operations on traces.

Depending upon the circumstances, monitoring tweet feeds is called curation, filtering, or

surveillance. Monitoring Twitter can be done in a number of ways via application

programming interfaces (APIs), which define instructions for developers to build new

systems. Twitter’s Search API allows users to define criteria (keywords, usernames,

locations, named places, etc.) to search among existing tweets. Twitter’s Streaming API

redirects a sample of tweets, based upon a user’s criteria, as these tweets appear. The sample

is less than 1% [23]. Twitter’s Firehose API delivers 100% of all publicly available tweets

that match users’ criteria as they are made. The Twitter Firehose is complex and requires a

subscription. Twitter’s monitoring services have tools to detect non-compliance with Twitter

policies (e.g., aggressive following and unfollowing).

5 Using the UTF-8 representation for Unicode.
6 Measured by Coordinated Universal Time (UTC).
7 Using the geoJSON standard.

12

3.3 Identity: Identifying entities

To identify entities in a context whose behaviours have certain properties, the entities need to

be labelled, marked or named in some way. Our notion of identifier, defined in the

Introduction, is designed to do just this. 8

Each entity e ∈ Entity has an identifier that is used to denote the entity in a context. The

association of identifiers with entities can be complicated as we will see shortly. In order to

formalise surveillance, we must formalise the assignment of identifiers to entities.

Definition. Let Identifier be a set of possible identifiers for the entities of Entity. There is a

relation

id ⊆ Identifier × Entity

such that

id(i, e) ⇔ the data i ∈ Identifier is assigned to entity e ∈ E.

If id(i, e) then we say that identifier i names entity e. Let anon be a datum that is not in the set

Identifier of identifiers for the entities; anon indicates anonymity, i.e., an entity not named.

We will need the set Identifier ∪ {anon}.

We will develop the notion of identifiers in the second part of the paper (Section 5 onwards).

Here, let us note that since the association of identifiers to entities is a relation, thus many

identifiers can be allocated to an entity and, conversely, many entities can have the same

identifier. Later, in Section 5, we will simplify the discussion, focussing on the case that the

association is a function id: Identifier → Entity.

8 In computing, the term identifier is well established. It is data made of syntax that names or

labels a computational entity; commonly, it is an alphanumeric string that defines

components in a programming language, such as variables, operators, procedures, programs

etc. Our adoption of the word for data associated with a context is essentially a large-scale

generalisation. The purpose of the notion is close to that of the idea of a pure name in [24].

The term is in use occasionally in some social discussions of identity.

13

3.4 Surveillance: Detecting attributes

The elements of Behaviour formalise the activity of the entities under surveillance. To

formalise what it is we are to detect, we suppose that Prop = Prop1, … , Propk is a collection

of sets of behaviours, i.e., for 1 ≤ i ≤ k,

Propi ⊆ Behaviour.

The entities of interest are those whose behaviours lie in some Propi; in symbols,

Entity(Propi) = {e ∈ Entity : [[e]]∈ Propi}.

General Case. Entities in a context are known by their identifiers. Formulations of

surveillance can seek for any entity e satisfying a Propi,

(i) at least one identifier i for e;

(ii) a subset of the identifiers of e; or

(iii) all of the identifiers of e.

These options have the form of a selection or choice operation

selectid : Entity → P(Identifier)

where P(Identifier) is the set of all subsets of Identifier, and

selectid(e) ⊆ {i ∈ Identifier | id(i, e)}.

Definition. Surveillance is formulated as follows: for 1 ≤ i ≤ k define,

Surv(Propi): Entity → P(Identifier)

for e ∈ Entity by

Surv(Propi)(e) = selectid(e) if [[e]]∈ Propi

= ∅ if [[e]]∉ Propi .

Note that entities whose behaviours do not lie in Propi are mapped to the empty set ∅, and

are ignored and not identified, i.e., they will remain anonymous.

Definition. An entity e in a context is anonymous under surveillance with attributes

Surv(Prop) if Surv(Propi)(e) = ∅ for 1 ≤ i ≤ k.

Minimal Case. Consider surveillance that seeks just one identifier for any entity whose

behaviour satisfies some Propi. This view of surveillance is reformulated thus:

14

Definition. Surveillance is defined as follows: for 1 ≤ i ≤ k define,

Surv(Propi): Entity → Identifier ∪ {anon}

for e ∈ Entity by

Surv(Propi)(e) = (some i) id(i,e) if [[e]]∈ Propi

= anon if [[e]]∉ Propi .

Thus, given the collection Prop = Prop1, … , Propk of properties, surveillance is specified by

a collection of functions: for 1 ≤ i ≤ k,

Surv(Propi): Entity → Identifier ∪ {anon}.

If convenient, these may be combined as a k-tuple,

Surv(Prop): Entity → (Identifier ∪ {anon})k

where

Surv(Prop)(e) = (Surv(Prop1)(e), … , Surv(Propk)(e)).

Combining these ideas, we define formally a very general notion of a surveillance system.

Definition. A surveillance system for entities in a context is a structure of the form

SurvSys(Prop) = (Entity, Identifier ∪ {anon}, Behaviour | anon, id, [[_]], Propi, Surv(Propi)

1 ≤ i ≤ k),

consisting of the non-empty sets

Entity, Identifier, Behaviour,

the constant

anon,

and the k+1 relations

id ⊆ Identifier × Entity,

Propi,

and the k+1 mappings

[[_]]: Entity → Behaviour

Surv(Propi): Entity → Identifier ∪ {anon}

for 1 ≤ i ≤ k.

15

The definition expresses a minimal general form of a surveillance system as an algebraic

structure, which is a semantic model of an abstract data type [18]. The theory of abstract data

types was created to model the essential components of any computing system in a precise

way. Thus, designers can use algebraic methods when thinking formally about the processes

of user specification and subsequent technological implementation [25]. Of course, any actual

surveillance system will involve many technologies to obtain and process data. These

technologies may suggest some new abstract components that need to be formalised and

understood theoretically. Roughly speaking, system design has the following form:

Design Problem. The essence of the design problem is:

1. Specification. To define the desired surveillance system by specifying an abstract data

type for SurvSys(Prop).

2. Implementation. To choose technologies to generate data

a. represent the behaviours of the entities;

b. represent the identities of the entities;

c. observe behaviours and detect those behaviours having the attributes in Prop;

d. recognise the identity of entities having the properties in Prop.

4. Surveillance and social sorting

In surveillance studies, social sorting is the categorization of people and results in a

classification used to treat people differently [26]. Although originally formulated to

understand the social impact of surveillance by companies and institutions, our formal

definition shows that sorting is essential to the abstract conception of surveillance and,

therefore, that sorting is inherent in the surveillance of entities of all kinds. We will formalise

the sorting of entities using simple notions of categorization and partition; however, sorting

can be problematic because the sorting of identifiers is more complex than the sorting of

entities.

4.1. Sorting entities

In our definition of surveillance the collection Prop of properties of entities lead to a

categorization of entities that can be treated differently. What is a categorization?

16

Definition. Let Entity be a set of entities. A categorization of entities is a collection of

subsets

S1, S2, … , Sk ⊆ Entity

that include all the entities, i.e.,

S1 ∪ S2 ∪ … ∪ Sk = Entity.

An entity e lies in at least one of the sets and possibly several. In this loose idea, we may have

categories overlapping and having interesting internal structure, e.g., they may be nested and

form a hierarchy under the set inclusion ordering. Commonly, and most simply, we may

want the sets not to overlap so that an entity e lies in one, and only one, of the sets:

Definition. The categorization is a partition if for 1 ≤n,m≤ k, we have Sn∩Sm = ∅.

4.2 Sorting identifiers

Surveillance observes data about behaviours of entities – not entities – and recognises only

identifiers for entities – not the entities themselves. Thus, surveillance delivers a

categorization of identifiers, not a categorization of entities, which makes the notion subtle.

Definition. Let Identifier be a set of identifiers. A categorization of identifiers is a collection

of subsets

S1, S2, … , Sk ⊆ Identifier

that includes all the identifiers, i.e.,

S1 ∪ S2 ∪ … ∪Sk = Identifier.

Again, an identifier i lies in at least one of the sets and possibly several. A categorisation of

identifiers is less likely to be a partition. However, the structure must also be measured

against the entities that the identifiers name. Given an entity e there can be identifiers i and j

for e that lie in different sets. This means that the categorization of identifiers does not lead

directly to a neat categorization of entities. Distinctions between different identifiers for the

same entity may be “ambiguities” that are meaningful. For example, data integration

combines sets of identifiers from different contexts that share the same entities.

17

Categorizations of identifiers arise in many ways, not least by the analysis of data sets using

clustering and classification techniques in machine learning [27]. Ideally, our categorization

of identifiers can be transformed into one that corresponds with the entities:

Definition. The categorization S1, S2, … , Sk of identifiers is complete for the entities if for

all i, j ∈ Identifier, and any 1 ≤ n ≤ k,

if i ∈ Sn and i and j name the same entity then j ∈ Sn

Our definition of surveillance delivers a categorisation of identifiers, namely:

Sn = image(Surv(Propn)) – {anon}.

To make a complete categorisation is a process that depends upon knowledge of the equality

of identifiers for entities (see section 6.2). We now turn to theorising identity.

5. What is identity?

Identity has become almost purely a matter of data. People and objects are named, numbered,

labelled or otherwise denoted by data relevant to a context. People belong to many contexts:

they can be citizens, patients, drivers, voters, employees, customers, crime suspects, etc.,

each with different identities managed by different kinds of identity management systems.

Physical or virtual, each identity system is based on an abstract data type of some kind.

To distinguish between entities in a context, identifiers need not reflect any aspect of the

entity or have any meaning at all, however in practice they are loaded with information. Case

studies reveal that the following processes are fundamental:

(i) creation and re-creation of identifiers;

(ii) comparison of identifiers;

(iii) inter-dependence of identifiers;

(iv) transformation of identifiers;

(v) revocation of identifiers.

Identifiers are composite objects: identifiers are commonly built from other identifiers.

Personal identifiers are those that we rely upon to distinguish uniquely a human being. They

are guarantees of peoples’ identities in contexts that demand physical identity. In the UK, the

18

basic, most rigorous personal identifiers are associated with birth, marriage and death

certificates, passports, medical and dental records, driving licenses, National Insurance (NI)

records, tax records, etc. Biometric data – such as photographs, fingerprints, iris scans, blood

groups, and DNA – are also involved. Biometric data are physical measurements, but they are

represented and processed digitally.

In this section, we examine informally some concepts, principles, and examples of identity

prior to providing a formal definition and the outline of a theory in the next sections.

Recall from the Introduction that identifiers can be any data intended to separate entities in a

context. What is this data? For example, a name for an entity is an identifier. By a name for

an entity we commonly mean data made from symbols. In computing systems, there are

many syntactic schemes for naming hardware and software entities using alphanumeric

strings; usually, the aim is to make a symbolic identifier unique to the entity in a context.

The relationship between entities and identifiers can be complicated. Consider these four

identifier-entity ratios:

1. Many – One Associations. Each identifier is assigned to one entity, but different

identifiers can be assigned to the same entity.

2. One – One Associations. Different identifiers are assigned to different entities.

3. One – Many Associations. An identifier can be assigned to more than one entity but

each entity has only one identifier.

4. Many – Many Associations. An identifier is assigned to more than one entity and,

vice versa, an entity can be assigned more than one identifier.

Surveillance returns identifiers that can narrow the search for entities but may not pin down

the particular entity of interest. Searches take place on identifiers and, as we have noted, the

an identifier can easily point to many distinct entities. Thus, many-to-one associations are

important because:

Search Principle. If an association is many-one then to find an entity, we can search for any

one of a set of alternate identifiers for that entity. If an association is one-one then there is

one and only one identifier for that entity.

19

The following point about narrowing the search for identifiers is obvious but certainly is

profoundly important practically:

Enumeration Principle. The addition of a number, reference code, extension tag, time

stamp, or hash code may turn a many-one association into a one-one association.

The use of numbers to uniquely distinguish entities in a context is old and universal, helping

to determine uniquely all sorts of entities, such as people (by membership numbers);

invoices, orders and payments (by reference numbers); and consumer products (by serial and

barcode numbers). Reference codes do the same using alphanumerical strings. The use of

extension tags often structures identifiers as paths in a tree and, like time stamps, separate

entities, narrow searches, and can isolate entities uniquely. Hashing produces long binary or

hex numbers as code for an identifier.

Example 1: Cars. Recall Example 1 in Section 2 which illustrates one-one and many-one

associations. In the UK, each car is assigned a registration mark; the current system was

introduced on 1st September 2001. In general, each registration mark consists of seven

characters with a defined format. From left to right, the characters consist of: (i) a local

memory tag or area code, consisting of two letters that indicates the local registration office;

(ii) a two-digit age identifier, which changes twice a year, in March and September; and (iii)

a three-letter sequence which uniquely distinguishes each of the cars displaying the same

initial four-character area and age sequence. The association of registration marks to cars is

one-one at any time. However, with permission of the DVLA, registration marks can be

transferred from one vehicle to another. Thus, the marks are unique identifiers that are time

dependent; they are not permanent unique identifiers for the vehicles. There are identifiers for

vehicles that are permanent: in the UK, the vehicle identification number (VIN) consists of 17

characters that identify the manufacturer (three characters), the type of vehicle (six

characters), and finally distinguishes each of the cars with these characteristics (eight

characters). The VINs obey some international standards.

A car has one and only one registered keeper. The registered keeper is the person who is

legally responsible for the car, and need not to be the owner of the vehicle. One purpose of

the mark is to identify the keeper: thus, the association of a registration mark to a keeper is

20

unique. However, a person can be a registered keeper of as many cars as he/she wants. Thus,

the association of registration marks to keepers is many-one. The registration document (V5)

for a car identifies the car by registration mark and VIN, and its keeper.

Many people have insurance policies that enable them to drive any car with the owner’s

permission. Thus, the driver of a car on a particular occasion may be only loosely connected

to the keeper. The association between registration marks and drivers is complicated being

one-many and time dependent, and incomplete in terms of formal documentation.

Example 2: Communications. This example demonstrates both many-one and many-many

associations. When connecting a computer to the Internet, a number is needed called an

Internet Protocol (IP) address that uniquely identifies the machine in the network; this

number is 32 bits under Internet Protocol Version 4.9 In some computer networks, such as

networks local to an organisation or company, there is an IP address for the machine that

does not change; these are called static IP addresses. In this context, the association of

computers to IP addresses is one-one. More commonly, at home, IP addresses are generated

by an Internet Service Provider in response to a customer’s need for Internet access. Thus,

over time IP addresses can change and the association of IP addresses to a particular

computer is many-one. Developing this example, if more than one computer is accessing the

Internet at the same time in a period, from the same service, then the association between IP

addresses and computers is many-many. The changing status seems to be natural in time-

dependent associations of identifiers. However, each computer does have an identifier, called

its MAC address (48 bits under IEEE 802), that identifies the device uniquely throughout its

life. So, the association is one-one and time independent.

Example 3: Addresses. This example demonstrates a one-many association. In the UK,

between 1959-1974, a system of postal codes was introduced to enable the automation of

postal services. Typically, each address or location is assigned at most one postcode but a

postcode can be assigned to more than one unit or building. The association between

postcodes and buildings/addresses is one-many. Thus, postcodes are a system of identifiers

9 In the Internet of Things, processors are embedded in products and places of all kinds. Thus,

there is a need for many more IP addresses, prompting an upgrade of standards from Internet

Protocol Version 4 to Internet Protocol Version 6 [28].

21

that do not uniquely determine addresses. Local authorities determine addresses. Postcodes

have found many uses and are used routinely in commercial transactions, navigation, and,

more significantly, in calculating insurance, designing social policy and funding, and

academic social studies – all of which are examples of social sorting.

For any system of identifiers for entities in a context, the questions arise:

Identifier Generation. How does the system create and delete identifiers for entities?

Identifier Authentication. Given two identifiers, how do we decide whether or not they are

associated with the same entity?

Entity Authentication. Given an entity and identifier, how do we verify whether or not the

identifier is associated with the entity?

Entity authentication is stronger than identifier authentication. The notion is attractive but not

subtle for what does it mean to be “given an entity”? In much theory and practice, the entity

is actually “given” by means of another identifier. We examine the relationship between

identifiers in Section 9.

Example 4: Physical Verification of Entities. A biometric is an identifier that is designed to

be verified by means of a physical process of identity authentication. The physical process

involves instruments that make measurements, which are processed by software, and whose

specification involve probability theory. Questions arise about accuracy, equivalence across

authenticating equipment, software portability, and, indeed, the probabilistic assumptions.

However, the intention is clear: through biometrics, physical reality verifies personal identity.

6. A formal model of identity

We now consider formally the idea of a system of identifiers for the entities under

observation. There are three aspects arising from our discussion of examples: assigning

identifiers, comparing identifiers and basic personal identifiers. We will continue to use the

formal notations introduced earlier in our formal definition of surveillance in Section 3.3.

22

6.1 Assigning identifiers.

Definition. Let Identifiers be a non-empty set of identifiers and Entity a non-empty set of

entities. Suppose that identifiers have been assigned to entities by means of a relation

id ⊆ Identifier × Entity

such that

id(i, e) ⇔ the data i ∈ I, called an identifier, is assigned to entity e ∈ E.

We define the set of entities named by identifier i by

ent(i) = {e ∈ Entity | id(i, e) }

and the set of all identifiers naming entity e by

id(e) = {i ∈ Identifier | id(i, e) }.

These sets are projections of the relation id.

The maps ent(i) and id(e) are needed to formalise the types of association in Section 5. This

idea is our most general definition:

Definition. A system of identifiers is a structure,

IdSys = (Identifier, Entity | id ⊆ Identifier × Entity).

Example 1: Post Codes and Passwords. Recall Example 3 in section 5: a postcode can be

assigned to more than one building so the association is a one-many relation postcode:

Postcode × Address. Similarly, accounts are assigned one password, but passwords can be

common to different accounts (e.g., proper names, birthdays, etc.). The association is a one-

many relation password: Password × Username.

Examples suggest that the following special case is most important.

Definition. A system of identifiers IdSys is said to satisfy the many-one property if each

identifier is assigned to one and only one entity but an entity may have more than one

identifier. In this case, the relation becomes a single-valued mapping

id: Identifier → Entity

such that

id(i) = the entity e ∈ Entity named by the data i ∈ Identifier.

23

The structure becomes an algebra:

IdSys = (Identifier, Entity | id: Identifier→ Entity).

Recalling the Search and Enumeration Principles in Section 5, we will focus on systems

having this many-one property. Since the purpose of the identifiers is to recognise the entities

that we are interested in, the following equivalence relation on Identifier is basic:

Definition. For any i1 and i2 ∈ Identifier, we say that they are entity-equivalent if they are

associated with the same entity: in symbols,

i1 ≈en i2 if, and only if, id(i1) = id(i2).

The identifier captures and narrows down detection of entities. Thus, we can strengthen the

system of identifiers if we can satisfy this condition:

Definition. A system of identifiers IdSys is said to satisfy the one-to-one property if the map

id satisfies: for any i1 and i2 ∈ Identifier,

if id(i1) = id(i2) then i1 = i2.

The map id is one-to-one or injective, and entity-equivalence ≈en is =.

Example 2: Cars. Recalling Example 1 in Section 5, the association of registration marks to

cars is one-one.

6.2 Generating identifiers

How are identifiers generated for a set of entities in practice? First, some input data is

presented to the system that has to be examined and approved according to some set of rules.

Definition. Let the initial data presented to a system in order to create an identifier be called a

form. Let Form be the set of all possible forms for the system. The creation of an identifier is

a mapping of the type:

generate: Form → Identifier.

A form f ∈ Form is the background data needed to create the identifier generate(f).

24

We can refine this idea by separating the processing of the data from the release of the

identifier. Let the processing of the form be represented by a function

check: Forms → {0, 1}

that tests the data in a form f ∈ Form for consistency against the system’s rules. We assume

that check(f) = 1 means the form is accepted and check(f) = 0 means the form is rejected.

We represent the next stage – if and when an identifier is to be issued – by a function

issue: Forms → Identifier

which uses some or all of the data in f ∈ Form to make an identifier.

The two stages are represented by composing the functions to make the new function

generate: Forms → Identifier ∪ {reject}

where

generate(f) = if check(f)=1 then issue (f) else reject.

The idea of the form is seen in the familiar procedures of enrolment and registration required

when applying to join organisations, schemes and services etc.

7. Personal identity

Of greatest interest is surveillance in which the entities are people. A fundamental problem is

how identifiers can actually identify a specific individual. An individual’s identity involves

many characteristics – social, biographical, psychological and biometric – all of which can be

presented digitally. A person identifier is very special data as it is fundamental to theories of

trust, privacy and surveillance. Consider some examples of assigning data to individuals.

7.1 Examples

Example 1: Biometrics. Biometric identifiers are measurable qualities that can be used to

describe and label the physical characteristics of individuals and enable the automatic

recognition of people. Physiological and behavioural characteristics are related to the body,

and there are many: some 9 leading biometrics, and a further 17 biometrics under

development, are discussed in [16]. All of these physical measurements end up in software.

25

The association of a biometric to people is expected to be highly reliable because it is

expected to be one-one. Biometric digital technologies emerged in the 1960s with automatic

fingerprint recognition [29, 30] – perhaps, the best understood automatic process [31].

The operational tests used to measure biometrics are of course, approximate, due to technical

constraints, error margins and costs. Thus, that biometric data manifests a one-one identity

association is a matter of probability, especially high probability. Increasingly accurate

measurements are desirable or necessary. Although identical twins share very similar DNA,

they are not identical [32]. The environment affects the genetics, possibly even in the womb.

But the complexity of testing is considerable and is a research area [33]. Recently, public

attention was drawn to these points when identical twins were identified by DNA evidence as

suspects in a series of sexual assaults, in Marseille, France, and soon after in Reading,

England. In the case of Marseille, after 10 months incarceration, one of the twins confessed

[34]; in the case of Reading, mobile phone evidence revealed the offender [35]. At the time

advanced DNA tests were not applied to separate the twins.

Example 2: Citizenship. In the UK, for example, an individual can or must register with

state organisations devoted to health, employment, citizenship, and transport, and with local

government organisations devoted to residence and elections. Everyone registered with the

National Health Service has his/her unique number, which is linked to his/her health record.

Each NHS number is made up of 10 alpha-numerics. Everyone gets a National Insurance

(NI) number just before he/she turns 16. An individual’s NI number makes sure his/her NI

contributions and taxes are only recorded against her/her name. The format of the number is

two prefix letters, six digits, and one suffix letter. In the new style red passport, in addition to

the biometrics, there is a passport number that must be nine characters and all characters must

be numeric. Finally, each driving licence has a number made up of 18 alpha-numerics, which

codes part or all of (i) the surname; (ii) the date of birth; (iii) the first names; (iv) sex; (v)

licence issue; and (vi) checks. In these cases of registration, numbers are added to identifiers

in order to ensure that each of these associations is one-one. The ways in which the British

state knows its citizens is complicated; plans in 2006 for (re-)introducing a national identity

register were abandoned in 2011 [36, 37].

26

7.2 Formal personal identifiers.

We have emphasised how systems of identity are designed to separate entities in contexts,

how they are established with widely varying standards of rigour, and that they are combined

and compared in all sorts of unanticipated ways. The fundamental personal identifiers

mentioned in Section 7.1 are much used because they carry weight: with the authority of the

state, people are identified in basic contexts for citizenship, employment, tax, and health.

Definition. A personal identity system has the form

PIdSys = (Identifier, Person | pid: Identifier→ Person)

and satisfies the uniqueness property, namely two different people are assigned different data

and the function pid is one-one.

In practice, the data assigned to a person invariably includes a number or alpha-numeric code

precisely in order to enforce the uniqueness property. All systems of identity need to be

analysed by studying comparisons that involve mapping between different systems of

identity, but this is especially true of personal identity systems.

8. Provenance of identifiers

8.1 Generating identifiers using other identifiers

Creating identifiers is an everyday occurrence: we open accounts, register for services, buy

products, etc. For many of these actions, we rely on a handful of pre-existing identifiers. In

the UK, to open a bank account, we give a proof of our identity and our current address, e.g.,

using a passport and a recent utility bill. To order a product or service, an address and a credit

card account number are usually sufficient for the vendor to dispatch: notice the dependency

on the bank identifier. At face value, the quality of a bank identifier is guaranteed by the

databases of the state (passport, driver’s licence) and local organisations (utility providers,

local authorities). The passport provides a high quality identifier based on a birth certificate, a

photograph and possibly other biometric data. Example after example, illustrates the general

point that:

27

Principle. The creation of new identifiers is dependent upon pre-existing identifiers.

The quality of an identifier is essentially a matter of its reliability, which in turn depends on

(i) its provenance, i.e., the process involved in establishing the identifier; and

(ii) scope, i.e., the context(s) in which it is accepted.

In the case of people, a passport and a driving licence are standard examples of high-quality

identifiers with a rigorous provenance and wide application [38, 39]. In the case of a bank,

where it is a now a priority to check on identity of existing customers, the process of

identification can be clumsy and discriminatory, as women can experience when using both

their maiden name (in their profession) and married name (in their personal life), which are

often not linked rigorously in practical ways.

The dependence of one identifier upon another may be illustrated in an identity dependence

tree.

Example 1: Bank Account. Consider the role of identifiers in opening a bank account (in the

UK), which is depicted in Figure 1. Establishing the identifier ID1 of the account holder

involves providing evidence using five other identifiers: the validity of ID1 depends upon, or

is reduced to, the validities of ID2-ID6. Some of these identifiers have a special status, in that

they are designed to reliably denote an individual. In the example, these personal identifiers

are guaranteed by the state (ID4) and biometric data (ID3); in the latter case, ID6 is used to

allow a passport to be issued by post, without face-to-face interaction. ID2 is used to confirm

the validity of the account holder’s address.

The identifiers that appear in the nodes of the tree suggest that there can be quite complicated

dependencies between systems of identifiers for the same or, more commonly, different

contexts. The identifier is made by aggregating pre-existing identifiers: the bank identifier in

Figure 1 is the sum of the identifiers for current address, birth and image, etc.

28

Figure 1: Dependency tree of identifiers

Since identifiers are often built from other identifiers, of central importance is the process of

comparing identifiers and relating one type of identifier to another. Indeed, there must be

translations between distinct systems for these identifiers for such methods to work. All of

these observations and ideas can be formalised to make a precise and general mathematical

framework for analysing identifiers. The identity dependence tree is a flexible notion with

many more applications than proving personal identity.

Example 2: Namespaces. Namespaces are sets of identifiers that use symbols to label,

organise and classify entities by names. The names can have a tree structure that enables

them to be reused and to form a hierarchy. For example, the names for directories, folders,

files, and web domains, etc. are made by concatenating names and denote paths in a tree: the

web address

http://www.swansea.ac.uk/library/archive-and-research-collections/hocc

for the History of Computing Collection is a node belonging to the archives which in turn

belong to the library of Swansea University. Indeed, there is no shortage of computing

contexts where identity dependence trees are used. Domain name systems (e.g., URLs),

directory services for networks (e.g., Microsoft’s Active Directory), email addresses (e.g.,

X500), authentication systems (e.g., Kerberos), and public key infrastructures (e.g.,

blockchains) are natural sources of rules and structures for creating identifiers.

ID1 = Bank Account

ID2 = Present Address ID3 = Passport

ID4 = Birth Certificate ID5 = Photo

ID6 = Independent Authentication

29

Example 3: Identity Fraud. The creation of new personal identities requires many

identifiers to be fabricated: birth certificates, driving licences, employment histories, etc. The

practicalities for the USA are discussed extensively in Kevin Mitnick’s memoir [40]. When a

fugitive, his method for creating a new identity in different states can be depicted as an

identity dependence tree. More generally, Mitnick’s success at social engineering is based on

his extensive preparation, which focussed on researching identifiers that he would use in

masquerades in the technical, commercial and government contexts of phone system

companies, computer and phone manufacturers, and state agencies.

The complexity of computing systems suggests that tracing the provenance of a component

may lead to circularity and so there may be a need for graphs of identifiers with cycles.

8.2. Generating identifiers from identifiers

Now suppose that to generate an identifier for an entity the input data involves other

identifiers that must be presented to verify some of the new data (such as personal identity).

The general ideas of Section 6.2 can be reformulated with provenance in mind. We revise the

processing of the form with a function with new variables:

check: Forms × Identifier1 × … × Identifierk → {0, 1}

that tests the data in a form f ∈ Form and the information available from identifiers i1, … , ik

for consistency against the system’s rules. Again, we assume that check(f, i1, … , ik) = 1

means that the form is accepted and check(f, i1, … , ik) = 0 means that the form is rejected.

The identity of an entity with identifier i depends upon the identifiers i1, … , ik. This idea is

formalised by re-representing the function

generate: Forms → Identifier ∪ {reject}

(in 6.2) by the new function

generate: Forms × Identifier1 × … × Identifierk→ Identifier.

There are now two ways of creating the identifiers and defining generate, defined by two

principles:

30

Provenance Principle: Verification. The data in f ∈ Form is sufficient to create an

identifier i. The data in the identifiers i1, … , ik are used only to confirm or validate the data

in f.

Here the function has the form

generate(f, i1, … , ik) = if check(f, i1, … , ik)=1 then issue (f) else reject

noting that issue (f) does not need to know the validation identifiers. Secondly, we have the

more demanding case:

Provenance Principle: Inheritance. The data in f ∈ Form to create an identifier i is

inherited from the data in the identifiers i1, … , ik.

In this case, the function has the form

generate(f, i1, … , ik) = if check(f, i1, … , ik)=1 then issue (f, i1, … , ik) else reject.

9. Comparing identifiers

Access to data belonging to different contexts is desirable in surveillance, intelligence

analysis and academic research; it is undesirable in social and personal contexts as it

undermines privacy and freedom. Access is regulated by legal instruments.

9.1 Reductions between systems of identifiers
Consider the case where a set Entity of entities has two systems of identifiers:

IdSys1 = (Entity, Identifier1 | id1: Identifier1→Entity),

IdSys2 = (Entity, Identifier2 | id2: Identifier2→Entity).

How can we relate or compare these systems?

One simple case is when the identifiers in Identifier1 can be associated or matched with one

or more identifiers in Identifier2, and vice versa. This means that given an identifier i ∈

Identifier1 of an entity e ∈ Entity, we can find corresponding identifiers in Identifier2 that are

also identifiers for e. This is formalised as follows:

Definition. Let IdSys1 and IdSys2 be systems of identifiers for Entity. A matching relation

31

r: Identifier1 × Identifier2

for the systems of identifiers IdSys1 and IdSys2 compares identifiers as to whether or not they

are associated with the same entity in the following sense: for every i ∈ Identifier1 and j ∈

Identifier2,

r(i, j) if, and only if, id1(i) = id2(j).

Different conditions on a matching relation can be found in examples, depending upon the

properties of id1 and id2. An important and common case is: given an identifier i ∈ Identifier1

of an entity e ∈ Entity, we can find some corresponding identifier in Identifier2 that is also an

identifier for e. This is formalised as follows:

Definition. Let IdSys1 and IdSys2 be systems of identifiers for Entity. The system of

identifiers IdSys1 is said to reduce to the system of identifiers IdSys2 if there is a single-valued

reduction mapping

f: Identifier1 →Identifier2

that calculates for each identifier in Identifier1 a corresponding identifier in Identifier2 for the

same entity in the following sense: for every i ∈ Identifier1,

id1(i) = id2(f(i)).

We write IdSys1 ≤ IdSys2 or, more simply and conveniently, id1 ≤ id2 (see: Figure 2).

Figure 2: Transformation of identifiers

This is but one formalisation of the process of comparing the identifiers of Identifier1 to those

of Identifer2. Another option would be to return a selection, or all, of the equivalent

identifiers. Because the notion of identifier is so abstract, the notion of reduction is very

general. Mappings between identifiers are ubiquitous in computing systems and employ

32

many algorithmic techniques. Reductions can be found in situations where alternate terms

like translating, binding, matching, and tracing are used.

Example 1: Tracing. Consider the set Keep of keepers of vehicles in the UK and two

systems of identity for this set of entities. Suppose, for simplicity, each keeper has one car

and each keeper has a unique address. Each car has a registration mark. Let the first system

be

Reg = (Keep, Regmk | reg: Regmk → Keep).

Every keeper has an address assigned by the postal service so let

Add = (Keep, Address | addr: Address → Keep).

Then the Driver and Vehicle Licensing Agency (DVLA) is responsible for the determining

the keeper’s address from the registration mark, which is defined formally by the reduction

map red: Regmk → Address such that for every registration mark r ∈ Regmk,

reg(r) = addr(red(r)).

We say that the system of identities Reg is reducible to Add.

Example 2: Hashing. In cybersecurity, hashing techniques provide examples of reductions.

For example, consider hashing in managing passwords. Hashing involves a one-way function

h: Password → {0, 1}k where h(w) is a data used to separate w in some context.10 There are

many hashing algorithms, such as the secure hash algorithms SHA-256 and SHA-512; and

there are methods to enhance their security such as salting, where random strings are added to

the passwords to separate common passwords from each other. Thus, hash codes are

identifiers and the hash function and salting qualify as reductions.

Example 3: Binding. Connections between computing entities require various degrees of

reliability and, in secure contexts, trust. In computing, a binding is a mapping associating

distinct entities in hardware or software. Commonly, bindings are mappings between

syntactic spaces (e.g., namespaces) enabling binding to connect syntactic and semantic

entities, or to create layers in software stacks, or create secure chains of identity in

cryptography. The term binding has general application and several common forms of

binding qualify as reductions between systems of identifiers in our sense.

10 A one-way function is easy to compute but hard to invert.

33

Example 4: Certification. Certification is a security process that seeks to increase trust in

identity. It is intended to reduce risks of man-in-the-middle vulnerabilities. In

communications, such as calling a webpage, certification can flag doubts about a website. In

cryptography, a public key certificate is used to confirm the ownership of a public key. The

certificate validates the binding of a public-private key pair to an entity, using a digital

signature generated by a certificate authority.

Definition. The system of identifiers IdSys1 is said to be equivalent to the system of

identifiers IdSys2 if there are reduction mappings

f: Identifier1 → Identifier2 and g: Identifier2 →Identifier1

that can exchange identifiers in Identifier1 and corresponding identifiers in Identifier2. We

write IdSys1 ≈ IdSys2 or, more simply and conveniently, id1 ≈ id2.

9.2 Structuring the space of identifiers
Reductions are an important concept that occur widely. To conclude, we introduce some

concepts and propositions to reveal the richness of the reduction notion and signal the

possibility of advanced classification methods.

In Section 8, we discussed the combination of identifiers. The process of creating new

identifiers from old introduces algebraic operations on spaces of identity systems. One

choice of algebraic structure, the semilattice, organises the space of all possible identity

systems using reduction.

Lemma. Let IdSys(Entity) be the set of all identity systems for the non-empty set Entity of

entities. The reduction relation ≤ on IdSys(Entity) is reflexive and transitive; and ≈ is an

equivalence relation on IdSys(Entity).

Proof. Let IdSys = (Entity, Identifier | id: Identifier → Entity). Trivially, id ≤ id using the

identity function Identifier → Identity as reduction map; so reduction is reflexive.

To show transitivity, let

IdSys1 = (Entity, Identifier1 | id1: Identifier1→Entity),

IdSys2 = (Entity, Identifier2 | id2: Identifier2→Entity),

IdSys3 = (Entity, Identifier3 | id3: Identifier3→Entity).

34

and suppose

id1 ≤ id2 by f: Identifier1→ Identifier2 and id2 ≤ id3 by g: Identifier2→ Identifier3.

Then, for i ∈ Identifier1, and j ∈ Identifier2, we have

id1(i) = id2(f(i)) and id2(j) = id3(g(j)).

Composing, f and g we have,

id1(i) = id3(g(f(i)))

and id1 ≤ id3. It is easy to show that ≈ is symmetric.

Using the equivalence relation ≈ on IdSys(Entity), we define the set of equivalence classes:

IdSys(Entity) = IdSys(Entity)/≈.

The equivalence classes have the standard form of [id] for id ∈ IdSys(Entity). The ordering

relation ≤ on IdSys(Entity) induces ordering relation ≤ on IdSys(Entity) by

[id1] ≤ [id2] ⇔ id1 ≤ id2.

It is easy to check that ≤ is a partial ordering on IdSys(Entity). Furthermore, the ordering ≤

has the least upper bound property: for any [id1], [id2] ∈ IdSys(Entity), there is an element

[id] such that

(i) [id] is an upper bound: [id1] ≤ [id] and [id2] ≤ [id];

(ii) no lower element is a bound: if [id1] ≤ [id0] ≤ [id] then either [id1] = [id0] or [id0] =

[id].

To show this we construct an identity system as follows. Given id1, id2 ∈ IdSys(Entity), take

the disjoint union Identifier1 ⊕ Identifier2 of the sets of Identifier1, and Identifier2 and define

id1 ⊕ id2 : Identifier1 ⊕ Identifier2 → Entity.

wherein given i ∈ Identifier1 ⊕ Identifier2,

(id1 ⊕ id2)(i) = id1(i) if i ∈ Identifier1

(id1 ⊕ id2)(i) = id2(i) if i ∈ Identifier2.

It is easy to show that [id1 ⊕ id2] satisfies conditions (i) and (ii). The construction

(Identifier1 ⊕ Identifier2 | id1 ⊕ id2)

is called a co-product of the identity systems. If the sets Identifier1 and Identifier2 are disjoint

(as is often the case) then the carrier is their union.

Example: Combining Identifiers. Integration of identity data can be tentatively explored

using coproducts. Consider making a system of identifiers for entities that are contracts, for

35

which personal identity and current location must be validated. A space of identifiers may be

built using the coproducts of pairs of validating systems of identifiers: passports, driver

licences, identity cards for identity, and utility bills, local tax declarations for addresses.

A partial ordering with the least upper bound property is called an upper semilattice [41].

Thus, gathering together these arguments we have the theorem:

Theorem. The reduction relation ≤ on IdSys(Entity) forms an upper semilattice.

Corollary. The process of creating new identifiers by inheriting existing identifiers forms an

algebraic structure IdSys(Entity) that is an upper semilattice under the reduction relation.

Equivalently, any upper semilattice can be reconstructed as an algebraic structure with a

binary operation ∧ that is associative, commutative and idempotent [40]. In this form we

would have the structure

IdSys(Entity) = (IdSys(Entity)/≈ | ∧)

with binary operation of least upper bound defined by

[id1] ∧ [id2] = [id1 ⊕ id2].

Further properties of the upper semilattice IdSys(Entity) can be developed depending upon

properties of the associations and reductions.

10. Concluding remarks

Employing simple examples and arguments from first principles, we have used formal

methods to analyse precisely concepts involved in surveillance and identity. The formal

analysis shows that disparate forms of surveillance can be unified by abstract mathematical

definitions, and that (i) finding identities, and (ii) sorting identities into categories, are

fundamental in conceptualising surveillance. The formal analysis of identity shows that the

idea of identity can be considered to be exclusively a matter of data, and its diversity can be

unified by abstract mathematical definitions. It also shows that (i) comparing identifiers, and

(ii) translating between systems of identifiers, are fundamental to understanding identity.

36

10.1 Developing a theory of identity

The theoretical analysis presented here is intended to analyse examples and formalise

intuitions and ideas. This formal approach is new and inevitably modest, but it can serve as a

basis for further conceptual and mathematical investigations relevant to the making and

regulation of surveillance systems. Two conceptual and four technical further directions seem

to us to be desirable. Conceptually, our theory of identifiers could be used to theorise privacy,

interpreted as the control of identity. (A formal notion of anonymity was included in Section

3.4.) The second direction is to use identifiers to explore secure access control policies in

computer systems (e.g., role-based access control).

Turning to technical directions, first the notion of context in Section 3.2 can be developed

with various semantic models. Further behavioural features can be formalised, such as the

interaction of entities. There are options for formalising streams – infinite or finite, total or

partial streams in discrete or continuous time – and for behaviours modelled as non-

deterministic and concurrent processes [42]. Secondly, logics can be used to develop

specification and reasoning about attributes. There are several candidates, such as many

sorted first order logic and its many derivatives and its extensions – equational, Horn, and

temporal logic [43]; and many valued logics [44]. Logics bring with them tools that would

expand the scope of the theory and applications.

Third, the idea of a system of identifiers needs to be developed mathematically. For example,

identifiers commonly reference characteristics of the entities that may be essential to their

deployment and application; this information is an additional component that would enrich

the mathematical structure of contexts and their identifiers. The idea of the form does provide

background initial information, but the characteristics of an entity may need updating

because of the behaviour of the entity in time. Systems of identifiers are instances of abstract

data types [25], whose extensive general theory based on many sorted algebras and equations

[18,19,45,46] can add significantly to the theory and practice of identity.

Fourth, identifiers are assumed to be digital objects. To model this aspect, identifiers must

themselves be coded by bits, i.e., by finite binary strings over {0, 1}. This introduces a new

digital layer beneath the identifiers in which all computation actually takes place, simulating

37

functions on user data by functions on binary numbers. This digital layer is a source of

constraints on the theory of identifiers. The digital layer can be modelled by maps of the form

code: Numbers → Identifier.

Classical computability theory is a mathematical theory of what can and cannot be computed

on numbers [47], especially binary and decimal, etc. It has been applied to establish the scope

and limits of computation on arbitrary data using such maps as code; these maps are called

numberings in computability theory [48]. Thus, there is a second ready-made theory that can

applied to develop this three-layer model:

id ! code: Numbers → Identifier → Entity

and theorise what is, and what is not, computable about systems of identifiers. The

conception of identity analysed here is inspired by and abstracts ideas about abstract data

types and encodings cf. [49].

10.2 Formalising identity and social theory

Ours is an investigation into ideas about surveillance and identity, wherein our models are

developed from first principles. It may seem far from the world implied by the revelations of

Snowden, with its surveillance tools (XKeyscore, Tempora, etc.) for target discovery and

development. Let us observe that new surveillance contexts arise – or are recognised – as

more of our professional and social activities are carried out by abstract technological

systems rather than by direct face-to-face interactions. To make use of these systems, an

individual needs to give over some of his/her identity to distinguish himself/herself from

other users in the context. Thus, rather than having a single and holistic identity, individuals

now have many separated and overlapping identities, which amplifies hugely the scope of a

theory of identifiers.

The physical and the virtual are converging; indeed, it seems that the physical world is being

sucked into the virtual and a virtual world is being created that is self-contained. It certainly

exerts a strong influence on the physical world, and shows signs of autonomy. Thus, the

components of monitoring and surveillance – context, entity, observable behaviour, attribute

and identity – will seem natural in a world held together by data and software.

38

The multiplicity of contexts and identities, and the possibility of the autonomy of the virtual

world, requires the nature of identity to be theorised. The formal framework we offer here is a

rigorous analysis of the conceptual structure of surveillance; there ought to be others. What

can formalisation contribute? Guided by the theory of abstract data types, our formalisation

of identity aspires to:

(i) establish and explore principles that assume identity is a matter of data and their

implications;

(ii) make precise essential concepts and classify abstractly methods of identification;

(iii) provide a unified point of view that illuminates the design of many real systems;

(iv) explore the role of identity in aspects of security studies, including monitoring and

surveillance, personal privacy and trusted translations and interactions.

At this stage, these aims require a great deal of further work.

Finally, let us observe that if a social science topic is closely associated with abstract

technologies that collect and process data effectively then the specification of the software

tools – i.e., what the tools are designed to do for users – can be formalised in the same way

as we have approached the problem here. Thus, sociological notions that motivate, shape and

are ultimately represented in software, can be defined in a formal framework which can be

mathematically analysed. In short, sociological theories about human activities that are

closely associated with abstract software systems can be expected to have formal models,

mathematical theories, as well as oodles of data arising from their use.

To isolate, define and analyse ideas is the raison d’être of formal methods, though in new

areas their mathematical nature presents obstacles to their reception and appreciation. The use

of formal methods to express and analyse general notions is established in areas of

philosophy and linguistics but seems to be rare in social studies. Given software’s

colonisation of professional and social life, and its promotion of monitoring and Big Data, the

role of formal methods to theorise social concepts and problems is destined to grow.

Acknowledgement.
We thank two anonymous referees for valuable suggestions that improved an earlier version

of this paper. This research was partially supported by the EPSRC project Data Release -

Trust, Identity, Privacy and Security (EP/N028139/1 and EP/N027825/1).

39

References
1. Haggerty, K, Ericson, R. The surveillance assemblage. British Journal of Sociology 2000;

51(4): 605-62.

2. Introna, L, Wood, D. Picturing algorithmic surveillance: the politics of facial recognition

systems. Surveillance & Society 2004; 2(2/3): 177-198.

3. Evans, D. The Internet of Things: How the Next Evolution of the Internet Is Changing

Everything. CISCO White Paper, 2011.

4. Hopper, A. Sentient Computing. Philosophical Transactions of the Royal Society 2000;

358: 2349-358.

5. Thrift, N. The ‘sentient’ city and what it may portend. Big Data & Society 2014; 1: 1-21.

6. Foresight. Future Identities Changing identities in the UK: The next 10 years (Final

Project Report). Government Office for Science, 2013.

7. Anderson, D. A Question of Trust. Report of the Investigatory Powers Review. HM

Stationary Office, 2015.

8. Lyon, D. Surveillance Studies: An Overview. Polity Press, 2007.

9. Ball, K, Haggerty, KD, Lyon, D. The Routledge Handbook of Surveillance Studies.

Routledge, 2012.

10. Wills, D. Surveillance and Identity: Discourse, Subjectivity and the State. Ashgate, 2013.

11. Torpey, J. The Invention of the Passport: Surveillance, Citizenship and State. Cambridge

University Press, 2000.

12. UK Government. The Identity Card Act 2006: Elizabeth II. Chapter 11. The Stationary

Office, 2006.

13. Cole, S. Suspect Identities: A History of Fingerprinting and Criminal Identification.

Harvard University Press, 2001.

14. Lyon, D. Under my skin: from identification papers to body surveillance. In: Caplan, C

(ed). Documenting Individual Identity: The Development of State Practices in the Modern

World. Princeton University Press, 2001.

15. Wallace, H. The UK National DNA Database – Balancing crime detection, human rights

and privacy. Science & Society 2006; EMBO reports 7: S26-S30.

16. Vacca, J. Biometric Technologies and Verification Systems. Elsevier, 2007.

40

17. van der Ploeg, I. Biometrics and the body as information: narrative issues of the socio-

technical coding of the body. In: Lyon, D (ed). Surveillance as Social Sorting: Privacy,

Risk and Digital Discrimination. Routledge, 2003.

18. Ehrich, HD, Loeckx, J, Wolf, M. Specification of Abstract Data Types. Wiley, 1996.

19. Goguen, J, Thatcher, J, Wagner, E. An initial algebra approach to the

specification, correctness and implementation of abstract data types. In: Yeh, R (ed).

Current Trends in Programming Methodology, IV. Prentice-Hall, 1978.

20. Lipschutz, S, Lipson, M. Discrete Mathematics. Third Edition, Schaum, 2009.

21. Makinson, D. Sets, Logic and Maths for Computing. Springer, 2012.

22. Pieri, E. Emergent policing practices: Operation Shop a Looter and urban space

securitisation in the aftermath of the Manchester 2011 riots. Surveillance & Society 2014;

12(1): 38-54.

23. Morstatter, F, Pfeffer, J, Huan L, Carley, KM. (2013). Is the Sample Good Enough?

Comparing Data from Twitter’s Streaming API with Twitter’s Firehose. Arxiv, 2013.

http://arxiv.org/abs/1306.5204v1 (14 March 2017, accessed)..

24. Needham, RM. Names. In: Mullender S. (ed.). Distributed Systems. ACM Press, 1989,

89-101.

25. Liskov, B, Zilles, S. Programming with abstract data types. In: Proceedings of the ACM

SIGPLAN Symposium on Very High Level Language. ACM Press, 1974, pp. 50-59.

26. Lyon, D. (ed) Surveillance as Social Sorting: Privacy, Risk and Digital Discrimination.

Routledge, 2003.

27. Chen, M, Mao, S and Liu, Y. Big Data: A Survey. Mobile Network and Applications.

2014; 19: 171-209.

28. Minoli, D. Building the Internet of Things with IPv6 and MIPv6: The Evolving World of

M2M Communications. Wiley, 2013.

29. Trauring, M. On the automatic comparison of fingerprint ridge patterns. Nature 1963;

197: 938-40.

30. Wayman, JL. The scientific development of biometrics over the last 40 years. In: Leeuw

K, Bergstra, JA (eds). The History of Information Security: A Comprehensive Handbook.

Elsevier, 2007, 263-274.

31. Maltoni, D, Maio, D, Jain, A, Prabhakar, S. Handbook of Fingerprint Recognition.

Springer, 2009.

41

32. Choi, CQ. Copy That: Identical twins are not genetically identical. Scientific

American. 298 (May 2008), 24-26.

33. Twin DNA test: Why identical criminals may no longer be safe, 5 January 2014.

http://www.bbc.co.uk/news/magazine-25371014 (14 March 2017, accessed).

34. Mystery of which identical twin committed a series of rapes in France is finally solved as

one brother confesses after he was given away by a stutter.

http://www.dailymail.co.uk/news/article-3225467 (14 March 2017, accessed).

35. Identical twins need never be tried for same crime after DNA breakthrough.

http://www.telegraph.co.uk/news/science/science-news/10511087/Identical-twins-need-

never-be-tried-for-same-crime-after-DNA-breakthrough.html (14 March 2017, accessed).

36. Caplan, J, Torpey, J (eds). Documenting Individual Identity: The Development of State

Practices since the French Revolution. Princeton University Press, 2001.

37. Higgs, E. Identifying the English: A History of Personal Identification 1500 to the

Present. Bloomsbury, 2001.

38. Lloyd, M. The Passport: The History of Man’s Most Travelled Document. Queen Anne’s

Fan, 2016.

39. Castile, M. Driver’s License. Bloomsbury, 2015.

40. Mitnick, K. Ghost in the Wires. Little Brown & Company, 2011.

41. Birkhoff, G. Lattice Theory. Third Edition, American Mathematical Society, 1995.

42. Bergstra, JA, Ponse, A and Smolka, SA. (ed) Handbook of Process Algebra. Elsevier,
2001.

43. Manzano, M. Extensions of First-Order Logic. Cambridge University Press, 2005.

44. Gottwaldov, S. A Treatise on Many-Valued Logics. Studies in Logic and Computation,

vol. 9, Research Studies Press, 2001.

45. Meseguer, J, Goguen, JA. Initiality, induction, and computability. In: Nivat, M, Reynolds,

JC (eds). Algebraic Methods in Semantics. Cambridge University Press, 1986.

46. Meinke K and Tucker JV. Universal algebra. In: Abramsky, S, Gabbay, D, Maibaum, T

(eds). Handbook of Logic in Computer Science. Volume I: Mathematical Structures.

Oxford University Press, 1992, 189-411.

47. Griffor, ER. Handbook of Computability Theory. Elsevier, 1999.

48. Ershov, Y. Theory of Numberings. In: Griffor ER (ed). Handbook of Computability

Theory. Elsevier, 1991, 473-503.

42

49. Stoltenberg-Hansen, V, Tucker, JV. Effective algebras. In: Abramsky, S, Gabbay, D,

Maibaum, T (eds). Handbook of Logic in Computer Science. Volume IV: Semantic

Modelling. Oxford University Press, 1995, 357-526.

