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Vaidman has proposed a controversial criterion for determining the past of a single quantum
particle based on the “weak trace” it leaves. We here consider more general examples of entangled
systems and analyze the past of single, as well as pairs of entangled pre- and postselected particles.
Systems with non-trivial time evolution are also analyzed. We argue that in these cases, examining
only the single-particle weak trace provides information which is insufficient for understanding the
system as a whole. We therefore suggest to examine, alongside with the past of single particles, also
the past of pairs, triplets and eventually the entire system, including higher-order, multipartite traces
in the analysis. This resonates with a recently proposed top-down approach by Aharonov, Cohen
and Tollaksen for understanding the structure of correlations in pre- and postselected systems.

I. INTRODUCTION

The Two-State-Vector-Formalism (TSVF) [1, 2] is a
time-symmetric framework within quantum mechanics
that is particularly suited for the analysis of ensembles
which are both pre- and postselected. When augmented
with the complementary concept of weak measurements
[3] this description allows us to pose and then answer
questions which are otherwise impossible. The minimally
disturbing coupling between the measured system and
measuring device in a weak measurement scheme, induces
only a negligible change in the measured system, which
therefore allows to probe it without practically altering
it.

One seminal example of the above, is inferring the
σπ/4 = (σx + σy)/

√
2 component of a spin which was

preselected with |ψ〉 = |σx = +1〉 and postselected with
|φ〉 = |σy = +1〉, using the weak value 〈σπ/4〉w =

〈φ|σπ/4|ψ〉/〈φ|ψ〉 =
√

2, while maintaining the prese-
lected state, as well as the probability of post-selection.
This so-called “anomalous weak value” assigns an intrigu-
ing history to the pre- and postselected system. Another
example, on which we will focus in this paper, is de-
termining the past of quantum particles using the weak
trace they leave [4].

Vaidman has suggested an intriguing criterion for de-
termining the past of a single pre- and postselected par-
ticle [4, 5] based on the overlap between the forward- and
backward-evolving wavefunctions. It was proposed that
the particle was present in places where it left a trace,
that is a non-zero weak value, which can be detected by
weak measurements. The deflection of the weakly cou-
pled measurement pointer is proportional to the weak
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value of the corresponding projection operator, i.e. to the
weak trace of the particle. Vaidman’s criterion has drawn
much attention and various aspects of his approach are
currently under debate [6–17].

We argue that Vaidman’s criterion, when applied to
single-particle states and product states yields unambigu-
ous and meaningful answers regarding the past of the
particle. However, the criterion has to be broadened to
accommodate the cases where particles are preselected
and/or postselected in entangled states (see also [18]).
As the single-particle traces are quantum mechanically
correlated through multipartite entanglement, the infor-
mation obtained only from the single-particle traces is
incomplete. When considered individually, the multi-
particle contributions reveal further details about the
past. Due to a special property of dichotomic operators
[19], both the single-particle and multi-particle presences
can be validated through strong measurement whenever
the weak value of the corresponding dichotomic opera-
tor coincides with one of its eigenvalues. Additionally,
the trace of single-particle projection operators and the
trace of multi-particle projection operators, if considered
separately, can sometimes give apparently contradictory
answers to the past question. This is a consequence of the
well-known failure of “product rule for weak values” [20],
and Svensson in [16] has argued that this leads to logical
inconsistencies when compared to strong measurements.
However, rather than considering them as contradictory,
we suggest considering both the single-particle traces and
the higher order ones to obtain a more complete infor-
mation about the past of the quantum system. We thus
address Svensson’s concerns and try to refine the logic
behind weak values. We will also show that the signifi-
cance of the multi-particle weak traces accords well with
a recently suggested top-down logical structure in quan-
tum mechanics [21], according to which there is a sense
in which many-body correlations are more fundamental
than single-particle properties or few-body correlations.
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In the following sections we analyze different examples
of entangled systems using the weak value based time-
symmetric approach and discuss the past of quantum
particles in general multipartite scenarios.

II. CHALLENGES IN ENTANGLED SYSTEMS

Vaidman’s criterion is motivated by whether the par-
ticle has any physical effect on an object, weakly cou-
pled to it, which resides in the immediate proximity of
its path. Since it is concerned with observable interac-
tions, amenable to laboratory experiments, the criterion
is physically meaningful. Furthermore, whenever a non-
zero weak trace of a projection operator is detected in a
certain path, there is a non-zero probability of observ-
ing the particle in a strong measurement. In fact, as
mentioned above, when the weak value of the projec-
tion operator is one or zero, the presence/absence can
be verified by a strong measurement as well [19]. The
predictions obtained from the weak trace criterion re-
garding the past of a particle were also verified in several
experiments [22, 23]. Furthermore, it was shown how
to measure sequential weak values revealing the parti-
cle’s past at several instances in time [24]. Using the
weak value criterion to determine the past has an addi-
tional advantage. If we use only the standard forward-
evolving wavefunction, we have to keep track of a lot of
information. Instead, considering both the forward- and
backward-evolving wavefunctions, we can discard the ex-
cess information, and work with only the absolutely nec-
essary information concerning both pre- and postselected
states.

The method of determining where was a particle in the
past by using weak trace of projection operators gives
unambiguous (yet still controversial [6–17]) answer for
single-partice/product states. However, in the case of
entangled states the trace of single-particle projection
operators provides us only with part of the whole pic-
ture. This is an inevitable consequence of quantum non-
locality. To motivate our alternative approach employing
correlations between single-particle pasts, we shall begin
with two examples which underscore the importance of
multipartite correlations while considering the past of a
particle in entangled states.

A. Hardy’s Paradox

Hardy’s thought experiment [25, 26] analyzes an
electron-positron pair in a setup with two Mach-Zehnder
interferometers overlapping in one corner. When the
electron and positron are simultaneously present in the
overlapping arm they annihilate each other. The inter-
ferometers are tuned such that the electron entering the
first interferometer always arrives at C− and the positron
entering the second always arrives at C+. In the case
when both particles simultaneously enter the setup and

FIG. 1. Hardy’s thought experiment.

no-annihilation occurs the (entangled) state of the parti-
cles is

|ψ〉 =
1√
3

(
|O+〉|NO−〉+ |NO+〉|O−〉+ |NO+〉|NO−〉

)
.

(1)
If we consider only the cases where D+ and D− click,
then the postselected state is,

|φ〉 = 1
2 (|O+〉|O−〉 − |O+〉|NO−〉 − |NO+〉|O−〉+ |NO+〉|NO−〉) .

(2)
The weak values of various projection operators mea-
sured at some intermediate time are

PO+O− = 0, (3)

and

PO+ = 1 = PO− . (4)

The weak values of single-particle projection operators
tell us that the electron and positron are individually
present in the overlapping arms. This has to be true, oth-
erwise the detectors could not have detected the particles
at D+ and D−. However, the electron and positron were
not simultaneously present in the overlapping arm, as the
weak value of the projection operator of the pair is zero.
This has to be true because if they were simultaneously
present there, then annihilation would have occurred.

Next we consider a complementary example in which
the single-particle traces do not indicate the presence of
the particles, but the trace of the pair does.

B. A simple example

Let us consider two particles present in two boxes de-
noted by 1 and 2, pre- and postselected as follows

|ψ〉 =
1√
3

(|11〉 − |12〉+ |22〉) , (5)
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|φ〉 =
1√
3

(|11〉+ |12〉+ |22〉) . (6)

Let us define the projection operators as

P
(1)
1 = |1〉〈1| ⊗ I, P

(2)
2 = I ⊗ |2〉〈2|

P11 = |11〉〈11|, P12 = |12〉〈12|
P21 = |21〉〈21|, P22 = |22〉〈22|.

(7)

The weak values of the projection operators are

〈P (1)
1 〉w = 0, 〈P (2)

2 〉w = 0, 〈P11〉w = 1

〈P12〉w = −1, 〈P22〉w = 1.
(8)

We can see that the weak values of the single-particle pro-

jection operators, P
(1)
1 and P

(2)
2 are zero, but the weak

values of the projection operators of the pairs, P11, P12

and P22, are not zero. In other words when we look for
the particles individually we do not find them, but when
looked for together they are found there. If we consider
only the single-particle traces (as done by Vaidman), we
would conclude that the first particle is not in the box
1 and similarly that the second particle is not at box 2.
However the weak traces corresponding to pairs tell an
additional story. We have,

〈P (1)
1 〉w = 〈P11〉w + 〈P12〉w = 1− 1 = 0,

〈P (2)
2 〉w = 〈P12〉w + 〈P22〉w = 1− 1 = 0.

(9)

The traces of the pair cancel each other to give a zero
single-particle trace, but individually they are non-zero.
The boxes are therefore empty according to Vaidman’s
criterion, but in fact, they are full of correlations. This
may suggest a subtle presence of the first particle in box
1 and the second’s in box 2. Moreover, if we measure the
presence of the two particles together in the first box, i.e.
P11 in the first box (or P22 in the second box) strongly,
then we are guaranteed to find them there due to the
aforementioned property of dichotomic operators [19].

As suggested in a recent paper [21], the complete set
of higher order correlations is sufficient to determine
all the lower order ones, but the opposite is not true.
The many-particle correlations cannot be deduced from
the lower order correlations between fewer particles. To
elaborate further on that, let us reexamine the example
above: Suppose we have weak values of the complete set
of two-particle projection operators P11, P12, P21, and
P22. From this set we can easily obtain the single-particle

weak values. For instance, 〈P (1)
1 〉w = 〈P11〉w + 〈P12〉w

and 〈P (1)
2 〉w = 〈P21〉w + 〈P22〉w. But the converse is not

true. If we know all the single-particle weak values we
cannot calculate the two-particle correlations. For in-

stance P11 = P
(1)
1 P

(2)
1 , but by virtue of the failure of

product rule [20] for weak values, we have 〈P11〉w 6=
〈P (1)

1 〉w〈P
(2)
1 〉w. Thus, we cannot obtain the nonlocal

multipartite correlations from the set of single-particle
correlations. This discussion also further highlights the
role of multipartite traces in determining the past of the
particle.

FIG. 2. Vaidman’s nested Mach-Zehnder interferometer
setup.

Comparison with Vaidman’s notion of “secondary
presence”

Vaidman has also introduced a notion of secondary
presence [5] in regions where the first-order weak trace
vanishes, yet the forward- and backward-evolving wave-
functions still have a non-zero (yet small) overlap. The
local interactions in such places can change the weak
trace in the overlap region, but they do not alter the
probability of postselection. In the nested Mach-Zehnder
interferometer setup (Fig. 2) considered in Vaidman’s
papers [4, 5], he argues that whenever the particle is de-
tected in the detector D2 there is secondary presence in
the branches D and E.

The situation we considered in the second example
above looks similar to the secondary presence in D at
first glance. The weak traces in branches B and C can-
cel each other, in a similar way to our example, where the
traces of the pair cancel each other and give zero single-
particle trace. However, we emphasize that it is different
from the notion of secondary presence since there is al-
ready a primary presence in the form of non-vanishing
two-particle traces in the boxes. As noted in the exam-
ple above, the presence of the pair together in box 1 and 2
is also verifiable by a strong measurement scheme and, as
we shall see in Section IV, the two-particle traces can be
of the same order as the single-particle traces depending
upon the method of measurement used.

Next we consider a dynamic example similar to the
second example.

III. A DYNAMIC EXAMPLE

Aharonov et al. considered a case of disappearing (and
re-appearing) particle in [27], and analyzed the particle’s
position at intermediate times between the postselection
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FIG. 3. Two-particle correlations at time t = π~
4ε

for the
modified disappearing (and re-reappearing) set-up. Blue oval
denotes positive correlation while red denotes negative corre-
lation.

and preselection. Furthermore, an experimental scheme
based on photonic quantum routers was suggested for
testing this effect [28]. We here analyze a variation of
the experiment and consider a pair of entangled particles
with the preselection (at time t = 0)

|ψ〉 =
1√
3

(|11〉+ i|22〉+ |33〉) , (10)

and postselection (at time t = π~
ε )

〈φ| = 1√
3

(−〈11| − i〈22|+ 〈33|) . (11)

In what follows we will consider the case where only the
first particle evolves under the Hamiltonian H = εσx. At
time t = π~

4ε , the wavefunctions evolving from the past
and future are (see Appendix for an auxiliary calcula-
tion):

|ψ〉 =
1√
3

[
1√
2
|11〉+

1√
2
|12〉 − i√

2
|21〉+

i√
2
|22〉+ |33〉

]
(12)

〈φ| = 1√
3

[
1√
2
〈11| − 1√

2
〈12|+ i√

2
〈21|+ i√

2
〈22|+ 〈33|

]
.

(13)
At this instance, the weak values of the projection op-

erators are

〈P (1)
1 〉w = 0, 〈P (1)

2 〉w = 0,

〈P11〉w = 1/2, 〈P12〉w = −1/2,

〈P21〉w = 1/2, 〈P22〉w = −1/2.

(14)

In the single-particle case considered in [27], the first par-
ticle had disappeared from the first and second boxes and
appeared in the third box. In this case too we see that the
traces of the single-particle projections into the first and
second boxes are zero. However, similarly to the second
example, there is a non-zero presence of pairs which is
self-canceling Hence, we see again that considering only
the single-particle traces would lead us to conclude that
the first particle is absent from the first and second boxes.
However, the non-zero pair traces tell us that there is
nevertheless a subtle presence within these boxes.

N-particle Case

A more general case of N particles in three boxes can
be considered in a way similar to that of [21] . Let the
particles be prepared at the initial time t = ti in the state
(without the overall normalizing factor),

|ψ〉 =

N∏
i=1

(|1〉i + |2〉i) +

N∏
i=1

|3〉i. (15)

At a later time t = tf the particles are postselected in

|φ〉 =

N∏
i=1

(|1〉i − |2〉i) + c

N∏
i=1

|3〉i, (16)

where c is a constant.

At any intermediate time ti < t < tf , the traces of
projection operators for the first and second boxes of 1
to N−1 particles considered together are zero. However,
the N -th order traces are not zero. In other words, in the
first and second boxes whenever we look for up to N − 1
particles we do not find them there, but when we consider
all the N particles together we find a non-zero presence,
i.e.,

〈
N∏
i

(|1〉〈1| or |2〉〈2|)ai〉w = 0, ∃i. ai = 0,

〈
N∏
i

(|1〉〈1| or |2〉〈2|)ai〉w =
(−1)

n

c
, ∀i. ai = 1,

(17)

where ai are binary variables and n refers to the number
of projections into box 2.

As discussed previously, due to a property of a di-
chotomic operator [19], the zero correlations up to order
N−1 can be corroborated by strong measurements. And
for the same reason, when c = 1 and n is even, or when
c = −1 and n is odd, also the N -partite correlations can
be verified via strong measurements. Furthermore, simi-
larly to the discussion in Section II B, all the correlations
up to order N − 1 can be obtained from the complete set
of the higher N -partite correlations.
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IV. STRENGTH OF THE WEAK TRACE OF
PRODUCT OPERATORS

Nonlocal or joint observables such as P11 and P12 are
difficult to measure directly as it is challenging to couple
the measurement pointer to nonlocal operators without
violating relativistic causality. Obtaining the weak trace
of the joint observable sequentially by coupling to two
pointers [29] gives us a trace proportional to the square
of the coupling strength g. Since the single-particle traces
are of first order in g, they might seem more significant
than the traces of the joint operators (similarly to the dif-
ference between primary and secondary presence). How-
ever, if we use the Quantum Erasure method to perform
non-local measurements as suggested in [30], the trace
is proportional to g. The traces of the joint operators
seem to be dependent on the choice of our method of
measurement and are not necessarily weaker than the
single-particle traces. This further reinforces our claim
that multipartite correlations are just as important in
determining the past of a particle.

V. CONCLUSION

The examples considered here show that the informa-
tion regarding the past of a particle in an entangled state
obtained from the single-particle traces has to be aug-
mented by the multi-particle traces. The trajectory of
the pair, and in the case of more particles the higher
order traces, also provide additional information about

the past question. The original criterion for determining
the past of quantum systems was motivated by whether
there is any observable effect when we weakly couple a
measurement pointer to the particle in a certain posi-
tion. Therefore, we have claimed above that any kind of
non-zero traces, either a single-particle trace or a multi-
particle trace, should be considered as “presence” and
should play a role when determining the past of a com-
posite system. Another example emphasizing the impor-
tance of multipartite correlations was discussed in [31].

As explained in Section IV, the magnitude of the weak
trace also depends on the measurement method and
therefore traces of higher order projection operators are
not necessarily smaller than the lower order traces. This
supports our belief that any multipartite correlations
cannot be ignored when trying to determine the where-
abouts of an entangled particle. As described in Section
II B and III, this view accords well with the recently pro-
posed top-down [21] hierarchical structure in quantum
mechanics. We cannot construct the complete informa-
tion about the past of a system solely from its single-
particle traces. However, as all of the lower order traces,
including single-particle ones, can be obtained from the
complete set of higher order multi-particle traces, the
higher order traces seem to be essential for assessing the
past of the particle in a more complete and consistent
way.
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APPENDIX - CALCULATION OF THE
WAVEFUNCTION EVOLUTION

The preselection at t = 0 and postselection at t = tf =
π~
ε are:

|ψ〉 =
1√
3

(|11〉+ i|22〉+ |33〉) ,

〈φ| = 1√
3

(−〈11| − i〈22|+ 〈33|)

Since only the first particle evolves under H = εσx the
evolution is given by

|ψ(t)〉 = U(t)⊗ I|ψ〉, (18)

〈φ(t′)| = 〈φ|U†(t′)⊗ I (19)

where,

t′ = tf − t,

U(t) = e−
i
~ εσxt =

 cos εt~ −i sin εt
~ 0

−i sin εt
~ cos εt~ 0

0 0 1

 ,
and

U†(t′) = e−
i
~ εσxt

′
=

 cos εt
′

~ −i sin εt′

~ 0

−i sin εt′

~ cos εt
′

~ 0
0 0 1

 .
The two-state vectors at intermediate times are given by,

|ψ(t)〉 =
1√
3

[
cos εt~ |11〉 − i sin εt

~ |21〉+ sin εt
~ |12〉+ i cos εt~ |22〉+ |33〉

]
(20)

and

〈φ(t′)| =
1√
3

[
− cos εt

′

~ 〈11|+ i sin εt′

~ 〈21| − sin εt′

~ 〈12| − i cos εt
′

~ 〈22|+ 〈33|
]

(21)


