
                          Brunstrom, J. M., Drake, A. C. L., Forde, C. G., & Rogers, P. J. (2018).
Undervalued and ignored: Are humans poorly adapted to energy-dense
foods? Appetite, 120(1), 589-595.
https://doi.org/10.1016/j.appet.2017.10.015

Publisher's PDF, also known as Version of record

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.appet.2017.10.015

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via ELSEVIER at
http://www.sciencedirect.com/science/article/pii/S019566631731067X?via%3Dihub#!. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/132613769?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.appet.2017.10.015
https://doi.org/10.1016/j.appet.2017.10.015
https://research-information.bris.ac.uk/en/publications/undervalued-and-ignored(d7115007-8d4a-4e76-9622-5c1b0f3dee9d).html
https://research-information.bris.ac.uk/en/publications/undervalued-and-ignored(d7115007-8d4a-4e76-9622-5c1b0f3dee9d).html


lable at ScienceDirect

Appetite 120 (2018) 589e595
Contents lists avai
Appetite

journal homepage: www.elsevier .com/locate/appet
Undervalued and ignored: Are humans poorly adapted to
energy-dense foods?

Jeffrey M. Brunstrom a, *, Alex C.L. Drake a, Ciar�an G. Forde b, Peter J. Rogers a

a Nutrition and Behaviour Unit, School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol, BS8 1TU, UK
b Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, 30 Medical Drive, 117609, Singapore
a r t i c l e i n f o

Article history:
Received 21 July 2017
Received in revised form
10 October 2017
Accepted 10 October 2017
Available online 14 October 2017

Keywords:
Nutrition
Obesity
Diet
Food
Food choice
Expected satiation
Energy density
* Corresponding author.
E-mail address: Jeff.Brunstrom@bristol.ac.uk (J.M.

https://doi.org/10.1016/j.appet.2017.10.015
0195-6663/© 2017 University of Bristol. Published by
nd/4.0/).
a b s t r a c t

In many species the capacity to accurately differentiate the energy density (kcal/g) of foods is critical
because it greatly improves efficiency in foraging. In modern humans this ability remains intact and is
expressed in a selective preference for types of fruit and vegetables that contain more calories. However,
humans evolved consuming these low energy-dense foods (typically < 1.75 kcal/g) and it remains un-
clear whether they can also discriminate more energy-dense foods that now feature in modern Western
diets. In two experiment participants (both N ¼ 40) completed four tasks that assessed the ‘value’ of
different sets of 22 foods that ranged in energy density (0.1 kcal/ge5.3 kcal/g and range 0.1 kcal/g to
6.2 kcal/g in Experiment 1 and 2, respectively). In Experiment 1 three measures (expected fullness,
calorie estimation, and food choice), and in foods less than approximately 1.5 kcal/g (typically fruits and
vegetables), the relationship between perceived value and energy density is linear. Above this, we
observed clear compressive functions, indicating relative and progressive undervaluation of higher
energy-dense foods. The fourth task (rated liking) failed to provide evidence for any relationship with
energy density. In Experiment 2 the same pattern was replicated in measures of expected fullness, and in
two different assessments of subjective calorie content. Consistent with the concept of ‘evolutionary
discordance,’ this work indicates that modern human physiology is poorly adapted to evaluate foods that
have a historically unusual (high) energy density. This has implications both for our understanding of
how ‘modern’ energy-dense foods affect choice and energy intake, and for strategies aimed at removing
calories from highly energy-rich foods.
© 2017 University of Bristol. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Obesity is widely regarded as a global public health crisis
(Swinburn et al., 2011). Although highly heritable (Wardle, Carnell,
Haworth, & Plomin, 2008), there is broad agreement that the
expression of any genetic predisposition has required a change in
dietary environment. In this regard, increasing attention is being
paid to the expansion of global food systems and an economic
transition to inexpensive and highly palatable, energy-dense (ED)
foods (Drewnowski& Darmon, 2005; Popkin,1998). Energy density
is a particular concern because in controlled studies a positive
relationship is observed with ad libitum energy intake (Karl &
Roberts, 2014).

The pursuit of industrial efficiency has paralleled an increase in
Brunstrom).

Elsevier Ltd. This is an open access
the incidence of diet-related conditions such as type 2 diabetes,
obesity, hypertension, and cardiovascular disease. One idea is that
this trend reflects a form of ‘evolutionary discordance’ e a
mismatch between intake of an energy-rich diet and a lower ED
diet to which humans became adapted through natural selection
(Cordain et al., 2005). Wild honey is one of the most ED ‘natural’
foods (~3.2 kcal/g) (Ajibola, Chamunorwa, & Erlwanger, 2012).
However, it is unlikely that it comprised a large proportion of the
diet, and before smoke from fire could be controlled (to pacify
bees), collection of this favoured food would have been risky
(Marlowe et al., 2014). Although climate and geographical location
influenced human dietary patterns, pre-agricultural humans would
have been limited to wild plants and animals, with minimal pro-
cessing (Cordain et al., 2005). Studies of contemporary hunter-
gatherers, the best surrogates for stone-age hominids, such as the
!Kung, indicate a balance of approximately 33% animal to 67% plant
foods (Lee, 1968). However, wide variation has been observed
depending on season and food availability. Large wild ruminants
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would have provided an important source of protein but were not
especially energy dense (although subcutaneous fat might have
varied with season). For example, the energy densities of elk and
caribou are approximately 1.1 kcal/g and 1.3 kcal/g, respectively,
while tubers and fruits tend to range from roughly 0.15 kcal/g to
1.0 kcal/g. By contrast, modern foods are often much more energy
densedfries from fast-food restaurants are roughly 3.2 kcal/g and
many popular snacks are even higher.

Although some hunter-gatherer communities have subsisted on
higher ED foods (e.g., Alaskan Eskimos (Ho, Mikkelson, Lewis,
Feldman, & Taylor, 1972)), this merely indicates that humans can
survive on varied diets, not that these diets are ideal. Humans
evolved consuming a much lower ED diet in Africa and, although it
is difficult to be precise, almost all foods would have had an energy
density less than ~1.75 kcal/g and many would have been much
lower (<0.8 kcal/g) (Milton, 2000), with one estimate suggesting an
average energy density of 1.1 kcal/g, based on recent diets in
Gambia (Prentice & Jebb, 2003). In relation to these observations it
is surprising that questions are rarely asked about relative differ-
ences in the discrimination and evaluation of high and low ED
foodsdarguably, evidence for evolutionary discordance. In one
study Gibson and Wardle assessed children's liking for a range of
fruits and vegetables (all < 1.0 kcal/g). Remarkably, they report a
clear linear relationship between preference and energy density
(Gibson & Wardle, 2003), suggesting a conserved optimal attribu-
tion of ‘value’, even at a young age. However, it remains unclear
whether the same linearity is observed in adults and across a
broader range of foods that have an energy density both within and
outside that to which humans have been exposed historically.

In this paper we report two studies that were designed to
address this important question. Specifically, we sought to quantify
the value that is placed on a broad range of foods with different
energy densities. In so doing, we also illustrate how psychophysical
methods can address a question that interests a broad constituency
of researchers in fields such as biological anthropology, nutrition,
and public health.

1.1. Participants

Separate groups of 40 healthy adult participants assisted with
Experiment 1 (females n¼ 21) and Experiment 2 (females n¼ 32).1

Participants were recruited from the population of staff at the
University of Bristol (UK) and from the surrounding area. All had
normal or corrected-to-normal vision and were reimbursed for
their time (£10 sterling). Participants were excluded if they had a
food allergy, a food intolerance, or were vegetarian or vegan. In
Experiment 1, one participant declined to provide anthropometric
measures. The BMI (kg/m2) of both samples was mostly in the
normal range (Experiment 1, M ¼ 24.0, SD ¼ 3.93; Experiment 2,
M ¼ 22.1, SD ¼ 2.66). Both experiments were approved by the
University of Bristol Science Faculty Ethics Committee.

2. Experiment 1

2.1. Methods

2.1.1. Overview
Participants were shown images of 22 weight-matched 100-g

portions of foods that differ markedly in energy density (range
0.1 kcal/g to 5.3 kcal/g). Following Gibson and Wardle (2003) we
1 Taking the smallest effect size in Experiment 1 (d ¼ 0.59) we determined that
with a two-tailed one-sample t-test and an a of 0.05, a sample of 25 was needed to
replicate our results with 80% power.
assumed that an optimal linear relationship between perceived
value and energy density can be taken as evidence that humans are
able to accurately determine and discriminate foods on this basis.
The behavioural expression of value can be expressed in different
ways. Therefore, we assessed four different judgments that reflect a
range of possibilities; (1) ‘food choice’ (which would you choose
when no other food is available?) (2) liking (for the taste), (3) ‘ex-
pected satiation’ (how filling is this food?), and (4) ’estimated cal-
orie content’ (how many calories are in this food?). The decision to
use images rather than actual meals was motivated by three con-
cerns: (a) the advantage gained by standardizing the format of the
stimuli (achieving visual consistency in actual meals is technically
challenging); (b) observations from several studies show a close
correspondence between behavioural responses to food images
and actual dietary decisions (Wilkinson et al., 2012); and (c)
ecological validitydfoods decisions before a meal (often based on
visual characteristics) are an excellent predictor of actual con-
sumption (Fay, Rogers, Ferriday, Shakeshaft, & Brunstrom, 2011).
Raw data and stimuli from both experiments can be downloaded
from the Open Science Framework (https://osf.io/gvux5/).

2.1.2. Stimuli
Eleven of the stimuli were low ED fruits and vegetables and

seven of these were also used by Gibson and Wardle (2003). The
remaining 11 foods were selected to create an even distribution of
energy densities ranging from cucumber (0.1 kcal/g) to chocolate
(5.3 kcal/g). Overhead images of 100-g portions were taken against
a white background using a high-resolution digital camera (Nikon
D50). Foods were presented on the same white plate (255-mm
diameter) and lighting conditions remained constant. The name
of each food was inserted as a label in the background of the im-
ages. Information about the test foods and their respective energy
density and macronutrient composition is provided in Table S1.

2.1.3. Materials and procedure
In all tasks the foods were presented on a computer monitor in a

randomized order. Participants were shown the test foods in turn
and selected ‘yes’ or ‘no’ in response to the question ‘Have you
eaten this food before?’ They then assessed their liking for the taste
of each food using a 100-mm visual-analogue scale headed ‘Do you
like the taste of this food’ with end anchors, ‘I hate it’ and ‘I love it.’
To evaluate food choice, pairs of foods were presented side-by-side
in a two-alternative forced-choice task. In each trial they were
instructed to “Imagine that you will be receiving only one of these
foods tomorrow. Only these portions are available and no other
foods will be offered! Pick the food that you would choose.” The 22
foods were each compared against all others in a random order,
yielding 231 trials.

Participants then completed a measure of expected satiation.
Following Brunstrom and Rogers (2009), each food was presented
on the left-hand side of the screen. On the right-hand side the
participants were shown a portion of potato fries. Participants were
asked to use the arrow keys on the keyboard to manipulate the
quantity of fries in response to the instruction “Change the size of
the portion on the right so that both foods will leave you feeling
equally full.” Participants were able to select a portion in the range
20 kcale1000 kcal and images were loaded with sufficient speed
that the change in portion appeared animated. When a large
portion of fries is selected then this indicates that the adjacent test
food has high expected satiation.

Finally, we obtained a measure of the estimated calorie content
of the test foods. Participants were shown each food in turn and
they entered a numerical value in response to the question “How
many calories are in this food?” At the end of the session the height
and weight of each participant was measured and they were

https://osf.io/gvux5/


Fig. 1. Results from Experiment 1. Mean responses to test foods as a function of their energy density. Error bars in a-d represent ±1 SEM. (a) liking, (b) expected satiation, (c) calorie
estimation, and (d) food choice. Dotted lines in b-d are power functions illustrating non-linearity.
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debriefed and thanked for their assistance. All participants were
tested alone and an experimenter was available throughout to
address questions about the procedure.
2.2. Results

The foods were mostly familiar. Sixteen participants were un-
familiar with one or more foods and only one was unfamiliar with
four foods. The percentage of participants who were familiar with
each food is provided in Table S1. In both experiments responses to
an unfamiliar food were treated as missing data.2 Mean liking
ratings were in the range 50 mm (Ryvita crackers) to 80 mm
(chocolate), suggesting generally positive responses to the test
foods.

Liking ratings were positively associated with the energy den-
sity of the foods. However, this relationship was weak and unreli-
able, Pearson's correlation, r(20) ¼ 0.23, p ¼ 0.30 (Fig. 1a). Analysis
of expected-satiation judgments revealed a strong positive associ-
ation with energy density, Pearson's r(20) ¼ 0.64, p ¼ 0.001.
However, visual inspection of this relationship shows clear evi-
dence for non-linearity (Fig. 1b). In foods with low energy density
(primarily fruits and vegetables below roughly 1.5 kcal/g) linearity
was observed. Above this value, expected satiation increases, but
progressively less so, and to the extent that foods with an energy
density above 3 kcal/g are barely distinguished with this measure.
In related research estimates of the energy content of small and
large portions generate a very similar function (Chandon &
Wansink, 2007). In other words, a departure from linearityd-
when a large portion is made even larger the increase in its
perceived size or perceived calorie content is smaller than when a
small portion is increased by the same amount (Chandon &
2 We repeated all analyses on complete data sets and the results remained
virtually identical.
Wansink, 2007). Relationships of this kind are often characterized
by a simple power function that takes the form 4(I) ¼ kIb. Where, I
represents the physical property of a stimulus (in this case, energy
density), 4(I) is the subjective magnitude that it evokes (in this
case, expected satiation), and k is a scaling factor. For the exponent,
b, values smaller than 1 indicate non linearity and relative insen-
sitivity to an absolute increase in the magnitude of an already high
intensity stimulus (for a comprehensive discussion see Ordabayeva
and Chandon (2016)). Accordingly, we used a similar approach to
calculate a power function to fit the data in Fig. 1b. As anticipated,
the b parameter was 0.215, which is well below 1. The associated
function, expected satiation¼ 409.2� energy density0.215, is shown
graphically as a dotted line (Fig. 1b). To determine whether in-
dividuals show broadly the same pattern we estimated a power
function for each participant separately. All participants had an
exponent less than 1 and their mean (M ¼ 0.22) deviated signifi-
cantly from 1, 95% CI [0.19, 0.26], t(39) ¼ 48.0, p < 0.001, d ¼ 7.5.

As with expected satiation, mean calorie estimates significantly
correlated with energy density, Pearson's r(20) ¼ 0.85, p < 0.001
(Fig. 1c). For low ED foods, judgments tend to be reasonably accu-
rate. However, with higher ED foods they fall well below an accu-
racy line. For example, foods with an energy density of 5 kcal/g
(5 � 100g ¼ 500 kcal) were judged to contain less than 300 kcal.
Again, we fitted a power function to these mean values (shown as a
dotted line in Fig. 1c) and the resulting exponent (0.535) was below
1 (calorie estimate ¼ 117.4 � energy density 0.535). We also calcu-
lated exponents for each participant separately. Of the 40 partici-
pants tested 37 had an exponent less than 1 and their combined
mean (M ¼ 0.66) deviated significantly from 1, 95% CI [0.49, 0.82],
t(39) ¼ 4.18, p < 0.001, d ¼ 0.59.

For each participant, we calculated the proportion of times each
food was selected when compared with other familiar foods
(maximum 21 occasions when all foods were familiar) in the food-
choice task (Fig. 1d). The trend parallels observations of expected
satiation and calorie estimation. Again, although the linear
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association between choice and energy density was statistically
significant, r(20) ¼ 0.48, p ¼ 0.024, the underlying relationship
shows the same compressive power function, food
choice ¼ 49.6 � energy density0.158 with an exponent well below 1.
All participants had individual exponents less than 1, (M ¼ 0.16),
and these deviated significantly from 1, 95% CI [0.12, 0.21],
t(39) ¼ 35.3, p < 0.001, d ¼ 5.58. As with other measures, the
relationship between food choice and energy density is reasonably
linear, but only in foods with an energy density up to around
1.5 kcal/g.

3. Experiment 2

In Experiment 1 our observations were limited to a modest
range of foods presented in small portions (100 g). In a second
experiment we addressed these issues by choosing 22 different
foods served in larger portions. A further concern is that responses
in the calorie-estimation task might be compromised by the
requirement to provide judgements in the form of a numeric
calorific value. Therefore, we incorporated an additional ‘implicit
calorie estimation task’ in which participants selected one of two
foods based on their energy content. Finally, matching the test
foods by weight restricts their presentation in familiar portion
sizes. Although this probably applies to both low and high ED foods,
in Experiment 2 we addressed this issue by presenting typical
recommended portions (information obtained from product pack-
aging) in the expected-satiation task and the explicit calorie-
estimation task.

3.1. Methods

Information about the test foods is provided in Table S2.
Following the same procedures as in Experiment 1, participants
completed computer-based assessments of the test foods in the
following order; food choice, implicit calorie estimation, familiarity,
liking, expected satiation, and explicit calorie estimation. The im-
plicit calorie-estimation task was identical to the food-choice task
in Experiment 1 with the exception that participants were asked to
respond to the question “Which one contains the most calories?” In
both the food-choice task and the implicit calorie-estimation task
the participants were shown 300 g portions of the test foods. In
other measures they were shown typical portions.

3.2. Results

Most (77%) participants were unfamiliar with no more than two
foods. One reported unfamiliarity with 10 of the foods and two
reported never consuming six. The percentage of participants who
were familiar with each individual food is shown in Table S2. Mean
liking ratings were in the range 48 mm (celery) to 81 mm (Mal-
tesers), suggesting that the test foods were generally acceptable to
the participants.

As in Experiment 1 the relationship between liking and energy
density was weak and unreliable, Pearson's r(20) ¼ 0.29, p ¼ 0.19.
Again, we tallied responses from the food-choice task. Mean per-
centages are shown in Fig. 2a. Unlike in Experiment 1, the linear
relationship between choice and energy density failed to achieve
statistical significance, Pearson's r(20) ¼ 0.027, p ¼ 0.90. Fig. 2a
shows that this is probably because the relationship deviates from
linearity even more so than in Experiment 1. Previously, we found
an energy density ‘cut off’ at roughly 1.5 kcal/g, above which line-
arity was no longer observed. Fig. 2a shows the same break point in
responses. Therefore, post hoc, we calculated a separate correlation
for foods below this value. As anticipated, we observed a strong
relationship between choice frequency and energy density in these
lower ED foods, Pearson's r(7) ¼ 0.76, p ¼ 0.019.
To compare expected satiation across foods we standardized

responses by dividing the portion selected (kcal) by the weight of
each food shown. Mean values are presented in Fig. 2b. Across
foods, expected satiation correlated significantly with ED,
r(20) ¼ 0.72, p < 0.001. However, again, the association appears to
be much stronger for low than for high ED foods. Furthermore, the
underlying relationship (see dotted line in Fig. 2b) shows the same
compressive power function that had been observed previously,
with an exponent well below 1, expected satiation ¼ 4.3 � ED0.373.
Individually, all participants had an exponent less than 1, and their
mean (M ¼ 0.37) deviated significantly from 1, 95% CI [0.32, 0.29],
t(39) ¼ 21.5, p < 0.001, d ¼ 3.4.

As in the expected-satiation task, typical portion sizes were
presented in the explicit calorie-estimation task and so responses
were also standardized. The implicit calorie-estimation task was
otherwise identical to the food-choice task and so responses were
tallied in the same way. Respectively, mean explicit and implicit
responses are shown in Fig. 2c and d. The explicit task produced a
pattern that is similar to expected satiation. The linear relationship
between explicit calorie estimation and energy density is highly
significant, r(20) ¼ 0.83, p < 0.001. However, it is clearer across
lower than higher ED foods and, again, non-linear regression
analysis indicated that the underlying pattern is in fact compres-
sive, estimate¼ 1.60� ED0.667 (see dotted line in Fig. 2c). Individual
exponents revealed that 85% of the participants had an exponent
less than 1, and their mean (M¼ 0.73) deviated significantly from 1,
95% CI [0.64, 0.81], t(39) ¼ 6.12, p < 0.001, d ¼ 0.97.

The pattern of responses in the implicit calorie-estimation task
also shows clear evidence for a non-linear function. Again, although
the linear association between the proportion of times each food
was selected and energy density was significant, r(20) ¼ 0.87,
p < 0.001, the dotted line in Fig. 2d shows compression in responses
to higher ED foods, and the associated exponent is well below 1,
calorie estimation ¼ 37.6 � ED0.416. All participants had an expo-
nent below 1 and their mean (M¼ 0.42) deviated significantly from
1, 95% CI [0.39, 0.46], t(39) ¼ 31.9, p < 0.001, d ¼ 5.0.

4. General discussion

4.1. Evidence for undervaluation

As noted earlier, Gibson and Wardle demonstrated that the
value that young children ascribe to fruits and vegetables is
strongly predicted by their respective energy density (Gibson &
Wardle, 2003). Building on this we incorporated a broader range
of measures and explored evidence for the same relationship in
adults and across foods with a wider range of energy density.
Across two studies, we replicate the observation of Gibson and
Wardle. However, by extending the range of foods we also exposed
evidence for non-linearity. Higher ED foods (roughly > 1.5 kcal/g)
are undervaluedda progressively greater change in energy density
is required to produce the same change in value.

Of course, we cannot rule out the possibility that linearity might
otherwise be observed in a different measure (absence of evidence
is not evidence of absence). One suggestion is that the brain eval-
uates foods outside conscious introspection (Cohen, 2008). Using
functional magnetic resonance imaging (fMRI) high- and low-
calorie foods have been compared in a food choice task
(Charbonnier, van der Laan, Viergever, & Smeets, 2015). After
controlling for liking, differential activation has been observed in
the posterior region of the right superior temporal sulcus, sug-
gesting that this area encodes for the ‘biological relevance’ of food.
However, in this and related studies (English et al., 2016; Frank
et al., 2010; Toepel, Knebel, Hudry, le Coutre, & Murray, 2009),



Fig. 2. Results from Experiment 2. Mean responses to test foods as a function of their energy density. Error bars in a-d represent ±1 SEM. (a) food choice, (b) expected satiation, (c)
explicit calorie estimation (after standardizing for different portion sizes), and (d) implicit calorie estimation. Dotted lines in b-d are power functions illustrating non-linearity.
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foods were only categorized as high and low calorie, making it
difficult to draw conclusions about progressive and subtle under-
valuation. Only one imaging study has suggested a linear rela-
tionship between biological relevance and corresponding localized
brain activation in predicted neural-value signals (Tang, Fellows, &
Dagher, 2014). However, a concern here is that the food stimuli
were not matched for their weight, which makes it difficult to
determine whether differential responses reflect sensitivity to en-
ergy density or to the total energy content of food, and again,
clusters of low (0.1 kcal/ge1.75 kcal/g) and very high ED foods
(3.2 kcal/ge6.2 kcal/g) were assessed, using only a linear model.

4.2. Explanations

When making food choices participants were instructed to
imagine that no other foods would be available for 24 h. Thus, it
would seem unlikely that evaluation of the high ED options was
biased by long-term concerns about health. We also note that non-
linearity was also observed in other measures (e.g., expected sati-
ation and calorie estimation) where perceived healthiness is
probably irrelevant. An alternative proposition is that the foods
differ in digestibility, causing a mismatch between the gross energy
of foods (as derived from procedures such as bomb calorimetry)
and the energy that is liberated via metabolic processes. Although
this might account for the undervaluation of some foods, the hu-
man digestive tract is generally extremely efficient and there is
little evidence that higher ED foods have lower digestibility. Most
have a digestibility coefficient of 90% or above (Merrill & Watt,
1973) which is insufficient to explain the undervaluation that was
observed. Alternatively, undervaluation might be attributed to an
interaction with foods found in a modern Western diet. Several
studies have shown that the expected satiation and expected
satiety (anticipated fullness and suppression of hunger, respec-
tively) of foods increases as they become familiar (Brunstrom,
Shakeshaft, & Alexander, 2010; Hardman, McCrickerd, &
Brunstrom, 2011; Irvine, Brunstrom, Gee, & Rogers, 2013). One
suggestion is that this process is arrested by the recent expansion of
numerous manufactured brands and varieties, which limits expo-
sure to any single food item (Hardman, Ferriday, Kyle, Rogers, &
Brunstrom, 2015). However, here, undervaluation was observed in
several measures that are unrelated to satiety and satiation, and
also in unbranded foods (especially Experiment 1) that are not
available in a wide variety of formats (e.g., feta cheese). Neverthe-
less, it might be instructive to consider evidence for undervaluation
in other human populations, including those that have not been
exposed to a modern Western diet (Brunstrom, Rogers, Myers, &
Holtzman, 2015).

Prima facie our findings are paradoxical. In most measures we
see very little differentiation between foods that have, for example,
an energy density of 2 kcal/g and foods around 4 kcal/g. Yet the
return on choosing the energy dense option is considerable. By
contrast, very clear discrimination is observed with lower ED foods
(<1.5 kcal/g) and yet the absolute difference in energy yielded by
this ability is much smaller. One interpretation is that differenti-
ating high ED foods is irrelevant, largely because they all deliver an
adequate source of energy to match requirements. However, two
lines of argument challenge this simple proposition. First, as large
mammals, humans do not regulate energy intake over short pe-
riods. This is because energy expenditure from onemeal to the next
is trivial compared to total body energy reserves (utilizable stores in
a lean adult equate to the equivalent of 60 days of energy intake).
Instead, fluctuations in appetite and meal size are largely governed
by gut capacity and the time that is needed to for a meal to be
digested and assimilated (Rogers & Brunstrom, 2016). Therefore,
explanations based on responses to a potential momentary surfeit
of available energy are inconsistent with the biological reality of
energy balance. Second, hunter gatherers spend long periods pro-
curing food (Milton, 2000) and also show evidence for optimal
foraging (Belovsky, 1988). The ability to reduce periods of foraging
confers a significant benefit, both in reducing accidental injury and
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predation. Thus, there is good reason for a strong selection pressure
to recognize foods that reduce these risks. We also note that most
wild foods work through the human digestive tract at a relatively
slow pace. Therefore, slow transit times and the consumption of
low ED food probably acted as a natural check on overconsumption,
making obesity a difficult state to attain and maintain (Milton,
2000). Several studies show that low ED foods are expected to be
more satiating calorie-for-calorie (Brunstrom, Collingwood, &
Rogers, 2010; Brunstrom, Shakeshaft, & Scott-Samuel, 2008).
Therefore, it follows that higher ED foods should be especially
valued (even more than predicted), because they confer both nu-
trients and lower satiety (greater opportunity to consume even
more food should it become available). Thus, rather than reflecting
the irrelevance of higher ED foods, the evidence would seem more
consistent with an account based on a failure to recognize their
energy content. In other words, differentiating the energy density
of available food is highly adaptive, however the capacity to do so
does not extend to ‘historically unusual’ high ED foods.

In relation to this idea, the blunted response to high ED foods
might reflect a failure to adapt behavioural responses to concen-
trations of a specific macronutrient. Fat is an obvious candidate
because in combination with water it accounts for over 95% of
variation in energy density (Drewnowski & Almiron-Roig, 2010).
Many flavour preferences are modified by post-ingestive rein-
forcement and in rodents the effect of fat on appetition (desire) is
likely to be mediated by specific fatty acid sensors (Sclafani,
Zukerman, & Ackroff, 2013). Although intragastric infusion of
concentrated fat generates a clear dose-dependent response in
preference learning (Ackroff & Sclafani, 2014), it may not be as
potent as equicaloric carbohydrate (Revelle & Warwick, 2009).

Basic taste characteristics can also provide information about
nutrient density. For example, across a broad range of foods mod-
erate correlations have been observed between sweetness and
mono- and disaccharides, and between savoury and protein.
Interestingly, these relationships are more pronounced in raw and
partially processed foods (van Dongen, van den Berg, Vink, Kok, &
de Graaf, 2012), suggesting that the inclusion of additional fla-
vourings might play a role. Why this generates systematic under-
valuation is unclear. However, it may be relevant that inmany other
domains evolutionary biologists regard ‘cautious underestimation’
as an optimal response to conditions of uncertainty (Nesse, 2001).
The ‘smoke detector principle’ captures this idea and is often pre-
sented as an example where the cost of responding to a false alarm
is insignificant relative to the cost of ignoring an alarm, even
though, over time, there are likely to be many more false alarms
than true alarms. Similarly, when evaluating ambiguous high ED
foods it may be prudent to assume a lower-than-actual value,
because the relative cost of repeated mistakes (overvaluation)
outweighs the cost of overconsumption.

A final explanation for our findings is that foods differ in their
‘procurement cost.’ It is widely recognised that the decision to seek
out and consume a food is governed by both its nutrient value and
the cost (e.g., effort and/or time) associated with its procurement
(Collier, Johnson,&Mathis, 2002). In other words, animals optimise
their behaviour to maximize their return on investment. Histori-
cally, humans almost certainly applied the same principle in their
foraging efforts. But consider the following hypothetical scenario. A
nominal human forager requires 2500 kcal/day to maintain energy
balance. At a foraging rate of 500g of food per hour he/she would
spend 10 h foraging for foods that have an ED of 0.5 kcal/g (5 kg) or
5 h for foods that are 1.0 kcal/g. The ability to differentiate these
foods saves 5 h every day. By contrast the ability to differentiate
2.0 kcal/g and 2.5 kcal/g saves only 30 min (2.0 kcal/
g ¼ 1.25 kg ¼ 2.5 h vs 2.5 kcal/g ¼ 1.0 kg ¼ 2.0 h). Since the cost of
making a ‘dietary mistake’ becomes greater when lower energy-
dense foods are available it is conceivable that selective pressures
favoured a refined discrimination of these foods. Whether this bias
existed or is even conserved in modern humans remains to be
established. Either way, over millions of years the ability to respond
to procurement cost probably played a fundamental role in shaping
human dietary behaviours, and it is plausible that implicit modern-
equivalent calculations of ‘cost’ still guide dietary decisions in
humans that no longer hunt and gather.

4.3. Implications and opportunities

Because the added value that can be achieved by increasing the
energy density of a food diminishes, a design pressure may exist
whereby new products become extremely energy dense in order to
compete with other established offerings (e.g., adding cheese to
pizza crust to create ‘stuffed crust pizza’). Thus, the recent trend for
highly energy-rich foods (e.g., fast foods) may represent an example
of how food production becomes adapted to fundamental princi-
ples that govern the economics of food choice (Drewnowski &
Almiron-Roig, 2010). Of course, the converse also applies.
Reducing the energy density of a very energy-rich food could have a
negligible impact on its perceived value. Acknowledging this op-
portunity might help to guide targets for product reformulation
and provide benefits for healthy weight maintenance. In future, it
might also be interesting to consider the valuation of meals that
comprise more than one type of food (e.g., meat and vegetables). It
is unclear how information is integrated and whether combina-
tions of low and high ED foods might decrease or increase the
devaluation that we observed.

Another feature of our data is the failure to observe any rela-
tionship between liking and energy density. This coincides with
previous observations that palatability is often a poor predictor of
food choice (Mela, 2001). We also note that flavour-nutrient
learning is largely mediated by dopamine signalling, whereas
liking or pleasure is governed by the opioid system. If the rela-
tionship between value and energy density results from nutrient
reinforcement (as we suspect) then responses based on ‘pleasure’
might well deviate from the pattern that was observed using other
measures. In this regard, we also note that flavour-nutrient learning
is rarely observed in humans (Brunstrom, 2007) and that in most of
these studies evidence for learning has relied on responses to the
same liking ratings that were used here.

Finally, our experiments were neither powered nor conceived to
consider individual differences in the devaluation of ED foods. An
important and obvious extension would be to explore whether the
degree to which these foods are devalued impacts chronic energy
intake and fat mass.

5. Concluding remarks

Based on what is known about the diet of pre-agricultural
humans, we predicted evidence for evolutionary mismatch,
expressed as relative insensitivity to foods with an energy density
greater than 1.75 kcal/g. Evolutionary mismatch accounts for a
range of aberrant behavioursdthe lack of fear response in the now-
extinct dodo and the tendency for newly hatched turtles to turn up
a beach towards artificial light (rather than to the moon), are two
such examples. Many regard human obesity in much the same
waydour ‘thrifty’ genes offered protection from famine, but now
this genotype predisposes overconsumption in preparation for a
food shortage that never arrives (Neel, 1962). Our data suggest
another mismatch. We are evolved to seek out foods that are en-
ergy dense, and in response, technology has advanced the devel-
opment of ‘hyper ED foods’ that we are now poorly adapted to
discriminate.
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