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prescribed objective function and geometric constaints. Volunteer partic-

ipants were invited by ONERA to submit their optimized shapes for uni-

form pressure drag assessment through grid convergence. The assessment

required three phases. Initial investigations with a simple protocol proved

insufficient and raised some questions. This led to further investigations

which showed that for most optimized airfoils there exists a lower drag

branch and a higher drag branch in the drag (Mach number) diagram. Hys-

teresis was observed when performing a downward Mach number sweep and

an upward Mach number sweep. For several airfoils, the design Mach num-

ber falls within the overlap range of the two branches, which indicates that

two solutions may exist for the same airfoil. Two kinds of supersonic flow

structure can be distinguished. One kind produces a lower drag branch,

the other a higher drag branch. The jump from one branch to the other

involves non symmetrical converged solutions. These further investigations

required a final assessment, where a protocol was instituted to ensure that

the lower drag branch was captured by taking advantage of the hysteresis.

However, nonuniqueness may confound an optimization algorithm, as the

same set of design variables can give two different objective function values.

I. Introduction

AIAA launched in 2013 the Aero-Design Optimization Discussion Group ADO-DG with pre-

scribed common test cases. One of the test cases is based on the NACA0012 airfoil with

solutions of the Euler equations. The objective function to be minimized is the pressure

drag coefficient CDp and the constraint is that at any chordwise location, thickness must be

greater than, or equal to, that of the initial airfoil. The aerodynamic conditions are for a

single design point at M∞ = 0.85, α = 0◦.

Volunteer participants were invited by ONERA to submit their optimized shapes as

a list of point coordinates for uniform pressure drag assessment through grid convergence.

Seven shapes from six participants, ONERA, NASA/Stanford University, McGill Univer-

sity, University of Bristol, The Boeing Company and University of Toronto, were submitted.

They are documented in references1-.10 They were obtained with very different parame-

terization types, numbers of design variables, optimization algorithms and flow solvers. It

seemed in line with the Discussion Group spirit that one partner carry out an assessment

process, identical for all the optimized airfoils.
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In Section 2 baseline and optimized airfoils are presented. In Section 3 the planned

assessment protocol is described. In Section 4 it is shown that for such unusual airfoils as

those investigated here, the planned protocol is too simple. In Section 5, further investiga-

tions provide clearer insight into the phenomenas. This insight leads to the final assessment

presented in Section 6. Concluding remarks are given in Section 7.

II. Baseline and Optimized Shapes

The test case11 is based on work by Vassberg et al.12 However, here trailing edge closure at

x = 1 is ensured through a modification of the polynomial definition of the NACA0012 x4

coefficient. The modified airfoil equation is

y = ±0.6 (0.2969
√
x− 0.1260 x− 0.3516 x2 + 0.2843 x3 − 0.1036 x4) (1)

Information about the optimized airfoils and the approaches used is contained in table 1.

identification design parameter design variables optimization optimization

-ization type algorithm grid size

(cell numbers)

airfoil 1 Onera Bézier 96 → 127 SLSQP → DOT 65,536

airfoil 2 McGill B-splines 16 SNOPT13 98,000

University

airfoil 3 University B-splines 18 SNOPT13 192,000

of Toronto

airfoil 4 University Symmetric 8 → 15 GSA (8 modes) 131,072

of Bristol SVD modes → FSQP (15 modes)

airfoil 5 Boeing Free Surface 799 Smoothed 1,310,720

(Symmetric) Steepest Descent

airfoil 6 NASA / radial basis 7 → 15 → 31 SNOPT13 122,000

Stanford functions

University

airfoil 7 Onera Bézier 96 airfoil 1

→ SLSQP 65,536
Table 1. Information about optimized airfoils.

The upper lines of the baseline and optimized airfoils are plotted in figures 1 and 2.

All optimized airfoils satisfy the thickness constraint, thickness greater or equal to the base-

line airfoil thickness at all chordwise locations. All optimized airfoils have common features:
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a blunt leading edge, a “flat top”, a highly curved rear region and a large trailing edge

included angle, which were also features of the optimized airfoils in.12 However, as expected

given the variety of the approaches (table 1), significant differences appear between their

shapes.

III. Planned Assessment Protocol

The grids are based on some of the NACA0012 airfoil grids of Vassberg and Jameson.14

These highly regular grids with quasi-orthogonal cells have an O-type topology with iden-

tical numbers of cells in the two directions. If nc is this number, levels nc = 256, 512, 1024

are used in this study. The grid for level nc = 256 for airfoil 1 is illustrated in figure 4. The

metric properties of these grids were designed to ensure a quasi linear behavior of pressure

drag with 1/nc2 for usual second order finite volume formulations. That was the case in,14

where extrapolation to zero mesh size was thus straightforward. It remained so for the var-

ious optimized airfoils produced by ONERA and compared in.1

The optimized airfoils, requested to number at least 129 points, are transformed into

series of 2048 points through spline interpolation. The NACA0012 nc = 2048 grid is then

projected onto their shape. The resulting grid is coarsened to levels nc = 1024, 512 and 256

for the resolution of the Euler equations.

The Euler solutions are computed with the ONERA elsA software15.16 As in the assess-

ment computations of,1 the centred scheme of Jameson17 with the JST artificial dissipation

is used, dissipation coefficients being set to κ2 = 0.5, κ4 = 0.008. To facilitate convergence,

a wall slip condition instead of a matching condition is applied to the grid lines joining the

trailing edge and the downstream grid boundary, see figure 4. Based on previous experience,

the default number of iterations for the present study was set to 5000, with 3 multigrid levels.

The planned protocol was, for each airfoil, to perform three computations, nc = 256, 512, 1024,

at the unique design conditions, M∞ = 0.85, α = 0◦, and to extrapolate to zero mesh size

through the procedure described in.14

Things did not turn out as straightforwardly as anticipated and led to further inves-

tigations.
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IV. Initial Investigations

The planned protocol was first systematically applied to the seven airfoils. Anomalies ap-

peared for some of them. At this stage, it is enough to consider airfoils 1 and 2.

Convergence of the residual L∞ norm of variable ρ is plotted in figures 5 and 6. For

airfoil 1, convergence is as expected from common experience, reaching machine zero level

and requiring more iterations with a finer grid level than with a coarser (figure 5). Such is

not the case for airfoil 2 (figure 6), where machine zero level is reached with the coarsest

and the finest grid but not with the medium grid. Pressure drag computation was still

performed, though with dubious results. Indeed a striking anomaly affects the behavior of

airfoil 2 pressure drag through grid refinement, plotted in figure 7. Pressure drag of airfoil

1 decreases with grid refinement because spurious drag18 (mostly at the blunt leading edge)

decreases, while the flow physics (shock waves) are not disturbed. The opposite behavior

with airfoil 2, added to the convergence anomaly, leads us to suspect some flow topology

change with grid refinement.

Chordwise pressure coefficient distributions on airfoil 2 for the three grid refinement

levels are plotted in figure 8. The topology change is from a unique supersonic/subsonic

shock trace with the coarsest grid (thick line in the figure) to an initial supersonic/subsonic

shock trace followed by a strong expansion leading to a second supersonic/subsonic shock

trace with the medium and fine grid.

This calls for several remarks: 1) the double shock pattern was not found by the de-

signers of airfoil 2 who checked it with several solvers2 and found consistently much lower

drag coefficient levels (around 40 drag counts, not 90 as in figure 7); 2) the difficult con-

vergence with the medium grid must come from the fact that the flow is still close to the

topology change; 3) the double shock will produce much more wave drag than the unique

shock (in the present case), which accounts for the anomaly of figure 7, which shows much

higher drag with fine grid than with coarse grid.

As pointed out by Vassberg et al. in,12 to understand drag production with airfoils

of the kind dealt with here, “one must inspect the flowfield, not just the properties on the

airfoil surface”. This will be done extensively in a subsequent section entitled Final as-

sessment. Here such inspection is limited to the finest grid solutions for airfoils 1 and 2,

figures 9 and 10 displaying supersonic iso-Mach number line patterns. Airfoil 1 shows a sin-

gle supersonic area (for a half-airfoil), airfoil 2 a double supersonic area. Airfoil 1 produces
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a supersonic/subsonic shock at a distance in the field and, near the airfoil, a more com-

plex structure consisting of a supersonic/supersonic shock followed by a short supersonic

expansion and ending with a supersonic/subsonic shock. Airfoil 2 produces an extended

supersonic/subsonic shock in the field and a subsonic-to-supersonic expansion leading to a

second less extended supersonic/subsonic shock. The first type of solution will be called

solution of the first kind in this paper and the second type solution of the second kind.

V. Further Investigations

Airfoil 2 supports a solution of the first kind in2 and with the coarsest grid of the present

study, but a solution of the second kind with the finer grids. At this stage, an hypothe-

sis could not be neglected, that of “non-unique solutions of a discrete model of the Euler

equations” as first evidenced by Jameson,19 then by Hafez and Guo.20 In,21 Jameson et al.

produced other non-unique solutions for airfoils of the same type as those investigated in

the present paper. Ou et al.22 confirmed multiple solutions for airfoils from21 in unsteady

viscous flow. The same authors showed that the problem is not limited to 2D airfoils but

may arise for wings as well.23

Similar shock structures to those encountered in the present study are also discussed

by Kuz’min and Ivanova in:24 “singular free-stream Mach numbers, which trigger the split-

ting/amalgamation of local supersonic regions”. A physical interpretation of this phe-

nomenon given by these authors is that in non-isentropic steady flow, the downstream

boundary of a supersonic area cannot physically be in contact with the upstream boundary

of another supersonic area. So, when, through some infinitesimal perturbation, a unique

supersonic area is split into two areas, the process must be discontinuous.

In these further investigations, it was chosen to take Mach number as the perturbation

factor. Downward Mach number sweeps were computed with the coarsest nc = 256 grid level

for all airfoils, around the design Mach number M∞ = 0.85 with a step ∆M∞ = −0.0001.

Except for the first computation, at M∞ = 0.85, all subsequent calculations were started

from the converged state at M∞ + ∆M∞. The prescribed number of iterations was 3000.

Most computations reached machine zero. When such was not the case, solutions with un-

certainty |∆CDp| ≥ .01 drag count were rejected, hence the gaps seen in figures 11 and 12.

The purpose of these tests was looking for solutions of the first and second kind and the

topology change from one to the other. If an airfoil may support both kinds of solution, high

Mach numbers are likely to produce the first kind, with a shock located close to the trailing

edge. Indeed, for all airfoils, a solution of the first kind is obtained with the maximum Mach
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number M∞ = 0.8505. When the Mach number is lowered, a solution of the second type is

always obtained, but through two different mechanisms, one discontinuous, one continuous,

see figures 11 and 12. All airfoils but airfoil 5 undergo a discontinuous jump from a solution

of the first kind to a solution of the second kind through the splitting of a single supersonic

area into two as described in,24 with a correlative discontinuous drag increase. This occurs

just below the design point Mach number M∞ = 0.85. It can be seen that airfoil 5 behaves

differently from the other airfoils. The reason is that, for this airfoil, transition from a solu-

tion of the first kind to a solution of the second kind does not happen through the splitting

of a single supersonic area but through the appearance of a second, separate, continuously

growing, supersonic area, with no contact with the primary one in the investigated range.

From these coarse grid results, three airfoils were selected for fine grid checking (nc =

1024), and performing an upward Mach number sweep after the downward sweep. The ob-

jectives were to search for hysteresis behavior which would account for multiple solutions,

and to investigate probable transient non-symmetrical solutions (one appears in figure 12

for airfoil 7). The chosen airfoils are airfoil 2 because of suspicion of multiple solutions,

airfoil 5 for its unique continuous behavior and airfoil 7 the lowest drag airfoil at design

conditions. The width of the explored Mach number range is narrower than with coarse

grids, between M∞ = .8490 and M∞ = .8505. The basic step, ∆M∞ = ±0.0001, has been

empirically refined around discontinuities for airfoil 7 in search of non-symmetrical solutions.

CDp(M∞) curves are plotted in figure 13. For airfoils 2 and 7, this figure shows a lower

drag branch and a higher drag branch. During the downward Mach number sweep, the solu-

tion jumps from the lower branch to the higher branch, while in the upward sweep it jumps

back to the lower drag branch. Hysteresis makes the two jump Mach numbers different.

So, in a narrow Mach number band, double solutions may be obtained. The design Mach

number, M∞ = 0.85 is inside this band. The lower drag branch consists of solutions of the

first kind, the upper drag branch of solutions of the second kind. With airfoil 5 a unique

branch is found, with continuous transition from the first to the second kind through the

development of a downstream supersonic area separated from the primary one.

For airfoil 7, figures 14, 15, 16 illustrate the two-phase topology change from the first

kind to the second kind through a non-symmetrical solution, first kind on the upper side,

second kind on the lower side. Convergence of these three computations is plotted in figure

17. It is slow immediately before the topology change, fast in the non-symmetrical case and

immediately after the topology change. In the upward sweep, the non-symmetrical solution

(second kind on the upper side, first kind on the lower side) is less transient than in the
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downward sweep.

It should be noted that a similar behavior was found for one of the present airfoils

with an entirely different flow solver:6 it is not an artefact of the solver used in this study.

The shock pattern of solutions of the first kind for airfoils 2 and 7 shows a long supersonic-

subsonic wave away from the airfoil surface, broken down into a short supersonic-supersonic

wave and a short supersonic-subsonic wave near the airfoil surface. This might be the feature

which accounts at once for very low drag and instability. In solutions of the second kind,

the pattern is simpler: two supersonic-subsonic waves separated by an expansion.

VI. Final Assessment

For airfoils 2 and 7 the existence of a lower drag branch over the design Mach number and

of a higher drag branch below, with some overlap providing double solutions, has thus been

evidenced. The lower drag branch consists of solutions of the first kind while the upper drag

branch consists of solutions of the second kind. Figures 11 and 12 suggest that it might also

be the case for airfoils 1, 3, 4, 6. So a modified assessment protocol taking advantage of the

downward sweep hysteresis was devised: 2000 iterations at M∞ = 0.8505 + 2000 iterations

at M∞ = 0.85025 + 5000 iterations at M∞ = 0.85. This procedure led computations of all

airfoils susceptible of a double branch (1, 2, 3, 4, 6, 7) to lower drag branch solutions of the

first kind, see figures 18, 19, 20, 21, 23, 24. In the case of airfoil 5, which does not have a

branch at the design point, the solution shows a single supersonic area (for a half-airfoil),

figure 22, but the iso-Mach number line pattern is not strictly of the first kind. A close look

at figure 22 does show a short supersonic/supersonic wave, but this wave is detached from

the airfoil.

Computed pressure drag coefficient values are gathered in table 2 and figure 25. With

the modified assessment protocol, for all airfoils drag decreases as the grid is being refined,

compare figure 25 to figure 7. Extrapolation to zero mesh size was attempted following the

method of.14 The measured order of accuracy with this method varies between 1.5 and 2.2

depending on the airfoil considered. But considering the coarseness of level nc = 256 and

the imperfect linear behavior for some airfoils, extrapolated data were not retained.

Different grid dependency slopes in figure 25 reflect different levels of spurious drag.

More or less blunt leading edges will induce more or less spurious drag because spurious

drag at the leading edge is influenced by pressure gradients. This can be illustrated by com-
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paring the curvature of airfoils 3 and 6 in figure 26. Curvature is computed with the reduced

curvilinear abscissa parameter, 0 at the lower side trailing edge, 0.5 at the leading edge, 1

at the upper side trailing edge. Airfoil 6 is much blunter than airfoil 3. Consistently, the

grid dependency slope in figure 25 is much higher for airfoil 6 than for airfoil 3. A normally

rounded leading edge such as the NACA0012’s produces weaker pressure gradients than the

blunt leading edges of the airfoils investigated here. (With an inviscid flow model, a squared

leading edge would induce infinite pressure gradients.) The much larger amounts of spurious

drag with the optimized shapes than with the NACA0012 is obvious in table 2.

If the differences in grid dependency slope arise from numerical effects (spurious drag),

those in finest grid drag level arise mostly from physical phenomena (wave drag). All air-

foils but one support a shock structure of the first kind, airfoils 1, 2, 3, 4, 6, 7. However

there are differences between these structures (figures 18, 19, 20, 21, 23, 24). An attempt

at identifying a relation between drag and the length of the supersonic / supersonic wave is

presented in figure 27 with an exponential fit at the data points. It is acknowledged that the

length measurement involves a part of subjectivity, but the ambition is only to identify this

supersonic wave length as a major factor in wave drag production in solutions of the first

kind. It is obvious that there must be other shock features that contribute to the wave drag

variation, such as shock angle and curvature.

mesh size CDp CDp CDp CDp CDp CDp CDp CDp

NACA0012 airfoil 1 airfoil 2 airfoil 3 airfoil 4 airfoil 5 airfoil 6 airfoil 7

nc = 256 473.3 58.3 69.0 54.0 106.3 99.6 84.9 52.3

nc = 512 471.6 40.8 40.6 44.5 89.8 87.7 55.1 32.5

nc = 1024 471.2 36.7 31.8 42.4 86.1 85.0 44.7 27.9
Table 2. Grid convergence of pressure drag coefficient (expressed in drag counts)

VII. Conclusion

One of the test-cases of the AIAA Aero-Design Optimization Discussion Group is based on

the NACA0012 airfoil with solutions of the Euler equations. The purpose of the present study

was to provide a pressure drag assessment of the optimized shapes by several participants

through grid convergence. It had been anticipated that this study would be straightfor-

ward and dull. Fortunately, initial investigations produced anomalies and raised questions.

Further investigations, much inspired by Jameson’s 1991 paper on non-unique numerical

solutions of the Euler equations and Jameson et al. sequel of 2012, showed that for most
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of the airfoils investigated there exists a lower drag branch and a higher drag branch in

the drag coefficient vs. Mach number diagram. Hysteresis when performing a downward

Mach number sweep and an upward Mach number sweep was such that, for several airfoils,

the design point was inside the overlap range of the two branches, which means a double

solution at this point. A low drag converged solution or a high drag converged solution

could be found depending on the history of the computation. Dependency on computation

history is rather unwelcome in CFD but cannot be ignored. Two typical structures of su-

personic flow were distinguished. One consists in a single supersonic flow area containing a

supersonic/supersonic wave starting from the airfoil surface. The other involves two separate

supersonic flow areas without a supersonic/supersonic wave. The jump from one branch to

the other is due to flow topology change from one kind to the other. The first kind produces

a lower drag branch, the second kind a higher drag branch. The topology change from one

kind to the other may involve non symmetrical converged solutions, of the first kind on one

side of the airfoil and of the second kind on the other. For the final assessment, a procedure

that takes advantage of the hysteresis was used to ensure capture of the lower drag branch

at the design point. Reliable drag dependency on grid refinement was thus obtained. A rela-

tion between the drag efficiency and the length of the supersonic/supersonic wave has been

proposed. All airfoils but one admit two branches, the optimum being a solution of the first

kind. The airfoil behaving differently is of neither kind. It supports a single supersonic area

but the supersonic wave is separated from the airfoil. Its drag level is among the highest, but

its behavior in a Mach sweep is continuous, as if excellence in single-point drag minimization

in highly transonic flow involved the drawback of instability in the vicinity of the optimum.

The conclusion of Jameson’s 1991 paper contains the warning that optimization does not

necessarily lead to a good design. As regards nonunique solutions, which have been identified

by other authors, although there is no reason why they might not occur with shapes not de-

rived from optimization, the present paper indicates a strong correlation between optimality

and nonuniqueness: six of the seven optimized airfoils support nonunique solutions.

For the airfoils apt to support multiple solutions, the optimization algorithms used by

the various participants always led to the lower drag branch, which is satisfactory for the

ADO-DG purpose. However, nonuniqueness may have negative effect on convergence of an

optimization algorithm (as the same set of design variables can give two different objective

function values). The present paper, concentrating on numerical flow physics investigations,

does not contain a critical discussion of the different optimization methods or parameteriza-

tions. From the data produced here, a follow-up paper dedicated to such a discussion might

be of interest. However the present paper already provides an overview of the status of the

optimization results obtained by the different teams having worked on the ADO-DG test

case # 1 during the two first years since its creation. It will also, hopefully, encourage new
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participants to investigate this optimization test case and try to achieve designs even closer

to a shock-free airfoil.
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Figure 1. Baseline and optimized shapes (1)
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Figure 2. Baseline and optimized shapes (2)
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Figure 5. Airfoil 1. Convergence of L∞ norm residual of ρ
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Figure 6. Airfoil 2. Convergence of L∞ norm residual of ρ
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Figure 7. Grid refinement effect on pressure drag coefficient following planned protocol
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Figure 8. Airfoil 2. Planned protocol. Chordwise pressure coefficient distributions
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Figure 9. Airfoil 1, nc = 1024 grid, planned protocol - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 10. Airfoil 2, nc = 1024 grid, planned protocol - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 11. Coarse grid downward Mach number sweep for airfoils 1, 2, 3, 4
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Figure 12. Coarse grid downward Mach number sweep for airfoils 5, 6, 7
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Figure 13. Fine grid downward and upward Mach number sweeps for airfoils 2,5,7
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Figure 14. Airfoil 7, nc = 1024 grid - downward Mach number sweep, M∞ = 0.849425 - supersonic iso-Mach
number lines (∆M = 0.025)
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Figure 15. Airfoil 7, nc = 1024 grid - downward Mach number sweep, M∞ = 0.8494245 - supersonic iso-Mach
number lines (∆M = 0.025)
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Figure 16. Airfoil 7, nc = 1024 grid - downward Mach number sweep, M∞ = 0.849424 - supersonic iso-Mach
number lines (∆M = 0.025)
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Figure 17. Airfoil 7, nc = 1024. Convergence of L∞ norm residual of ρ at flow topology change from type 1 to
type 2.
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Figure 18. Airfoil 1, lower drag branch, nc = 1024 - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 19. Airfoil 2, lower drag branch, nc = 1024 - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 20. Airfoil 3, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 21. Airfoil 4, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 22. Airfoil 5, unique drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 23. Airfoil 6, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 24. Airfoil 7, lower drag branch, nc = 1024 grid - supersonic iso-Mach number lines (∆M = 0.025)
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Figure 25. Grid refinement effect on pressure drag coefficient following modified protocol
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Figure 26. Curvature of airfoils 3 and 6 (detail)

supersonic wave length / chord

C
D

p
(d

.c
.)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

Figure 27. Relation between supersonic/supersonic wave height and pressure drag
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