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ABSTRACT 11 

In a study of tick and tick-borne pathogen prevalence, between May and October 2016, 278 12 

veterinary practices in Great Britain examined 1,855 cats.  Six-hundred and one cats were found 13 

to have attached ticks.  The most frequently recorded tick species was Ixodes ricinus (57.1%), 14 

followed by Ixodes hexagonus (41.4%) and Ixodes trianguliceps (1.5%). Male cats, 4 - 6 years of 15 

age living in rural areas were most likely to be carrying a tick; hair length and tick treatment 16 

history had no significant association with attachment.  For cats that were parasitized by ticks in 17 

large urban areas, I. hexagonus was the most frequent species recorded. Molecular analysis was 18 

possible for 541 individual tick samples, others were too damaged for analysis; Babesia spp., 19 

and Borrelia burgdorferi sensu lato were identified in 1.1% (n=6) and 1.8% (n=10) of these, 20 

respectively. Babesia spp. included Babesia vulpes sp. nov./Babesia microti-like (n=4) in I. 21 

hexagonus and Babesia venatorum (n=2) in I. ricinus. Borrelia burgdorferi s.l. species included 22 

Borrelia garinii (n=6) and Borrelia afzelii (n=4). The majority of B. burgorferi s.l. cases were 23 

found in I. ricinus, with B. afzelii in one I. hexagonus nymph. No Borrelia or Babesia spp. were 24 

present in I. trianguliceps.  To determine a true prevalence for ticks on cats, practices that only 25 

submitted questionnaires from cats with ticks and practices that submitted fewer than 5 26 

returns per week were removed; amongst those considered to have adhered strictly to the 27 

collection protocol, feline tick prevalence amongst cats that had access to the outdoors was 28 

6.6%. These results show that ticks can be found on cats throughout Great Britain, which 29 

harbour a range of species of Babesia and B. burgdorferi s.l. and that cats, particularly in green 30 

spaces within urban areas, may form an important host for I. hexagonus, a known vector of 31 

pathogens.    32 

 33 
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1. Introduction 37 

Ticks are an important group of arthropod vectors (Otranto & Wall, 2008) and transmit a 38 

wide range of viral, bacterial and protozoan pathogens. For three-host species in particular, their 39 

lack of host specificity allows them to feed on a different host in each life cycle stage and 40 

enhances their ability to transmit pathogens between host populations. In addition, their role as 41 

vectors is exacerbated by large population densities facilitated by high rates of reproduction, and 42 

the transmission of the pathogens they carry between the different life cycle-stages (trans-43 

stadial transmission) while co-feeding and between generations via eggs (trans-ovarial 44 

transmission). Infection of the host with tick-transmitted pathogens may be aided by salivary 45 

anticoagulants and other active compounds that modulate host cutaneous immunity and 46 

inflammation, while enhancing vasodilatation to bring more blood to the feeding site (Wikel, 47 

1999). In the future, tick-borne disease may become an increasing concern as the changing 48 

climate favours tick survival in new geographical locations; previous studies have recorded 49 

correlations between tick population size and higher temperature (Lindgren et al., 2000; Gray et 50 

al., 2009; Tagliapietra et al., 2011; Jaenson et al., 2012; Korotkov et al., 2015). Associations 51 

between tick density and increasing host abundance have also been shown in multiple studies 52 

(Lindgren et al., 2000; Gilbert et al., 2012; Abdullah et al., 2016; Cat et al., 2017). 53 

Companion animals are abundant, represent an easily available food source for ticks and 54 

may act as a reservoir for pathogens. Companion animals are also of zoonotic significance 55 

because of their close association with humans. In addition, they may be used as sentinels to 56 

monitor the distribution of ticks and the tick-borne pathogens they carry (Claerebout et al., 57 

2013). There are estimated to be at least 7.62 million cats in the UK (pfma.org.uk, 2016), and the 58 

close proximity of humans and their pets highlights the importance of the ‘One Health’ approach 59 

to disease management (Day, 2011).  The potential emergence of acaricide resistance and 60 

treatment deficiency in ticks and drug resistance in pathogens, leading to increased disease 61 

prevalence, cannot be ignored (Coles & Dryden, 2014). Furthermore, the increased movement of 62 

people and pets (van der Weijden et al., 2007), have increased the potential for the introduction 63 

and establishment of several novel vector species not previously present in some areas, together 64 

with the novel pathogens they may carry (Hartemink & Takken, 2016).  65 

Many studies have investigated the prevalence of tick-borne pathogens in dogs in Great 66 

Britain (Smith et al., 2011; Abdullah et al., 2016, 2017), but ticks feeding on cats have recieved 67 

relatively less attention (Ogden et al., 2000), although the number of European studies has risen 68 

recently (Claerebout et al., 2013; Eichenberger et al., 2015; Pennisi et al., 2015; Krol et al., 2016; 69 

Perischetti et al., 2016).  The interaction between cats and other potential hosts and their owners 70 
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is of particular interest, and is epidemiologically different to that of dogs. Cats have a wider, free-71 

roaming behaviour and hunt, which brings them into contact with a greater range of diverse 72 

habitats and animals than dogs; cat grooming behaviour is also known to reduce the number of 73 

ectoparasites such as ticks and fleas (Ekstein & Hart, 2000).  74 

 A better understanding of the epidemiology of tick-borne pathogens and effective 75 

control of disease in cats requires a comprehensive knowledge of the key tick vectors and the 76 

pathogens they transmit (Wall, 2007). Unfortunately, our understanding of these factors is, in 77 

many cases, limited (Hill et al., 2005).  The aim of the current investigation was to examine the 78 

distribution and species composition of ticks infesting cats in Great Britain and to determine the 79 

prevalence of two zoonotic pathogens, Babesia spp. and Borrelia burgdorferi sensu lato in the 80 

ticks collected.    81 

 82 

2. Materials and Methods 83 

2. 1 Tick collection and questionnaire 84 

Following a nationwide publicity campaign to recruit veterinary practices, 278 85 

participated between May and October 2016. Practices were sent a kit, consisting of an 86 

inspection protocol, envelopes, sample tubes and tick removers. The protocol instructed 87 

veterinary practitioners to select 5 cats per week at random from those vising the surgery for 88 

routine appointments, such as vaccination and general health checks, inspect them for ticks and 89 

complete a questionnaire describing the cat’s clinical history (following the protocol described 90 

by Abdullah et al., 2016). The randomisation procedure to be adopted was not specified, 91 

however, veterinarians were asked not to choose cats for examination from geriatric/obesity 92 

clinics, since such cats may be disproportionately less likely to be exposed to tick infested 93 

habitats. A questionnaire for each animal was to be completed regardless of whether or not 94 

ticks were found, to allow tick prevalence to be calculated. Information requested included 95 

owner address, cat breed, sex, neutered status, presence and abundance of ticks, whether the 96 

cat had been abroad in the previous two weeks and its acaricidal treatment history.  97 

Veterinarians could print and mail the questionnaires or submit online. All tick samples were 98 

sent to the University of Bristol and stored at -20°C. 99 

 100 

2.2. Data handling, statistical analysis and tick identification  101 

Data was entered into a Microsoft Excel spreadsheet. For statistical analysis, age, sex, 102 

and hair-length were categorised as follows: <1, 1-3, 4-6, 7-10 and >10 years-of-age; 103 

female/male/neutered female/neutered male; longhaired or shorthaired. The WGS84 (World 104 

Geodetic System) map coordinates of each cat owner’s location was recorded and classified as 105 
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urban or rural according to the UK Government’s Output Area Population Weighted Centroids 106 

with the aid of the ‘geosphere’ package in R (R-Studio, version 1.0.136). The geographical 107 

program QGIS (Version 2.18.2) was used to map the location of samples. Statistical analysis was 108 

carried out in SPSS (Version 23). Binary logistic regression was used to identify associations 109 

between cat characteristics and the probability of carrying a tick.  110 

Ticks were identified to species using a range of keys (Hillyard, 1996; Walker, 2003). 111 

Tick sex and life-cycle stage were noted. Female ticks were classified by level of engorgement 112 

as: unfed, partially-fed, or fully-fed.  Fully-fed ticks were those considered to have reached 113 

maximum engorgement in relation to scutal dimensions; partially-fed ticks were defined as 114 

those that contained some blood but had not reached maximum expansion; unfed ticks 115 

contained no blood. The most developed and engorged tick per submission was selected for 116 

analysis. Tick infestation in relation to habitat and tick species were compared using chi-square 117 

analysis.  118 

 119 

2.3 DNA extraction 120 

After identification, ticks were cut transversely and longitudinally before carrying out 121 

DNA extraction on individual ticks using a Nucleospin ® 96 Tissue Core Kit (Macherey-Nagel, 122 

Germany) according to the manufacturer’s guidelines. Preliminary trials showed that for fully-123 

fed ticks, which contained large volumes of clotted blood, using the whole tick was not practical 124 

because after overnight digestion in double the recommended volume of Proteinase-K and 125 

tissue lysis buffer, the lysate clogged the silica column. To overcome this problem only the 126 

anterior two-thirds of the fully engorged tick (containing salivary glands) was used for DNA 127 

extraction and the extraction protocol used: 40 µl of Proteinase-K (instead of 30 µl) and 400 µl 128 

of tissue lysis buffer (instead of 240 µl), all samples were incubated at 56 °C overnight.  After 129 

overnight digestion, only half of the lysate was used (using the full lysate volume still clogged 130 

the silica columns). An internal amplification control was introduced at this stage to check the 131 

efficacy of the DNA extraction in a PCR test prior to diagnostic PCR.  Two repeats of wash buffer 132 

BW were used for each column prior to a single repeat of wash buffer B5, drying and elution in 133 

100 µl of BE elution buffer. Spectrophotometry (Nanodrop) and agarose gel electrophoresis 134 

were used to estimate the DNA concentrations.  DNA samples were stored in 96-well plates at -135 

20°C until further analysis.   136 

 137 

2.4 Babesia qPCR and sequence analysis  138 

Babesia spp. were detected in DNA extracts using a probe based generic Babesia qPCR 139 

targeting the 18S rRNA gene. The following primers were used for detection of Babesia spp.: 140 

Babesia 944 for (5’-TTAACGAACGAGACCTTAACCTG-3’), Babesia 1315 rev (5’-141 
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CCGAATAATTCACCGGATCAC-3’) and Babesia TaqMan probe (5’-FAM-142 

CGATCGGTAGGAGCGACGGGC-BHQ1-3’) (Diagnostic Laboratories, Langford Vets, UK). A 143 

primer/probe mix was made as follows: 10 µM Babesia 944 for, 10 µM Babesia 1315 rev, 2.5 µM 144 

Babesia TaqMan probe. Positive (Babesia canis, 12763 gDNA diluted at 10-1) and negative 145 

(water) controls were included in each 96 well PCR plate. The qPCR reaction was made with 2 146 

µl of sample DNA and 8 µl of master mix, composed of 5 µl of 2x GoTaq Hot Start mix, 0.4 µl 147 

primer/probe mix, 0.6 µl 50 mM MgCl2 and 2 µl H2O. Thermal cycling conditions included an 148 

initial denaturation (95°C for 2 min; 45 cycles of 95 °C for 15 s, and 60 °C for 30 s) (Agilent 149 

MX3005P qPCR, Agilent, UK). Fluorescence data were collected at 520 nm at the end of each 150 

annealing/extension step. A cut off of over 35 cycles was used to differentiate true Babesia spp. 151 

positives from possible cross-reaction (see discussion). Samples positive on the Babesia spp. 152 

qPCR were re-amplified in a 25 µl volume for DNA sequencing. 153 

DNA samples for sequence analysis were prepared using a Nucleospin® 96 PCR Clean-154 

up Core Kit (Macherey-Nagel, Germany), before being sent to a commercial sequencing 155 

laboratory DNA Sequencing & Services (MRC I PPU, School of Life Sciences, University of 156 

Dundee, Scotland) using Applied Biosystems Big-Dye Ver 3.1 chemistry on an Applied 157 

Biosystems model 3730 automated capillary DNA sequencer. Resulting sequence data were 158 

analysed  and tidied in BioEdit Sequence Alignment Editor (Version 7.2.5). The output from 159 

BioEdit was used to BLAST the NCBI GenBank sequence database 160 

(www.ncbi.nlm.nih.gov/BLAST/). Any sequences with less than 97% homology were not 161 

considered (Abdullah et al., 2017). 162 

 163 

2.5 Borrelia PCR and Sequencing 164 

Conventional PCR was used to detect B. burgdorferi s.l. in the DNA extract; primers BSLF 165 

(5′-AATAGGTCTAATAATAGCCTTAATAGC-3′) and BSLR (5’-166 

CTAGTGTTTTGCCATCTTCTTTGAAAA-3’) amplified a 250-300 bp region of the ospA gene found 167 

in all B. burgdorferi s.l. (Smith et al., 2012).  Master mix was formulated as follows: 5 µl of 2x 168 

GoTaq Hot start mix (Promega, UK), 0.4 µl of 12.5 µM each BSLF/BSLR primer mix and 2.6 µl 169 

water.  Two µl of extracted DNA were then added to 8 µL of master mix in 96 well PCR plates 170 

using a high throughput automated pipetting system (epMotion P5073, Eppendorf, UK).  171 

Borrelia burgdorferi sensu stricto (PCR product diluted 1x10-10) and water were used as positive 172 

and negative controls, respectively. The thermal cycling protocol consisted of an initial 173 

denaturation at 95 °C for 2 min, followed by 40 cycles of 95 °C for 20 s, 56 °C for 30 s and 72 °C 174 

for 30 s. Agarose gel electrophoresis was used to visualise target amplicons.  Positive samples 175 

were identified as having a defined band of 250-300 bp on the gel and were later re-amplified in 176 

a 25 µl PCR for DNA sequencing as described above. 177 
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 178 

3. Results 179 

3.1 Tick species abundance and prevalence  180 

A total of 1,855 cats were inspected by 278 participating veterinary practices over a 181 

period of 6 months between May and October 2016.   These were broadly distributed 182 

throughout Great Britain (Fig. 1). Six hundred and one cats were reported to have one or more 183 

attached ticks. Due to damage some samples were unidentifiable, leaving 541 identified tick 184 

samples from as many cats available for species identification and molecular analysis. 185 

The tick species identified were Ixodes ricinus (57.1 %, n=309), Ixodes hexagonus (41.4 186 

%, n=224), and Ixodes trianguliceps (1.5 %, n=8). Ticks were primarily adults (81.5 %, n=441) 187 

and of these the majority were female (99.1 %, n=437) with only 4 males identified; these were 188 

all I. ricinus.  Ixodes trianguliceps were only found as nymphs. Partially-fed ticks were most 189 

frequently recorded (68.9 %, n=373), followed by fully-fed ticks (22.6 %, n=122), and unfed 190 

ticks (8.5 %, n=46). Twelve cats carried only tick larvae. On cats found to be carrying ticks, the 191 

median intensity of infection was 1 with a maximum intensity of 84.  192 

One of the aims of the study was to obtain a prevalence estimate for cat-tick infestation 193 

and this was done by asking veterinary practices to examine a random selection of cats. 194 

However, many of the veterinary practice staff appeared to not follow the inspection protocol 195 

and submitted predominantly positive samples or submitted insufficient numbers of returns 196 

per week. To determine a true prevalence for ticks on cats, practices that only submitted 197 

questionnaires from cats with ticks and practices that submitted fewer than 5 returns per week 198 

were removed. In this way, 1,127 cats from 248 veterinary practices were discounted, leaving 199 

728 cats from 30 practices.  Amongst these, 624 had access to the outdoors and of these 583 200 

cats were negative and 41 were positive for ticks, giving an overall prevalence 6.6% (95% 201 

confidence interval±1.94%). It is notable that the 30 practices that adhered strictly to the 202 

protocol were responsible for almost 40% of the questionnaire submissions. 203 

 204 

2.2 Tick infestation risk-factors  205 

Binary logistic regression showed that age had a significant influence on the likelihood 206 

of cats having ticks (P < 0.05); 4–6 year-old cats were the most likely to carry ticks (P < 0.005, 207 

Exp(B) = 1.75, CI (95%) = 1.25-2.46), with cats below 1 and over 10 years of age being least 208 

likely to carry ticks. Although the majority of cats included in the study were neutered, entire 209 

cats were statistically more likely to be parasitized by ticks than neutered cats (P < 0.001, 210 

Exp(B) = 2.33, CI (95%) = 1.68-3.23).  For the analysis of hair length, mixed breed cats or cats of 211 

no specified breed, where hair length could not be determined from the details provided, were 212 
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not included in the analysis (n=60). There was no significant influence of hair length on the 213 

probability of a cat carrying ticks (P > 0.05).  214 

There were 1,565 cat owners who participated in the study, and of these 399 stated that 215 

their cats had preventative treatment for ticks.  Although 464 cats were said to be treated with 216 

acaricide, only 95 cats (treated by 83 owners) had current protection based on the date of 217 

application and the product’s specified label claim for residual activity. The remaining 369 cats 218 

had no active treatment against ticks; 229 cats (186 owners) had acaricidal treatment that was 219 

not active, and the remaining 140 cats (130 owners) were not treated with products that had an 220 

acaricidal label claim despite the owner’s belief that their cats were protected against ticks. 221 

Almost one third (29%) of the treatment products reported by the owners had no acaricidal 222 

label claim. Of the 95 cats that did have current protection, 25 were found to be carrying ticks. 223 

There was no significant effect of preventative acaricide treatment on the probability of tick 224 

infestation (P > 0.05). Only one cat had been abroad within the 2 weeks before sampling and 225 

this animal had no ticks. 226 

Cats classified as living in rural areas had a higher prevalence of ticks than cats living in 227 

urban areas (P < 0.05, Exp(B) = 1.34, CI (95%) = 1.07-1.67). For cats that were parasitized by 228 

ticks in large urban areas, I. hexagonus was most frequently recorded tick species (75.4 %, χ2= 229 

16, n= 43, P < 0.001). Both I. ricinus and I. hexagonus had a wide distribution throughout Great 230 

Britain, whilst I. trianguliceps was predominantly found in south eastern areas (Fig. 2). 231 

 232 

2.3 Pathogen distribution  233 

The internal amplification control was successfully amplified in all samples following 234 

qPCR. Of the 541 ticks that were analysed, 2.8% (n= 15) carried at least one Babesia spp. or 235 

Borrelia burgdorferi s.l pathogen. One tick contained a coinfection of both Borrelia spp. and 236 

Babesia spp. Pathogen DNA was found in I. ricinus and I. hexagonus ticks, but not in I. 237 

trianguliceps ticks. There were 59 potential positive tick samples for Babesia spp. after carrying 238 

out the initial qPCR assay. After DNA sequencing the qPCR positive PCR products and BLAST 239 

analysis, 1.1% (n=6) of these 59 tick samples were confirmed positive for Babesia spp. (95% 240 

confidence interval ±0.87%) (Table 1). Of these, four were Babesia vulpes sp. nov./B. microti-like  241 

and two were Babesia venatorum.  The Babesia vulpes sp. nov./B. microti-like were all found in I. 242 

hexagonus ticks and the B. venatorum were only present in I. ricinus. Ticks containing B. 243 

venatorum were partially-fed adult females whereas B. vulpes sp. nov./B. microti-like were 244 

found in partially and fully-fed adults along with partially fed nymphs.  245 

Initial Borrelia burgdorferi s.l. PCR indicated that 18 samples were positive, however, 246 

after DNA sequencing eight samples were removed because they gave non-target matches. The 247 

prevalence of B. burgdorferi s.l. was therefore 1.8% (95% confidence interval ±1.12%).  These 248 
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included six B. garinii and four B. afzelii (Table 2). The majority of B. burgdorferi s.l. positives 249 

were found in partially-fed I. ricinus ticks. One unfed female contained B. garinii and one 250 

partially-fed I. hexagonus nymph was positive for B. garinii. One co-infection was identified in a 251 

partially fed I. ricinus female containing B. venatorum and B. afzelii. 252 

Cases of B. burgdorferi s.l. were widely dispersed throughout Great Britain whereas 253 

Babesia spp. appeared to be more localised in the south (Fig. 3); sample sizes were too small to 254 

allow for meaningful statistical comparisons of pathogen species between habitat types.  255 

 256 

4. Discussion 257 

The most prevalent tick species found on cats was I. ricinus, which agrees with previous 258 

studies showing that this species is the most common tick in Europe (Beichel et al., 1996; Nijhof 259 

et al., 2007; Claerebout et al. 2013). However, I. hexagonus was also identified on a large number 260 

of cats; the prevalence of this tick on cats was considerably higher than has been reported 261 

previously on dogs. In the present study 41.4% of ticks were I. hexagonus whereas this species 262 

represented only 9.8% of the ticks found on dogs by Abdullah et al., (2016).  Ogden et al. (2000) 263 

also found higher numbers of I. hexagonus on cats than dogs, but in that study I. hexagonus on 264 

cats was also more prevalent than I. ricinus.  No differences between the prevalence of I. 265 

hexagonus on cats or dogs were observed in Germany (Beichel et al., 1996), The Netherlands 266 

(Nijhof et al., 2007) or Belgium (Claerebout et al. 2013).  A higher prevalence of I. hexagonus on 267 

cats than dogs might be expected due to behavioural differences; cats actively hunt rodents, 268 

birds and amphibians (Churcher & Lawton, 1987) bringing them into contact with the habitat of 269 

the primary host of I. hexagonus, the common European hedgehog (Erinaceus europaeus) 270 

(Wierzbowska et al., 2016). In the present study, I. hexagonus, was most prevalent on cats in 271 

urban areas where populations of hedgehogs are known to be up to nine times higher than in 272 

forests, open grassland and agricultural land or rural areas (Young et al., 2006; Huijser et al., 273 

1999; Hubert et al., 2011).  In urban environments, I. hexagonus may therefore play an 274 

important epidemiological role in the transmission of pathogens, as suggested by Ogden et al. 275 

(2000) and Jahfari et al. (2017). The rodent tick, Ixodes trianguliceps, has not been reported 276 

previously on cats in Great Britain, but has been found on cats in Switzerland, but not dogs 277 

(Eichenberger et al., 2015). 278 

The data suggest that 6.6% of cats in Great Britain with access to outside the home had 279 

ticks in the period between May and October 2016. Male, entire cats aged between 4 and 6 years 280 

living in rural areas were most likely to be infested.  This may be due to variations in behaviour, 281 

with younger cats more likely to be active hunters and males having increased hunting success 282 

(Churcher & Lawton, 1987).  Coat length had no significant effect on the probability of a cat 283 

having a tick. This could be the result of a genuine difference in tick attachment or represent the 284 
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difficulty of finding a tick on a long-haired cat during inspection.  Acaricidal treatment also had 285 

no apparent effect in preventing tick attachment, but it was notable that 29% of the products 286 

listed by owners as being used for tick prevention had no acaricidal label claim. Owner recall 287 

may also have contributed to the very high number of cats with apparently expired tick 288 

treatments. This also highlights the need for veterinarians to ensure their pet owners know 289 

what the treatment prescribed protects against as well as the importance of educating on 290 

retreatment intervals. 291 

The prevalence of Babesia spp. and B. burgdorferi s.l. in British cat ticks was relatively 292 

low: there were 6 cases of Babesia spp. (1.1%) and 10 cases of B. burgdorferi s.l. (1.8%). This is 293 

slightly lower than the 1.5% and 2.0% prevalences, respectively, recorded in ticks on dogs in 294 

Great Britain (Abdullah et al., 2017). Conversely, studies identifying the pathogens present in 295 

Ixodes ticks infesting dogs and cats in Europe have reported prevalences of Babesia spp. of up to 296 

9.0% in Poland (Krol et al., 2016), and 10.2% prevalence of B. burgdorferi s.l. in Belgium 297 

(Claerebout et al., 2013). Nevertheless, similar to the data reported here on cats, Pennisi et al 298 

(2015) found a prevalence of Babesia spp. of 0.75% in Southern Italy.  It must be noted however, 299 

that when pathogens are detected directly from the ticks rather than blood samples, the 300 

pathogen DNA may come either from ingested blood meal or represent a pre-existing infection, 301 

and these alternatives cannot be distinguished.  302 

Babesiosis in domestic cats is relatively rare (Solano-Gallego & Baneth, 2011) and 303 

clinical signs of babesiosis in cats is thought not to occur in Europe.  Clinical signs of infection 304 

with Lyme borreliosis in domestic cats is also extremely rare (Pantchev et al., 2016) in 305 

comparison to dogs.  Analysis of cat sera in Portugal has found seroprevalences of Babesia spp. 306 

and B. burgdorferi s.l. of 6.6% and 2.2%, respectively (Maia et al., 2014). The lower rates of 307 

infection caused by Babesia spp. and B. burgdorferi s.l. in domestic cats in comparison to dogs 308 

may be the result of behavioural differences between cats and dogs, reduced awareness of signs 309 

of clinical infection or physiological and immunological differences in their response to infection 310 

(Day, 2016).  Notably, Babesia canis, a common form of babesiosis in dogs, has only rarely been 311 

detected in cats (Solano-Gallego & Baneth, 2011). 312 

Two Babesia spp. were identified here: B. venatorum and B. vulpes sp. nov./B. microti-313 

like. These were identified in different tick species; B. venatorum was confined to I. ricinus and B. 314 

vulpes sp. nov./B. microti-like was confined to I. hexagonus. The latter also matched other 315 

Babesia piroplasms (Piroplasmida sp. mel1/Burgos/2007, B. vulpes, Theileria annae and Babesia 316 

cf. microti) sequences in the NCBI database with similar identity scores (Table 2) and it was 317 

difficult to assign them absolutely; Baneth et al. (2015) recently categorised them as a single 318 

species B. vulpes sp. nov, (Baneth et al., 2015), which was the approach adopted here. 319 
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Roe deer are the primary reservoir for B. venatorum (Najm et al., 2014) and therefore its 320 

presence in I. ricinus is not unexpected. It has been suggested that I. hexagonus is the primary 321 

vector for B. vulpes sp. nov./B. microti-like (Camacho et al., 2003), although this has been 322 

disputed (Najm et al., 2014; Hodžić et al., 2017), particularly since studies of engorged ticks 323 

could simply report the presence of pathogen DNA found in the host’s blood and not necessarily 324 

tick-specific transmission (Hodžić et al., 2017).  Neither pathogen was identified in the I. 325 

trianguliceps samples, although numbers were very low. Previous studies conducted in the UK 326 

by Randolph (1991; 1995) found I. trianguliceps to be the principal vector for B. microti.  327 

As previously shown in another European study (Rauter & Hartung, 2005), B. afzelii and 328 

B. garinii were the most common species of Borrelia detected in this study. Borrelia garinii and 329 

B. afzelii have been reported to circulate primarily through bird and rodent populations, 330 

respectively (Kurtenbach et al., 2002).   331 

The data presented in this study indicates that both I. ricinus and I. hexagonus are widely 332 

distributed in Great Britain, although the majority of I. hexagonus ticks were found in England, 333 

which has been noted previously (Abdullah et al., 2016) and I. trianguliceps was only found in 334 

south eastern England, supporting historical tick distribution records (Hubbard et al., 1998).  335 

However, ticks from Wales and Scotland were not as well-represented as England in our study 336 

and so the tick-distribution maps are likely to have been affected by sample size bias.  Too few 337 

Babesia spp. and B. burgdorferi s.l. were identified to allow meaningful statistical analysis of 338 

their spatial distribution or habitat differences.   339 

The results presented here show that ticks can be found on cats throughout Great 340 

Britain and, although the prevalence may be relatively low, a range of species of Babesia and B. 341 

burgdorferi s.l. are present in these ticks.  Cats may act as an important reproductive host for 342 

adult ticks, allowing maintenance of the tick population, and green spaces within urban areas 343 

are likely to form an important habitat for I. hexagonus, which is a known vector of pathogens 344 

(Jahfari et al., 2017).    345 
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Table 1. The number, tick species, life-cycle stage, Babesia spp. identified on partial 18S rRNA 481 

gene sequencing and sequence identity with matching GenBank accession numbers for the 482 

analysed ticks.  483 

 484 
Number 
of ticks 

Tick 
species 

Tick life-cycle 
stage 

Species detected Sequence 
identity 
(%) 

Accession 
Number 

2 I. ricinus* Partially fed adult B. venatorum 99-100 KX008038  

1 I. hexagonus Fully fed adult B. vulpes sp. nov./B. 
microti-like 

99 KT223483 
KT580785 
KJ871352 
EU583387 

1 I. hexagonus Partially fed adult B. vulpes sp. nov./B. 
microti-like 

99 KT223483 
KT580785 
KJ871352 
EU583387 

2 I. hexagonus Partially fed 
nymph 

B. vulpes sp. nov./B. 
microti-like 

99-100 KT223483 
KT580785 
KJ871352 
EU583387 

*One of these ticks had coinfection with B. afzelii  485 
 486 

  487 
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Table 2. The number, tick species, life-cycle stage and Borrelia burgdorferi s.l. species identified 488 

on partial ospA gene sequencing and sequence identity with matching GenBank accession 489 

numbers for the analysed ticks. 490 

 491 
Number 
of ticks 

Tick species Tick life-cycle 
stage 

Species detected Sequence 
identity (%) 

Accession 
Number 

1 I. hexagonus Partially fed 
nymph 

B. afzelii 100 DQ007303  

1 I. ricinus Fully fed adult B. afzelii 100 DQ007303  

1 I. ricinus Partially fed adult B. afzelii 98 CP018263  

1 I. ricinus* Partially fed adult B. afzelii 100 DQ007300 

1 I. ricinus Partially fed adult B. garinii  100 HM623293  

1 I. ricinus Partially fed adult B. garinii 100 KU672587  

1 I. ricinus Partially fed adult B. garinii 99 JF331369 

1 I. ricinus Partially fed adult B. garinii 100 KU672587  
 

1 I. ricinus Partially fed adult B. garinii 99 JF331361 

1 I. ricinus Unfed adult B. garinii 98 KU051683  

*Tick had coinfection with B. venatorum  492 
 493 
 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 
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Figure legends 506 

Fig. 1. The distribution of veterinary practices participating in a survey of ticks on cats in Great 507 

Britain. 508 

 509 
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 518 
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Fig. 2. The distribution of ixodid tick species found on cats in Great Britain: a) Ixodes ricinus, b) 520 

Ixodes hexagonus, c) Ixodes trianguliceps 521 

 522 

Fig. 3. The distribution of (a) Borrelia burgdorferi s.l. and (b) Babesia spp. in Great Britain. Open 523 

shapes show Babesia: squares - B. venatorum, triangles - B. vulpes sp. nov./B. microti-like.  524 

Solid shapes show Borrelia: circles - B. garinii, triangles - B. afzelii and star - B. afzelii-B. 525 

venatorum co-infection 526 

.  527 

a) c) b) 

 


