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FINITE FIELD MODELS IN ARITHMETIC COMBINATORICS – TEN
YEARS ON

J. WOLF

Abstract. It has been close to ten years since the publication of Green’s influential
survey Finite field models in additive combinatorics [?], in which the author championed
the use of high-dimensional vector spaces over finite fields as a toy model for tackling
additive problems concerning the integers. The path laid out by Green has proven to be
a very successful one to follow. In the present article we survey the highlights of the past
decade and outline the challenges for the years to come.
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1. Introduction

Green’s 2004 survey Finite field models in additive combinatorics [?] must be counted
amongst the most influential and widely cited papers in arithmetic combinatorics. By
spotlighting an accessible toy model for a number of notoriously difficult problems in
additive number theory, it inspired countless proof ideas in subsequent years and served as
introductory reading material for many a graduate student.

Its main tenet was the idea that many of the problems traditionally of interest in additive
number theory can be rephrased in the context of high-dimensional vector spaces over
finite fields of fixed characteristic. For example, instead of counting the number of 3-term
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arithmetic progressions in a (finite) subset A of the integers, we may choose to count the
number of such progressions inside a subset A ⊆ Fn3 , where the dimension n is to be thought
of as very large. The advantage of working in the latter additive group instead of the former
is that it has a plentiful supply of non-trivial additively closed subsets, namely the vector
subspaces of Fn3 . These closely resemble the original space itself, making it possible to run
arguments locally and facilitating especially those relying on iteration. In addition, we
have the notion of orthogonality and linear independence at our disposal, which instantly
adds a host of techniques from linear algebra to our toolbox.

Working in Fnp for some fixed small prime p thus often simplifies the problem at hand, but
it does so in such a way that the principal features of the problem are preserved, meaning
that solving the toy problem constitutes a significant step towards solving the problem in
the integers. Because of their exact algebraic nature, arguments for the toy problem are
often more accessible, highlighting the core idea which in the integers tends to be obscured
by technical details. Moreover, in certain cases there is a (by now well-established if often
technically challenging) procedure for transferring a proof from the model setting to the
integers. Although these remarks may appear senseless if not mystifying at this point, we
hope that their meaning will become more transparent to the reader through the examples
provided in Chapter 3.

The finite field model Fnp , and in particular the case of characteristic p = 2, is also
of unparalleled importance in theoretical computer science, by virtue of representing the
set of strings of 0s and 1s of length n under the operation of addition modulo 2. It is
nigh on impossible to do justice to the multitude of applications which the ideas sketched
out here have had in theoretical computer science, covering areas as diverse as property
testing and decoding of Reed-Muller codes [?, ?, ?], probabilistically checkable proofs [?],
communication complexity [?, ?], pseudorandom generators [?] and hardness amplification
[?]. Nor can we hope to pay adequate tribute to the contributions made to arithmetic
combinatorics by that community. We shall therefore confine ourselves to the occasional
reference in the context of a particular result or technique, in the hope that the interested
reader will delve further into the literature.

Having explained what we mean by the ‘finite field model’, we should point out that it
is something of a misnomer, which we hardly stand any chance of correcting as the term is
widely used in the field. But for the sake of clarity we feel compelled to discuss it early on.
Indeed, many additive problems concerning finite subsets of the integers are traditionally
tackled in the group Z/pZ, with p a prime chosen large enough so that the relevant segment
of the integers can be embedded in it without disturbing the additive structure in question
by its cyclic nature. Of course, the ring Z/pZ is canonically isomorphic to the finite field
with p elements, but from our point of view it behaves more like the integers in the sense
that it has no non-trivial additive subgroups. So we would argue that the group Fnp should
more accurately be called a ‘vector space model’, as the vector space structure is really its
determining feature.1

1As it stands, the present article is almost entirely disjoint from one that recently appeared under a
confusingly similar title in this very same journal [?]. There the focus was on sum-product-type problems
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There are a number of reasons for writing a follow-up to [?] at this point in time.
First and foremost, significant progress has been made on all of the central problems
in arithmetic combinatorics since 2004. This has resulted in a better qualitative and
quantitative understanding of additive structures in dense subsets of the integers through
the introduction of new analytic and combinatorial techniques. Furthermore, interesting
new problems have been posed and new applications of classical tools have been discovered.
Finally, since the writing of [?] this still relatively young field of mathematics has settled
on certain notational and normalisation conventions, which the present article reflects.

We have attempted to write this paper in such a way that both readers familiar with
Green’s original survey will find it interesting, as well those who are not. We give proofs
whenever these are not overwhelmingly complex, and references to the most relevant liter-
ature otherwise.

The structure of the remainder of the text is as follows. In Chapter 2 we review three
classical problems that fall within the scope of the model: counting 3-term arithmetic
progressions in dense sets, identifying arithmetic structure in sum sets and dealing with
longer arithmetic progressions. These topics are also discussed in Green’s original paper,
but we repeat them here to settle the notation and because they are fundamental to the
narrative of the rest of the article. In Chapter 3 we explain in more detail in what sense
the vector space Fnp can be considered a toy model for the integers. Chapter 4 is devoted
to some of the spectacular recent developments surrounding the three problems discussed
in Chapter 2. Finally, in Chapter 5 we describe some of the limitations of the vector space
model as well as avenues of future research to be explored.
Acknowledgements. The author is deeply indebted to Ben Green and Tom Sanders for

many useful discussions over the years as well as helpful comments on the manuscript. She
would also like to thank Trevor Wooley for pointers and references regarding the material
in Chapter 5, and the anonymous referees for a careful reading of the article.

1.1. Preliminaries. Throughout this article, G := Fnp denotes a vector space of dimen-
sion n over a finite field of characteristic p, where p is a prime. Fields of prime-power
characteristic are only of interest to us in special circumstances as they frequently intro-
duce distracting divisibility restrictions, which we shall try to avoid here. In the ‘finite
field model’ as we understand it here, it is important that p be thought of as small and
fixed (we shall see p = 2, 3 and 5 most frequently in the sequel), while the dimension n is
to be thought of as arbitrarily large (tending to ∞). Asymptotic results are thus always
asymptotic in n.

A character on the group G takes the form γ : G → C, sending x ∈ G to ωx·t for some
t ∈ G, where ω = e2πi/p is a primitive pth root of unity and x · t is the standard scalar
product on G. Abusing notation, we may identify the character γ with the corresponding

and incidence geometry over finite fields. These are central areas of arithmetic combinatorics which we
shall omit from this survey as they are very different in flavour: the fields involved tend to be large without
any ambient vector space structure, making the problems closer in nature to what we shall call the ‘integer
case’ in this article.
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t ∈ G. The group of characters Ĝ, also known as the dual of G, is thus in our case
isomorphic to G = Fnp itself, but we shall nevertheless write Ĝ for emphasis.

The Fourier transform f̂ : Ĝ → C of a function f : G → C is then defined, for each
t ∈ Ĝ, by the formula

f̂(t) := Ex∈Gf(x)ωx·t,

where the expectation operator Ex∈G stands for the normalised (finite) sum over all ele-
ments x ∈ G. More generally, for any subset B ⊆ G and any function g : B → C, we
let

Ex∈Bg(x) :=
1

|B|
∑
x∈B

g(x).

The inversion formula states that with the above definition of the Fourier transform, we
can recover f from its Fourier coefficients via the sum

f(x) =
∑
t∈Ĝ

f̂(t)ω−x·t.

Plancherel’s identity asserts that
〈f, g〉 = 〈f̂ , ĝ〉,

where
〈f, g〉 := Exf(x)g(x) and 〈f̂ , ĝ〉 :=

∑
t

f̂(t)ĝ(t),

and we shall refer to it as Parseval’s identity whenever f and g are equal. Note that inner
products on physical space are normalised, while those on frequency space are not. We
shall adopt the same convention for the Lp(G) and `p(Ĝ) norms, respectively. Finally, we
define the convolution f ∗ g : G→ C of two functions f, g : G→ C by

f ∗ g(x) := Ey∈Gf(y)g(x− y).

In additive number theory, which deals with the structure of sum sets A+B := {a+b : a ∈
A, b ∈ B} for finite sets A,B, the convolution operator is an exceedingly useful tool since
A + B = supp(1A ∗ 1B), where 1A and 1B denote the characteristic functions of the sets
A and B, respectively. The convolution thus opens up an analytic approach to the study
of sum sets. The crucial fact driving the utility of the Fourier transform in this context is
that it diagonalizes the convolution operator, in other words, for all t ∈ Ĝ,

f̂ ∗ g(t) = f̂(t) · ĝ(t).

We leave the verification of this identity as an exercise to the reader.
In order to be able to refer to the set of large Fourier coefficients of a function, we

introduce the following definition.

Definition 1.1. Let ε > 0, and let f : G→ C. We define the ε-large spectrum of f to be
the set

Specε(f) := {t ∈ Ĝ : |f̂(t)| ≥ ε‖f‖1}.
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Notice that the ε-large spectrum of a bounded function cannot contain too many ele-
ments. Indeed, by Parseval’s identity we have

‖f‖22 = ‖f̂‖22 ≥
∑

t∈Specε(f)

|f̂(t)|2 ≥ ε2‖f‖21|Specε(f)|,

and hence |Specε(f)| ≤ ε−2‖f‖22/‖f‖21. In particular, when f = 1A is the characteristic
function of a subset A ⊆ G of density α := |A|/|G|, then |Specε(1A)| ≤ ε−2α−1 . More
precise and extremely useful statements can be made about the large spectrum of a func-
tion, which we shall barely touch upon in this article. At this point we only mention the
following theorem due to Chang [?].

Theorem 1.2. Let ε > 0 and suppose that A ⊆ G is a subset of density α. Then the
spectrum Specε(1A) is contained in a subspace of dimension at most

8ε−2 log(α−1).

For a proof we refer the interested reader to [?] or the alternative approach in [?].
Throughout this text, we employ Vinogradov’s notation f � g to mean “f is bounded

above by a constant times g”, or f = O(g). We shall denote by o(1) a quantity that goes
to 0 as |G| (and in particular n) goes to infinity.

1.2. Additive structure in iterated sum sets. As a warm-up exercise we shall use the
Fourier transform to show that iterated sum sets contain a surprising amount of additive
structure. For any subset A ⊆ G = Fnp , let 2A−2A := {a1+a2−a3−a4 : a1, a2, a3, a4 ∈ A}.
A rather simple argument, which can be traced back to [?], shows that such an iterated
sum set always contains a rather large subspace.

Proposition 1.3. Let A ⊆ G be a subset of density α. Then there exists a subspace V 6 G
of codimension at most 2α−2 such that 2A− 2A ⊇ V .

Proof: Observe that the iterated sum set 2A − 2A is the support of the function
g := 1A ∗ 1A ∗ 1−A ∗ 1−A, so it suffices to exhibit a large subspace V with the property
that g(x) > 0 for all x ∈ V . For reasons which shall become clear in a moment, we set
K := Specρ(1A) for some parameter ρ > 0 to be chosen later, and let V :=< K >⊥ be the
orthogonal complement of the vector subspace of G spanned by K. By Parseval’s identity
the codimension of V , which is at most the size of K, is bounded above by ρ−2α−1. Now
consider
(1.1)
g(x) = 1A ∗ 1A ∗ 1−A ∗ 1−A(x) =

∑
t

|1̂A(t)|4ω−x·t =
∑
t∈K

|1̂A(t)|4ω−x·t +
∑
t/∈K

|1̂A(t)|4ω−x·t.

When x ∈ V =< K >⊥, the first sum is by positivity at least as large as the contribution
made by t = 0, that is, bounded below by |1̂A(0)|4 = α4. On the other hand, the second
sum is in absolute value at most

sup
t/∈K
|1̂A(t)|2

∑
t/∈K

|1̂A(t)|2 ≤ α2ρ2 · α = α3ρ2.
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Setting ρ :=
√
α/2, we find that the second sum in (1.1) is at most half the size of the first,

and therefore g(x) ≥ α4/2 > 0 for all x ∈ V . Finally, with this choice of ρ the codimension
of V is bounded above by 2α−2 as claimed. �

The same is not necessarily true of the 2-fold difference set A − A, in a rather strong
sense. Consider the group Fn2 , where addition and subtraction conveniently coincide. Green
[?] adapted an example of Ruzsa [?] to show that there exist sets of density 1/4 such that
A + A does not contain the coset of any subspace of codimension

√
n. An example of a

set with this remarkable property is the set consisting of all vectors x ∈ Fn2 with at least
n/2 +

√
n/2 1s with respect to the standard basis. We refer the reader to [?] for a proof

and to [?] for further interesting work on this problem.

2. The classics

We begin our exposition with a finite field analogue of a classical result of Roth [?], who
proved in 1953 that any subset of the first N integers which does not contain a non-trivial
3-term arithmetic progression, i.e. a configuration of the form x, x + d, x + 2d for some
x, d ∈ Z, must be of vanishingly small size if we think of N as tending to infinity (see
Theorem 3.4 in Chapter 3). The corresponding question in Fn3 was studied by Meshulam
[?] in 1995, whose argument is a prime example of both the power of the Fourier transform
and the advantages of the finite field model. For these reasons we present it in full detail
in Section 2.1. We continue in Section 2.2 with a discussion of Freiman’s theorem, which
informs us about the structure of sets with small sum set and whose finite field version
is due to Ruzsa [?]. Finally, in Section 2.3 we introduce the Gowers uniformity norms,
which have been fundamental to the quantitative study of arithmetic patterns of higher
complexity, leading up to a sketch of Szemerédi’s celebrated theorem on the existence of
long arithmetic progressions in dense sets [?].

2.1. 3-term arithmetic progressions in dense sets. In this section we study a first
application of the discrete Fourier transform to a question in additive number theory: how
large can a subset of the integers {1, . . . , N} be before it must contain a 3-term arithmetic
progression? It is intuitively obvious that the larger a subset of the first N integers is, the
harder it will be for it to avoid arithmetic structures such as 3-term progressions. It turns
out that establishing the exact threshold at which a set is guaranteed to contain a certain
arithmetic structure on density grounds alone is a very difficult question, which has kept
mathematicians occupied for almost a century and remains unsolved to this day. Successive
attempts at improving the bounds for this problem (in particular the upper bound) have
led to important developments in discrete harmonic analysis that are of interest in their
own right.

Before we prove the first main result in this direction in the finite field model, let us
give a brief indication of why the Fourier transform might be useful for counting 3-term
arithmetic progressions. Looking back at the definition, it is not difficult to see that if a
subset of G = Fnp (or rather, its indicator function) has no large Fourier coefficients besides
the trivial one at zero, then we would expect it to be quite uniformly distributed across
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the entire space. In particular, it turns out to be rather straightforward to count 3-term
arithmetic progressions in such a set.

Our first lemma below states that the number of progressions in a set whose non-trivial
Fourier coefficients are small coincides with the number one would expect to find in a set
whose elements are chosen from G with probability α = |A|/|G|. In what follows we fix
p = 3 for simplicity, although it can easily be taken to be a larger prime.2

Lemma 2.1. Let A ⊆ G = Fn3 be a subset of density α satisfying supt6=0 |1̂A(t)| = o(1).
Then A contains (α3 + o(1))|G|2 3-term arithmetic progressions.

Proof: Let 2 · A = {2a : a ∈ A}, not to be confused with 2A := A + A used earlier.
The normalised count of 3-term progressions in A can be written as

T3(1A, 1A, 1A) := Ex,d1A(x)1A(x+ d)1A(x+ 2d) = 〈1A ∗ 1A, 12·A〉,
where the latter equality comes from a change of variable x+ d 7→ y and the definition of
convolution. But by Parseval’s identity,

T3(1A, 1A, 1A) = 〈1̂2
A, 1̂2·A〉 = α3 +

∑
t6=0

1̂A(t)21̂A(−2t) = α3 +
∑
t6=0

1̂A(t)3,

where we have used the fact that −2 ≡ 1 mod 3. Now the latter sum is bounded above by

sup
t6=0
|1̂A(t)|

∑
t

|1̂A(t)|2 = sup
t6=0
|1̂A(t)| · Ex|1A(x)|2 = sup

t6=0
|1̂A(t)| · α

by Plancherel, from which we obtain
T3(1A, 1A, 1A) = α3 + o(1)

as claimed. �
We shall see in a moment that this relatively easy argument forms a fruitful starting

point for the proof of Meshulam’s theorem [?], which states that any sufficiently dense set
must contain a non-trivial 3-term progression.

Theorem 2.2. Let A ⊆ G = Fn3 . Suppose that A contains no non-trivial 3-term progres-
sions. Then

|A| � |G|
log |G|

.

The dichotomy lying at the heart of the proof of Theorem 2.2 is as follows. Either a
set A is uniform in the sense that its non-trivial Fourier coefficients are small, in which
case Lemma 2.1 tells us that it contains lots of 3-term arithmetic progressions; or it is not
uniform, in which case we stand to gain some additional structural information about the
set from its large Fourier coefficients, which in turn also implies, as we shall see, that it
contains non-trivial progressions.3

2Note, however, that the problem of counting a 3-term arithmetic progressions becomes trivial in char-
acteristic 2, as it amounts to computing the number of triples (x, y, z) ∈ A3 satisfying x + y = 2z ≡ 0
mod 2.
3Note that while any 3-term progression in Fn3 forms a complete line, the proof makes no use of this special
geometric feature.
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To underscore this dichotomy we shall split the proof into several parts. Let us first
prove a lemma to the effect that if a set is progression-free, then its characteristic function
must possess a large Fourier coefficient, complementing the introductory Lemma 2.1 above.

Lemma 2.3. Let A ⊆ G be a subset of density α, with |G| ≥ 2α−2. Suppose that A
contains no non-trivial 3-term progressions. Then there exists t 6= 0 such that

|1̂A(t)| ≥ 1

2
α2.

Proof: As before, the normalised number of 3-term progressions in A can be written
as

T3(1A, 1A, 1A) = Ex,d1A(x)1A(x+ d)1A(x+ 2d) = 〈1A ∗ 1A, 12·A〉 = α3 +
∑
t6=0

1̂A(t)3.

Assuming that A contains no non-trivial 3-term progressions, we have that T3(1A, 1A, 1A) =
α/|G|, and therefore by the hypothesis on |G| that

1

2
α3 ≤ |

∑
t6=0

1̂A(t)3| ≤ sup
t6=0
|1̂A(t)|

∑
t

|1̂A(t)|2.

The latter sum is as usual equal to α by Parseval’s identity, and it follows that there exists
a t 6= 0 with |1̂A(t)| ≥ 1

2
α2. �

We shall next show that the existence of a large Fourier coefficient implies that A exhibits
significant bias towards an affine subspace of Fn3 of codimension 1.

Lemma 2.4. Let A ⊆ G be a subset of density α. Suppose t 6= 0 is such that |1̂A(t)| ≥ α2/2.
Then there exists a subspace V 6 Fn3 of codimension 1 on some translate of which A has
density at least α(1 + α/4).

Proof: Write V :=< t >⊥ for the orthogonal complement of the span of the vector t,
and let vj + V , j = 1, 2, 3 be the complete set of cosets of V . Write also fA := 1A − α for
the so-called balanced function of A. Then

1̂A(t) = f̂A(t) =
1

|G|

3∑
j=1

∑
x∈vj+V

(1A(x)− α)ωtx =
3∑
j=1

1

|G|
∑

x∈vj+V

(1A(x)− α)ωj =
3∑
j=1

ajω
j,

where aj = (|A∩(vj+V )|−α|V |)/|G|. By taking absolute values and applying the triangle
inequality we find that

∑
j |aj| ≥ α2/2. However,

∑
j aj = 0, so

∑
j |aj| + aj ≥ α2/2, and

thus by the pigeonhole principle there exists at least one value of j for which |aj|+aj ≥ α2/6.
It follows that aj ≥ α2/12, or in other words, as |G| = 3|V |, that

|A ∩ (vj + V )| ≥ α(1 +
1

4
α)|V |.

�
We are now in a position to complete the proof of Meshulam’s theorem by iteratively

applying Lemmas 2.3 and 2.4.
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Proof of Theorem 2.2: Suppose A is of density α in G and contains no 3-term
arithmetic progressions. Then by Lemma 2.3, it has a non-trivial Fourier coefficient of size
at least α2/2, and consequently by Lemma 2.4 there exists a subspace V of codimension 1
and a vector vj such that A has density at least α+α2/4 on V. Denote the set (A−vj)∩V
by A1. Note that since A was progression free, so is A1 as 3-term arithmetic progressions
are translation invariant. From now on we focus on the set A1 ⊆ V ∼= Fn−13 of density
α + α2/4, and repeat the above procedure with G = Fn−13 .

Clearly, our iteration will come to an end if the density of the set Ak obtained at the
kth step were to exceed 1. How soon is this likely to happend? In the above argument
the density increases from α to 2α in at most α/(α2/4) = 4α−1 steps, from 2α to 4α in at
most 2α/((2α)2/4) = (4α−1)/2 steps and so on, reaching the critical density 1 in at most
(1 + 1/2 + 1/4 + . . . )4α−1 = 8α−1 steps. This means that the size of G after the iteration
ends is at least 3n−8α

−1 . But at the final step we must have had |G| < 2α−2 because
otherwise we could have applied Lemma 2.3 one more time. Solving 3n−8α

−1 ≤ 2α−2 now
gives the desired bound. �

It is not difficult to see that this proof strategy extends to other (translation-invariant)
linear patterns defined by one equation (note that a 3-term progression can also be thought
of as a triple (x, y, z) satisfying x + z = 2y), for which we shall describe exciting recent
progress in Section 4.3. However, the Fourier transform technique breaks down already for
arithmetic progressions of length 4, which are defined by two equations in four variables.
In Section 2.3 we shall see in detail why this is the case, and show how to overcome this
problem.

2.2. The structure of sets with small sum set. The study of sets with small sum set
in additive combinatorics has a long history. In particular, there is a host of important
results concerning finite subsets of the integers and other abelian groups which we are
unable to treat in satisfactory detail in this survey. For a comprehensive account of this
classical theory we therefore refer the reader to [?].

In the finite field model Fnp , it is not hard to see that given a subset A ⊆ Fnp , we have
A + A = A, and therefore |A + A| = |A|, if and only if A is a (possibly affine) subspace
of Fnp . A slightly more involved exercise shows that even if we relax the condition on the
size of the sum set somewhat, say to |A + A| ≤ K|A| with K < 3/2, then A still retains
a significant amount of subspace structure in the sense that it is contained in a subspace
V 6 Fnp such that |A| ≥ 2|V |/3.

We call the least constantK with the property that |A+A| ≤ K|A| the doubling constant
ofA. In what follows we shall consider the regime where the doubling constant is potentially
large but remains constant (compared with the size of the set A and the group G, which
we think of as tending to infinity). The main theme of this section will be that if a set has
small doubling in this sense, then this must be because it has some underlying algebraic
structure. Specifically, we shall show that if A ⊆ Fnp is a subset satisfying |A+A| ≤ K|A|,
then it is efficiently contained in a subspace of Fnp whose relative size is bounded only in
terms of K.
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Of course, when a set is efficiently contained in a subspace its growth under the operation
of repeatedly taking sum sets is naturally limited – the iterated sum set will eventually fill
up the subspace but cannot grow further. Hence we should expect to be able to prove a
weaker statement of the following type: if a set has small doubling, then the growth of its
iterated sum sets must remain bounded. The extent to which this is the case was quantified
by Plünnecke [?] in the following theorem, known as Plünnecke’s inequality. Recently, a
simple and elegant proof was discovered by Petridis [?], which we are fortunate to be able
to present here.4

Theorem 2.5. Let A,B ⊆ G be such that |A+B| ≤ K|A|. Then for all integers k,m ≥ 1

|kB −mB| ≤ Kk+m|A|.
Proof: Without loss of generality assume that |A+B| = K|A|. Choose a non-empty

subset A′ ⊆ A such that the ratio |A′+B|/|A′| is minimized, and call this ratioK ′. Observe
that K ′ ≤ K, and that |A′ +B| = K ′|A′| as well as |A′′ +B| ≥ K ′|A′′| for all A′′ ⊆ A.

Claim 2.6. Let A′, B,K ′ be as above. Then for every set C, |A′ +B + C| ≤ K ′|A′ + C|.
Let us complete the proof of the theorem assuming the claim. We first show that for all

m ∈ N,
|A′ +mB| ≤ K ′m|A′|.

Indeed, form = 1 the inequality is true by assumption. Form > 1 we assume the inequality
holds for m− 1 and set C = (m− 1)B in Claim 2.6 to get |A′+mB| ≤ K ′|A′+ (m− 1)B|.
By the inductive hypothesis, the right-hand side is bounded above by K ′m|A′|.

The full result now follows from a simple fact known as Ruzsa’s triangle inequality, which
is the statement that for any sets U, V and W , one has |U ||V −W | ≤ |U + V ||U + W |.
(This is easily proved by defining a map φ : U × (V −W ) → (U + V ) × (U + W ), which
takes (u, x = v−w) to (u+ v, u+w), where for each x ∈ V −W we fix one representation
v − w, and checking that this map is injective.) Indeed, with this inequality we have

|A′||kB −mB| ≤ |A′ + kB||A′ +mB| ≤ K ′k|A′| ·K ′m|A′| ≤ Kk+m|A′|2,
which immediately yields |kB −mB| ≤ Kk+m|A′| ≤ Kk+m|A| as desired. �

Proof of Claim 2.6: We shall prove this by induction on the size of the set C.
When |C| = 1, the claim is trivially true by assumption. Suppose now that the result is
true for C, and consider C ′ = C ∪ {x}. We observe that

A′ +B + C ′ = (A′ +B + C) ∪ [(A′ +B + x) \ (D +B + x)],

where D is the set D := {a ∈ A′ : a+B + x ⊆ A′ +B +C}. But by the defining property
of the constant K ′, we have |D +B| ≥ K ′|D|, so that
(2.1) |A′ +B + C ′| ≤ |A′ +B + C|+ |A′ +B| − |D +B| ≤ K ′(|A′ + C|+ |A′| − |D|).

We shall apply a similar argument a second time, writing
A′ + C ′ = (A′ + C) ∪ [(A′ + x) \ (E + x)],

4The argument that followed is valid in significant generality, although we shall continue to think of G as
being Fnp .
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where E is the set E := {a ∈ A′ : a+ x ∈ A′ + C} and the union is disjoint. We conclude
that, as E ⊆ D,

|A′ + C ′| = |A′ + C|+ |A′| − |E| ≥ |A′ + C|+ |A′| − |D|,
which together with (2.1) implies the claim. �

Equipped with Plünnecke’s inequality we are now in a position to prove the promised
structural result about sets with small sum set, which serves as another advertisement for
the elegance and power of the finite field model. Theorem 2.7 below is a beautiful theorem
of Ruzsa [?], who adapted an earlier result of Freiman in the integers [?] to the group Fnp .
It is therefore often referred to as the Freiman-Ruzsa theorem.

Theorem 2.7. Let A ⊆ G = Fnp be a subset satisfying |A + A| ≤ K|A|. Then A is
contained in a subspace H 6 Fnp of size at most K2pK

4|A|.

Proof: The crucial idea that gets us started is to choose a subset X ⊆ 2A−A which is
maximal with respect to the property that the translates x+A for x ∈ X are disjoint. We
first show that such a set X cannot be too large. Indeed, we clearly have X+A ⊆ 3A−A,
and by Plünnecke’s inequality (Theorem 2.5) we know that |3A − A| ≤ K4|A|. Since the
sets x+ A are also disjoint and each of size |A|, we therefore have

K4|A| ≥ |3A− A| ≥ |X + A| =
∑
x∈X

|x+ A| = |X||A|,

and thus |X| ≤ K4.
Next we show that

2A− A ⊆ X + (A− A).

To see this, observe that if y ∈ 2A−A, then y +A ∩ x+A 6= ∅ for some x ∈ X: if y ∈ X
the statement is trivial, and if y /∈ X it follows from the assumption that X was chosen
maximally. In either case it follows that y ∈ X + (A− A).

Adding A repeatedly to both sides of the preceding inclusion leads to the statement that

(2.2) kA− A ⊆ (k − 1)X + (A− A)

for all k ≥ 2. This is encouraging as we seem to be able to compress more and more sums
of A into very few translates of A− A (remember that X is of constant size).

Writing H for the subgroup of Fnp generated by A and Y for the subgroup generated by
X, we infer from (2.2) that

H =
⋃
k≥1

(kA− A) ⊆ Y + (A− A).

But every element of Y can be written as the sum of at most |X| elements with coefficients
between 1 and p, so |Y | ≤ p|X| ≤ pK

4 . The observation that

|H| ≤ |Y ||A− A| ≤ K2pK
4|A|

concludes the proof. �
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The dependence of the size of H on the doubling constant K can be improved by more
careful arguments (in particular using combinatorial compressions, see [?, ?, ?]). However,
the following example shows that it must be exponential.

Example 2.8. Consider the set A consisting of the union of a very large subspace H with
K − 1 randomly chosen elements (not in H). Then A has doubling about K, but any
(affine) subspace H ′ containing A must have size at least pK−2|A|.

Note, however, that the above example is still highly structured: apart from a constant
number of points, the set A really is contained in a subspace of size at most |A| (namely
H). This leads to the following natural reformulation of the Freiman-Ruzsa theorem.

Theorem 2.9. Let A ⊆ G = Fnp be a subset satisfying |A+ A| ≤ K|A|. Then there exists
a subspace H 6 Fnp of size at most C1(K)|A| such that for some x ∈ G,

|A ∩ (x+H)| ≥ |A|
C2(K)

,

where C1(K) and C2(K) are constants depending only on K.

We are now able to state the Polynomial Freiman-Ruzsa Conjecture (often referred to
by the shorthand ‘PFR’), which, over one decade after its popularisation by Green, is still
one of the most central open problems in additive combinatorics (see Section 10 of [?] for
various alternative formulations and a detailed history of the conjecture).

Conjecture 2.10. The constants C1(K) and C2(K) in Theorem 2.9 above can be taken
to be polynomial in K.

Recent work of Sanders [?] comes very close to resolving this conjecture; we shall discuss
it in Section 4.2. In the past decade there have also been numerous generalisations of
Theorem 2.7 to other groups, including non-abelian ones. The most general result in this
direction to date is [?], and some excellent recent surveys on this topic are [?, ?, ?].

2.3. Quadratic uniformity and Szemerédi’s theorem. In Section 2.1 we saw how the
Fourier transform was useful for establishing the existence of certain arithmetic structures
in dense subsets of Fnp . The crucial starting point of the proof of Theorem 2.2 was the
Fourier identity

T3(A,A,A) = Ex,d1A(x)1A(x+ d)1A(x+ 2d) =
∑
t

1̂A(t)3,

which related the number of 3-term progressions in A to a sum of Fourier coefficients that
was easily estimated. It is natural to ask whether a similar identity can be formulated for
4-term progressions, and the answer turns out to be negative. (The sum on the right-hand
side requires two distinct parameters, prohibiting any straightforward estimation.)

This fact alone, however, would not be a good reason to rule out the use of Fourier analy-
sis in order to establish a version of Meshulam’s theorem for 4-term progressions. But there
is a more serious obstacle: the analogue of Lemma 2.1, which constitutes the fundamental
premise of the proof of Meshulam’s theorem, breaks down for 4-term progressions. Recall
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that this lemma said that if a set is uniform in the sense that all its non-trivial Fourier
coefficients are small, then it contains the number of 3-term progressions expected in the
random case.

Theorem 2.11 below exhibits an example of a set which is uniform in the Fourier sense
just described, but which contains significantly more than the expected number of 4-term
progressions. This was well known in ergodic theory before it was rediscovered by Gowers
in [?]. We give a finite field version of his argument here.

Theorem 2.11. Let p > 4 be a prime. There exists ε > 0 such that for every δ > 0 there
exists n and a set A ⊆ G = Fnp of density α with the following properties.

(1) The set A is uniform in the sense that supt6=0 |1̂A(t)| ≤ δ.
(2) The set A contains significantly more than the expected number of 4-term progres-

sions, namely at least a proportion α4 + ε.

Proof: Luckily such a set is very easy to write down in Fnp : we can take, for example,

A := {x ∈ Fnp : x · x = 0}.

Then the characteristic function of A can be written as 1A(x) = Euωu(x·x), where the
expectation in u is taken over Fp. Using a standard Gauss sum estimate for the quadratic
exponential sum, it is straightforward to estimate the Fourier coefficient of 1A at t 6= 0 in
absolute value by

|1̂A(t)| = |Ex∈Fnp ,u∈Fpω
ux·x+x·t| ≤ Eu6=0|Ex∈Fnpω

qu(x)| ≤ p−n/2,

where we have written qu(x) for the quadratic form ux ·x+x · t, whose rank is n whenever
u is non-zero. We conclude that property (1) holds for any δ provided n is taken large
enough. Similarly, we find that |Ex1A(x)−p−1| ≤ p−n/2 (as u = 0 with probability p−1, and
the rest of the time the exponential sum is tiny), and so the density of A is approximately
p−1 for large n.

The proof of property (2) relies crucially on the following elementary identity

(2.3) x · x− 3(x+ d) · (x+ d) + 3(x+ 2d) · (x+ 2d)− (x+ 3d) · (x+ 3d) = 0,

which is valid for all x and d in G. Recall that our aim is to count the number of 4-term
progressions in A, that is, the number of (x, d) ∈ (Fnp )2 for which Li(x, d) · Li(x, d) are
simultaneously zero for i = 1, . . . , 4, where Li(x, d) = x + (i − 1)d. Observe that by (2.3)
L4 ·L4 is automatically zero whenever L1 ·L1, L2 ·L2, L3 ·L3 are zero, so it suffices to count
the number of 3-term progressions in A. But Lemma 2.1 told us that if the non-trivial
Fourier coefficients of A are small (as they are in this case), then A contains the number
of 3-term progressions expected in the random case. It therefore follows that, up to a
negligible error, the set A contains a proportion of at least (p−1)3 4-term progressions,
which is bounded below by α4 + ε for some ε > 0. �

If the Fourier transform is not sufficient for counting 4-term progressions, a new tool is
needed. One of Gowers’s crucial achievements in [?] was the introduction of a new sequence
of norms, usually referred to as the uniformity, Gowers or Uk norms, and the realisation
that these norms play an important role in counting long arithmetic progressions. These
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norms can be defined in a variety of contexts, including the integers, but for simplicity we
shall continue to think of G as a vector space over a finite field.

Definition 2.12. Let k ≥ 2 be an integer. The Uk norm of a function f : G → C is
defined by the formula

‖f‖2kUk = Ex,h1,...,hk∈G∆h1∆h2 . . .∆hkf(x),

where ∆hf(x) := f(x)f(x+ h) is to be thought of as a discrete phase derivative.

It is not too difficult to see, but certainly not obvious, that ‖ · ‖Uk is indeed a norm, and
that these norms are nested in the sense that for any integer k ≥ 2,

‖f‖U2 ≤ ‖f‖U3 ≤ · · · ≤ ‖f‖Uk ≤ ‖f‖∞.
We leave the details to the keen reader, who may wish to refer to the book [?] or the

lecture notes [?].
Let us first examine the case k = 2 in more detail. Unravelling the definition, we see

that
‖f‖4U2 = Ex,a,bf(x)f(x+ a)f(x+ b)f(x+ a+ b),

This expression counts the number of so-called additive quadruples of f , which are closely
related to the size of the sum set studied in the preceding section. Indeed, it is not
difficult to show that if A has small doubling, then it must contain many quadruples of
the form (a1, a2, a3, a4) ∈ A4 satisfying a1 + a2 = a3 + a4, which can be reparameterised as
(x, x+ a+ b, x+ a, x+ b). This is a first indication that the results obtained in Section 2.2
may be of use to us beyond their immediate combinatorial applications.

Observe that we can also write

‖f‖4U2 = Ex|f ∗ f(x)|2 =
∑
t

|f̂(t)|4 = ‖f̂‖44,

where the penultimate equality is again just Parseval’s identity, linking the U2 norm of f
to the `4 norm of its Fourier transform. In fact, we can even relate it to the `∞ norm of f̂ ,
which we employed to such great effect in Section 2.1, by observing that

sup
t
|f̂(t)|4 ≤

∑
t

|f̂(t)|4 ≤ sup
t
|f̂(t)|2

∑
t

|f̂(t)|2

and thus
‖f̂‖∞ ≤ ‖f̂‖4 = ‖f‖U2 ≤ ‖f̂‖1/2∞ ‖f‖

1/2
2 .

This means that for L2 bounded functions, the U2 norm and the `∞ norm on Fourier space
are (at least in a qualitative sense) equivalent. This raises the hope that arguments using
the Fourier transform might be rewritten in terms of the U2 norm, and that those new
proofs might then be more amenable to generalisation.

Indeed, in many cases such a strategy turns out to be feasible and fruitful. An example
is the following lemma, whose content we have already established in Lemma 2.1: it says
that the U2 norm controls the count of 3-term arithmetic progressions. As an immediate
corollary, we note that whenever the balanced function fA = 1A − α of a set A ⊆ G of
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density α has small U2 norm, then the set A contains roughly the expected number α3|G|2
of arithmetic progressions of length 3.

Lemma 2.13. Let p ≥ 3 be a prime. Let f : G = Fnp → C be a function satisfying
‖f‖∞ ≤ 1. Then

|Ex,df(x)f(x+ d)f(x+ 2d)| ≤ ‖f‖U2 .

Proof: Set u = x+ d and write

|Ex,df(x)f(x+ d)f(x+ 2d)|2 = |Ex,uf(x)f(u)f(2u− x)|2,

which is bounded above by

Eu|Exf(x)f(2u− x)|2 = EuEx,x′f(x)f(2u− x)f(x′)f(2u− x′).

Finally, reparameterising with x′ = x+ a, 2u− x′ = x+ b gives5

Ex,a,bf(x)f(x+ a)f(x+ b)f(x+ a+ b) = ‖f‖4U2 .

�
The usefulness of the U3 norm for our immediate purpose, namely establishing the

existence of 4-term progressions in dense subsets of G, lies in the following proposition
from [?]. It states that the U3 norm controls the 4-term progression count in f , and as
such constitutes a generalisation of Lemma 2.13 above.6

Proposition 2.14. Let p > 4 be a prime. Let f : G → C be a function satisfying
‖f‖∞ ≤ 1. Then

|Ex,df(x)f(x+ d)f(x+ 2d)f(x+ 3d)| ≤ ‖f‖U3 .

In other words, if the balanced function fA = 1A−α of a set A ⊆ G of density α has small
U3 norm (in which case we call the set A quadratically uniform), then the set A contains
roughly the expected number α4|G|2 of arithmetic progressions of length 4. We omit the
proof of Proposition 2.14 as it is a straightforward (if slightly tedious) generalisation of the
Cauchy-Schwarz argument used to prove Lemma 2.13 above.

At this point it is critical to recall that the proof of Meshulam’s theorem (Theorem 2.2)
proceeded via a dichotomy: either the non-trivial Fourier coefficients of 1A were small, in
which case we were able to count the number of 3-term progressions in A rather precisely,
or there existed at least one large Fourier coefficient, which led to a density increase on a
hyperplane. Reformulated in terms of the U2 norm, the first part of the dichotomy now
states that if ‖fA‖U2 is small, where fA = 1A − α is the balanced function of A, then
A contains approximately the expected number of 3-term progressions. The second part
of the dichotomy corresponds to the following U2 inverse theorem, which describes the
structure of functions whose U2 norm is large.

5The attentive reader may have noticed that, in fact, we have proved a stronger result than stated. The
more general version |Ex,df1(x)f2(x + d)f3(x + 2d)| ≤ mini=1,2,3 ‖fi‖U2 , however, which is used in many
applications, requires one further application of Cauchy-Schwarz.
6Green and Tao refer to Proposition 2.14 as a von Neumann theorem.
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Theorem 2.15. Let δ > 0 and let f : Fnp → C be a function satisfying ‖f‖∞ ≤ 1 and
‖f‖U2 ≥ δ. Then there exists b ∈ Fnp such that

|Exf(x)ωx·b| ≥ δ2.

In other words, f correlates with a linear phase function of the form φ(x) = ωx·b.

Proof: The proof follows straight from the above-mentioned equivalence between the
U2 norm and the `∞ norm of the Fourier transform of f . Indeed, following Definition 2.12
we saw that ‖f‖2U2 ≤ ‖f̂‖∞‖f‖2, so the hypotheses imply that ‖f̂‖∞ ≥ δ2. The result now
follows from the definition of the Fourier transform. �

In order to prove a version of Theorem 2.2 for 4-term progressions, we must therefore
generalise Theorem 2.15 to the U3 norm. In other words, we must provide an answer to
the following question: when is a function large in the U3 norm? A first observation (and
easy exercise) in this direction is that if a function f : G→ C is such that ‖f‖U3 = 1, then
f must be of the form f(x) = ωq(x) for some quadratic form q on Fnp , where ω as usual
is a primitive pth root of unity. This suggests that functions with large U3 norm are of a
somewhat quadratic nature. In view of Theorem 2.15 it is therefore not unreasonable to
conjecture that if f has non-negligible U3 norm, then it must correlate with a quadratic
phase function, by which we shall mean a function of the form ωq(x) for some quadratic
form q. Theorem 2.16 to this effect, due to Green and Tao (p 6= 2) [?] and Samorodnitsky
(p = 2) [?], is known as the U3 inverse theorem over finite fields. Its proof is largely based
on groundbreaking work of Gowers [?], who had previously provided a (slightly weaker)
statement for functions defined on the integers.

Theorem 2.16. Let δ > 0, and let f : Fnp → C be a function satisfying ‖f‖∞ ≤ 1 and
‖f‖U3 ≥ δ. Then there exists an n× n matrix M and b ∈ Fnp such that

|Exf(x)ωxMx+b·x| ≥ c(δ),

for some constant c(δ) going to 0 as δ tends to 0.7

The proof of Theorem 2.16 is deep and combines Fourier analysis and additive combi-
natorics in an ingenious way. We shall be unable to do it justice in this brief account and
only provide the vaguest of sketches. For full details see Green’s lecture notes [?].

The starting point of the proof is the observation that the U3 norm satisfies the inductive
formula

‖f‖8U3 = Eh‖∆hf‖4U2 ,

where we remind the reader that we had defined ∆hf(x) = f(x)f(x+ h). We now im-
mediately see that if ‖f‖U3 is large, then for many values of h, ‖∆hf‖U2 is large, which
by the inverse theorem for the U2 norm (Theorem 2.15) means that each such derivative
∆hf correlates with a linear phase function. Now the intuition is that if the derivative of f
correlates with a linear phase function, then f itself must correlate with a quadratic phase
function. The problem with making this heuristic rigorous is that for each h we obtain
a potentially different linear phase, and it is not a priori clear that these will line up to
7We shall discuss the quantitative dependence of c(δ) on δ below.
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allow us to ‘integrate’ the linear structure of ∆hf to the desired statement about f . It is
here that various results from additive combinatorics, including the Freiman-Ruzsa theo-
rem (Theorem 2.7), come into play: they provide us with additional structural information
which enables us to ‘glue’ the different linear phases together.

The use of the Freiman-Ruzsa theorem is so crucial in the proof of Theorem 2.16 that
the dependence of c(δ) on δ depends entirely on the bound in the Freiman-Ruzsa theo-
rem. In point of fact, Green and Tao [?] and independently Lovett [?] have shown that
the Polynomial Freiman-Ruzsa Conjecture (Conjecture 2.10) is equivalent to polynomial
bounds in Theorem 2.16 (a conjecture which they termed the Polynomial Gowers Inverse
Conjecture, or PGI for short).

Combining Proposition 2.14 with Theorem 2.16 in the case p = 5, it is not too difficult
to deduce a generalisation of Meshulam’s theorem to progressions of length 4. Such a
generalisation is better known as Szemerédi’s theorem for finite fields, and indeed it was
Szemerédi [?] who first proved a qualitative statement to this effect for the integers in 1975,
using an exceedingly clever combination of purely combinatorial techniques (amongst them
his celebrated regularity lemma). Its quantitative finite field analogue is due to Green and
Tao [?].

Theorem 2.17. Let A ⊆ G = Fn5 be a set containing no (non-trivial) 4-term arithmetic
progressions. Then

|A| � |G|
(log log |G|)c

,

where c = 2−21.

This bound is of the same shape as that obtained by Gowers [?] in the integers, and
indeed the proof follows his argument very closely. Not surprisingly, it proceeds via a
density increment strategy similar to that used in the proof of Theorem 2.2. Instead of
obtaining a density increment on a hyperplane, however, Theorem 2.16 implies a density
increment on the zero-set of a quadratic form, but such sets can (with some effort) be
efficiently linearised.8

3. Passing from the model setting to the integers

Even though historically many of the results we have presented so far were known in the
integers (sometimes decades) before the finite field analogue was proved, the real strength
of the finite field model lies in the possibility of reversing this order: one hopes to be able
to attack a problem in the simplified model setting of Fnp and then to transfer the main
features of the argument to the technically more demanding context of the integers. As
we mentioned in the introduction, in many cases this can be achieved in a now more or
less standardised fashion. Because the method is highly technical, however, we shall only
be able to explain the general principle here. Unfortunately, for many applications its
implementation remains a case of ‘learning by doing’.
8A bound of |G|/(log |G|)c in the above theorem, obtained by refinements of the basic iteration argument,
is now known [?] and far exceeds anything proved in the integer case.
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In fact, instead of dealing with the integers directly (which, from the point of view of a
discrete harmonic analyst, are a somewhat uncomfortable infinite group with a continuous
dual), one can consider many questions of interest in arithmetic combinatorics in a large
cyclic group Z/NZ withN a prime, which we shall abbreviate as ZN in the sequel (not to be
confused with the N -adic integers). Specifically, it is often convenient to embed the initial
segment of integers {1, . . . ,M}, in which the problem is originally posed, into a cyclic
group ZN of prime order N, which is chosen sufficiently large so that no ‘wrap-around’
issues arise. We shall gloss over this point repeatedly below by interchanging {1, . . . , N}
and ZN whenever it is convenient.

Before moving on, let us clarify what we mean by the Fourier transform on ZN . For a
function f : ZN → C we let f̂ : ẐN → C be the function which is defined, for each t ∈ ẐN ,
by the formula

f̂(t) = Ex∈ZNf(x)ωxt,

where ω is an Nth root of unity. (Again, the Pontryagin dual of ZN is isomorphic to ZN
itself, but we still write ẐN for emphasis.) The inversion formula and Parseval’s identity are
virtually identical to those in Fnp , following the same normalisation conventions as before.

In a such group ZN then we clearly have no non-trivial algebraic substructures that
could play the role of the subspaces of Fnp , which we made incessant use of in Section 2.
Considering a dense subspace V 6 Fnp as being defined by the bounded number of vectors
that span its orthogonal complement, however, we arrive at the following natural definition
that will serve as a substitute for a subspace in ZN .
Definition 3.1. Let K ⊆ ẐN be a set of frequencies and let ρ > 0. The Bohr set or Bohr
neighbourhood B(K, ρ) is defined as

B(K, ρ) := {x ∈ ZN : sup
t∈K
‖xt/N‖ < ρ},

where ‖β‖ denotes the distance of β from the nearest integer.9

The parameter ρ is called the width of B(K, ρ), while the size of K is often referred to as
the dimension of the Bohr set (even though strictly speaking this parameter corresponds
to the codimension of the subspace of which it is supposed to be an analogue).

Without further ado, let us give the ZN -analogue of Bogolyubov’s lemma (Proposition
1.3). The reader will notice that the two arguments are nearly identical, modulo the fact
that we have traded in the notion of exact orthogonality for an approximate one.

Proposition 3.2. Let A ⊆ ZN be a subset of density α. Then there exists a subset K ⊆ ẐN
of size at most 2α−2 such that A+ A− A− A ⊇ B(K, 1/4).

Proof: As in the finite field version, we begin by writing, for each x ∈ ZN ,

g(x) = 1A ∗ 1A ∗ 1−A ∗ 1−A(x) =
∑
t∈ẐN

|1̂A(t)|4ωxt.

9In the setting of a general group H, we define the Bohr set B(K, ρ) for K ⊆ Ĥ and ρ > 0 by B(K, ρ) :=
{x ∈ H : supγ∈K |γ(x) − 1| ≤ ρ}. When H = ZN this is equivalent to Definition 3.1 (up to a constant
factor), and we stick with the latter throughout this section for reasons of notational simplicity.
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Set K := Specγ(1A) for some parameter γ to be chosen later. We shall show that for
x ∈ B(K, 1/4), the real part of the expression on the right-hand side is strictly positive,
and thus any x ∈ B(K, 1/4) also lies in 2A− 2A.

First, observe that for x ∈ B(K, 1/4) and t ∈ K, we have cos(2πxt/N) > 0, and hence

<
∑
t

|1̂A(t)|4ωxt =
∑
t∈K

|1̂A(t)|4 cos(2πxt/N) +
∑
t/∈K

|1̂A(t)|4 cos(2πxt/N)

≥ |1̂A(0)|4 −
∑
t/∈K

|1̂A(t)|4.

We easily compute |1̂A(0)|4 = α4 and
∑

t/∈K |1̂A(t)|4 ≤ γ2α3 by Parseval as before. It
follows that for x ∈ B(K, 1/4), g(x) is strictly positive if we set γ :=

√
α/2. �

In practice we will often need to extract more rigid structural information from a Bohr
set. In particular, for an argument such as the one used to prove Meshulam’s theorem to
be applied in iteration, we will need the structure obtained upon a first application of the
Fourier transform to resemble the original space {1, . . . , N} itself, in other words, we would
like the Bohr set to somehow look like an arithmetic progression. The following folklore
lemma is an easy first step in this direction.

Lemma 3.3. Let K be a non-empty subset of ẐN and let ρ > 0. Then the Bohr set B(K, ρ)
contains an arithmetic progression of size at least ρN1/|K| centered at 0.

Proof: Consider the |K|-dimensional torus T|K| := (R/Z)|K|, and split it into |K|-
dimensional subcubes of side length N−1/|K| (as equitably as possible). There are at most
dN1/|K|e such subcubes. Now consider the map φ : ZN → T|K| which sends x ∈ ZN
to the vector (xt/N)t∈K ∈ T|K|. By the pigeonhole principle, there must be two elements
x, x′ ∈ ZN such that φ(x) and φ(x′) lie in the same subcube, that is, ‖(x−x′)t/N‖ ≤ N−1/|K|

for all t ∈ K. Let z := x− x′. Then for all s ∈ ZN such that −ρN1/|K|/2 ≤ s ≤ ρN1/|K|/2,
we have ‖szt/N‖ < ρ for all t ∈ K, which implies that the arithmetic progression

{sz : −ρN1/|K|/2 ≤ s ≤ ρN1/|K|/2}

is contained in B(K, ρ). �
Indeed, Roth’s original argument [?] essentially proceeded via a density increment strat-

egy as in Theorem 2.2 but relative to a long arithmetic progression, resulting in the fol-
lowing theorem.

Theorem 3.4. Let A ⊆ {1, . . . , N}. Suppose that A contains no non-trivial 3-term pro-
gressions. Then

|A| � N

log logN
.

Notice that the bound here is much weaker than the one we obtained in the finite field
case. But the attentive reader may already have been struck by the fact that in passing to
an arithmetic progression inside the Bohr set we appear to have discarded its potentially
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useful multidimensional structure. Using some arguments from the geometry of numbers,
it is instead possible to prove the following stronger statement (see [?]).10

Proposition 3.5. Let K be a non-empty subset of ẐN and let ρ > 0. Then the Bohr set
B(K, ρ) contains a proper multidimensional arithmetic progression of dimension |K| and
size at least (ρ/|K|)|K|N . In other words,

(3.1) B(K, ρ) ⊇ {x ∈ ZN : x =

|K|∑
i=1

mixi : mi ∈ Z, |mi| ≤ li}

for some x1, . . . , x|K| ∈ ZN and some integers li such that
∏|K|

i=1 li ≥ (ρ/|K|)|K|N .

Reassuringly, these multidimensional arithmetic progressions also crop up as analogues
of subspaces in less analytic arguments. For example, the integer equivalent of the Freiman-
Ruzsa theorem (Theorem 2.9), due to Freiman [?], states that a finite subset of the integers
whose sum set is small is efficiently contained in a multidimensional arithmetic progression.

Theorem 3.6. Let A ⊆ Z be a finite subset of the integers satisfying |A + A| ≤ C|A|
for some constant C. Then A is contained in a translate of a multidimensional arithmetic
progression of the form (3.1) of dimension at most C1 and size at most C2|A|, where C1

and C2 are constants depending only on C.

A conjecture analogous to Conjecture 2.10 applies in this context.
It turns out that for many purposes, a Bohr set B(K, ρ) can also usefully be thought of

as a metric ball of radius ρ and dimension |K|. Indeed, it displays a similar behaviour as
far as size is concerned. The proof of the following lemma is elementary and omitted (see
[?] for details).

Lemma 3.7. For any frequency set K ⊆ ẐN and width parameter ρ > 0, we have

|B(K, ρ)| ≥ ρ|K|N and |B(K, 2ρ)| ≤ 4|K||B(K, ρ)|.

Whether we think of Bohr sets as balls or (multidimensional) arithmetic progressions,
what we have lost by passing from our model setting to the integers is the very useful
property of additive closure that a subspace of Fnp possesses: it is no longer true that when
two elements x, y ∈ ZN belong to a Bohr set B, then x + y also belongs to B. However,
such a closure property can be replicated in an approximate sense by considering pairs of
Bohr sets (B,B′). It turns out that, with an appropriate choice of parameters, these can
be made to behave like approximate subgroups in the sense that B+B′ ≈ B. We illustrate
this idea with the following simple lemma, which says that for a pair of Bohr sets (B,B′)
for which B +B′ is not much larger than B itself, the number of 3-term progressions in B
is almost what one would expect to find in the case of two subspaces.

10Note that the size of the arithmetic progression obtained here is linear in N , instead of a small power of
N as in Lemma 3.3 above.
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Lemma 3.8. Let ε > 0, let B ⊆ ZN and let B′ ⊆ ZN be a symmetric set containing 0
such that |B +B′| ≤ (1 + ε)|B|. Then

T3(B,B,B) ≥ (1− 2ε)ββ′,

where β and β′ denote the densities of B and B′ in ZN , respectively.

Proof: For each fixed b ∈ B′ we have B∪(B+b) ⊆ B+B′, and therefore by hypothesis
|B ∪ (B+ b)| ≤ (1 + ε)|B|. The same bound holds by a similar argument for |B ∪ (B− b)|.
Now for fixed b ∈ B′, we have by elementary considerations that

|B∩(B+b)∩(B−b)| = 3|B|−|B∪(B+b)|−|B∪(B−b)|+|B∪(B+b)∪(B−b)|−|(B+b)∪(B−b)|,

which is bounded below by 3|B|−2(1 + ε)|B|+ 0 = (1−2ε)|B|. It follows that there are at
least (1− 2ε)|B||B′| 3-term arithmetic progressions of the form x− b, x, x+ b in B, giving
the desired result upon normalisation. �

This notion of approximate additive closure, which is due to Bourgain [?], is formalised
in the following definition.

Definition 3.9. A Bohr set B := B(K, ρ) is said to be regular if, for every 0 < ε <
(100|K|)−1,

|B(K, ρ(1 + ε))| ≤ |B|(1 + 100|K|ε) and |B(K, ρ(1− ε))| ≥ |B|(1− 100|K|ε).

Now since B(K, σ)+B(K, τ) ⊆ B(K, σ+τ), we see that a regular Bohr set B := B(K, ρ)
together with its scaled-down version B′ := B(K, ρε) provides a pair (B,B′) with the
property that B + B′ ≈ B. The following lemma, again due to Bourgain [?], tells us that
there are a fair number of choices for the width parameter ρ that make a Bohr set with
given frequency set K ⊆ ẐN regular.

Lemma 3.10. Let K be a subset of ẐN and let ρ0 > 0. Then there exists ρ ∈ [ρ0, 2ρ0] such
that the Bohr set B(K, ρ) is regular.

In applications, one often requires nested sequences of regular Bohr sets with carefully
chosen width parameters, making the resulting arguments technically rather challenging.
Increasingly sophisticated refinements of this technology have led to several quantitative
improvements in Theorem 3.4 above, starting with Bourgain [?], who proved a bound of
the form |A| � N · (log logN/ logN)1/2 and culminating in recent work of Sanders, who
showed that |A| � N · (log logN)6/ logN (see also Section 4.3).

To conclude this section, let us briefly remark on the analogue of quadratic Fourier
analysis in ZN , which turns out to be vastly more complex than its finite field counterpart.
Indeed, it is not true that any function f of large U3 norm correlates with a quadratic
phase function of the form ωq for some quadratic function q defined on ZN . Instead, such
a statement is only true locally, that is, with the quadratic restricted to a Bohr set. To
make this notion precise, we define a local quadratic phase on a Bohr set B to be a function
γ : B → T such that

(3.2) γ(x)γ(x+a)−1γ(x+b)−1γ(x+c)−1γ(x+a+b)γ(x+a+c)γ(x+b+c)γ(x+a+b+c)−1 = 1
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whenever all of x, x+a, x+b, . . . x+a+b+c lie in B. To justify this rather bizarre-looking
definition, notice that (3.2) is satisfied by a ‘global’ quadratic phase of the form ωq, where
q is a quadratic function on ZN (and conversely any function satisfying (3.2) globally is of
the form ωq). The following inverse theorem for the U3 norm in ZN is due to Green and
Tao [?], based on prior work of Gowers [?].

Theorem 3.11. Let δ > 0, let C = 224 and let f : ZN → C be a function such that
‖f‖∞ ≤ 1 and ‖f‖U3 ≥ δ. Then there exists an element y ∈ ZN , a regular Bohr set
B = B(K, ρ) with |K| ≤ (2/δ)C and ρ ≥ (δ/2)C as well as a quadratic phase function γ
defined on y +B such that

Ex∈y+Bf(x)γ(x) ≥ (δ/2)C .

For the higher-order Gowers norms the situation is even more complicated, and the
language of nilsequences, inspired by parallel developments in ergodic theory, has become
indispensable for describing obstructions to Gowers uniformity in the integers (see [?]).

4. Recent highlights

After this brief foray into the world of the integers we return to studying arithmetic
structure in vector spaces over finite fields. In this chapter we shall give an overview of the
most consequential developments in recent years, most of which have also had, as predicted
by Green in [?], important ramifications in the integer setting.

As we hope to have demonstrated in Chapter 2, algebraic, analytic and combinatorial
methods are inextricably intertwined in this subject. Our outline of recent highlights begins
with a new technique at the interface of combinatorics and analysis, giving rise to so-called
almost periodicity results for sum sets, which has driven many of the recent improvements
to classical results. We shall discuss its applications to the theory of set addition and the
study of linear patterns in dense sets in Sections 4.2 and 4.3, respectively. It has also
had quantitative implications for higher-order Fourier analysis, whose recent progress we
review in Section 4.4.

4.1. Croot-Sisask almost periodicity. In 2009 Croot and Sisask introduced a “proba-
bilistic technique for finding almost periods of convolutions" [?], which turned out to have
several far-reaching implications in arithmetic combinatorics. Roughly speaking, their main
result says that if A ⊆ Fnp is a set whose sum set A+A is small, then there exists a dense
set X such that for all x ∈ X, the convolution 1A ∗ 1A(·) and its translate 1A ∗ 1A(· + x)
are almost indistinguishable in the L2 (or any higher Lp) norm. For obvious reasons, we
refer to such a set X as the set of almost periods of A+ A.11

In our exposition we shall follow a slight variant [?] of Croot and Sisask’s original ar-
gument [?]. It proceeds in a more combinatorial fashion without reference to Lp norms,
instead relying on a standard Chernoff-type tail estimate, which we now state (see, for
example, [?]).

11In fact, their result is much more general and even applies to non-abelian groups, but for ease of exposition
we shall concentrate on Fnp here.
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Lemma 4.1. Let Y be a random variable with |Y | ≤ 1, and let Ŷ be the empirical average
of Y obtained from t samples. Then for any γ > 0, we have

P[|EY − Ŷ | > γ] ≤ exp(−2γ2t).

For simplicity we shall restrict our attention to finite fields of characteristic p = 2 in
this section, although the more general case only requires minimal modifications. Given
subsets A,B ⊆ G = Fn2 then, we shall be interested in the measure ρA→B : Fn2 → [0, 1]
defined by

ρA→B(y) := Pa∈A [y + a ∈ B] =
|(y + A) ∩B|

|A|
= µA ∗ 1B(y)

whenever y ∈ Fn2 , where µA := |G|
|A|1A denotes the so-called characteristic measure of the

subset A. Notice that ρA→B(y) = 1 whenever y + A ⊆ B, and ρA→B(y) = 0 whenever
(y + A) ∩ B = ∅. We shall also write a ≈ε b whenever a and b are two real numbers
satisfying |a − b| ≤ ε. With this notation, Theorem 4.2 below is an almost-periodicity
result in the spirit of Croot and Sisask [?].

Theorem 4.2. Let ε > 0 and let A ⊆ Fn2 be a subset satisfying |A + A| ≤ K|A|. Then
for every t ∈ N and every subset B ⊆ Fn2 , there exists a set X ⊆ Fn2 with the following
properties.

(1) The set X is contained in an affine shift of A.
(2) The size of X is at least |A|/(2Kt−1).
(3) For all x ∈ X and for all subsets S ⊆ Fn2 ,

Py∈S [ρA→B(y) ≈2ε ρA→B(y + x)] ≥ 1− 8
|A+B|
|S|

· exp
(
−2ε2t

)
.

Proof: Fix t ∈ N, and for simplicity of notation set ρ(y) := ρA→B(y). For any t-tuple
a = (a1, . . . , at) ∈ (Fn2 )t, define the a-estimator of ρ to be the function ρ̂a : Fn2 → [0, 1]
which, for each y ∈ Fn2 , takes the value

ρ̂a(y) :=
|{y + ai ∈ B : i = 1, . . . , t}|

t
.

We say that a ∈ (Fn2 )t is an ε-good estimator for y if ρ(y) ≈ε ρ̂a(y). We call a ∈ (Fn2 )t an
(ε, δ)-good estimator if a is an ε-good estimator for all but a δ-fraction of A+B, i.e.,

Py∈A+B [ρ(y) 6≈ε ρ̂a(y)] < δ.

Fix y ∈ Fn2 . The first step towards constructing the set X of almost periods is to show
that most sample vectors a ∈ (Fn2 )t are ε-good for a given y, provided that t, the sample
size, is large enough with respect to 1/ε. To see this, let Yi be the indicator random
variable for the event y + ai ∈ B where ai is chosen uniformly at random from A. Then
ρ̂a(y) = 1

t

∑t
i=1 Yi is the average of t i.i.d. indicator random variables each of mean ρ(y),

so Lemma 4.1 implies that for each y ∈ Fn2 ,

(4.1) Pa∈At [ρ(y) 6≈ε ρ̂a(y)] ≤ 2 exp
(
−2ε2t

)
.
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Setting δ := 2 exp (−2ε2t) and letting Za be the random variable measuring the fraction of
y ∈ A+B for which a is an ε-good estimator, that is,

Za := Py∈A+B [ρ(y) ≈ε ρ̂a(y)] ,

we conclude from (4.1) via linearity of expectation that

Ea∈At [Za] ≥ 1− δ.
It now follows from Markov’s inequality that at least half the sample vectors a ∈ At are
ε-good estimators for all but a 2δ-fraction of y ∈ A+B. In other words, the set Gε,2δ ⊆ At

of (ε, 2δ)-good estimators for ρ, defined by

Gε,2δ := {a ∈ At : Py∈A+B [ρ(y) ≈ε ρ̂a(y)] ≥ 1− 2δ},
satisfies |Gε,2δ| ≥ |A|t/2.

To obtain X we partition Gε,2δ as follows. Define a map φ : At → {0} × (A + A)t−1 by
shifting the sequence a = (a1, . . . , at) ∈ At by the first element a1, that is, let

φ(a) := (a1 + a1, a2 + a1, . . . , at + a1) .

Since φ maps the set Gε,2δ of size at least |A|t/2 into a set of size |A+ A|t−1 ≤ (K|A|)t−1,
there exists a subset G∗ε,2δ ⊆ Gε,2δ of size

(4.2) |G∗ε,2δ| ≥
|A|t

2Kt−1|A|t−1
=
|A|

2Kt−1 ,

all of whose elements map to the same value b ∈ {0} × (2A)t−1 under φ. Finally, fix an
arbitrary a′ = (a′1, . . . , a

′
t) ∈ G∗ε,2δ and set

X := {a′1 + a1 : (a1, . . . , at) ∈ G∗ε,2δ}.
To complete the proof we need to show that X has the three properties listed in the
statement of the theorem. First note that by definition, X ⊆ a′1 + A, so X is indeed
contained in an affine shift of A. Secondly, observe that by construction of the set G∗ε,2δ
the map G∗ε,2δ → X given by (a1, . . . , at) 7→ a′1 + a1 is invertible, and hence |X| = |Gε,2δ∗|
is bounded below by (4.2) as desired.

Last but not least, suppose that we have x = a′1 + a1 ∈ X, where a1 is the first element
of an (ε, 2δ)-good estimator a = (a1, . . . , at) ∈ G∗ε,2δ. We claim that a′ + x = a. Indeed,
the definition of G∗ε,2δ implies that φ(a′) = φ(a), so that for all i = 1, . . . , t, we have
ai + a1 = a′i + a′1, or, in other words, a′ + x = a′ + (a′1 + a1) = a.

Now recalling that a′ is an (ε, 2δ)-good estimator, we know that for all but a 2δ-fraction
of y ∈ A+B,

(4.3) ρ(y) ≈ε ρ̂a′(y).

This inequality also holds for all y /∈ A+B since in this case both sides are trivially zero.
Hence we have that (4.3) holds for all but a (2δ|A+B|/|S|)-fraction of y ∈ S. Similarly,
since a is an (ε, 2δ)-good estimator, we have that for any x,

(4.4) ρ(y + x) ≈ε ρ̂a(y + x)
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for all but a (2δ|A+B|/|x+ S|)-fraction of y ∈ S. Using a union bound and the fact that
|S + x| = |S|, we find that for all but a (4δ|A+B|/|S|)-fraction of y ∈ S both (4.3) and
(4.4) hold. For such y we have

ρ(y) ≈ε ρ̂a′(y) = ρ̂a′+x(y + x) = ρ̂a(y + x) ≈ε ρ(y + x),

completing the proof of the theorem. �

4.2. A quasipolynomial Bogolyubov lemma. Croot and Sisask’s original applications
of Theorem 4.2 included non-commutative analogues of the Freiman-Ruzsa theory of set
addition (cf. Section 2.2), a low-density version of a structure theorem on long arith-
metic progressions in sum sets inside ZN by Bourgain [?] and Green [?], as well as a new
probabilistic proof of Roth’s theorem (cf. Theorem 3.4).

Subsequently, Sanders quickly realised and ingeniously exploited the fact that almost
periodicity could be used to make a substantial leap in the bounds of Bogolyubov’s lemma
(Proposition 1.3). In [?] he proved (a much more general version of) the following result.

Theorem 4.3. Let A ⊆ Fn2 be a subset of density α. Then 2A − 2A contains a subspace
V of codimension at most O(log4 α−1).

In the remainder of this section we give a sketch of the argument, again following the
approach in [?]. First, note that by an inductive application of Theorem 4.2, using nothing
more than the triangle inequality, one can prove the following iterated version.

Corollary 4.4. Let ε > 0 and let A ⊆ Fn2 be a subset satisfying |A + A| ≤ K|A|. Then
for every t ∈ N and every subset B ⊆ Fn2 , there exists a set X ⊆ Fn2 with the following
properties.

(1) The set X is contained in an affine shift of A.
(2) The size of X is at least |A|/(2Kt−1).
(3) For any ` ∈ N, all x1, . . . , x` ∈ X and all subsets S ⊆ Fn2 ,

Py∈S [ρA→B(y) ≈2ε` ρA→B(y + x1 + . . .+ x`)] ≥ 1− 8`
|A+B|
|S|

· exp
(
−2ε2t

)
.

But we have already seen that iterated sum sets are highly structured, so one might hope
to be able to convert the periodicity statement above from one involving iterated sum sets
into one in which the set of periods is in fact a subspace. Moreover, observe that any
subset A ⊆ Fn2 of density α trivially has doubling at most α−1, so one can use the above
corollary with α−1 in place of K, omitting the small sum set condition from the statement
altogether.

Corollary 4.5. Let A ⊆ Fn2 be a subset of density α. Then for every integer t and set
B ⊆ Fn2 there exists a subspace V of

codim(V ) ≤ 32 log(2/αt)
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with the property that for all v ∈ V , for all subsets S ⊆ Fn2 , for every ε, η > 0 and for
every integer `,

(4.5) Py∈S [ρA→B(y) ≈ε′ ρA→B(y + v)] ≥ 1− 16
`

η

|A+B|
|S|

· exp
(
−2ε2t

)
,

where ε′ := 4ε`+ 2η + 2−`(|B|/|A|)1/2.
In order to prove (4.5) one first shows, using Corollary 4.4, a simple averaging argument

and the triangle inequality, that there exists a set X of density at least α/(2Kt−1) ≥ αt/2
such that for most y ∈ S,12

(4.6) Ex1,...,x`∈XρA→B(y + x1 + . . .+ x`) ≈2ε`+η ρA→B(y),

and similarly that for any v ∈ Fn2 and most y ∈ S,
(4.7) Ex1,...,x`∈XρA→B(y + v + x1 + . . .+ x`) ≈2ε`+η ρA→B(y + v).

In order to complete the proof of Corollary 4.5, we now only need to connect the left-hand
sides of (4.6) and (4.7), respectively, for elements v of a suitable subspace V 6 Fn2 . This is
achieved by Lemma 4.6 below, whose proof is strongly reminiscent of that of Proposition
1.3 in the sense that the desired subspace is taken to be the orthogonal complement of the
set of large Fourier coefficients of X.

Lemma 4.6. Let X ⊆ Fn2 be as above, and set V := Spec1/2(X)⊥. Then

codim(V ) ≤ 32 log(2/αt),

and for all y ∈ Fn2 and v ∈ V , we have

(4.8) Ex1,...,x`∈XρA→B(y + x1 + . . .+ x`) ≈ε′′ Ex1,...,x`∈XρA→B(y + v + x1 + . . .+ x`),

where ε′′ := 2−`(|B|/|A|)1/2.
Proof: Since the density of X is at least αt/2, Chang’s theorem (Theorem 1.2) implies

that
codim(V ) ≤ 8 · (1/2)−2 log(αt/2)−1 = 32 log(2/αt).

In order to prove (4.8), note that we can write the difference between the two sides as

(µX)∗` ∗ µA ∗ 1B(y)− (µX)∗` ∗ µA ∗ 1B(y + v),

which in terms of the Fourier transform equals∑
t∈Fn2

µ̂A(t) · µ̂X(t)` · 1̂B(t) ·
(
(−1)y·t − (−1)(y+v)·t

)
.

This expression in turn is bounded above in absolute value by∑
t/∈V ⊥
|µ̂A(t)| · |µ̂X(t)|` · |1̂B(t)| ·

∣∣1− (−1)v·t
∣∣ ≤ 2−`

∑
t/∈V ⊥
|µ̂A(t)| · |1̂B(t)|.

The Cauchy-Schwarz inequality followed by an application of Parseval’s identity yields the
final bound of 2−`(|B|/|A|)1/2. �

12The proportion of such y ∈ S depends inversely on η. For details see [?].
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Equipped with Corollary 4.5 we are now in a position to complete the proof of Sanders’s
quasipolynomial Bogolyubov bound.

Proof of Theorem 4.3: On application of Corollary 4.5 with

B := A+ A, S := A, ` := log(302/α)/2, η := 1/60, ε := 1/(120`) and t := O(log3(1/α))

we obtain a subspace V 6 Fn2 of codim(V ) = O(log4(1/α)) which has the property that
for all v ∈ V ,

Pa∈A [ρA→2A(a) ≈ε′ ρA→2A(a+ v)] ≥ 1− 16
`

η

|3A|
|A|
· exp

(
−2ε2t

)
≥ 0.9,

where ε′ = 4ε`+ 2η + 2−`(|A+ A|/|A|)1/2 ≤ 1/30 + 1/30 + (α1/2/30) · α−1/2 ≤ 1/10. Now
since ρA→2A(a) = 1 for all a ∈ A, this implies that for all v ∈ V ,

Pa∈A [ρA→2A(a+ v) ≥ 0.9] ≥ 0.9.

Recalling the definition of ρA→B, it follows that for all v ∈ V ,

Pa,a′∈A[a+ a′ + v ∈ 2A] ≥ 0.92 = 0.81.

By averaging there therefore exists a pair a, a′ ∈ A such that

Pv∈V [a+ a′ + v ∈ 2A] ≥ 0.81,

or equivalently, a choice of a, a′ ∈ A for which |V ∩ (a + a′ + 2A) |≥ 0.81|V |. But if
a subset E ⊆ Fn2 is such that |V ∩ E| > 1

2
|V |, then E + E ⊇ V , so we conclude that

V ⊆ 2(a+ a′ + A+ A) ⊆ 4A, which terminates the proof. �
Using Theorem 4.3, Sanders was additionally able to make substantial progress towards

the Polynomial Freiman-Ruzsa Conjecture (Conjecture 2.10), by showing that the con-
stants C1(K) and C2(K) defined there can be taken to be quasipolynomial and polynomial
in K, respectively. Moreover, these results hold in a much more general setting, for details
of which we refer the reader to the survey [?].

4.3. Solutions to translation-invariant equations. In addition to the applications
already mentioned, the techniques discussed in this chapter have also transformed the
counting of solutions to translation-invariant equations. The most striking instance is
another result of Sanders [?] in the integers, which we made brief reference to in Chapter
3 and which improves the bound for 3-term progression free subsets of {1, . . . , N} to

|A| � (log logN)6N

logN
.

To fully appreciate the strength of this result, observe that it comes very close to estab-
lishing a Roth-type theorem for dense subsets of the primes, which have density 1/ logN .13

However, it is still a long way from matching the best known lower bound, which is of the
form exp(−c(logN)1/2) for some constant c > 0, proved by Behrend [?, ?, ?] nearly 70
years ago.

13Very recently, Bloom [?] managed to improve this result by a factor of (log logN)2 using a completely
different technique, namely a strengthening of Chang’s theorem.
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In the finite field model setting, sadly, these rather sophisticated methods do not lead
to improvements upon the bound presented in Theorem 2.2. It turns out that in all its
simplicity, Meshulam’s argument is already surprisingly powerful. However, by a very
careful and highly complex analysis of the large spectrum of a set, Bateman and Katz [?]
were recently able to gain a small but positive exponent in Theorem 2.2.

Theorem 4.7. There exists c > 0 with the following property. Let A ⊆ Fn3 be a set
containing no non-trivial 3-term arithmetic progressions. Then

|A| � N

(logN)1+c
.

The constant c can be made explicit, but at the time of writing the argument is not
sufficiently well understood (at least by the author of this survey) to warrant an exposition
of the material.14 Again, we must compare this bound to the largest known example of a
3-term progression free subset of Fn3 . The current record in this regard is held by Edel [?],
who constructed a set of size 30.725851n. Green conjectured ([?], Conjecture 4.3) that this
construction is close to best possible in the sense that there exists a constant δ > 0 such
that the size of any 3-term progression free subset of Fn3 is bounded above by (3− δ)n, but
this conjecture remains wide open.

However, it turns out that if one considers translation-invariant equations with only a few
more variables, one can obtain a marked improvement on Meshulam’s bound using Croot-
Sisask almost periodicity in the guise of Sanders’s quasipolynomial Bogolyubov lemma
(Theorem 4.3). The following is a neat result of Schoen and Shkredov [?], whose proof we
are able to give in full detail.

Theorem 4.8. Let p > 5 be a prime, and let A ⊆ G = Fnp . Suppose that A contains no
non-trivial solutions to the equation

(4.9) 5y = x1 + x2 + x3 + x4 + x5,

that is, no solution (y, x1, x2, x3, x4, x5) ∈ A6 such that y 6= xi for some i = 1, 2, ..., 5. Then

|A| ≤ exp(−c(log |G|)1/5)|G|.

Proof: As usual, let α denote the density of A in Fnp . The main idea is to partition
the set A into two (disjoint) sets A1, A2 with the cardinalities of A1 and A2 being as equal
as possible. By averaging there exists z ∈ Fnp such that

|A1 ∩ (z − A2)| ≥ α2|G|/4.
Set B := A1 ∩ (z−A2), which by the above is of density � α2. By Theorem 4.3 therefore,
there exists a subspace V of codimension at most O(log4(α−1)) with the property that
2B − 2B ⊇ V , and hence

2z + V ⊆ 2z + 2B − 2B ⊆ 2A1 + 2A2.

14The reader may be interested in exploring the aforementioned very recent work of Bloom [?], which
exploits ideas along similar lines.
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We claim that as a consequence,

(4.10) (5 · A− A) ∩ (2z + V ) = ∅.
For suppose that there existed x, y ∈ A such that 5y−x ∈ 2z+V . Then we would be able
to write 5y− x as a sum of two elements in A1 and two elements in A2, which (since these
two sets are disjoint) would yield a non-trivial solution to (4.9).

It follows from (4.10) that for any fixed w ∈ Fnp , at most one of the sets A∩ (w+V ) and
5 · A ∩ (w + 2z + V ) can be non-empty, from which we deduce that

2|A| =
∑
w∈V ⊥

|A ∩ (w + V )|+ |5 · A ∩ (w + 2z + V )| ≤ |V ⊥| sup
w
|A ∩ (w + V )|.

We have thus obtained a considerable density increase of A on some coset of V , i.e. an
element w ∈ Fnp such that

|A ∩ (w + V )| ≥ 2α|V |.
Let A1 := (A−w)∩ V , and observe that this set of density at least 2α inside V1 := V still
contains no non-trivial solutions to (4.9). After t iterations of this argument, we obtain a
subspace Vt of codimension at most O(t log4(α−1)) satisfying

|(A− wt) ∩ Vt| ≥ 2tα|Vt|
for some wt ∈ Fnp . Arguing as in the proof of Theorem 2.2 yields the stated bound on the
density α. �

By replacing subspaces with Bohr sets (as described in Chapter 3) in the above argument,
Schoen and Shkredov gave a similar bound in the integers. They thereby obtained, for the
first time, an upper bound on the number of solutions to a translation-invariant equation
that lies within arm’s reach of the lower bound. Further progress in this direction in the
not too distant future seems likely.

4.4. Progress on higher-order polynomial structure. At the time of Green’s survey
[?] the field of higher-order Fourier analysis was still in its very early infancy, the foun-
dations having been laid by Gowers [?, ?] only a few years prior. Since then significant
progress has been made, ranging from quantitative improvements to quadratic structure
theorems, to inverse theorem for higher Uk norms, through to steps towards a more general
and abstract theory of higher-order Fourier analysis. In this section we shall only give some
pointers to the most important developments in the context of the finite field model.

As discussed in Section 2.3, the Freiman-Ruzsa theorem (Theorem 2.7) and the inverse
theorem for the U3 norm (Theorem 2.16) are intimately connected, and have in fact been
shown to be quantitatively equivalent [?]. As a result of Sanders’s improvement to the
bounds in the Freiman-Ruzsa theorem (see Section 4.2) we therefore now have a quasipoly-
nomial dependence of the constant c(δ) on the uniformity parameter δ in Theorem 2.16.

The situation is much less satisfactory for a higher-order inverse theory, which has been
developed from various viewpoints over the past decade. Notable contributors include Host
and Kra [?] and Ziegler [?] from the ergodic theoretic perspective, Szegedy [?] with a novel
non-standard analysis approach as well as Bergelson, Green, Tao and Ziegler [?, ?, ?, ?].
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Since it is most relevant for our purposes, we shall focus on the latter body of work in our
discussion below.

Conjecturally, an inverse theorem for the Uk norms for k > 3 seems straightforward
at first sight: loosely speaking, functions with large Uk norm ought to correlate with
polynomial phase functions of degree k − 1.15 However, even in the supposedly simple
finite field model, extending Theorem 2.16 to higher Uk norms turned out to be less than
plain sailing. Somewhat surprisingly, although well-understood with hindsight, the naive
conjecture for the U4 norm, namely that every function with large U4 norm correlates with
a cubic phase polynomial, was shown to be false in characteristic 2 [?, ?].

Theorem 4.9. Let S4 be the quartic symmetric polynomial on Fn2 , that is,

S4(x1, . . . , xn) :=
∑

1≤i1<···<i4≤n

xi1xi2xi3xi4 .

Then the function defined by f(x) = (−1)S4(x) satisfies ‖f‖16U4 = 1
8

+ O(2−n/2), but there
exists an absolute constant c > 0 such that

|Exf(x)(−1)q(x)| � 2−cn

for any cubic polynomial q.

Doubts as to the veracity of a higher-order inverse theory ensued, but it quickly emerged
that its principal proposition could nevertheless be salvaged. The key was to adjust the
notion of a “phase polynomial” in such a way that Theorem 4.9 no longer presented a
counterexample.

In the original inverse conjecture for the Uk norm over Fnp (see for example [?]) the
correlating phase polynomial φ : Fnp → T was assumed to be of the form φ = ωP , where ω
is a pth root of unity and P is a polynomial of degree at most k − 1 in the sense that it is
a function P : Fnp → Fp satisfying

(4.11) ∆+
h1

∆+
h2
. . .∆+

hk
P (x) = 0

for all h1, . . . , hk, x ∈ Fnp , where ∆+
h f(x) = f(x + h) − f(x). Instead, it was observed by

Tao and Ziegler [?] that one needs to consider a wider class of polynomial phases of degree
k − 1, namely functions ψ : Fnp → C satisfying the multiplicative derivative condition

(4.12) ∆h1∆h2 . . .∆hkψ(x) = 1

for all h1, . . . , hk, x ∈ Fnp , where ∆hψ(x) = ψ(x+h)ψ(x). The crux is to observe that while
for p ≥ k any phase polynomial ψ satisfying (4.12) is in fact (up to a constant phase) of the
form ωP for a function P : Fnp → Fp satisfying (4.11), this is not so when p < k. Rather,
it can be shown ([?], Lemma 1.7) that ψ must be of the form e2πiP

′ for some function

15We already mentioned at the end of Chapter 3 that in the integers this is a problematic statement even
for k = 3, and that any correlation has to be defined locally with respect to a Bohr set (or in the language
of nilsequences). For higher values of k this situation only worsens. For example, when k = 4, we would
expect to obtain a cubic phase defined on the approximate simultaneous level set of a bunch of ‘quadratic
characters’. Despite this added complexity, very general results to this effect are now known [?, ?, ?].
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P ′ : Fnp → T satisfying (4.11) which is no longer restricted to taking values in the group
of pth roots of unity 1

p
Z/Z, but rather turns out to be confined to a coset of the slightly

larger
1

pb
k−2
p−1
c+1

Z/Z.

As an example, consider the function P ′ : Fn2 → T defined by P ′(x1, . . . , xn) = |x|/8
mod 1, where |x| =

∑n
j=1 xj denotes the number of components equal to 1, which is a (non-

classical) cubic polynomial satisfying (4.11). Moreover, it can be checked that ψ = e2πiP
′

has non-trivial correlation with the function f = (−1)S4 defined in Theorem 4.9.
With this new definition in mind, Bergelson, Tao and Ziegler [?, ?, ?] were able to prove

the following inverse theorem for the Uk norm.

Theorem 4.10. Let k ≥ 2 be an integer and let p be a prime. Then for every δ > 0 there
exists c = c(δ, k, p) such that the following holds. Suppose that f : Fnp → C is a function
satisfying ‖f‖∞ ≤ 1 and ‖f‖Uk ≥ δ. Then f has correlation at least c with a non-classical
phase polynomial of degree at most k−1 , in other words, there exists P ′ : Fnp → T satisfying
(4.11) such that

Exf(x)e2πiP
′(x) ≥ c.

Frustratingly, despite the statement of the theorem being purely combinatorial, the
proof proceeds via an infinitary recurrence result in ergodic theory [?], and then uses a so-
called transference principle (in the spirit of Furstenberg) to pass to the finite field model
setting [?]. The ergodic-theoretic arguments used are by their very nature not quantitative
(and while some bounds could in principle, with some effort, be extracted, they would
be unimaginably poor). Providing a direct analytic (combinatorial) proof of Theorem
4.10 remains an central open problem, whose successful resolution would have a number of
additional benefits in the form of a quantitative Szemerédi theorem for long progressions in
finite fields, as well as applications to error-correcting codes and other areas of theoretical
computer science.

Moreover, in spite of the general form of Theorem 4.10, the case of low characteristic
remains poorly understood. Indeed, the proof in the case p ≤ k [?] is a 67-page tour de
force, bootstrapping a weaker version of the result from an earlier paper of the authors, in
which the degree of the correlating polynomial was not necessarily k−1 but rather bounded
above by a function of k. New ideas are needed to successfully tackle these questions.

In the past decade a significant amount of work has also been done towards justifying the
labels quadratic and higher-order Fourier analysis. The strength of the Fourier transform
lies in the fact that we can decompose any function into a weighted sum of characters (or
linear phase functions). Those phases with small coefficients can often (but not always)
be neglected in applications. A quadratic analogue of such a decomposition would be the
statement that any bounded function can be written as a weighted sum of quadratic phase
functions, plus an error term which is quadratically uniform (i.e. small in the U3 norm).
Since the set of quadratic phase functions does not form an orthonormal basis, however,
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this is a highly non-trivial proposition. One of the most concrete and accessible state-
ments to this effect is the following result [?].16 In applications, much more sophisticated
decompositions and higher-order versions are often needed, see [?, ?] and [?], respectively.

Theorem 4.11. Let f : Fnp → C be a function such that ‖f‖2 ≤ 1. Then for every δ > 0
and η > 0 there exists M = M(η, δ, p) such that f has a decomposition of the form

(4.13) f(x) =
∑
i

λiω
qi(x) + g(x) + h(x),

where the qi are quadratic forms on Fnp , and

η−1‖g‖1 + δ−1‖h‖U3 +M−1
∑
i

|λi| ≤ 1.

Finally, if quadratic Fourier analysis is to take its rightful place alongside traditional
(linear) Fourier analysis, we need to be able to answer another natural question: can we
efficiently compute the ‘quadratic Fourier coefficients’ of a given function? In joint work
Tulsiani and the author [?] gave a probabilistic algorithm that computes the coefficients
λi corresponding to the large quadratic characters ωqi in the decomposition (4.13) above.
This has applications to list decoding and self-correction procedures for Reed-Muller codes.

5. Limitations of the finite field model and new horizons

As we hope to have demonstrated in this article, the finite field model has proven ex-
tremely powerful in attacking a range of number-theoretic and combinatorial problems in
the integers. Many striking successes of the recent past have had to be omitted from this
survey, which would have further emphasised this point. Because of its undeniable ele-
gance, the finite field model now attracts much interest in its own right, as well as being
of enduring importance to computer scientists. And it remains the point of entry to an
oftentimes technical subject for many a graduate student.

However, as the appreciation for the model’s strengths has grown in recent years, so
has our understanding of its weaknesses and limitations. We have hinted at some of these
throughout the article, but let us summarise the most significant ones here.

First, while arguments often do transfer from the finite field model to the integers,
when it comes to pushing the quantitative bounds to the limit of our capabilities in either
setting, the two often differ substantially from each other. As we have seen, this is the
case for Roth’s and Meshulam’s theorem, for example, where the ultimate answers (and
the techniques used to obtain them) may well turn out to be fundamentally different.
Another case in point is the development of higher-order Fourier analysis, where there is
some evidence that a U4 inverse theorem may actually be strictly harder in the finite field
model than in the integer case (see Chapter 1.5 of [?]).

A second issue that makes the finite field model challenging to work with, in a way that
the integers are not, is that additional complications arise when the characteristic of the
16Alternative formulations, borrowing the language of factors from ergodic theory, can be found in [?]
(Proposition 3.7), for example.
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underlying field is very small. Specifically, we have seen that the problem of determining the
structure of functions on Fnp with large Uk norm has thrown up unexpected difficulties when
p < k. Small characteristic also means that we lose access to certain types of geometric
arguments, as is the case, for example, in the lower bounds for Meshulam’s theorem.

Finally, a rather important criticism of the model is that additive groups of the form Fnp
are wholly unsuitable for studying problems involving multiplicative structure, which are
ubiquitous in arithmetic combinatorics. Examples include Sarközy’s theorem [?], which is
a version of Roth’s theorem in which the common difference of the arithmetic progression
is restricted to the set of squares, or the famously difficult sum-product conjecture of Erdős
and Szemerédi [?], which asserts that addition and multiplication are incompatible in a
strong sense.

An alternative model that appears to hold promise for tackling such problems is the
function field setting. Let q be an odd prime power, and consider the set of polynomials
over Fq of degree less than n. This set is easily seen to form a group under addition, and can
be endowed with a field structure isomorphic to Fqn by performing multiplication modulo
a fixed irreducible polynomial of degree n. When we speak of the function field model
we henceforth refer to Fq[t]<n := Fq[t]/(p(t)), where p is a fixed irreducible polynomial of
degree n. Just like in the traditional finite field (vector space) model Fnp , the analogues of
Bohr sets in the function field model Fq[t]<n are additively closed, but we now have the
operation of multiplication at our disposal. A prime number (in the traditional number-
theoretic sense) corresponds to an irreducible polynomial, and problems posed in the initial
segment {1, . . . , N} of the integers have analogues in Fq[t]<n where N ∼ qn.

This analogy with the integers, which in fact runs much deeper than we have outlined
here, has been known in analytic number theory circles for a rather long time (see for
example [?]), and initial exploration of the model is starting to take place in arithmetic
combinatorics. One of the earliest results is due to Lê Thái [?], who proved a function-
field version of the celebrated Green-Tao theorem on long arithmetic progressions in the
primes [?] by showing that given any integer k > 0, it is possible to find two polynomials
f, g ∈ Fq[t], g 6= 0, such that the polynomials f + pg are all irreducible, where p runs
through all polynomials p ∈ Fq[t] of degree less than k. In the context of sum-product
estimates, Bloom and Jones [?] were able to show that for any subset A ⊆ Fq[t] and any
ε > 0, one has

max {|A+ A|, |A · A|} �ε,q |A|1+
1
5
+ε,

where the exponent 1/5 beats what is known in the case of (large) finite fields Fp. Further-
more, very recent work of Bloom [?, ?] provides a strong quantitative analogue of Roth’s
theorem in function fields. Specifically, he proved that whenever A ⊆ Fq[t]<n is a set not
containing any non-trivial solutions to the equation c1x1 + c2x2 + c3x3 = 0, where the
coefficients c1, c2, c3 ∈ Fq[t] \ {0} satisfy c1 + c2 + c3 = 0, then A must satisfy

|A| � (log n)2

n
qn,

which again is stronger than what is known in the integers.
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The function field setting also holds hope for perhaps resolving some of the aforemen-
tioned issues of small characteristic. The obstacles posed by repeated differencing in small
fields have, for instance, been overcome in the context of Waring’s problem in the function
field setting [?]. It remains to be seen whether similar techniques can be made to bear
fruit in arithmetic combinatorics.
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