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Abstract

The 2014–2016 JET results are reviewed in the light of their signiicance for optimising 

the ITER research plan for the active and non-active operation. More than 60 h of plasma 

operation with ITER irst wall materials successfully took place since its installation in 

2011. New multi-machine scaling of the type I-ELM divertor energy lux density to ITER 

is supported by irst principle modelling. ITER relevant disruption experiments and irst 

principle modelling are reported with a set of three disruption mitigation valves mimicking 

the ITER setup. Insights of the L–H power threshold in Deuterium and Hydrogen are given, 

stressing the importance of the magnetic conigurations and the recent measurements of 

ine-scale structures in the edge radial electric. Dimensionless scans of the core and pedestal 

coninement provide new information to elucidate the importance of the irst wall material on 

the fusion performance. H-mode plasmas at ITER triangularity (H  =  1 at βN ~ 1.8 and n/nGW 

~ 0.6) have been sustained at 2 MA during 5 s. The ITER neutronics codes have been validated 

on high performance experiments. Prospects for the coming D–T campaign and 14 MeV 

neutron calibration strategy are reviewed.

Keywords: JET, plasma, fusion, ITER

(Some igures may appear in colour only in the online journal)

1. Introduction

The European nuclear fusion research community has elabo-

rated a Roadmap to the realisation of fusion energy in which 

‘ITER is the key facility and its success is the most important 

overarching objective of the programme’ [1]. In this overview 

paper, the contribution of the recent (2014–2016) JET experi-

ments with the ITER irst wall materials mix (e.g. [2–8]) and 

the underlying physics understanding with improved diag-

nostics are reviewed in the context of optimising the ITER 

Research Plan [9]. Indeed, together with the ITER scenario 

development for deuterium–tritium (D–T) operation [10–12], 

a strong focus on JET utilization is pursued for addressing 

ITER needs and developing a sound physics basis for the 

extrapolation through irst principle and integrated modelling 

(e.g. [13, 14]), i.e. such as plasma–wall interaction, disruption 

mitigation taking beneit of the recent installation of a third 

disruption mitigation valve, L to H mode threshold scaling, 

core and edge coninement studies with metallic wall, speciic 

ITER relevant scenario aspects, preparation of the ITER non-

active phase of operation (hydrogen campaign) etc. Recent 

progress addressing key issues for the supporting physics 

research programme accompanying ITER construction is 

reviewed in ive main sections as follows:

 (i) Plasma–material interaction studies with ITER irst 

wall materials (in section 2): The JET ITER-Like Wall 

experiment provides an insight in the coupling between 

tokamak-plasma operation and plasma–surface inter-

action in the unique beryllium and tungsten material 

environment and acts as a test-bed to verify plasma–wall 

interaction physics models and modelling tools for ITER.

 (ii) Disruption prediction and mitigation studies for ITER (in 

section 3): disruptions are considered as the highest pro-

grammatic risk in the ITER Research Plan and signiicant 

experimental and modelling effort in Europe and JET is 

reviewed.

 (iii) Physics studies of H-mode access and exit studies with 

ITER irst wall materials (in section 4): high spatial 

resolution Doppler backscattering measurements and 

isotope scaling have recently revealed novel insights 

into the development of the edge transport barrier. These 

measurements are essential to validate the L–H transition 

theory and to improve predictions for ITER. In addition, 

strategies for controlled H-mode plasma termination for 

ITER have been developed and recently tested on JET.

 (iv) Access conditions to high coninement and ITER 

 scenario development (in section 5): tokamak irst wall 

materials affect plasma performance, even changing 

the  coninement scaling. The operational constraints of 

a metal wall can prevent plasma energy coninement 

required for QD–T  =  10 on ITER. Progress on JET to 

mitigate this risk and to understand the coninement 

modiication due the change of the irst wall materials 

is reported aiming at maximizing the core and pedestal 

performance in stationary condition with the tungsten 

divertor constrain.

 (v) Nuclear fusion technology in support of ITER (in section 

6): The measured D–D neutron luence and gamma dose 

rates have been successfully compared with simula-

tions performed with the codes used for ITER nuclear 

analyses. This is an important step to gain conidence in 

ITER safety assessment calculations.
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To conclude, the prospect for the JET programme towards 

the integrated preparation of the coming pure tritium and deu-

terium–tritium experiments is discussed. The scientiic beneit 

to further use the JET tokamak up the start of the ITER sci-

entiic exploitation together with its surrounding technology 

facilities and to provide training facilities for the international 

teams which will operate ITER will be briely presented [15].

2. Plasma�material interaction studies with ITER 

irst wall materials

The JET ITER-Like Wall (IJET-ILW) experiment [6] pro-

vides an insight into the coupling between tokamak-plasma 

operation and plasma–surface interaction in the beryllium 

and tungsten material environment and acts as a test-bed to 

verify physics models and modelling tools for ITER. Up to 

now, in the ILW coniguration with inertial cooled full tung-

sten (W) divertor and beryllium (Be) main chamber irst wall, 

JET has been successfully operated with an accumulated 

plasma discharge time of 61 h since the replacement of the 

carbon wall in 2011. The bulk tungsten divertor titles have 

not shown signs of damage. Furthermore, the erosion rate of 

the W-coatings on divertor tiles (~25 µm W coatings with a 3 

µm Mo adhesive layer) does not exceed more than ~2 µm per 

campaign despite the harsh tokamak conditions with ITER-

relevant power loads [16]. Most of the W-coated tile surfaces 

turned out to be areas of predominant material deposition 

[17]. Analysis of the intra-ELM and inter-ELM W divertor 

source has revealed that the W-PFC lifetime is mainly deter-

mined by the intra-ELM contribution which governs the total 

W-sputtering source. The subsequent migration of W within 

the divertor has been studied by spectroscopy and by post-

mortem analysis of erosion-deposition probes and Plasma 

Facing Components, PFC, tiles from selected poloidal sectors. 

Transport to remote areas turned out to be an order of magni-

tude below that in the carbon dominated JET wall conigura-

tion. Also, the recent dust collection has conirmed that levels 

in the JET ILW are two orders of magnitude lower compared 

with the last campaign in the carbon-wall machine (~200 g) 

[16]. In addition, we report on recent experiments performed 

with a new divertor protruding W-lamella installed during the 

2014–15 shutdown to resolve the anomalously low heat lux 

on the exposed tungsten edge inferred from the analysis pre-

vious ELM-induced lash melting experiment.

2.1. Tritium retention and removal with JET ILW and impact  

for ITER

Both recent post-mortem analyses of retrieved PFCs during 

the last JET shutdown and gas balance studies have conirmed 

a signiicant reduction (by factor of 20) of the deuterium fuel 

retention with the metallic irst wall (of the order of 0.3%) 

compared to the previously used carbon wall [6–8, 16–27]. 

In JET, the remaining retention fraction is dominated by the 

retention within intrinsic beryllium co-deposited layers plus a 

fraction (1/3) due to implantation in the metallic wall. Indeed, 

the majority of the deuterium fuel is being retained in the 

divertor region within the deposited Be layers (igure 1 (left)). 

In addition, WallDYN simulations are able to reproduce 

the overall retention rate, and, the underlying wall material 

migration pattern for both the JET-C wall and JET-ILW [26]. 

WallDYN couples state of the art models for the principal 

surface processes (e.g. erosion, relection, implantation, subli-

mation) with material redistribution data from trace impurity 

plasma transport models in a fully self-consistent simulation. 

The simulations for the JET-ILW case also reproduce the 

gradual formation of mixed Be-W material surfaces after irst 

plasma [27]. Applying the same model and physics process, 

the impurity migration and resulting fuel species co-deposi-

tion in ITER for different wall conigurations and background 

plasmas have been calculated. The simulations show that the 

ITER tritium-limit of 700 g is reached for a carbon-divertor 

with only 100–700 full 400 s D–T discharges whereas for the 

ITER material choice (Be wall and W divertor) between 3000 

and 20000 D–T discharges are possible depending on the 

plasma scenario [26].

In ITER, as seen in JET, co-deposited layers in the divertor 

are expected to be the driving mechanism behind the tritium 

inventory [26]. ITER is a nuclear licensed facility and the in-

vessel tritium retention will be limited (0.7 kg) to minimize 

the risks of release of the mobilized tritium during accidents 

and methods should be developed to recover the remaining 

tritium [28]. The ITER baseline strategy to recover the trapped 

tritium in the vacuum vessel is to perform baking of the PFCs, 

at 240 °C for the Be irst wall and at 350 °C for the W divertor 

[29]. The release of the fuel particles from the co-deposited 

layers is more challenging than the release of implanted low 

energy fuel particles from clean Be and W substrates. The fuel 

release dynamics is slowed down by the deposited layer thick-

ness and its morphology. Moreover, the presence of additional 

impurities, such as oxygen and carbon or layers with elements 

being mixed with W, is known to affect the resulted release 

rate. An important issue is to assess on JET the ITER strategy 

for tritium removal for very thick mixed co-deposited layers 

of tritium with beryllium.

To characterise for the irst time the deuterium retention 

and release in ITER-like beryllium co-deposited layers in JET 

(igure 1), a set of samples were cut from different regions 

of the divertor and main chamber for studies using Thermal 

Desorption Spectrometry (TDS) to mimic the nominal baking 

procedure in ITER [30, 31]. The prepared samples represent 

PFC locations with varying beryllium co-deposit thicknesses 

(up to 40 µm). The release kinetics of deuterium have been 

studied in more detail by varying the temperature ramp-up 

rates (1 and 10 K min−1) and duration (5 or 15 h) at ITER-

relevant bake temperatures during the TDS. Results shown on 

igure 1 (right) for the thickest beryllium co-deposit (40 µm) 

in the W-divertor indicate that more than 85% of the deute-

rium is still retained after 15 h of baking at 350 °C suggesting 

that baking at such temperatures is relatively ineficient for 

thick co-deposits [30, 31]. A thinner deposited layer (~5 µm) 

was found to have ~40% retention after 5 h as also illustrated 

in igure 1 (right). For the samples of the main chamber beryl-

lium limiter, an even higher (compared to the divertor sam-

ples) remaining retention fraction  >90% is observed after the 
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baking temperature at 240 °C relevant for the ITER-Be irst 

wall. These measurements are consistent with systematic TDS 

studies of laboratory reference samples where the deposited 

layer thickness, material mixing, and co-deposited impuri-

ties play an important role in the high temperature retention. 

Finally, to simulate and extract the parameters affecting reten-

tion and release, the TDS results have been analysed compu-

tationally with TMAP-7 calculations (https://inldigitallibrary.

inl.gov/sti/2906951.pdf), and with rate theory multiscale 

calcul ations [29]. By controlling the mixing, the impurity con-

tent (Be, C, O), and the deposition thickness, the mechanisms 

affecting the release have been studied in detail. The ITER 

relevant baking cycle was simulated up to 15 h, and, the exper-

imental TDS spectra were reproduced with good agreement. 

Figure  1 (right) shows how a good agreement between the 

simulation and JET measurement of the remaining deuterium 

fraction in the W-divertor co-deposited layers is also obtained.

The low deuterium eficiency release at baking temper-

ature of 240 °C and 350 °C for thick deposits (even after 

15 h) indicates that the ITER baking cycle should be further 

optimised (e.g. more frequently during longer intervals) or 

might not even be suficient for tritium release and should 

be complemented by alternative schemes (e.g. arc-discharge 

method [32] when the vessel is opened, glow discharges, Ion 

Cyclotron wall cleaning [34, 35]).

Fuel recovery experiments relying on isotopic exchange 

by ion cyclotron wall conditioning plasmas (ICWC) have 

been performed on JET. The experiments, exchanging the 

stored fuel content in the PFC provide insight on the size of 

the accessible fuel reservoir as well as on RF plasma produc-

tion in ITER relevant conditions. The use of ICWC during the 

non-active and active nuclear phases of ITER implies opera-

tion at both half (2.65 T) and full (5.3 T) nominal toroidal 

magnetic ield values. Operating the JET antennas at 25 MHz 

with toroidal ield values of respectively B0  =  3.3 T and 

1.65 T already mimic on JET the ITER full (5.3 T/40 MHz) 

and half (2.65 T/40 MHz) ield cases with on-axis location 

of fundamental D+ (resp. H+) resonance layer. A small ver-

tical magnetic ield with ield lines following the curvature of 

the inner and outer main chamber PFC (igure 2) is applied 

with amplitude optimized for maximal poloidal homogeneity 

(BV/B0  =  8  ×  10−3) [34]. At the typical ICWC density levels, 

the RF power is absorbed via coupling to the fast wave, sus-

taining the plasma predominantly by collisional absorption on 

electrons and ions [35]. This allows RF plasma for both ITER 

half or full ield conditions over a large range of plasma iso-

topic ratio, which has been veriied on JET-ILW for hydrogen 

isotope ratios below 25% and above 75%. Furthermore, plasma 

was also produced successfully at low B0 (range 0.16–0.33 T)  

and intermediate ields (1.3 T–1.9 T). High plasma densi-

ties, peaked on axis (>1018 m−3), were produced on JET by 

eficient heating of minority ions, observed both in half ield 

and full ield scenario with H concentration of respectively 

5–10% and 90% (igure 2). It is worth noting that this range 

of plasma density could also be produced by RF just at the 

start of the current ramp-up in addition to wall conditioning 

applications described here. Removal of stored fuel was com-

pared between (i) a repetitive set of 20 ICWC discharges (i.e. 

218 s of cumulated discharge time) with 50–240 kW of ICRF 

power coupled to low density plasma of 0.2–2.4  ×  1017 m−3, 

and (ii) a set of 13 consecutive L-mode discharges with cumu-

lative plasma duration of ~150 s in limiter and in X point con-

igurations (Ip  =  2.0 MA, BT  =  2.4 T, ne   ≈  4.5 · 1019 m−3, 

0.5 MW of ICRH power). The amount of removed fuel via 

isotopic exchange by ICWC was found to be nearly a factor 

two larger (6.6  ×  1022 atoms) compared to the L-mode refer-

ences plasmas (3.5  ×  1022 atoms) [33]. These results indicate 

that the proposed ICWC techniques provide access to perma-

nent deposition areas and 52% of the total fuel retention can 

be removed.

Figure 1. Left: picture of an example of thin Be deposit layers on the outer corner tile from Scanning Electron Microscopy (deposit 
thickness: 2–4.5 µm) [25] (Reproduced courtesy of IAEA. Figure from [25]. Copyright 2017 IAEA.); right: the measured and simulated 
remaining deuterium fraction in the W-divertor and Be wall co-deposited layers versus the deposit thickness after 350 °C/15 h and 240 
°C/15 h baking cycles (open squares) (from [30, 31]). The illed symbols correspond to the modelling with TMAP-7 performed for two 
deposit thickness (from [29]).
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All beryllium limiters in JET are castellated, see example in 

igure 3(left), as it is also planned in ITER to ensure integrity 

and durability under thermo-mechanical and electro magnetic 

loads. Deposition and fuel retention in the castellated grooves 

is a potential concern for ITER. It therefore requires speciic 

studies on JET with more than ~170 000 castellations on the 

ILW corresponding to a total length of the castellation gaps of 

7325 m for a surface of 87.9 m2 (for comparison the surface 

of the plasma facing side is 24.5 m2).

To facilitate studies of the JET castellated limiters (groove 

width around 0.4 mm) techniques for cutting Be blocks were 

developed. Selected tiles were sectioned into smaller speci-

mens under a strict temperature control (below 60 °C) in order 

to avoid the release of hydrogen isotopes. The analyses were 

performed by means of x-ray diffraction (XRD) in order to 

determine the phase composition of limiter surfaces and ion 

micro-beam analysis (µ-IBA) to quantify the content of deu-

terium and metals (Inconel components: Ni, Cr, Fe and W)  

Figure 2. Left: ICRF discharge (IP  =  0 A) on JET with minority D heating at 3.3 T/25 MHz—ICRH coupled power is  ≈350 kW resulting 
in dense (>1018 m−3) target plasma production peaked at ω  =  ωDi. Right: calculation of magnetic lux illustrating ‘barrel’ shaped poloidal 
ield (~25 mT on axis.) optimized for ICWC at JET.
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Figure 3. Left: castellated beryllium limiter tile from JET-ILW; right: deposition proiles of deuterium inside the castellated groove of a Be 
limiter; insert: side of a sectioned tile.
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inside the castellation. Dedicated experimental procedures 

had been developed to enable these studies with µ-IBA  

[24, 36].

On plasma-facing surfaces XRD has clearly shown two 

distinct composition patterns: Be-W mixed intermetallic 

compounds on the sides of limiters (deposition zone), whilst 

only pure Be is detected in the erosion zone. The lack of com-

pound formation in the erosion zone indicates that no distinct 

changes in thermo-mechanical properties of Be PFC might 

be expected. It is found that the deuterium fuel is deposited 

at the very entrance of the castellated groove, within the irst 

0.5–1.5 mm of the 12 mm deep gap as shown in igure 3 (right) 

[24]. Deposition proiles for deuterium (igure 3 (right)) and 

metals have several characteristic features: (i) low D content 

at the very entrance to the gap, (ii) increase of the concentra-

tion with maximum reached at about 0.5 mm and then sharp 

decrease; (iii) very small content of metals (at least three 

orders of magnitude lower compared to deuterium). In abso-

lute number, the total deuterium retained within the castellated 

gaps remains small: 3% of the total fuel inventory. It should 

also be stressed that the amount of carbon is very low thus 

conirming the low amount of carbon impurities in JET-ILW. 

Deposition of deuterium inside the Be castellated structures 

has been modelled using 3D-GAPS code [24, 37]. Steep pro-

iles have been reproduced for narrow gaps (0.5 mm). The 

modelling shows very signiicant increase of deposition (and 

inventory) with the increase of the gap width, e.g. by a factor 

exceeding 10 when the width of castellation is increased from 

0.5 mm to 2 mm.

2.2. ELM-resolved divertor erosion and impact for ITER

The low core tungsten concentration (of the order of few 10−5) 

requires a reduction of the tungsten source (e.g. detached 

plasmas) and transport to the plasma core. Therefore for both 

operational and PFC lifetime aspects, it is important to under-

stand and model the physics mechanism that governs the erosion 

of tungsten components with the ITER material mix [38–43]. 

Tungsten erosion has been quantiied in the outer divertor of 

the JET-ILW environment for a wide range of type I H-mode 

plasmas in attached divertor conditions [41]. The emphasis is 

on the time dependence of the tungsten source (within 0.1 ms), 

where the sources during the transient edge localized modes 

are time resolved thanks to a novel cross-calibration procedure 

between low-time resolution divertor spectroscopy (40 ms) and 

the higher time (0.1 ms) resolution photo multiplier tube mea-

surements through optical ilters. Separation of the intra-ELM 

and inter-ELM W divertor source has revealed that the W-PFC 

lifetime is mainly determined by the intra-ELM contrib ution 

which governs the total W-sputtering source as shown in igure 4 

(left). Indeed, during an ELM the W inlux (5  ×  1020 s−1)  

could be 50–60 times higher than during the inter-ELM phase. 

Sputtering during the inter-ELM phases is mainly due to Be 

ions lowing into the divertor from the main chamber source. 

The sputtering caused by fuel species (D, T) become sig-

niicant at higher pedestal electron temperatures (see sputter 

yield curve versus ion impact energy). The outer divertor W 

source is larger by a factor of 1.8  ±  0.7 compared to the inner 

divertor, which is consistent with a factor of ~2 asymmetry 

in ELM energy loads. The total tungsten source correlates 

well with power crossing the separatrix since large ELMs, in 

terms of pedestal energy loss, provide a larger tungsten source. 

Therefore methods for ELM control are also required to reduce 

the W source in addition to controling the power loads to the 

W target. Total tungsten level in the plasma results from a 

competition between source and tungsten transport processes. 

In this context, the global plasma tungsten content is found 

to increase with the ELM frequency (the source term) until 

approximately 40 Hz where this trend begins to reverse, i.e. the 

content decreases while the source is still increasing (igure 4 

(right)). This is interpreted as a sign of reduction of the tung-

sten coninement or penetration times at high ELM frequency, 

i.e. the so-called ELM lushing process used empirically in the 

scenario development with W-wall [41].

In semi-detached or even detached ITER divertor plasmas 

(i.e. without inter-ELMs W sputtering), we conclude from 

the JET results that the W source will remain dominated by 

the intra-ELM phases where high energy ions (Be, D, T) will 

sputter W from the target plates at each ELM (even for paced 

ELM), and, during D–T operation the sputtering yield (and 

resulting W source) will be further enhanced due to triton 

impact. Therefore, methods for ELM control are required in 

ITER not only to reduce the energy loads to W target but also 

to mitigate the W source and divertor erosion. Whether there 

is an optimum frequency window where both methods are 

simultaneously eficient remains to be explored for ITER.

Figure 4. Left: inter and intra ELM W outer divertor sources shown as function of the total W source. Right: The total W content of the 
plasma and the outer divertor tungsten source as function of the ELM frequency. Reproduced from [41]. © 2016 EURATOM.
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The irst wall beryllium erosion, beryllium physical/chem-

ical sputtering has been further investigated using 3D local 

transport and plasma–surface interaction Monte-Carlo mod-

elling (e.g. ERO code [39, 44]). The passive spectr oscopy 

experiments for physical and chemical erosion data [45] were 

interpreted using the simulations by the ERO code [39, 44]. 

For the determination of the Be yields and erosion data assess-

ment, dedicated experiments were performed where the lim-

iter plasmas were shifted towards the inner wall with single 

plasma–wall interaction poloidal contact point [46]. It was 

shown that the it of the effective physical sputtering yield 

(based on molecular dynamic and binary-collision approx-

imation simulations) assuming Be with 50% deuterium in the 

interaction layer with the PFC is recommended for the erosion 

modelling of the Be plasma-wetted surfaces [46]. A procedure 

for numerical (ERO) or analytic [47] generation of angle and 

energy distributions of sputtering ions on their impact with 

surface was suggested and proved to be of importance. The 

accounting of these distributions leads to different effective 

sputtering yields depending on B-ield inclination to the sur-

face and local plasma parameters.

In addition, it has been shown experimentally [45] that 

chemically assisted physical sputtering contributes to 50% 

of the total sputtering when the surface temperatures are of 

the order of 200 °C, but becomes negligible at higher temper-

atures (~400 °C). It is worth mentioning that, the chemi-

cally assisted physical sputtering of Be is a different process 

compared to Carbon chemical sputtering on the atomistic 

level and demands a certain energy of the sputtering parti-

cles. The surface, atomic and molecular data was validated 

by reproducing experimental BeI, BeII and BeD A-X band 

spectroscopic emission during the plasma parameter scan. 

In addition, an important inluence of the coupled RF power 

from ICRH antenna on erosion (factor 2–3 increase of erosion 

yield compared to cases without ICRH) was investigated by 

antenna sequential toggling experiments (switching on and off 

the antennas) simulated by the ERO code [48]. The analytical 

procedure necessary for calculating the local effective yields 

was adapted to take into account an additional surface biasing 

effect due to RF sheath rectiication [49]. It allows using the 

same sputtering assumptions (‘ERO-min’ it) as at the inner 

wall to reproduce the antenna toggling effect. Several impor-

tant issues like for instance the fraction of chemically assisted 

physical sputtering versus physical sputtering, the amounts of 

Be–D molecules released (fraction of BeD2, BeD3) need fur-

ther investigation. Some observations with the JET ILW, like 

the surface temperature and outgassing inluence on chemi-

cally assisted physical sputtering, are not yet fully understood 

and reproduced in our modelling which require further devel-

opment [50]. Finally, we conclude for ITER that simulations 

performed with the validated ‘ERO-min’ model for the ero-

sion yields correspond to the most positive ITER irst wall 

life time predictions (4200 ITER QD–T  =  10 discharges) [38]. 

Still, these estimations are to be corrected using the most 

recent JET ILW experience. For instance the role of CAPS or 

e.g. detailed plasma-shadowing [44] should be accounted and 

improved procedure for the local effective yields estimations 

should be applied.

2.3. Type I-ELM energy lux

The transient heat loads during type I-ELMs are a major threat 

to ITER and DEMO irst wall and divertor materials. Multi-

machine scaling of the type I-ELM divertor energy lux den-

sity parallel to magnetic ield lines on ITER with data from 

JET (both with CFC and ITER-like walls), ASDEX Upgrade 

(with CFC and full-W walls) and MAST has been recently 

proposed [51, 52]. Data from these various devices (igure 5) 

show an approximately linear dependence of the peak ELM 

energy density, ε//, (parallel to magnetic ield lines) with the 

pedestal top electron pressure, major radius and a square root 

dependence of the ELM loss energy. This data set has also 

been successfully extended to discharges with active ELM 

control (JET vertical kicks, error ield correction coils and pel-

lets, MAST and ASDEX-Upgrade resonant magnetic pertur-

bations operation). Interestingly, the actively controlled type-I 

ELMs also it well into the scaling.

The result of this proposed scaling gives a range for the peak 

ELM energy density at the divertor target (when using a ratio of 

20 between parallel and target angle, neglecting inclination and 

castellation of the ITER divertor) of 0.5–1.5 MJ m−2 for ITER 

QD–T  =  10 operation (15 MA, 5.3 T) and 0.125–0.375 MJ m−2  

for intermediate ITER operation (7.5 MA, 2.65 T). The latter 

numbers are close to the maximum nominal surface energy den-

sity of 0.5 MJ m−2. However, the presence of thin gaps between 

monoblocks at the ITER divertor vertical targets result in exposed 

edges onto which, according to calculations based on a simple 

model, the heat lux can be focused with shallow edge melting 

occurring [53]. It is not known today whether or not repeated 

edge melting would be a problem for ITER operation; exper-

imental studies to address this issue are needed (see section 2.4). 

Figure 5. Measured versus scaling of type I-ELMs energy lux 
density parallel to magnetic ield lines in ASDEX Upgrade (both C 
and W walls), JET (both C and ITER-like walls) and MAST including 
recent discharges with ELM control techniques. The JOREK 
simulations for the JET-ILW have been also added and compared with 
the empirical scaling. From [51, 55].
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The experimental results, the empirical scaling and the ITER 

prediction have been compared to predictions from the non-

linear MHD code JOREK [54–56]. JOREK predictions for the 

JET–ILW discharges and ITER peak ELM energy density are 

in agreement with the estimated values obtained from the multi-

machine experimental regression (igure 5 where the JOREK 

simulations have been added) [53, 54]. The ability to predict ELM 

energy losses and divertor heat luxes for ITER relies on simula-

tions that can reproduce the exper imental ELMs characteristics on 

present devices. Simulations of ELM with non-linear MHD codes 

like JOREK have been performed for JET, as well as MAST, 

ASDEX Upgrade and JT-60U pulses, using diamagnetic terms, 

at low resistivity, and including multiple toroidal mode numbers 

[54]. Validation of these simulations is obtained by comparing 

results against the divertor heat-lux from infra-red camera data, 

and against ELM energy losses measured by the high-resolu-

tion Thomson scattering diagnostic. As shown on igure 6 (left), 

JOREK simulations using simultaneously low resistivity and low 

viscosity can reproduce accurately the ELM energy losses for var-

ious pedestal conditions [54]. In order to also reproduce the exper-

imental divertor heat luxes, the essential aspects of simulations 

are an advanced equilibrium reconstruction, and multiple toroidal 

harmonics to allow coupling between different peeling/ballooning 

modes. Simulations at low resistivity and viscosity indicate that 

the heat lux proile widths with JOREK synthetic IR diagnostic 

(igure 6 (right)) ranges from 8 cm to 16 cm, averaging at 11.5 cm 

which is consistent with exper imental proile width extracted from 

IR data. It is worth noting that the simulated heat lux patterns 

have also repetitive peaks with an isolated ‘blobs’ structure.

2.4. Divertor heat load investigations for ITER

Another area of concern for ITER is the power handling capa-

bility of the castellated tungsten divertor target modules. Indeed, 

the ITER full tungsten divertor targets will be castellated and 

made of ~300 000 independent mono-blocks [57]. However, 

even with optimal shaping inite ion gyro-radius effects during 

ELMs could lead to local heat loads at geometrically shadowed 

surfaces suficient for transient shallow local melting.

One important goal of the JET ITER-like wall is to address 

these issues taking advantage of its divertor target made of 

bulk W lamellas and its ability to produce ELM sizes (δW ~ 

300 kJ per ELM) comparable to mitigated ELMs expected in 

ITER. The underlying processes of ELM-induced transient 

melting including the resulting melt motion and the corre-

sponding evolution of surface morphology by re-solidiied 

melt debris was studied at JET in a irst experiment per-

formed in 2013 using a bulk-W lamella (on tile 5) with a 

protruding sloped surface structure [58–60]. To maximise the 

ELM-induced temperature excursion, the special lamella was 

installed in one divertor module with a sharp leading edge 

exposed to the parallel power lux by slightly lowering the 

adjacent 8 upstream lamellas (see igure 7 (left)). One limita-

tion of this experiment was that the IR camera did not have 

suficient spatial resolution to directly resolve the melt layer 

temperature. Indeed using the available IR camera view from 

top, it was dificult to discriminate between the lamella’s top 

and side power loads.

Due to the limited spatial-resolution the power lux had 

to be derived by the modelling of the thermal response of 

the lamella. For this irst set of experiments both the local 

thermal response and the observed melt motion could only be 

explained under the assumption of a signiicantly (60–80%) 

lower heat lux to the exposed leading edge than expected 

from purely geometrical projection of the parallel heat lux 

derived from thermography data at standard tile surfaces [58]. 

The module containing the special lamella has been removed 

from JET during the 2014–2015 shutdown and photographed. 

The picture may indicate large number of discrete layers which 

are possibly driven by the 30 Hz ELMs during the previous 

melting experiment [60]. The main uncertainty in that experi-

ment resulted from the sub-optimal observation geometry of 

the infra-red camera system, which viewed the exposed edge 

from top and therefore did not provide a direct view on the 

exposed edge. In this context, a new lamella was designed and 

installed during the 2014–15 shutdown with the main objective 

to resolve a discrepancy observed in the previous JET tran-

sient W-melt experiment with a leading edge exposed to the 

Figure 6. Left: ELM energy losses versus pedestal pressure for multiple JET-ILW pulses: JOREK simulation (star) and experiments 
(red circles). Right: JOREK simulation of the outer divertor heat lux during ELM crash as calculated with infra-red camera synthetic 
diagnostic. Reproduced from [54]. © IOP Publishing Ltd. All rights reserved.
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full parallel heat lux while allowing direct spatially resolved 

observation of the top surface. This was rectiied by the new 

sloped lamella (see igure 7 (right)), where in the same obser-

vation geometry the IR camera system now views directly at 

the slope exposed to increased heat lux. The new geometry 

also results in a smaller temperature gradient on the top surface 

and reduced sensitivity of the analysis to the surface incidence 

angle of the magnetic ield. In the recent 2016 experiments, 

reproducible 2 T/2.5 MA, 2 MW input power, 2 s lamella expo-

sure, L-mode plasma discharges have been performed [61]. 

The heat load distribution is computed assuming the optical 

projection of the parallel heat lux which is determined by 

iteration comparing synthetic with experimental IR data as 

illustrated in igure 8. With the improved calculation (igure 

8), a fair agreement is obtained between the measured and 

simulated IR temper atures for three different lamella conigu-

rations: standard, sharp leading edge (from the 2013 experi-

ment) and the new special protruding sloped lamella for the 

2015/2016 experiment. In the recent 2016 experiments with the 

new lamella, the directly measured heat load no longer showed 

a discrepancy in L-mode to the value from geometric projec-

tion of the parallel power lux [61], in line with observations 

from companion experiments at other tokamaks (COMPASS 

[62] and ASDEX Upgrade [63]). Indeed, concur rently to all 

these experiments, the originally required ad-hoc assumption 

of a lower than geometrically deduced power lux could be also 

rectiied for the initial JET transient melt study by improved 

analysis using a more sophisticated model (full 3D description 

of the plasma heat load and heat diffusion) for the simulation 

of the lamella’s thermal response [61, 64]. The new results 

greatly improved conidence in the models used for predictive 

simulations of the local heat load distribution and of transient 

melt motion required for the design of optimally shaped castel-

lated ITER divertor target modules [65].

2.5. Dust analysis and impact for ITER

Comprehensive and systematic surveys of dust generated in 

tokamaks have been carried out in order to provide data needed 

in the licensing process of ITER [66, 67]. In ITER, dust can 

pose the following issues: (i) safety hazard in the case of loss-

of-vacuum accidents, owing to the remobilization of respirable 

toxic or radioactive dust that has accumulated during opera-

tion, (ii) safety hazard in the case of loss-of-coolant accidents, 

owing to the explosion risk due to hydrogen production by the 

exothermic oxidation of metallic dust with steam, (iii) opera-

tional hazard owing to dust-generated impurities penetrating 

deep into the core plasma and leading to high radiation losses, 

(iv) degradation of in-vessel diagnostic components and mal-

function of inspection tools, (v) compromise to PFC integ-

rity, for instance by bridging the gaps of castellated PFCs and 

undermining their resistance to thermo-mechanical stresses. 

In ITER, the Be irst wall is expected to be the main source of 

dust. ITER-relevant generation mechanisms can be roughly 

categorized in the following manner: (1) production under 

steady state conditions mainly delamination of re-deposited 

Be layers but also arcing, (2) production under transient con-

ditions (unmitigated major disruptions, vertical displacement 

events, run-away electrons) mainly droplet splashing from 

molten layers and material ejection during deep melting but 

also surface cracking and destruction of deposited layers.

In this context, the collection of dust and co-deposits in 

JET with the ITER-Like Wall are the most relevant informa-

tion for ITER full-metal device (see igure 9, various pictures 

of metal particles retrieved from JET during dust collection). 

Figure 7. View of the special lamella assembly in the modiied divertor module and 3D thermal modelling. Left: leading edge lamella as 
in the 2013 experiment; right: new special sloped lamella for the 2015/2016 experiment to allow direct temperature measurement by the IR 
camera system mounted on the top of the machine. The lamella is 5.5 mm wide and the raised section is 20 mm long. Far left: reproduced 
from [58]. © 2015 EURATOM. Third from left: reproduced from [60]. © 2016 EUROfusion.

Figure 8. Measured versus simulated (with improved modelling) 
IR temperatures for three different lamellas: standard, sharp leading 
edge (from the 2013 experiment) and the new special protruding 
sloped lamella for the 2015/2016 experiment—from [61].
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Dust collection is performed by two methods: (a) localized 

sampling using sticky pads from W coated CFC divertor and 

Be limiter tiles; (b) vacuum cleaning of all divertor modules 

[22, 68–72]. The amount of loose dust removed by vacuum 

cleaning of the divertor during the shutdown phases after two 

main operation periods (2011–2012 and 2013–2014) was 

respectively 1.4 g (0.06 g m−2 normalised to the divertor sur-

face) and 1.8 g (0.08 g m−2), i.e. over two orders of magnitude 

less than after the operation of JET with carbon wall which 

is a positive message for ITER safety issue [25, 69]. These 

results reveal that steady state dust production was signii-

cantly reduced as well as that shallow melting by transients 

did not create a large amount of Be droplets. It is worth noting 

that since dust remobilization exhibits a strong size selec-

tivity [70, 71], the collected size distribution does not relect 

the generated size distribution. Nevertheless, the quanti ties of 

collected dust in JET-ILW are small, these studies are crucial 

for ITER, because these are unique data from a full metal-wall 

with the ITER material mix [72]. These activities revealed that 

metal dust is mainly produced by laking of the co-deposited 

layers and from W-coated tiles (which is of no relevance to 

ITER). In addition, a comprehensive analysis of the collected 

dust and divertor tiles has been carried out at the International 

Fusion Energy Research Centre (IFERC) in order to identify 

dust characteristics such as structures, mat erial components 

and hydrogen isotope retention [73]. In [68], evidence on the 

formation of two types of beryllium particles was presented: 

lakes of co-deposits and small droplets. These two types of 

beryllium-rich particles are of great importance for ITER. 

In the case of tungsten-based particles two main forms were 

found: agglomerates originating from the coatings and sphe-

roids. From the ITER point of view, agglomerates are of sec-

ondary importance as no coated PFCs are planned.

The determination of the exact structure and size of Be and 

W dust will also be useful for the development and bench-

marking of codes simulating dust generation and transport. 

Melting experiments in JET have conirmed the formation 

of droplets for both Be and W tiles [59, 60, 72] and in situ 

imaging has already provided indication of the droplet sizes. 

The planned tile extraction will allow a more detailed docu-

mentation of the morphology. The injection velocity, angle and 

size provide initial conditions to dust transport codes, since 

the phenomena of droplet and dust generation are decoupled 

from the physics of their further transport. For the validity of 

modelling predictions for ITER concerning the dust life-time 

but also the inal dust destination and the formation of accu-

mulation sites, information on the initial size is particularly 

important since the physics of dust-wall impacts and sticking 

exhibit a strong size dependence [74, 75].

Progress has been made in the understanding of transient 

impurity events (TIEs), identiied by a sharp increase in radi-

ated power. A clear statistical correlation with disruptions 

was found, TIE occurrence is more probable during disrup-

tion-proceeding discharges [76]. Moreover, an excellent 

Figure 9. Examples of metal particles retrieved from JET during dust collection: (a) beryllium droplet; (b) nickel droplet covered by 
beryllium-rich co-deposit (from [79]); (c) beryllium droplet splashed on the surface of a test mirror located in the main chamber (from 
[79]); (d) tungsten spheroid with recrystallized surfaces, the broken shell reveals empty interior (from [68]). (a) Reproduced from [79].  
CC BY-NC-ND 4.0. (d) Reproduced from [68]. © 2015 EURATOM.
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correlation between the TIE rate and dust detection by high 

resolution Thomson scattering suggests that TIEs are caused 

by dust. The overall picture is the following [73, 76]: during 

disruptions the dust inventory is re-distributed and conse-

quently part of the dust population is loosely adhered to the 

PFCs at the beginning of sequent discharges. Such dust remo-

bilizes and migrates in the plasma, where its ablation releases 

high-Z impurities.

Finally, the impact of arcing and cracking co-deposits on 

dust formation and, consequently, on the performance of diag-

nostic components (i.e. metallic mirrors) has been addressed 

in [77–79]. The study has proven signiicant erosion by arcing 

and melting of coated mirrors. This result should give indi-

cation for ITER in the selection and design of diagnostic 

systems.

2.6. Divertor neutral modelling

One of the most important systems in a fusion device is the 

particle exhaust system whose primary objective is den-

sity and impurity control as well as helium removal. The 

torus exhaust vacuum pumping system inherently couples 

the plasma core and edge conditions with the subdivertor 

neutral pressure. ITER will utilize cryopumps for plasma 

exhaust at subdivertor pressures in the range between 1 and 

10 Pa for hydrogen plasmas [80]. These conditions translate 

to varying collisionality regimes in the subdivertor, described 

by the Knudsen number λ=Kn L/ , i.e. the ratio of the mean 

free path to the characteristic length of the system. Thus, the 

exhausted gas is more likely to be in the continuum regime 

near the private-lux region (PFR), covering transitional low 

in the subdivertor region and ending up in the free molecular 

low regime inside the cryopumps [81]. The complexity of its 

description demands an integrated approach between plasma 

and vacuum particle dynamics. Particularly for the subdivertor 

system sophisticated neutral models should be implemented, 

which not only take into account the geometrical complexity 

of the ITER divertor but also the capability to describe the 

neutral–neutral interactions suficiently well such that the 

transport coeficients, namely neutral viscosity and thermal 

conductivity are modelled in a realistic way. In the above 

framework, the most eficient and suitable numerical method 

for neutral particle modelling is the direct simulation Monte 

Carlo method (DSMC), which is a particle-based algorithm 

for the simulation of gases at the kinetic scale [82]. It solves 

the non-linear Boltzmann equation  by simulating group of 

model particles that statistically mimic the behavior of real 

molecules. Typically, in the DSMC approach the simulation 

of large number of model particles are evolved in small time 

steps in which their free motion and collisions are uncoupled. 

Based on this approach, a novel divertor gas simulator code 

(DIVGAS) is capable of modelling complex neutral gas lows 

in a tokamak sub-divertor.

For validation of the code, demonstration of its feasibility 

and general benchmark, experimental data from JET (L-mode 

plasma cases with the JET ITER-like wall coniguration) are 

successfully replicated over a wide range of density. To be 

more speciic, the pressure gauge readings taken in the subdi-

vertor region, properly corrected for the inluence of the low 

conductance connection pipe so as to get representative values 

for the subdivertor volume, are well described using EDGE2D-

EIRENE calculations as boundary conditions on the plasma 

side [83]. Figure 10 illustrates a typical example of a pressure 

plot calculated with the code including the cryopump domain.

The new approach has been successfully applied in the 

European ITER Physics Programme to describe the ITER 

subdivertor region with the background plasma calculated 

by the luid edge code package SOLPS (B2-EIRENE) [84]. 

DIVGAS was used to assess the neutral gas recirculation 

towards plasma and through the gaps behind the vertical tar-

gets. The use of DSMC for this kind of problems is irst-of-its 

kind and is considered to be most innovative with an excellent 

perspective for future applications, in particular for high den-

sity detached scenarios as envisaged for DEMO. Following 

the validation at JET, the effort of benchmarking and testing 

the capability of DIVGAS code has been continued by model-

ling the JT60SA subdivertor [85] and, currently on the way, 

the DEMO particle exhaust system [86].

3. Disruption prediction and mitigation studies  

for ITER

Disruptions are considered as the highest programmatic risk in 

the ITER Research Plan which deserves signiicant experimental 

and modelling effort in Europe. The disruption mitigation system 

Figure 10. Geometrical representation of JET sub-divertor structure (cyan area, left) and a typical calculated pressure contour plot (right).
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for ITER is presently in the design phase, with two main candi-

dates: massive gas injection (MGI) and shattered pellet injection 

(SPI) [87]. The ITER disruption mitigation system is aiming at 

simultaneously: (i) the reduction of heat loads to prevent the PFC 

melting, (ii) the reduction of the electromagnetic forces in the in-

vessel components and in the vacuum vessel itself, and, (iii) the 

avoidance or the mitigation of run-away electrons. In ITER, three 

upper port plugs are allocated for the installation of disruption 

mitigation system components as well as one equatorial port [87].

3.1. Disruption experiments

Disruption mitigation experiments carried out in different 

tokamaks have demonstrated the viability of massive gas 

injection to reduce the heat loads and electromagnetic forces. 

However, uncertainties in the thermal load mitigation efi-

ciency exist due to toroidal and poloidal asymmetries in the 

radiation. On JET, a third Disruption Mitigation Valve (DMV) 

has been brought into operation since 2015, which together 

with the other two DMVs are at toroidal and poloidal loca-

tions mimicking the ITER set-up (igure 11). Mitigation by 

massive gas injection (MGI) is mandatory for JET operation, 

and, dedicated experiments have been carried out to address 

ITER relevant issues related to: (i) the effect of the poloidal 

location of massive gas injection on the eficiency of disrup-

tion mitigation; (ii) the reduction of the radiation asymmetries 

using an optimised combination of MGI [88–91].

Electromagnetic loads are the result of halo and eddy cur rents 

induced into the vessel structures. The dynamic vertical vessel 

forces following a MGI have been measured over a plasma cur-

rent range up to 3.5 MA (for a given magnetic coniguration 

in either low or high triangularity) for all three injection loca-

tions separately while the quantity of injected argon has been 

kept constant (igure 12 (left)) [88, 89]. Over the explored range 

of plasma current the unmitigated disruption force, which has 

been determined by deliberate test-VDEs (black line), has been 

reduced by 33%–40% with MGI injections (igure 12 (left)). 

The deduced vessel force scaling for each injector system indi-

cates that the choice of the injection location or impurity gas 

(argon or neon) has no inluence on the vessel force reduction 

and that the mitigation eficiency is not reduced when increasing 

the plasma current (up to 3.5 MA). The gas amount from the 

mid-plane injector has been varied at two plasma currents (1.5 

MA and 2.0 MA) to determine the optimum impurity injection 

that is required to minimise the vertical force. A minimum of 

the disruption vessel force is found with a very low amount of 

injected impurity injection (≅1  ×  1022 particles). The existence 

of the minimum is interpreted as a trade-off between two com-

petitive effects: the increase of the forces induced by the eddy 

current with impurity injection (shorter current quench phase) 

while the vessel force due to the halo current is reduced.

ITER is aiming at radiating at least 90% of the stored thermal 

energy for mitigating disruptions at high plasma energy con-

tent. Initial experiments at JET carried out with one injector on 

the top of the machine have resulted in a saturation of the radi-

ated energy fraction with increasing impurity injection [91, 92].  

In ohmic disruptions, the asymptotic radiation fraction is in the 

range of 80–85% integrated over the entire disruption and is 

decreasing with increased ratio of thermal to total energy inside 

the vessel, explored up to the ITER nominal value of about 0.5 

[88–91]. It should be noted that this includes the radiation during 

all phases of the disruption and the achieved radiated energy 

during the thermal quench phase might be even lower. Similar 

saturation levels have been observed when using the other MGI 

at the top location but with a higher particle throughput (factor 

2), or, the one located in the mid-plane. Saturation and therefore 

highest values of radiation fraction are achieved at relatively 

low injected impurity quantities (≅1–4  ×  1021 particles injected 

before the current quench). However, at present it cannot be 

concluded, due to diagnostic limitations, whether the saturation 

level is signiicantly different from unity or whether it indicates 

insuficient radiative energy dissipation.

Figure 11. Poloidal and toroidal cross-section of JET with the locations of the three massive gas injection valves and the horizontal (Prad,H) 
and vertical (Prad,V) bolometers. Reproduced with permission from [89].
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Thermal quench mitigation through an increase of the radi-

ated power fraction is feasible provided that uneven poloidal 

and/or toroidal distribution of the radiated power do not result 

in very large localised radiation that will locally enhance the 

thermal loads to the irst wall [87]. The radiation asymmetry 

results from the presence of the MHD activity (n  =  1 mode) 

and from the localised injection. This effect is enhanced or 

diminished depending on the relative location between the 

n  =  1 mode island and the MGI-location (e.g. maximum radi-

ation peaking occurs when the injection is done close to the 

O-point of the n  =  1 mode) [93]. The toroidal distribution of 

the radiated power is characterised by a peaking factor: the 

ratio of the maximum radiation to the average radiation. With 

a single injection, it has been found that the toroidal peaking 

factor of the radiated power is up to 1.8, which could lead 

to shallow melting of the irst wall in ITER. By optimising 

the massive gas injection combining two injectors this value 

has been reduced down to a very low level, i.e. 1.2 [88, 89]. 

This has been obtained by combining the impurity injection 

from the two top injectors separated toroidally by an angle of 

180deg. The minimum in the radiation asymmetry is found 

by increasing the injected impurity level from one toroidal 

injector while the injection from the other is kept constant. 

Remarkably, in a very small range around 1.0  ×  1022 injected 

argon atoms the asymmetry between the two bolometry meas-

urements on JET (horizontal and vertical) at two toroidal loca-

tions almost vanishes as illustrated in igure  12 (right) [88, 

89]. These experimental indings on JET support the choice of 

injection locations for the ITER-disruption mitigation system.

3.2. Disruption modelling

First simulations of a D2 MGI-triggered disruption in a purely 

ohmic JET plasma have been performed with the 3D non-

linear MHD code, JOREK [94, 95]. The objective is to prog-

ress in the understanding of MGI-triggered disruptions by 

validating the model on a ‘simple’ case before applying it to 

more complicated situations like injecting high-Z impurities 

and to ITER. A purely diffusive equation  for describing the 

neutral density evolution including ionisation/recombination 

atomic physics process has been added in the luid reduced 

MHD JOREK codes with 3D toroidal geometry treating 

X-point and SOL. The simulations indicate that the MGI 

gives rise to a localised over-density front that rapidly prop-

agates in the parallel direction. To reproduce the experimental 

interferometric data it is assumed that not all the neutral gas 

enters into the plasma. The MGI also causes the consecutive 

growth of several magnetic island chains (mainly 2/1 and 3/2) 

and seeds the 1/1 internal kink mode in cases with q0  <  1. 

The O-points of all islands are located in front of the gas 

injection region (outer mid-plane), consistently with exper-

imental observations performed with a set of saddle loops 

in ohmic JET plasma [91]. In a second phase, a continuous 

increase of the magnetic islands width leads to a formation 

of stochastic layer at the plasma edge and to a fast loss of the 

plasma thermal energy by thermal conduction along the sto-

chastic ield lines (see igure 13). A burst of MHD activity and 

a peak in plasma (thermal quench) current take place at the 

same time as in the experiment when the assumed resistivity is 

approaching the Spitzer’s resistivity. However, the reduction 

of magnetic energy is much smaller than in the experiment. 

The simulated radiation is also much below the experimental 

level. As a consequence, the thermal quench is not quantita-

tively reproduced, and, it is likely that larger unstable current 

gradient, via a sharper cold front, would strengthen the MHD 

amplitude. Present model limitations are the assumption of a 

purely diffusive transport of neutrals and the absence of back-

ground impurities in the target plasmas that may contribute to 

the explanation of these discrepancies.

To improve the simulation of the neutral gas penetration a 

new 1D radial luid code, IMAGINE, has been recently devel-

oped and applied to the JET D2 MGI-triggered disruption and 

Figure 12. Left: vertical vessel force FV as function of plasma current squared in low triangularity coniguration. The black represents 
the FV for unmitigated vertical displacement events. The dashed lines are the scaling derived from the corresponding data set for each 
injector. Right: measured radiation asymmetry deduced the horizontal (Prad,H) and vertical (Prad,V) bolometers deined as (Prad,V  −  Prad,H)/
(Prad,V  +  Prad,H) for dual injections as a function of Ar-amount from Top,S injector while the Ar injected from Top,L is kept constant. Left: 
reproduced with permission from [89]. Right: reproduced with permission from [88].
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the run-away MGI mitigation experiments [96]. The approach 

that has been developed treats the neutral gas transport within 

the plasma background according to irst principle convective 

equations and includes ionization, recombination and charge 

exchange atomic processes for describing the interaction of 

the neutral luid with the background plasmas. Indeed, it is 

found that plasma charge exchange and (to a smaller extent) 

recombination processes slow down the gas low at the plasma 

edge and a shock wave propagates away from the plasma fur-

ther braking and compressing the incoming gas. As a result, 

only a small fraction of the gas penetrates into the plasma, 

and, the time to reach the q  =  2 surface (5–10 ms) estimated 

in the simulations that take into account these atomic pro-

cesses becomes compatible with the experimental time, i.e. 

the thermal quench onset time (thermal quench is usually trig-

gered when the cold front reaches q  =  2 surface). Another 

important result related to the question of gas penetration is 

the unsuccessful attempt to suppress the run-away electrons 

beam after its formation using MGI on JET [94]. This result 

is of paramount importance for ITER as JET is the only 

tokamak where run-away beam suppression using MGI was 

found to be ineficient. Again, the simulations indicate that the 

run-away electrons beam is shielded by the surrounding cold 

plasma when its background density is large enough (typi-

cally 1020 m−3) to prevent the neutral gas penetration. The 

mechanism identiied is the gas-plasma friction force due to 

charge exchange process which is proportional to the plasma 

background density. Indeed, at lower plasma background den-

sity (typically 1019 m−3) the gas penetrates up to the run-away 

beam. These simulations contribute to explain the difference 

between JET and ASDEX Upgrade or Tore Supra experiments 

performed at lower plasma background density where run-

away electrons beam suppression is observed with MGI. To 

further investigate this process experiments have been initiated 

in view of varying the plasma background densities. In addi-

tion, it is foreseen to install during the 2016–2017 shutdown 

a new Shattered Pellet Injection system (within the frame of 

an international collaboration) to compare the gas penetration 

conditions and further elucidate the differences between JET, 

DIII-D and ASDEX Upgrade experiments in view of ITER 

extrapolation.

3.3. Disruption prediction

A pre-requisite to trigger any mitigation scheme is to reli-

ably predict in real-time the foreseen disruption event with 

suficient anticipation time. The ITER requirement on the 

success rate will vary for the different operational phases, 

but is expected to be above 95% for high performance oper-

ation with high disruption loads. The detection time has to 

be longer than about 20–40 ms prior to the disruption to be 

compatible with the reaction time of the mitigation system. 

A typical disruption predictor is the amplitude of the locked 

mode signal: macroscopic instabilities start locking to the wall 

and the locked mode amplitudes increase during the slowing 

down of the plasma rotation. When this amplitude reaches a 

certain threshold (established beforehand), it is interpreted as 

high probability of an imminent disruption. This signal is used 

either to attempt a safe landing of the discharge or to trigger 

mitigation actions. However, a simple amplitude threshold of 

the locked mode signal does not deal satisfactorily with ITER 

required prediction rate. The amplitude of locked instabili-

ties, likely magnetic islands, seen as precursors to disruptions 

has been studied using data from the JET, ASDEX Upgrade 

and COMPASS tokamaks [97]. It was found that the thermal 

quench, is triggered when the amplitude has reached a dis-

tinct level. This information is used to determine thresholds 

for simple disruption prediction schemes. To improve the suc-

cess rate of disruption prediction, machine learning methods 

that fully exploit the time and frequency domain of the signals 

have been developed and applied to JET [98]. An Advanced 

Predictor Of DISruptions (APODIS) was set-up during the 

irst ITER-like wall (ILW) campaign and it is working rou-

tinely in the JET real-time network [99]. APODIS was trained 

with more than 8000 JET discharges corresponding to carbon 

wall operations and it is being used during the ILW campaigns 

without any retraining since 2010. The initial result just after 

the irst three ILW campaign (991 discharges) has shown 

Figure 13. JOREK simulation of a JET disruption triggered by massive gas injection showing stochastisation of the plasma coniguration. 
Poloidal cross section of the electron temperature; electron density, current density and Poincaré plots for the JET pulse 868 87 at t  =  5.7 ms after 
the massive gas injection, i.e. at the start of the thermal quench-from [95]. Reproduced from [95]. © IOP Publishing Ltd. All rights reserved.
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a success rate of 98.36% (with a warming time on average 

426 ms prior to the disruption time) and a false alarm rate of 

0.92% [100].

The requirement of a large database of disruptive dis-

charges to train the predictor is not compatible with safe 

ITER and DEMO operations. Therefore, adaptive predictors 

have been proposed with high learning rates using a limited 

disruption database [101–104]. The strategy is to retrain the 

predictors on a wider database only after missed disruption 

detection. The most recent predictor developed in JET avoids 

the use of past discharges for training purposes [105, 106]. 

The objective is to learn in each discharge the non-disruptive 

behaviour, and, to trigger an alarm when an anomaly appears. 

The locked mode signal has been used to implement a irst 

disruption predictor based on anomaly detections. A wavelet 

transform of the locked mode signal is used to retain simulta-

neously information from both time and frequency domains. 

Success rates are above 85% and false alarm rates are below 

5%. This single signal predictor based on anomaly detec-

tion (SPAD) has a disruption detection rate above 85% and 

false alarm rate below 5% and has been compared not only 

with the classical locked mode predictor based on threshold 

(LMPT) but also with the initial APODIS without retraining 

since the irst ILW campaign (igure 14). Figure  14 shows 

the disruption detection success rate of the three predictors 

versus the warning time, i.e. the alarm detection time prior 

to the disruption time. SPAD has a higher disruption detec-

tion success rate and earlier detection time. SPAD is being 

installed in the JET real-time network [107]. The ongoing 

effort for improvement focuses particularly in the direction 

of reducing the dispersion of the warning time, at present too 

large to allow detailed adjustments of the mitigation strat-

egies. To reach this objective it is necessary to adopt new 

approaches and use a combination of signals. Indeed, the 

information carried by the locked mode signal is already fully 

exploited by the new generation of predictors such as SPAD. 

The possible strategy consists of developing tools capable of 

classifying the type of disruption, using a nonlinear manifold 

learning method [108–111].

4. Physics of H-mode access and exit studies  

with ITER irst wall materials

Access to type I ELMy H-mode operation is an important 

milestone in the ITER research plan already in the non-active 

ITER phase of operation. Indeed, H-mode access needs to be 

demonstrated: (i) to ensure a fast and risk-controlled path to 

early D–T operation in ITER, (ii) to timely assess the need 

for an external heating upgrade, (iii) to develop ELM con-

trol schemes and H-mode exit strategy. Based on current 0D 

scaling laws (e.g. in [112]), the most viable path for ITER 

during the non-active phase to access the type I ELMy H-mode 

is presently in helium plasmas. If H-modes can be achieved in 

hydrogen at much lower threshold with the ILW, compared 

to the carbon wall and to the existing scaling laws (e.g. by 

changing magnetic coniguration), it will signiicantly impact 

the ITER research plan. Knowledge of the L–H threshold 

power is therefore critical to the optimization of the time 

sequence of the experimental programme towards D–T opera-

tion and availability of the ITER systems. In the active phase 

of ITER operation, the anticipated threshold power on ITER 

is 53 MW in deuterium and 43 MW in deuterium–tritium mix-

ture (at a density of 5  ×  1019m−3 at 5.3 T) and is extrapo-

lated from a multi-machine scaling [112], based on density, 

magnetic ield and machine size. Many hidden parameters are 

known to affect PL–H leading to large scatter (factor 4) in PL–H 

in the present database and induce considerable uncertainty 

in the extrapolation. Because the available external heating 

power on ITER (73 MW max) is only marginally above the 

expected threshold, there is an ongoing effort to understand 

the underlying physics behind these additional dependen-

cies and to evaluate if any could be used to lower the power 

threshold on ITER and widen the operational space.

4.1. H-mode access for ITER

Identical discharges with the Be/W wall in deuterium have 

shown a 25%–30% reduction of the L to H power threshold, 

PL–H, in ASDEX Upgrade and in JET with metallic PFCs and 

a minimum as function of density not observed in JET-Carbon 

wall (e.g. igure 15) [113, 114]. Zeff is shown to be a poten-

tial candidate explaining a lower power threshold in JET-ILW 

when compared to JET-carbon wall [115]. Indeed, it has 

been demonstrated that the JET-C threshold can be recovered 

with nitrogen seeding [116]. In addition, the H-mode power 

threshold in JET-ILW is found to be sensitive to variations in 

main plasma shape [117], the divertor recycling pattern and 

the plasma current leading to signiicant differences (factor of 

two) compared to 0D scaling laws predictions.

Better understanding of the physics causing the divertor 

coniguration effect could potentially open up strategies to 

reduce PL–H on ITER [117, 118]. An increase in edge Er  ×  B 

Figure 14. Disruption detection success rate versus warning 
time, i.e. predictor detection time prior to the disruption time. 
Three disruption predictor comparisons locked mode predictor 
threshold (LMPT), APODIS, SPAD (JET ILW campaigns with 
566 unintentional disruptions and 1738 non-disruptive discharges). 
Reproduced with permission from [107].
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shear through the SOL radial electric ield Er is proposed as a 

mechanism to explain the divertor coniguration effect on the 

L–H threshold [117, 118]. Observations on JET-ILW indicate 

that conigurations with a strong inner/outer asymmetry in the 

divertor recycling pattern are beneicial for H-mode access at 

reduced power [117]. Experiments in JET in the ITER-like 

wall show a factor of two reduction of PLH in a coniguration 

with the outer strike point on the horizontal tile (Horizontal 

Target coniguration) compared to that with the outer strike 

point on the vertical target (Vertical Target coniguration), 

observed in the high density branch where PLH increases with 

plasma density. With no signiicant difference between global 

parameters in these two magnetic conigurations, it is con-

cluded that the difference in PLH is related to a difference of 

plasma parameters in the scrape-off layer (SOL) and divertor. 

EDGE2D-EIRENE simulations reproduced a large differ-

ence in experimental target proiles, leading to a signiicant 

difference in radial electric ield which, in turn, may inluence 

plasma turbulence around the separatrix location via Er  ×  B 

shear [118]. The difference in observed target temperature pro-

iles indicates a more positive Er in the SOL for the Horizontal 

Target coniguration, creating a higher shear in the outer part 

of the Er well, and the EDGE2D-EIRENE modelling supports 

these observations due to a difference in the recycling pat-

tern of neutrals between the two conigurations. In addition, 

as shown on igure 15 a clear correlation between detachment 

of the inner divertor leg to create highly asymmetric divertor 

conditions and the L–H transition in the high density branch 

has been recently reported [117]. These results indicate a 

strong role of the SOL in the physics of the L–H transition. 

At the highest densities in the L–H threshold density scans, 

the detachment of the inner divertor will immediately trigger 

an L–H transition, which demonstrates that this state, associ-

ated with a higher SOL Er, is beneicial for H-mode access. 

The understanding of the physics behind this mechanism 

could open up prospects of lowering the L–H threshold on 

ITER through inluencing the divertor and SOL conditions: 

for instance by creating a dense high recycling inner strike 

point and hot outer target to increase Er in the SOL.

Subsequently, experiments have been conducted in 2014 

and 2016 in hydrogen plasmas to investigate the isotope effect 

on PL–H in JET-ILW. It was found that PL–H is increased by a 

factor two in the high density branch as it was anticipated, but 

for the irst time it has been observed that the minimum den-

sity value is shifted to higher density in experiments performed 

with ICRH only at 1.8 T/1.2–1.7 MA [119]. Comparison 

between the hydrogen and deuterium discharges show the 

transition occurs at similar values of stored energy and closely 

matched edge density and temperature proiles in the high den-

sity branch, but a higher edge temperature is required in the 

low density branch in hydrogen compared to deuterium. This 

points to a higher Er shear required to balance a higher mode 

growth rate. The different isotope effect at low and high den-

sity provides a challenging test for L–H theories. 

In addition, during the 2016 experiments, the depend ence 

of PL–H on the effective mass has been systematically inves-

tigated by scanning the H and D mixture (i.e. isotope ratio, 

nH/(nH  +  nD)) both the in low and high density branch of the 

L–H threshold [120]. It was unexpectedly found, that PL–H has 

a non-linear depend ence with the isotope ratio (for both the 

two density branches). PL–H is approximately constant over a 

broad range of H and D mixture 20%  ⩽  nH/(nH  +  nD)  ⩽  80%, 

with a value which is approximately an averaged between 

pure hydrogen and pure deuterium plasma. This interme-

diate PL–H value rapidly decreases (respectively increases) 

towards the pure D (resp. H) threshold value in the extreme 

part of the curve 0%  ⩽  nH/(nH  +  nD)  ⩽  20% (resp. 80%  ⩽  nH/

(nH  +  nD)  ⩽  100%). We conclude that trace quanti ty of 

hydrogen in deuterium (or vice-versa) may leads to signii-

cant variation of the L–H threshold. In addition, we have also 

shown in preliminary JET experiments that an injection of a 

trace quantity of helium gas (below 10%) in hydrogen plasmas 

also leads to a reduction of the L–H threshold [120]. These 

Figure 15. L–H threshold power at 2.4 T/2 MA for two magnetic 
coniguration (vertical and horizontal target blue stars and black 
triangles) and power threshold for detachment of the inner divertor 
leg in the horizontal target coniguration (red triangles) [117]. The 
dashed line correspond to the ITPA scaling [112].

Figure 16. Stationary zonal lows in Ohmic conditions preceding 
the L–H transition at different densities (Ip  =  2.5 MA, Bt  =  3 T with 
a slow NBI power ramp to identify the transition): (a) Er proiles 
inferred from Doppler backscattering measurements. (b) Density 
proiles from relectometer [120]. Reproduced from [121]. CC BY 3.0.
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results opens a new route for reducing PL–H in the ITER non-

active hydrogen phase by adding a small amount of non-active 

gas with a higher atomic mass (like helium) leading to a lower 

L–H threshold. This new approach needs further experimental 

and modelling invest igations. It should also be noted that injec-

tion of helium gas may modify the edge conditions (e.g. edge 

radiation, particle penetration) and their impacts on plasma 

performance should be further assessed in a near future.

Finally, high spatial resolution Doppler backscattering 

measurements have revealed novel insights into the develop-

ment of the edge transport barrier thanks to high spatial reso-

lution measurements of the edge radial electric ield, Er (igure 

16). For the irst time, ine-scale spatial structures in Er, well 

with a wave number krρi  ≈  0.4–0.8, consistent with stationary 

zonal lows (ZF) have been observed in a tokamak [120, 121]. 

These observations imply that stationary ZFs are crucial for 

the pedestal development in JET. The characteristics of the 

structures depend with density (igure 16), i.e. as density 

is increased, the ine-scale spatial structures have reduced 

amplitude, reduced wavelength and their region of existence 

moves outward. The zonal low amplitude and wavelength 

both decrease with local collisionality, such that the zonal 

low E  ×  B shear increases. Above the minimum of the L–H 

transition power threshold dependence on density, the zonal 

lows are present during L mode and disappear following the 

H-mode transition, while below the minimum they are reduced 

below measurable amplitude during L mode, before the L–H 

transition. Edge density luctuation and Er measurements at 

high and low densities provide insight to the non-monotonic 

behavior of PL–H with density. Differences in the development 

of the edge Er proile in the high and low density branches 

of the transition are also observed, which point to a role for 

momentum transport in transition dynamics and not just heat 

transport. After the transition in the high density branch, there 

is a clear drop in density luctuation δn/n by 20%–30% in the 

Er well (whereas smaller change to density luctuations in the 

low density branch is reported). The measurements are con-

sistent with a fundamental difference in the turbulence regime 

in the two density branches [120]. These new measurements 

are essential to validate the L–H transition theory and improve 

ITER predictions.

The L–H transition studies at JET have also revealed an 

n  =  0, m  =  1 magnetic oscillation, starting immediately at 

the L to H transition (called M-mode at JET) [122]. While 

the magnetic oscillation is present a weak ELM-less H-mode 

regime is obtained, with a clear increase of density and a weak 

electron temperature pedestal. The axisymmetric magnetic 

oscillation is dominantly up-down, and its typical frequency 

is ~1 kHz. Analysis of magnetic signatures of the so-called 

I-phase in ASDEX Upgrade [123] reports both similarities 

and differences between I-phase and M-mode. The frequency 

of the JET M-mode appears to scale with the poloidal Alfvén 

frequency: the mass dependency was conirmed in the com-

parison of hydrogen and deuterium ICRH heated plasmas, the 

density and current dependencies were studied in deuterium. 

The MHD oscillation is detected in the pedestal, and modu-

lates particle and heat luxes to the divertor target.

All these results have direct implications for ITER to 

optim ize the operational window (density, magnetic and divertor 

coniguration, effective impurity, plasma detachment and SOL 

conditions) for accessing the H-mode at reduced power.

4.2. H-mode exit for ITER

Operation of tokamaks with tungsten plasma facing comp-

onents in the H-mode coninement regime presents speciic 

challenges regarding the control of the impurity concentra-

tion in the main plasma [124–128]. Lack of impurity con-

trol can lead to the loss of the H-mode, the radiative collapse 

of plasmas by W accumulation and increased disruptivity, 

which is detrimental to ITER operation [128, 129]. Control 

of W in H-mode plasmas requires, as a irst step, the con-

trol of W production and its transport into the core plasma 

through the SOL and edge transport barrier. In addition, even 

when the concentration of W at the pedestal is kept at low 

levels, unfavourable core W transport can lead to its uncon-

trolled accumulation and to loss of the H-mode due increased 

radiation. Strategies have been developed in present JET 

experiments to avoid W accumulation in stationary phases 

of H-mode discharges by controlled ELM triggering to 

control the edge W density and central RF heating to pre-

vent core accumulation [125, 127–129]. Such schemes are 

also expected to be effective in ITER, where strong core W 

accumulation is not expected to occur due to the low particle 

source provided by the 1 MeV negative-NBI injection, which 

is in agreement with H-mode experiments with low core 

source [128]. On the other hand, the control of W transport 

can be more challenging during the coninement transient 

phases between L-mode and H-mode and in particular in the 

transition from stationary H-mode to L-mode [130, 131]. 

During this phase the pedestal plasma density and temper-

ature decrease as the input power is reduced. This leads to 

long-ELM free phases causing uncontrolled increase of the 

edge W density and peaking of the core density proile, which 

is favourable for impurity accumulation. To avoid this effect, 

an approach developed in present experiments consist in trig-

gering a fast H–L transition to increase the W lux from the 

core to the plasma periphery. This approach is, however, not 

applicable to ITER high Q regimes due to the impossibility to 

suddenly stop the alpha heating, and, because the fast change 

in plasma energy would lead to direct contact of the plasma 

with the inner wall [128, 130]. Therefore a slow decrease of 

the plasma energy in H-mode termination is required, which 

is prone to W accumulation.

In order to address W control issues in the H-mode ter-

mination phase a series of dedicated experiments have been 

performed at JET supported by integrated modelling, using 

the JINTRAC suite of codes [131, 132]. In these experi-

ments several H-mode termination scenarios with constant 

plasma current have been explored including variation of 

the decrease of the power ramp rate, gas fuelling level, cen-

tral ICRH heating with and without active ELM control by 

vertical kicks and pellets during the H-mode termination 

phase [131]. JET H-mode plasma termination scenario has 

been developed to mimic with a slow NBI power ramp-down 

the expected slow decrease of the plasma energy during the 

ITER termination phase due to alpha heating in ITER, and, to 

avoid plasma contact with the inner wall. The experimental 
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results demonstrate the key role of maintaining ELM con-

trol and ICRH heating to minimise the W concentration in 

the exit phase of H-modes with slow (ITER-like) ramp-down 

of the NBI power in JET. Without ELM control, long ELM 

free phases occur and W accumulation takes place despite 

the application of central ICRH heating. The required level 

of ELM control is achieved at JET through adjustment of gas 

fuelling level (unlikely to be effective in ITER) or by active 

ELM control. The latter scenario provides an integrated solu-

tion regarding the control of W concentration and plasma 

energy evolution in the termination of H-modes that can be 

readily extrapolated to the corresponding phase of 15 MA 

Q  =  10 plasmas in ITER.

Modelling of experimental results carried out with 

JINTRAC [132] has highlighted the importance of the effect 

of ELM control on particle transport and edge temperature 

screening. Without ELM control, the ratio in time-averaged 

particle versus heat diffusivities in the edge transport barrier 

is reduced, leading to an increase in ion density relative to 

the temperature gradients and enhanced inwards neoclassical 

W transport in the pedestal region. In addition, the depend-

ence of neoclassical core W transport on NBI momentum and 

particle sources as well as ICRH-assisted heating were found 

to be crucial for the explanation of observed core W transport 

properties in the H-mode termination phase. The existing core 

transport models seem to appropriately reproduce the plasma 

evolution in general and the accumulation of W in particular 

in the termination phase of JET H-modes. The model assump-

tions may thus be adequate for the prediction of the W trans-

port behaviour in the H-mode termination phase in ITER as 

shown in [133].

4.3. H-mode density limit

In order to understand the mechanisms for the back trans ition 

to L-mode coninement at high density, the so-called H-mode 

density limit, systematic experimental invest igations have 

been performed on JET-ILW by increasing either the deute-

rium or hydrogen neutral gas fuelling injected from the plasma 

periphery [134, 135]. The various phases when increasing 

the density towards the H-mode density limit in deuterium or 

in hydrogen plasmas are as follow: a stable H-mode regime 

followed by a degraded H-mode phase, then, a reduction of 

the H-mode coninement with a dithering cycling phase that 

ends with a back transition to L-mode edge. We found that 

the density limit is not related to an inward collapse of the hot 

core plasma due to an overcooling of the plasma periphery 

by radiation. Indeed, the total radiated power as well as the 

radiation power in the main chamber stays almost constant 

during the H-mode phase until the H to L-back transition. 

We also found, by comparing similar discharges but fuelled 

with either deuterium or hydrogen, that the H-mode density 

limit exhibits a dependence on the isotope mass: the density 

limit is up to 35% higher in deuterium compared to similar 

hydrogen plasma conditions. In addition, the density limit is 

nearly independent of the applied power either in deuterium 

or hydrogen fuelling conditions. The H-mode density limits 

measured in various experimental conditions normalised to 

the Greenwald density are found to be consistent with the 

predicted values derived from a heuristic model based on the 

SOL pressure threshold of an MHD instability as recently 

proposed by Goldston [136, 137]. When applying this model 

validated on JET-ILW to ITER, the H-mode density limit 

is estimated to be close to the Greenwald density in ITER 

D–T operation. To summarise the JET results on the H-mode 

formation (section 4.1) and back transition to L-mode at 

high density, we conclude that the JET and ITER opera-

tional domains are signiicantly broaden when increasing 

the plasma effective mass (e.g. tritium or deuterium–tritium 

operation), i.e. the L to H power threshold is reduced whereas 

the density limit for the L-mode back transition is increased.

5. Access conditions to high coninement and ITER 

scenario development

Tokamak irst wall materials affect plasma performance, 

even changing coninement scaling. The operational con-

straints of a metal wall can prevent reaching plasma energy 

coninement required for the achievement of QD–T  =  10 

on ITER. To gain physics insight, dimensionless physics 

parameters scans have been performed in low triangularity 

baseline plasmas. In the course of the JET D–T scenario 

preparation, a major effort is made to maximise the core 

and pedestal performance in stationary condition while con-

trolling the divertor surface temperature via strike points 

sweeping or/and extrinsic impurity seeding focusing on two 

ITER scenarios, i.e. baseline and hybrid H-mode of opera-

tion. Speciic ITER relevant scenario aspects (e.g. real time 

control of divertor detachment, ICRH scenarios, fueling) are 

reported.

5.1. Thermal core and pedestal coninement with ITER-like wall

5.1.1. Global and core coninement. After the replacement of 

the plasma facing components, the global energy coninement 

of JET plasmas was often found lower compared to similar 

plasmas in the carbon wall coniguration, particularly when 

scenarios were not properly optimized [138]. These observa-

tions have a direct impact on the extrapolation to ITER plasma 

performance.

It is therefore important to ind the cause for this deterio-

ration. As the electron temperature at the top of the pedestal 

is lower in the ITER-like wall coniguration, it is not obvious 

whether the decrease in core temperature is only due to the 

degradation of the edge coninement or if the core conine-

ment itself has also been degraded. In order to address this 

question, a systematic interpretative heat transport analysis 

has been carried out where 10 pairs of ‘similar’ discharges 

for the two walls coniguration have been selected (i.e. 10 

carbon wall discharges and 10 corresponding ITER-like wall 

discharges). Among the baseline ELMy H-mode plasmas 

obtained in C-wall at normalised beta below two, the ILW 

counterpart discharges have been carefully selected to match 

the time-averaged value of the global plasma parameters, i.e. 

Ip, Bt, PNBI, ne , q95, and δ [139]. Figure 17 (left) and (right) 
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provide an overview of the results where the core electron 

temperatures and the effective diffusivities at mid-radius 

have been plotted versus the electron temperature outside 

the core coninement region at ρ  = 0.7 for similar discharges 

obtained with the two wall materials. Core Te(ρ  =  0.3) in 

the ITER-like wall coniguration is lower than the C-wall 

(igure 17 (left)), but this is systematically accompanied by 

the temperature reduction at the top of the pedestal in plasma 

regime with stiff temperature proiles. Indeed, both ITER-

like wall and carbon wall core Te data are well represented 

by the same linear it, indicating that Te gradients are not 

signiicantly modiied by the change of plasma facing comp-

onents. This result implies that the threshold value of the 

normalized temperature gradient for turbulent heat transport 

is not decreased in ITER-like wall plasmas. It has also been 

observed in ITER-like wall discharge that nitrogen seeding 

can help to recover pedestal Te [140]. Consistently with 

this observation, igure  18 (left) indicates that the seeding 

of nitrogen in ITER-like wall discharge has the effect of 

moving the proiles towards its counter part discharge in the 

carbon wall. The electron temperature changes with nitrogen 

seeding are described with the same linear it, i.e. keeping 

similar Te gradient. The dashed lines in igure 17 (right) con-

nect the calculated effective diffusivity at mid-radius of the 

carbon wall discharges with its ILW counterpart part. The 

effective heat conductivities, χeff, have been estimated by 

TRANSP interpretative analysis using the experimental pro-

iles. As shown on igure 17 (right), there is no signiicant 

change in χeff (within the error bar for the estimation of χeff) 

between the similar pair of discharges. This result indicates 

that the core coninement is not degraded after the PFCs 

replacement [139].

Three dimensionless scans in the normalized Larmor 

radius ρ∗, normalized collisionality ν∗ and normalized plasma 

pressure β have been performed in JET with JET-ILW [141, 

142]. In these studies, not only the global thermal energy 

coninement has been studied (igure 18) but both the core 

and the pedestal coninement (next section) have been investi-

gated separately [141, 142]. Dimensionless scaling in plasma 

physics are recognized as an important technique to extrapo-

late the plasma performance to future fusion machines such 

as ITER and to compare different tokamak experiments 

[143]. The analysis of the dimensionless ρ∗ scan shows that 

the change from the carbon wall to the metal wall in JET has 

Figure 18. Normalized thermal energy coninement versus volume averaged ρ∗ (left), ν∗(middle) and thermal normalised pressure βN
th 

(right) The blacks symbols (circles or squares) correspond to the JET-Carbon data. In the middle box, dashed line shows the collisionality 
trend with the JET-ILW as determined in (McDonald et al Proc. 20th Int. Conf. on Fusion Energy 2004 (Vilamoura, 2004) (Vienna: IAEA) 
CD-ROM ile EX6/6). Reproduced from [141]. © IOP Publishing Ltd. All rights reserved.

Figure 17. Left: core Te (ρ  =  0.3) versus Te (ρ  =  0.7), (right) heat conductivities at ρ  =  0.5 versus Te (ρ  =  0.7). In both igures, the blue and 
red symbols indicate the plasmas in the ITER-like wall and the carbon wall, respectively. Dashed lines indicate the change from the carbon 
wall to the counterpart discharge in the ITER-like wall. Blue illed symbols are N2 seeded ILW plasmas, and red illed symbols are their 
counterparts in CW. Open symbols are without impurity seeding. The triangles and circles indicate high and low δ, respectively. Reproduced 
from [139]. © IOP Publishing Ltd. All rights reserved.
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not modiied the ρ∗ scaling for the global (igure 18 (left)) 

and local core coninement as indicated on the effective dif-

fusivity. The scaling exponent is consistent with a gyro-Bohm 

scaling for both wall materials. This shows that the extrapola-

tions of the energy coninement to low ρ∗ for ITER-relevant 

predictions remain unchanged. The analysis of the dimension-

less ν∗ scan in JET-ILW shows an increase of the normalized 

energy coninement with decreasing ν∗. The earlier JET-C 

results have a weaker dependence (igure 18 (middle)). In the 

core, a strong reduction of the effective diffusivity is observed 

with decreasing ν∗ which is similar for the ILW and C-wall. 

Therefore, the stronger dependence of the global coninement 

with ν∗ in JET-ILW is related to an improvement in the ped-

estal stability at low collisionality (next section). Finally, the 

analysis of the dimensionless β scan in JET-ILW shows two 

different behaviours depending on the collisionality (behav-

iours not observed with the C-wall) as shown on igure  18 

(right). At low collisionality (ν∗ ≅ 0.03), JET-ILW nor malized 

coninement has no clear dependence with β, in agreement 

with earlier scaling. At high collisionality (ν∗ ≅ 0.15), a 

reduction of the normalized coninement with increasing β is 

observed. The degradation of the JET-ILW normalized con-

inement with increasing β at high ν∗ is due to the reduction 

of the pedestal coninement, since the core transport remains 

constant.

In addition, recent dedicated core heat transport experi-

ments in JET [144–147], based on ICRH heat lux scans and 

temperature modulation, have conirmed the importance of 

two transport mechanisms that are often neglected in model-

ling experimental results, but are crucial to reach agreement 

between theory and experiment and may be signiicant in 

ITER.

The irst mechanism is the stabilizing effect that the gra-

dient of the total pressure (including the fast ion component, 

which may be a large fraction) has on ion heat transport 

driven by Ion Temperature Gradient, ITG, instabilities [145]. 

Such stabilization is found in non-linear gyro-kinetic electro-  

magn etic simulations using GENE [148] and GYRO [149], 

and is the explanation for the observed loss of ion stiffness 

in the core of high NBI-power JET plasmas. The effect was 

recently observed also in JET plasmas with dominant ICRH 

heating and small rotation, due to ICRH fast ions, which is 

promising for ITER where low rotation but large fast ion popu-

lations are expected. In the central region the electromagnetic 

stabilization dominates over the ExB low shear stabilization, 

which becomes more relevant outside mid-radius. Such non-

linear mechanism therefore needs to be included in quasi-linear 

models to increase their ability to capture the relevant physics.

The second mechanism is the capability of small radial 

scale Electron Temperature Gradient, ETG, instabilities to 

carry a signiicant fraction of turbulent electron heat lux [144, 

145, 150–152]. In JET, a decrease in the experimental elec-

tron temperature normalised gradient (R  ∇  Te/Te) is well cor-

related with the reduction of the normalised quantity τ  =  Zeff 

Te/Ti as illustrated on igure  19. This new experimental 

observation suggests that ETG destabilisation plays a role in 

explaining the anomalous electron heat transport. Non-linear 

single-scale ITG/TEM turbulence simulations performed 

with the GENE code [148] in the local limit showed that the 

electron heat lux driven by ITG/TEM turbulence alone is not 

enough to match the experimental data, and that the observed 

level of electron stiffness is higher than the simulated one. 

Including ETG turbulence could provide a better match of 

the experimental electron heat lux, but it requires taking into 

account interactions between ion and electron scales, with the 

ion zonal lows being a saturating mechanism for ETGs. First 

results of these costly multi-scale simulations, the irst of this 

kind for JET plasmas, indeed indicate a signiicant fraction of 

electron heat lux carried by ETGs in the experimental condi-

tions studied.

5.1.2. Pedestal coninement. The main conclusion of sec-

tion 5.1.1 is that the changes in the global coninement with 

the ILW are ascribed to the modiication of the pedestal 

structure. This important conclusion has motivated signii-

cant number of studies to understand the underlying physics 

(the interplay between plasma, atomic and neutrals physics) 

and the root cause that affect the pedestal coninement and 

structure [139, 141, 142, 153–160]. Operation with the ILW 

usually requires an increase of the level of neutral deuterium 

gas fuelling at the plasma periphery to control the W inluxes 

into the plasma core. Typically, increasing the gas injection 

leads to a degradation of the pedestal energy coninement by 

reducing the pedestal temperature [e.g. 153]. It was empiri-

cally found for the ITER baseline scenarios developed in the 

JET-ILW that eficient pumping conditions, with the strike-

points of the magnetic coniguration close to the divertor 

pump duct entrance leading to a reduction of the divertor neu-

tral pres sure, are required to recover the fusion performance 

with an enhancement coninement factor close to unity [11]. 

The physics mechanisms leading to the pedestal degradation 

with different neutral content (gas fuelling, or/and, divertor 

geometry, or/and, irst wall materials) is not fully resolved, 

Figure 19. Electron temperature normalised gradient (R  ∇  Te/Te) 
versus τ  =  Zeff Te/Ti at mid plasma radius.
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and, recent progress on this important issue for ITER predic-

tion and operation are reported.

The pedestal structure is studied in terms of pedestal pres-

sure radial width, w, and normalized pressure gradient, α. The 

recent dimensionless scans have revealed signiicant different 

behaviour between the core and pedestal coninement behav-

iour. Concerning the normalised Larmor radius dependence, 

the experimental pedestal width and normalised pressures are 

not affected by the scan of ρ∗. These observations are con-

sistent with the simulated pedestal MHD stability boundaries 

that are also weakly modiied with ρ∗. These results imply 

that the ITER pedestal stability will not be negatively affected 

by the low ρ∗. Concerning the β scaling in the ITER base-

line regime, two different behaviours have been observed in 

JET-ILW, depending on the collisionality which is related to 

the pedestal. At low ν∗, an increase of α with βN
th is observed. 

This is expected, since the increase of β improves the pedestal 

stability via the increase of the Shafranov shift [156]. Instead, 

at high ν∗, a reduction of α with βN
th is observed. This result 

is not expected and indicates that the stability is affected not 

only by β but also by another mechanism. Finally, the strong 

dependence with ν∗ in JET-ILW is related to an improvement 

in the pedestal stability at low collisionality (igure 20). The 

Peeling-Ballooning stability analysis shows that this improve-

ment at low collisionality is due to three factors: (i) the 

increase of the bootstrap current, (ii) the reduction of the ped-

estal width, and, (iii) the reduction of the relative shift between 

the positions of the pedestal density relative to the pedestal 

temperature. The behaviour of the pedestal stability with col-

lisionality might suggest an explanation for the difference in 

the scaling of the normalized coninement versus ν∗ observed 

in JET-C and JET-ILW. Indeed, the pedestal width and relative 

shift of the JET-C dataset are not affected by collisionality.

In this context, the relative shift between the electron den-

sity and the temperature pedestal position, hereafter referred 

to as ‘pedestal relative shift’, seems to play an important role. 

The pedestal relative shift, recently observed on JET [159] 

(like on ASDEX-Upgrade [161] and DIII-D [162, 163]) affects 

the pedestal stability. The observed ‘pedestal relative shift’ on 

JET is up to 3.0% of the poloidal lux with the ILW (igure 21 

(left)). Analysis of a JET-ILW gas fueling scan performed at 

constant β has shown that the ‘pedestal relative shift’ increase 

is correlated with a reduction in the normalized pressure gra-

dient, α [159]. The edge MHD stability indicates that this 

effect is due to a reduction of the pedestal stability when the 

maximum pressure gradient shift closer to the plasma edge 

[159]. The gas low increase (and power as well, to maintain 

beta) leads to an increase of ‘pedestal relative shift’ since the 

pedestal density moves outwards with neutral fueling.

Comparison of JET-C and JET-ILW data low δ-baseline 

operational regime within the same range of β and ν∗ shows 

that JET-C H-mode regimes have systematically a smaller 

‘pedestal relative shift’ compared to JET-ILW, and, that α 

values decrease with the relative shift (igure 21 (right)) [159]. 

Normalized pressure gradient has been calculated for extended 

dataset of JET-ILW baseline low δ pulses and compared with 

low δ JET-C pulses. In agreement with the exper imental 

results, stability analysis shows an improvement in the ped-

estal stability when the relative shift is reduced. Moreover, for 

similar values of the ‘pedestal relative shift’, the nor malized 

pedestal pressures, α, are comparable for the two types of 

wall materials. The origin of the ‘pedestal relative shift’ is 

still unclear and is currently under high invest igation. Indeed, 

these experimental indings suggest that different plasma 

facing components affect the pedestal density position and 

pedestal stability. Different plasma facing component mat-

erials may affect the atomic physics, the SOL transport, the 

ionization source proile which determine the pedestal density 

position and the pedestal stability. Therefore, at the moment it 

is not yet possible to predict the behaviour of the relative shift 

without disentangling these various physics effects.

The edge ideal MHD stability limit and comparison of 

the experimental results with the theory is done within the 

framework of the peeling-ballooning (P-B) model [160, 164, 

165]. The pedestal stability of the experimental plasmas is 

represented in the j–α stability diagram, where j is the cur-

rent density, and, α the normalized pedestal pres sure gradient. 

When assessing the edge stability, the pres sure pedestals 

with the carbon wall are consistently found close to the P-B 

limit before an ELM crash. In this case the experimental α 

is approaching the αcrit which represents the maximum nor-

malized pedestal pressure expected by the P-B model. αcrit 

is determined by increasing height of the pedestal temper-

ature and then self-consistently calculating the current pro-

ile in order to ind the marginally stable pedestal temperature 

height [160]. On the contrary, pedestal measurements with 

the JET-ILW usually show that the operational points are far 

from the ideal P-B stability boundary even at the onset of the 

type I ELM as illustrated on igure  22 (left). In particular, 

this behaviour is systematically observed in the high-gas/ 

ow-β and high collisionality plasmas [153, 154]. Nevertheless, 

it is remarkable that the P-B stability analysis shows quali-

tative trends consistent with the experimental results in the 

dimensionless scalings experiments [141]. This shows that 

the P-B model is able to correctly reproduce at least a part of  

the physics that determines the pedestal stability. 

Figure 20. Pedestal width normalized to the square root of βp
ped 

verus ν∗ped. The horizontal line shows the value used in EPED from 
[142]. Reproduced from [142]. © 2017 EURATOM.
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The quantitative disagreement observed in the ILW is still 

under investigation. A possibility is that the present MHD sta-

bility model does not consider kinetic effects such as those 

related to the ion diamagnetic drift and plasma rotation. 

Recent studies have investigated these effects by deriving dia-

magnetic MHD equations  for plasmas with fast low [156]. 

When applying this new model to calculate the MHD stability 

boundary including self-consistent plasma rotation in toroidal 

and poloidal directions, it is found that the distance in the j–α 

plane between the experimental operating point at the type I 

ELMs onset and the MHD stability boundary is reduced [157].

In addition non-ideal and non-linear MHD JOREK simula-

tions, which use a low viscosity and resistivity MHD model, 

have been systematically performed to assess the pedestal 

pressure at the onset of the MHD modes on a subset of the 

JET-ILW database [53, 54]. The critical non-ideal MHD 

limit is determined by running JOREK, starting from a stable 

pedestal pressure, pped value, and increasing it progressively 

(together with the corresponding bootstrap current deduced 

from the Sauter’s model) until a MHD mode becomes 

unstable. For comparison, the critical ideal MHD limits have 

also been estimated on the same database by increasing pped 

values (and self-consistent bootstrap current) until the inite-n 

Peeling Ballooning modes growth rates deduced from ELITE 

[159, 164, 165] indicate that the stability threshold has been 

crossed. Figure  22 (right) shows the ideal and non-ideal 

MHD critical pedestal pressures versus the experimental pre-

ELMs pedestal pressures. The agreement with the experiment 

Figure 21. Left: normalised pedestal Te and ne proiles for high gas low conditions, low δ baseline JET-ILW pulses; (right) α versus the 
‘pedestal relative shift’ for JET-ILW (illed symbols) and JET-C (open symbols) low δ baseline pulses (q95  ≈  2.6 and 3, ν∗(ped)  ≈  0.1–0.35). 
The illed triangles correspond to a power scan at constant beta in the hybrid regime for three gas levels: low, medium, high gas injection 
(green, blue and red resp.) at ν∗(ped)  ≈  0.15–0.37 and βpol(ped): 0.21–0.25. Reproduced with permission from [159].

Figure 22. Left: j–α pedestal stability diagram for the JET pulse # 83340 illustrating the distance of the operational point (black star) from 
the ideal Peeling Ballooning boundary as calculated with HELENA/ELITE-red square is the non-ideal JOREK calculation; (right) Critical 
pedestal pressures at the onset of the MHD unstable modes deduced from ideal MHD (HELENA/ELITE, black stars) and non-ideal MHD 
calculations (JOREK, blue squares) versus the experimental pre-ELMs pedestal pressure, Pped. The red square and star correspond to the 
pulse # 83340 shown in the j–α pedestal stability diagram on the left.
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is signiicantly improved when using the non-ideal MHD 

JOREK modelling that includes self-consistently the resis-

tivity, viscosity, diamagnetic effects. The future work consists 

in investigating which physics effect is dominant to explain 

the difference between the ideal and non-ideal MHD pedestal 

pressure limit. This could provide an indication on how to 

extend the pedestal MHD limits for increasing the fusion per-

formance with the ILW.

5.1.3. Integrated core and pedestal simulations. The under-

standing of the irst wall material effect on coninement requires 

a global and coupled description of plasma wall interaction 

SOL physics together with coupled pedestal and core physics 

(e.g. [166]). Transport studies in the JET tokamak [167] have 

shown that the weak coninement degradation with power in 

high beta plasmas is due to both an increase in pedestal pres-

sure and core pressure peaking by collisionality and supra-

thermal pressure effects [145, 167, 168]. In this context, these 

observations strongly highlight the need for coupled core 

and pedestal simulations as a irst step in the whole integra-

tion. This was initially done with the CRONOS suite of codes 

[169] for C-wall JET and JT-60U discharges with the aim of 

predicting JT-60SA performance [170]. Integrated modelling 

suites (CRONOS [169] or JINTRAC [132]) have been coupled 

to pedestal model with different level of sophistication, e.g.  

(i) Cordey’s 0D pedestal scaling [171] for estimating the pedes-

tal temperature, or, (ii) the more recently developed EUROPED 

model [172] as an extension of the EPED [173, 174] model 

for predictive simulation. In these coupled core and pedestal 

modelling, the simulations could reproduce for the irst time the 

observed trend for the rapid increase in plasma stored energy 

with heating power and the departure of the IPB98(y,2) scaling 

at high power thanks to a positive feedback loop between core 

and pedestal at high beta [167]. Access to high coninement at 

high beta is therefore consistent with an increase of the pedestal 

pressure consistent with peeling/ballooning modelling leading 

to higher core electron temperature and lower core collisional-

ity resulting in a higher electron density peaking. The plasma 

core energy is further increased due to the reduction of the core 

plasma turbulence at high beta associated with the presence of 

fast ions. These non-linearly coupled effects need to be taken 

into account in our integrated simulation for predicting future 

fusion D–T performance on JET [175] and on ITER.

5.2. Particle transport

Particle transport in tokamaks has received much less atten-

tion than electron and ion heat transport channels. It is still 

often not treated self-consistently in transport modelling and 

predictions for future tokamaks. As a consequence, particle 

transport and fuelling have remained one of the major open 

questions in understanding the ITER physics. The shape of 

the density proile has a signiicant inluence on fusion perfor-

mance and impurity transport.

Extensive database studies in JET showed that density 

peaking scales with several plasma parameters, the most 

dominant ones being collisionality ν∗, Greenwald fraction 

and NBI fuelling [176–178]. Collisionality was found to be 

the dominating parameters in JET. On the other hand, while 

the database studies suggested the dominant role played the 

collisionality in peaking the density, other particle transport 

analyses in JET emphasise the importance of the particle 

sources [179–181], i.e. the NBI fueling and also the neutral 

particle fueling inside the pedestal. Core particle transport has 

been studied in JET by performing various dimensionless col-

lisionality scans both in H-mode and L-mode plasmas [182]. 

Gas puff modulation technique was exploited to obtain par-

ticle transport coeficients. This is the irst time to exploit gas 

puff modulation in JET with diagnostics having good time and 

spatial resolution. The three-point ν∗ scans were performed in 

four different JET conditions: (i) high power ELMy H-mode 

featuring low β, (ii) hybrid like high β H-mode plasma,  

(iii) ELMy H-mode plasma in hydrogen and (iv) L-mode 

with carbon wall. In each scan, roughly a factor ive in ν∗ was 

achieved by scanning Ip and Bt and the NBI power. Density 

peaking has been found to increase with decreasing ν∗ in 

all H-mode scenarios while in L-mode, no dependency was 

found. However, both the experimentally determined particle 

transport coeficients from gas puff modulation data, predic-

tive transport simulations with GLF23 and preliminary gyro-

kinetic analysis all emphasise a signiicant role of the NBI 

fueling rather than anomalous inward convection in affecting 

density peaking. The resulting particle diffusion coeficient is 

small, i.e. Deff/χe,eff  ≈  0.2, consistent with [181]. Under these 

plasma conditions performed in these scans, all the models and 

gyro-kinetic analyses show that transport is ITG dominated. 

Therefore, the anomalous pinch is quite low for all discharges 

under this collision dominated, for ITG/TEM turbulence, 

regime. In more collisionless cases, the modelling would give 

larger turbulent density peaking, making the extrapolation to 

ITER from these cases less certain. The extrapolation to future 

tokamaks, like ITER, is the inal goal here and based on these 

results, the density peaking may not be as high as predicted in 

the earlier database papers [176–179] in the absence of core 

particle sources.

In addition to core particle transport studies, several edge 

diagnostics were exploited to diagnose the neutral sources 

and understanding edge particle transport and fuelling [183]. 

Experimental analysis suggests that particle source inside sep-

aratrix is fairly narrow and it does not contribute much inside 

the pedestal top. Inward convection of the order of 5 m s−1 at 

the plasma edge is needed to sustain the steep pedestal. This 

is also supported by time-dependent EDGE2D-EIRENE mod-

elling that was performed for roughly over one modulation 

cycle [184].

5.3. Novel three-ion ICRF heating scenarios and potential 

ITER application

Plasma heating with waves in the ion cyclotron range of fre-

quencies (ICRF) is an eficient method for increasing plasma 

temperatures in present-day and next-step fusion machines, 

including ITER [185]. The reference ICRH scheme for 

ITER burning plasmas is second harmonic heating of fuel 

tritium ions, assisted with the injection of a few per cent 

of 3He minority ions at the beginning of the heating phase 
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[186]. Both second harmonic T and 3He minority heating sce-

narios were successfully tested and validated in the past D–T 

 experiments on TFTR and JET. The use of 3He as a minority 

ion is also applicable for ICRH heating during the ITER non-

active (H and 4He plasmas) and active phases of operation. 

However, currently the supply of 3He reduces and the indus-

trial demand of this gas is progressively increasing. In view of 

ITER  development, this motivates studies of alternative ICRF 

scenarios minimizing the consumption of 3He, reducing core 

dilution or avoiding its use by identifying a different minority 

species.

A new and eficient ICRH absorption scheme in multi-

ion plasmas has been recently proposed [187]. The so-called 

three-ion ICRH scenarios feature strong absorption of RF 

power possible at very low concentrations of minority ions. 

This resonant mechanism of wave-particle interaction hinges 

on the presence of at least three ion species in the plasma. In 

addition, a proper plasma mixture has to be chosen such that 

the L cut-off layer, which is intrinsically present in plasmas 

with two ion species, is located close to the cyclotron reso-

nance of the third ion species. Thanks to an enhanced left-

hand RF ield component associated with the mode conversion 

layer, RF power can be eficiently absorbed even if the third 

ion species is being present in trace quantities (~0.1%–1%). 

As such, a larger absorbed RF power per resonant particle can 

be achieved, enabling three-ion ICRH scenarios to be an efi-

cient tool for generating energetic ions in fusion plasmas.

To validate this conceptual idea, proof of principle experi-

ments have been carried out at JET following initial studies 

performed on the Alcator C-Mod tokamak [188, 189]. 

Three-ion minority heating of 3He ions in H–D plasma mix-

tures, abbreviated in what follows as D–(3He)–H scenario, has 

been successfully explored on JET with 3He concentrations 

as low as ~0.2%. Such tiny amounts of 3He ions have been 

computed to be suficient for heating H-D plasma mixtures 

with nH/ne ≅ 70%. These RF experiments were carried out 

in 3.2 T/2 MA plasmas, and up to 4.5 MW of ICRF power 

was coupled to H–D plasmas in addition to 3.2 MW of deute-

rium NBI power. The isotopic ratio, H/(H  +  D), and the 3He 

concentration were systematically varied to assess the sensi-

tivity of ICRF performance as a function of the chosen plasma 

composition. Generation of energetic 3He ions with ICRF was 

conirmed by a several independent measurements: fast-ion 

loss detector, characteristic γ-ray emission (see igure  23), 

sawteeth stabilization, excitation of toroidal Alfvén eigen-

modes (TAE) instabilities. Gamma-ray emission measure-

ment is a powerful diagnostic, which is routinely used on JET 

to interpret fast-ion physics effects [190]. Figure 23 shows the 

reconstructed γ-emission proile for one of the three-ion ICRF 

pulses on JET. It clearly indicates core localization of 3He 

energetic ions and associated γ-emission, from nuclear reac-

tions between ICRF-accelerated conined 3He ions and 9Be 

impurities, intrinsic for JET-ILW plasmas. Further evidence 

for generating MeV-energy range ions with the D–(3He)–H 

ICRF scenario in JET plasmas is provided from the observa-

tion of TAEs. These modes are excited if there is a signiicant 

population of high-energy ions with velocities comparable 

to the Alfvén velocity in the plasma. TAE ‘tornado’ modes 

(TAE activity inside the q  =  1 radius) in the frequency range 

~310–340 kHz have been recorded. Finally, the effect of 

ICRF antenna phasing on fast-ion dynamics has been further 

explored, highlighting the importance of the ICRF-induced 

pinch effect [191] on the proiles of energetic 3He ions in this 

original RF scenario and beneit of launching RF waves pref-

erentially in the co-current direction.

The newly proposed three-ion scenarios bring new applica-

tions and opportunities for ICRF operation, including a dedi-

cated tool for fast-ion physics studies and new scenarios of 

plasma heating for JET and ITER. Indeed, one can take the 

unique advantage that intrinsic 9Be impurities are present at 

low levels in JET–ILW as well as on ITER with the beryllium 

irst wall [192]. For instance, having ~2% of 9Be in the plasma 

core potentially allows accelerating tiny amounts of helium-4 

ions in hydrogen plasmas with ICRF (using the resonant 

scheme 9Be–(4He)–H) and mimic fusion-born alpha particles, 

without the generation of neutrons in the non-active phase of 

ITER operation [189]. In the active ITER phase, intrinsic 9Be 

impurities can be used as a minority for maximizing the frac-

tion of RF power, which is deposited on fuel D and T ions 

by collisions. For the same amount of coupled ICRF power, 

full-wave and Fokker–Planck computations predict larger 

fraction of bulk ion heating for 9Be minority scenario than 

the commonly considered scenario using 3He as a minority 

Figure 23. Reconstructed gamma-ray emission proile for JET 
three-ion ICRF heating discharge, visualizing the population of the 
MeV-range 3He ions. Pulse #90755, D–(3He)–H scenario: 3.2 T/2 
MA, f  =  32.2–33.0 MHz, PICRF ≅ 3.8 MW (+π/2 phasing), ne(0) ≅ 
4  ×  1019 m−3, Te(0) ≅ 4.5 keV, 3He concentration ≅ 0.2–0.3%, edge 
H/(H  +  D) ≅ 0.85–0.90.
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[192]. The T–(9Be)–D scenario could be tested in future D–T 

experiments in JET-ILW plasmas to check if the intrinsic level 

of 9Be impurities is suficiently low (~1%) for this newly pro-

posed ITER scenario to be eficient.

5.4. High-triangularity H-mode operation with JET-ILW

Achievement of high coninement at high density is a nec-

essary condition for reaching the ITER target of QD–T  =  10 

(HIPB98(y,2)  =  1, βN  =  1.8 and ne/nGw  =  0.85) [193]. High per-

formance H-mode operation at high density strongly relies 

on the improved edge stability provided by higher plasma 

shaping. In the case of JET with the C-wall, it was found that 

high coninement quality (HIPB98(y,2)  =  0.9–1) could be main-

tained at high density (ne/nGW  ⩾  1) in highly shaped plasma 

(δav  ⩾  0.4) [194] and this was linked with access to the mixed 

type I/Type II ELMy regime. On the other hand, past experi-

ments in JET with the ILW in 2012–2014 showed that the high 

puff rates (>1022 D s−1) used to keep W core radiation within 

acceptable limits in the ELMy H-mode baseline scenario at 

high-δ (δav ~ 0.4, Ip  =  2.5 MA) resulted in a coninement dete-

rioration larger (10–30%) than that observed with the C-wall 

for similar conditions [138]. Those earlier experiments did 

not show positive effect of triangularity on global conine-

ment [138]. Only by using nitrogen seeding it was possible 

to partially recover the coninement at high-δ [140, 167, 195, 

196]. The reduced coninement of the high-density H-mode 

plasmas at high-δ remains one of the least understood results 

in JET after the change of wall materials. Since a high-δ shape 

is the reference shape for ITER [193], it is important to iden-

tify the physics elements that are limiting the pedestal/core 

coninement of high-δ plasmas in JET-ILW [197].

Recent 2015–2016 experiments on JET [197] have been 

conducted using a newly developed high-δ coniguration 

(δav  =  0.39) with a divertor geometry optimized for pumping 

(igure 24 (left)), with both strike points located in the 

divertor corners (building on the low δ results where conine-

ment is optimised with optimised pumping [198]). In these 

experiments igure  23 (middle), high coninement H-mode 

plasmas have been sustained at high triangularity up to 2 

MA/2.2 T during 5 s conirming that divertor pumping is a key 

element to improve coninement in ILW scenarios. These new 

results represent a signiicant progess with respect to earlier 

JET-ILW experimental campaigns [140], where the access to 

good coninement at high triangularity was restricted to low 

plasma current discharges (1.4 MA/1.7 T, βN ~ 2–3) [167] that 

typically operate at lower gas injection rates.

In optimum pumping conditions, higher pedestal temper-

atures and pressures (lower collisionality) are obtained at 

higher triangularity in agreement with edge stability pre-

dictions. Higher pedestal temperature via proile stiffness 

lead to an increase of the total plasma pressure and stable 

discharges with HIPB98(y,2) ~ 0.9–1 and βN ~ 1.8–2 are now 

routinely obtained for both plasma shapes at 2 MA but at 

ne,ped/nGW ~ 0.5 (igure 24 (right)). The density proile of the 

high-δ discharges remains rather lat, thus the improved con-

inement is clearly a pedestal effect. This result highlights 

the importance of operating at low collisionality (high edge 

current) to recover the beneicial effects of triangularity on 

pedestal stability when approaching the Peeling-Ballooning 

limit. However, in contrast to results in JET-C, increasing the 

gas injection rate to operate at ne,ped/nGW   >   0.5 leads to sig-

niicant (~20%) coninement deterioration (igure 24 (right)) 

and a higher fELM (up to ~100 Hz), but no signature of the 

type I/II ELMy regime was found. The differences found 

between JET-C and JET-ILW H-mode plasmas suggests 

that the change in wall materials has strongly affected the 

divertor recycling/radiation patterns in gas fuelled JET-ILW 

H-mode plasmas, although the mechanism responsible of the 

observed differences in pedestal coninement has so-far not 

been identiied.

5.5. JET prospects for D�T operation

One of the main objectives of the coming deuterium and 

 deuterium–tritium campaigns is to extend the performance 

Figure 24. Left: plasma shapes at low and high triangularities with magnetic conigurations optimised for divertor pumping; approximate 
location of the cryopump is indicated; (middle) HIPB98(y,2) Improved coninement factors for low-(square) and high-δ plasmas (closed blacks 
circles) (2 MA/2.2 T) corresponding to a gas scan at ixed input power (P/PL–H  =  2). Data at 2 MA from previous campaigns (before 2014) 
in light orange circles; (right) βN versus pedestal density normalized to Greenwald density limit ne,ped/nGW from 2015/2016 experiment but 
with different magnetic coniguration.
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of the ILW at higher plasma current (>2.5 MA) by fully 

exploiting the JET machine capability at high additional 

powers in the range of 40 MW with up to 34 MW of NBI 

power and 6 MW ICRH [4, 5, 12]. The quantitative 0D, high 

level objective is to reach deuterium plasma scenarios with 

thermal energy content of the order of Wth(D–D) ~ 12 MJ 

with HIPB98(y,2)  ⩾  1 generating a stationary fusion D–D neu-

tron rates of RD–D ~ 6  ×  1016 n s−1 (around 15 MW of fusion 

power) during 5 s [5, 12].

To reach these objectives, two main approaches are being 

pursued at low triangularity coniguration [11, 167], i.e.  

(i) the ITER baseline scenario by simultaneously increasing 

the current, toroidal ield and applied powers at q95 ~ 3 and 

βN ~ 1.8–2, (ii) the ITER hybrid scenario at slightly reduced 

plasma current and higher q95 ~ 3–4 but at βN  >  2 to enter in 

the virtuous cycle where coninement is increased at high beta 

through the interplay between the core and edge coninement 

optimisation [167]. With the available applied power in the 

range of 26–30 MW, the JET performance has been recovered 

up to a plasma current of 2.5 MA for both the ITER baseline 

and hybrid scenarios [11]. As part of the scenario develop-

ment it is also essential for JET and ITER that attention is 

given to minimize the occurrence of disruptions close to full 

performance, by developing disruption avoidance techniques 

[199].

With the goal of simultaneously increasing the fusion per-

formance while controlling the core W content, a dual fre-

quency ICRH heating scheme has been recently explored 

using both the H and 3He minority heating schemes opti-

mising respectively the electron and ion minority heating 

[200]. These initial tests were conducted in H-mode at a 

magn etic ield Bo  =  3.4 T and plasma current Ip  =  2 MA with 

typically 15 MW of neutral beam power and 6 MW of total 

ICRH power at 51 MHz (on–axis H minority) and 33 MHz 

(on-axis 3He minority), of which up to 2 MW were delivered 

by the ITER-like antenna [201]. In this promising scenario, 

the lowest bulk radiation with the highest ion temperatures 

was obtained in the dual frequency ICRH heating compared 

to the pure H-minority scheme.

The challenge is to reach and sustain the fusion performance 

while not exceeding the power and energy limits imposed by 

the inertially cooled W-divertor. In this context, ITER relevant 

real time divertor detachment control algorithms have been 

tested on JET [202, 203]. Since Langmuir probes are expected 

to be part of the ITER divertor diagnostics, this opens pos-

sibility to control the divertor target power density through 

the control of the detachment level using the measured probes 

saturation current (Isat). In order to provide a proof of prin-

ciple experiments for ITER, new real-time detachment control 

algorithms have been successfully implemented and qualiied 

on JET in type-I ELMy H-mode regime [202] (see igure 25 as 

an illustration). The degree of divertor detachment conditions 

has been maintained in real time control conditions through 

the seeding of radiative extrinsic impurities as actuator (e.g. 

nitrogen seeding in this proof of principle experiment), and, 

as a sensor the measurements of the saturation current of the 

divertor Langmuir probes have been utilized [202]. The level 

of divertor detachment is calculated in real-time by comparing 

the outer target saturation current measurements to its value at 

the roll-over (Iroll) (igure 25). The algorithm recently devel-

oped at JET is able to control the degree of detachment with 

either ix or swept divertor strike point in horizontal outer 

target divertor coniguration. In addition, it has been shown 

that the roll-over conditions for the detachment is found auto-

matically if the control starts in attached divertor conditions. 

It has also been demonstrated that the gains of the controller 

are automatically adapted in real-time to avoid oscillations of 

the controlled system. This control is useful for JET opera-

tions with impurity seeding and could be coupled with other 

real-time controllers such as X-point sweeping to spread the 

heat load on the divertor tiles and/or real time ELMs control 

by injecting deuterium neutral gas [202]. Following the suc-

cess of these irst attempts, other tests are foreseen in different 

divertor coniguration (vertical targets) and also with other 

Figure 25. ITER relevant real time divertor detachment control for two levels of detachment references in two JET discharges #90517 
(left) and #90519 (right) (Bt  =  2.2 T/Ip  =  2 MA, low triangularity coniguration). For each igure, time evolution of the nitrogen injection 
level (top box), and (bottom box) real-time level of attachment (Isat/Iroll) (blue curve) with pre-roll-over request (green curve) and post-roll-
over request (red curve). Reproduced from [202]. © 2017 EUROfusion Universidade de Lisboa Instituto Superior Tecnic.
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impurities like Ne, Ar or CD4. This reliable and simple system 

tested in JET could be one of the options for real-time detach-

ment control to be transferred on ITER provided that reliable 

Langmuir probes will be installed in the divertor.

In addition to the experimental development, a signiicant 

modelling program has been initiated with the aim of opti-

mizing the path towards sustained fusion energy production 

in deuterium–tritium (D–T) [175, 204]. D–T projection of 

the expected fusion performance has been irst calculated 

based on present plasma scenario but assuming that the exper-

imental proiles and coninement enhancement factors could 

be translated at higher ield, current and applied powers (i.e. 

temperature and density proile shapes are kept constant with 

a ixed ratio of the density normalised to Greenwald density 

when increasing the plasma current). With these assumptions 

the predicted fusion performance is 7.5 MW for the baseline 

scenario (at HIPB98(y,2)  =  0.8) at high current (4.5 MA) and 13 

MW for the hybrid regimes with 40 MW of applied power at 

lower current (2.5–3.0 MA).

To complement this simple prediction, more sophisticated 

time dependent integrated scenarios modelling have been per-

formed [175] using Trap Gyro-Landau Fluid (TGLF) model 

[205] for the core transport validated on the JET database 

[204]. For that purpose, high beta domain has been chosen for 

its optimization due to its low power degradation obtained in 

low gas conditions, something beneicial for maximizing the 

fusion power at high input power [167]. An optimum plasma 

operational point, in terms of electron density, has been found 

due to the good penetration of the NBI power at reduced 

average density [176].

More importantly, the impact on turbulence and on fusion 

power of the effective mass change from D–D to D–T [175] 

has been explored by performing simulations at maximum 

power and including D and T species in TGLF model. With 

exactly the same external heating source proiles (without 

including the alpha-heating effect to single out the isotope 

effect on transport modelling), both ion and electron temper-

atures show a signiicant increase from D–D to D–T mixtures 

when including the isotope effect on core transport in TGLF, 

especially strong for the ion channel (igure 26). This is due 

to a stronger turbulence stabilization of core turbulence in 

D–T than in D–D, which also leads to an increase of density 

peaking for D–T. Therefore, the equivalent fusion power also 

signiicantly increases in D–T when including the effective 

mass change on transport, from Pfus ≅ 11 MW to 16 MW. A 

simple explanation has been proposed by taking into account 

the mass effect in the effectiveness of the E  ×  B low shear for 

quenching ITG transport (it scales as the square root of the 

ion mass) and has been conirmed by performing D–D and 

D–T simulations with and without ExB low shear stabiliza-

tion [175]. The isotope effect has also been analyzed by per-

forming gyro-kinetic simulations with the GENE code for the 

ITER hybrid scenario including kinetic electrons, collisions, 

electromagnetic effects and up to ive species [206]. It is found 

that the interplay between nonlinear micro-turbulence effects 

generate an isotope effect leading to a change of the ion heat 

luxes from D–D to D–T plasmas. In this context, one of the 

objectives of the future pure JET tritium campaign, foreseen 

in 2018, will be to investigate the hydrogen isotope effects 

on the core and pedestal coninement, on the L to H trans-

ition and on ELM physics. Regarding alpha power effects, the 

simulation indicates that the fusion power generated should 

have a noticeable impact on the fast ion generation and elec-

tron heating in regimes without sawteeth activities [207]. This 

will allow the analysis of Toroidal Alfvén Eigenmodes (TAE) 

stability and the impact on turbulence reduction [208]. This 

opens up the possibility of analyzing already at JET some key 

physics issues expected in ITER nuclear active phase of oper-

ation, such as the impact of alphas fast ion pressure, electron 

heating on tungsten impurity transport, fast ion coninement 

and neutron yield production [209].

6. Nuclear fusion technology in support of ITER

Signiicant effort and results have been obtained recently 

within the JET programme in the ield of nuclear fusion 

technology in support of ITER [5, 211–214], i.e. neutronics, 

neutron induced activation and damage ITER materials, 

nuclear safety, tritium cycle, nuclear waste production and 

characterization.

6.1. Neutronics and code validation

The 14MeV neutron rates issued from the D–T fusion reac-

tion should be accurately measured for the scientiic exploita-

tion of the JET and ITER D–T experiment (code validation, 

performance optimisation), for the accurate measurement of 

the fusion power (including tritium burn and tritium accoun-

tancy), and, for a precise estimate of the machine activation 

within the available neutron limit. On JET, an accurate calibra-

tion procedure of neutron detectors at 14 MeV neutron energy 

(235U ission chambers and the in-vessel activation system) 

Figure 26. Comparison between the electron and ion temperatures 
obtained with TGLF transport model for D–D and D–T mixtures 
with otherwise identical settings (no credit for alpha power). JET 
Projection at 2.5 MA/2.9 T/40 MW volume averaged density of 
3.9  ×  1019m−3. Reproduced from [175]. © IOP Publishing Ltd. All 
rights reserved.
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has been developed to measure the fusion power during the 

future D–T experiments. The 14 MeV neutron calibration is 

designed using a 14 MeV neutron generator to be deployed in 

JET by remote handling. The calibration layout and strategy 

have been developed taking into account the source charac-

teristics, the safety requirements and the limitations imposed 

by the remote handling capabilities. As a calibration source, 

the neutron generator must be fully characterized, in terms of 

neutron energy spectrum and anisotropy of neutron emission, 

and absolutely calibrated. As it cannot be considered a stable 

source, its neutron emission rate during the in-vessel calibra-

tion has to be continuously monitored using more than one 

monitoring detectors which, in turn, have to be absolutely cal-

ibrated. Two 14 MeV neutron generator units (~2 · 108 n s−1)  

and the power supply/control unit were purchased and deliv-

ered in October 2015. Both units have been fully characterized 

during two experimental campaigns at a dedicated neutron 

facility (the National Physics Laboratory, NPL, Teddington, 

UK) that took place in November 2015 and June 2016: emis-

sion rates at many different angles, neutron spectra at several 

different angles, stability of the monitoring detectors attached 

to the neutron generators were measured using several neu-

tron detection and spectroscopy techniques. The count rate of 

monitoring detectors has been related to the neutron generator 

absolute intensity as well. The deployment of the D–T neutron 

generator inside the JET vacuum chamber in different toroidal 

and poloidal positions will take place in the 2016–2017 shut-

down. The operation time required for the neutron generator in 

each position is in the range 0.3–4 h during which the neutron 

emission rate by the generator will be provided by the moni-

toring detectors. Extensive neutronics modelling of the neu-

tron generators/detectors and of the JET machine are required 

to provide the characterization and the calibration of the neu-

tron generators, and to derive the response of JET neutron 

monitors to the neutron D–T plasma source at the required 

accuracy level. The JET calibration strategy is an important 

step to benchmark the calibration procedure for ITER where 

neutron detectors have to provide the fusion power (10% 

accuracy) and the amount of T-burnt for T-accountancy.

Dedicated neutron measurements around JET have been 

performed to validate the various codes used in ITER to pre-

dict quantities such as the neutron lux along streaming paths, 

the activation of materials, as well as the resulting shutdown 

dose rates [212, 213]. For this purpose, several streaming 

experiments have been carried out, consisting of measuring 

the neutron luence and dose-rates in the torus hall and along 

its ducts. It was demonstrated that the neutron luence meas-

urements along penetrations of the JET torus hall biological 

shield are well reproduced by the Monte-Carlo codes over 

six orders of magnitude of the neutron luence as shown in 

igure 27 and reported in [211]. Calculations have been carried 

out using ITER relevant Monte-Carlo codes such as MCNP, a 

validated geometrical model of JET and neutron cross-section 

data from the ITER reference nuclear data library (FENDL-

3). Benchmark against the AutomateD VAriaNce reducTion 

Generator (ADVANTG) software, which generates variance 

reduction parameters for Monte Carlo simulations and which 

is now increasingly used in ITER to speed up neutronics 

analyses, has also been performed showing a good agreement 

between this code and the full MCNP calculations.

Shutdown dose rates have been also calculated with various 

codes (Advanced D1S, R2Smesh, MCR2S and R2S-UNED). 

A good agreement is found among the codes that reproduce 

the measured gamma dose rates along the mid-port and in 

several cells outside the vessel. The measured D–D neutron 

luence and gamma dose rates have been compared with simu-

lations performed with the codes used for ITER nuclear anal-

yses. A good agreement is obtained which is an important step 

to gain conidence in ITER safety assessment calculations  

[212, 213].

6.2. Tritium fuel cycle and detritiation

Up to the start of ITER operation, JET is the only tritium com-

patible magnetic coninement fusion device currently active. 

The active gas handling system, AGHS, was constructed to 

process and recycle the gases from the torus and Neutral Beam 

Injectors [214]. The tritium facility is located in a separate 

building equipped with its own ventilation system and con-

nected with the JET torus via gas transfer and pumping lines. 

The AGHS is presently being upgraded with the possibility 

of using four Gas Injection Modules (GIMs) instead of one 

used in the previous D–T campaign (1997), with an improved 

T-accountancy and a new water detritiation system to fully 

close the tritium fuel cycle at JET [215]. This GIM upgrade 

will ease the transfer from deuterium to tritium plasma sce-

narios initially developed using different GIMs and will pro-

vide a better control of the D–T mix within the JET plasmas.

There is also a requirement to improve our tritium account-

ancy techniques to allow the quantities of tritium being trans-

ferred to, and returning from, the JET machine to be accurately 

traced at a level below 1%. The irst steps have been made 

to improve the tritium accountancy with an upgrade of the 

Figure 27. Comparison between measured and calculated neutron 
luence along two penetrations through the JET Torus Hall 
biological shield: the access labyrinth and the air duct chimney 
[211].
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instrumentation for tritium measurement, e.g. by the develop-

ment of a solid state based detector.

The AGHS exhaust detritiation system produces tritiated 

water at a rate averaging 9200 litres per year. This is collected 

in a tank and stored in stainless steel drums. These drums have 

historically been shipped to the Ontario Power Generation 

Inc. in Canada for disposal and recycling. However, it has 

been decided that an on-site water detritiation system will be 

constructed to allow the processing of tritiated water and the 

recovery of contained tritium. The tritium recovered from the 

water will be fed back into the AGHS plant for processing 

(igure 28). The water detritiation system is designed to have 

an annual throughput of approximately 15 000 kg with activi-

ties of up to 200 GBq l−1. It is planned to start non-active com-

missioning of the water detritiation system by 2016.

The valuable experience gained both in the preparation and 

the execution of the JET tritium and D–T experimental cam-

paigns at JET is contributing to train the future ITER operator 

of the Tritium plant in terms of operation and maintenance and 

will provide quantitative information for the nuclear regulator, 

e.g. radioactive waste management contaminated with tritium.

6.3. Nuclear waste production and characterization

JET operations generate large quantities of waste, some of 

which radioactive and contaminated with tritium. Moreover, 

as beryllium is used in the ITER-like Wall, it is assumed to be 

present within all type of solid waste. ITER is interested in any 

information from JET experience that may help with aspects 

of ITER waste production and characterization in order to 

establish the routes for the subsequent decontamination and 

the available disposal routes. In this context, activity has been 

carried out to validate the tools and processes required by 

ITER [216].

7. Prospects and conclusion

The JET tokamak and its surrounding technology facilities have 

a number of features that are presently unique: possibility to 

operate with all hydrogen isotopes, ITER-like wall, tritium and 

beryllium handling facilities, remote maintenance facility. We 

have shown that the operation of these facilities could play an 

important role in optimising the ITER research plan and thereby 

in ensuring a rapid transition from ITER irst plasma to ITER 

D–T operation. Indeed, recent analysis of the ITER research 

plan has focussed on maintaining the shortest achievable path 

to D–T operation and the achievement of the QD–T  =  10 mile-

stone. In this context, the exploitation of all metal plasma facing 

components facilities will support this important challenge 

during both the non-active and active ITER operation.

We conclude that the underlying physics understanding of the 

JET ITER like wall operation and results requires developing an 

integrated vision where the science of the wall mat erials, plasma 

surface interaction, scrape-off layer, pedestal and plasma core 

physics are strongly coupled and interconnected. A sound sci-

entiic based extrapolation of the JET results towards ITER and 

future reactor (DEMO) operation will require a new paradigm 

to be developed inter-linking these various physics processes 

beyond a simple empirical scaling extrapolation.

Up to 2020114, the focus of the JET campaigns is the prep-

aration of the deuterium, tritium and D–T campaigns and the 

investigation the hydrogen isotope effects on fusion perfor-

mance with the ITER material mix. Both baseline and hybrid 

operational regimes should progress towards ITER dimension-

less parameters (H-factor, beta, ρ∗, ν∗ etc.) leading to stationary 

fusion performance, while remaining compatible with the 

ILW. After the 2016–2017 shutdown, the major challenge for 

the 2018–2019 experimental campaigns consists of integrating 

high coninement operation with the divertor constraints at full 

applied heating power. During the 2016–2017 shutdown, in 

addition to the installation of the Shattered Pellet Injector for 

ITER relevant disruption experiments, it is foreseen to upgrade 

the actively cooled components of the NBI system that exhaust 

the heat load from non-dissociated +D2  ions [5]. When these 

new components will be installed, the NBI system will be 

capable in providing steady 34 MW during at least 5 s in a reli-

able manner in either deuterium or tritium [5]. Therefore, one 

of the main objectives of the next deuterium campaigns are to 

further extend the performance of the ILW by fully exploiting 

the JET machine capability at high additional powers in the 

range of 40 MW with up to 34 MW of NBI and 6 MW of 

ICRH powers. The quantitative objective is to reach stationary 

deuterium plasma scenarios in 2018/2019 with thermal energy 

content of the order of Wth(D–D) ~ 12 MJ with HIPB98(y,2)  ⩾  1. 

Then it is foreseen, to assess the transferability of the developed 

scenarios when varying the plasma isotope content from deu-

terium to tritium before the D–T campaigns in 2019. The D–T 

campaign will provide an integrated test of fusion technology 

and ITER scenarios with the ITER mat erial mix including the 

isotope effects on coninement, alpha physics, L–H threshold, 

ELM and pedestal physics.

In parallel, it has also been proposed to extend the life of 

JET beyond 2020 as an ITER test-bed facility until the start 

of the scientiic exploitation of ITER [15]. After a number of 

enhancements and refurbishments the JET device will be even 

Figure 28. Sketch of the JET tritium cycle with the new water 
detritiation system where tritium waste will be re-processed and 
recovered to close the on-site tritium cycle [215]. Reprinted from 
[215], Copyright 2015, with permission from Elsevier.

114 Pending decisions on funding EUROfusion and the JET Operating  

Contract in 2019–2020.
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more suited to perform risk mitigation experiments for ITER 

and to train the ITER operation staff [15]. To make JET even 

more relevant for ITER, a number of enhancements (hardware 

and software) have been proposed and extensive feasibility 

studies have been performed for a 10 MW Electron Cyclotron 

Resonant Heating system at the ITER frequency (170 GHz) 

[217], a better diagnosed and more ITER-like divertor upgrade 

[218] and Resonant Magnetic Perturbation Coils [219]. In 

addition, it is proposed that JET becomes a test bed to develop 

and demonstrate real time control concepts for ITER using 

identical algorithms and software. In this context, it is pro-

posed to upgrade the existing real-time control system to a 

new system, based on more powerful hardware and software 

architecture. The primary goal of such an extension and set of 

upgrades would be to prepare for integrated ITER operation 

with the ITER control tools (actuators and real time plasma 

controllers), with the ITER mix of materials for the irst wall 

using the ITER modelling tools for experiment preparation 

and analysis [220].
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