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Ideally the properties of an economic mechanism should hold in a robust way across multiple equilibria and
under varying assumptions regarding the information available to participants. Focusing on the design of
robust position auctions we seek mechanisms that possess an efficient equilibrium, and guarantee high revenue
in every efficient equilibrium, under both complete and incomplete information. A generalized first-price
auction that is expressive in the sense of allowing multi-dimensional bids turns out to be the only standard
design able to achieve this goal, even when valuations are one-dimensional. The equilibria under complete
information are obtained via Bernheim and Whinston’s profit-target strategies, those under incomplete
information via an appropriate generalization thereof. Particularly interesting from a technical perspective
is the incomplete-information case, where the standard technique for establishing equilibrium existence due
to Myerson is generalized to a setting in which the bid space has higher dimension than the valuation space.
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1. Introduction. We consider a standard position auction setting in which k positions are
to be assigned to n agents in a one-to-one fashion and agents agree on the relative values of the
positions. Such a setting can be described by two vectors v = (v1, . . . , vn) and β = (β1, . . . , βk),
where vi is private to agent i and β is publicly known. The valuation of agent i for position j is then
given by βjvi, and we will assume for convenience that β1 ≥ β2 ≥ · · · ≥ βk. This is a one-dimensional
setting, as the private information of each agent consists of a single number. A prime example of
a position auction can be found in the context of sponsored search, where agents correspond to
advertisers and positions to slots in which advertisements are displayed. Each slot comes with a
click-through rate and each advertiser with a value per click.

In position auction settings, the same auction format is often applied across very different prob-
lem instances. Internet search engines for example use the same format to auction off both valu-
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able high-frequency keywords and a large number of keywords corresponding to less frequent user
queries. For high-frequency keywords it is reasonable to consider a complete-information model,
where agents know one another’s value per click. For less frequent keywords, on the other hand,
an incomplete-information model, where an agent only has probabilistic beliefs about the values
of others, seems more appropriate. An auction design used for both high- and low-frequency key-
words should therefore possess appropriate strategic equilibria under both complete and incomplete
information.

In addition to the question of equilibrium existence, auction designs are subject to a tradeoff
among various performance criteria. A common goal is the maximization of social welfare, i.e., the
sum of agents’ valuations for the positions they are assigned. This goal corresponds to an efficient
use of the available resources, which is desirable for the long-term health of a marketplace. From
the auctioneer’s point of view, the revenue achieved by the auction should also be robust in the
sense that it does not vary too much among different efficient equilibria, if indeed there is more
than one such equilibrium. We thus arrive at the following question:

Does there exist a position auction that always admits an efficient equilibrium, and achieves
high revenue in every efficient equilibrium, under both complete and incomplete information?

The Vickrey-Clarke-Groves (VCG) auction possesses an efficient equilibrium in which agents
truthfully reveal their valuations, but it also admits additional efficient equilibria with low revenue
when agents are sufficiently well informed about one another’s valuations [34, 16]. The truthful
equilibrium of the VCG mechanism will nevertheless play a central role in our analysis in that
we adopt the corresponding revenue, henceforth termed the truthful VCG revenue, as a bench-
mark. Under complete information this benchmark is well justified and has been used in previous
work [e.g., 32]. It is also a sensible choice under incomplete information, where it is the maximum
revenue achievable by an efficient mechanism [35, 30].1

Before we proceed any further, it is worth noting that revenue equivalence, which states that
equilibria resulting in the same allocation must also yield the same revenue, is not enough to
resolve the question under either complete or incomplete information: under complete information
revenue equivalence does not generally hold, under incomplete information it does not guarantee
the existence of an efficient equilibrium.

1.1. Candidate auctions. We address the question by considering variants of the three
standard designs for position auctions: the Vickrey-Clarke-Groves (VCG) auction, the general-
ized second-price (GSP) auction, and the generalized first-price (GFP) auction.2 For each of these
designs we distinguish between a simplified version with one-dimensional bids and an expressive
version with multi-dimensional bids. In the simplified version each agent i specifies a single bid bi,
and this bid is multiplied by β1 ≥ β2 ≥ · · · ≥ βk to obtain bids for the different positions. In the
expressive version each agent i submits a separate bid bij for each position j.

We further distinguish between two allocation rules: the first assigns positions to agents so as to
maximize social welfare with regard to the reported valuations; the second considers each position
in turn, from first to last, and greedily assigns it to an agent with maximum bid for the position
among those not previously assigned a position. For simplified bids the greedy allocation rule also
maximizes reported social welfare and the two allocation rules are identical. This is not generally

1 An alternative benchmark for settings with incomplete information, the optimal revenue achievable by any auction,
sacrifices efficiency [35]. This seems inappropriate given our focus on efficient equilibria.

2 The GSP auction is used by Google and Microsoft. The GFP auction was used by Overture, the first company to
provide a successful sponsored search service. Facebook uses the VCG auction to place ads, although not in a context
where positions can always clearly be ranked by value.
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Table 1. Negative results for standard auction designs and focus of this article

bid space allocation rule payment rule

VCG-based GSP-based GFP-based

simplified
efficient ≡

greedy
efficient low-revenue
Nash equilibrium [16]

efficient low-revenue
Nash equilibrium [16],
no Bayes-Nash equi-
librium [25]

no Nash
equilibrium [21]

expressive
efficient

efficient low-revenue
Nash equilibrium [34]

efficient low-revenue
Nash equilibrium [34]

greedy
efficient low-revenue
Nash equilibrium [34]

efficient low-revenue
Nash equilibrium [34] this article

the case for expressive bids. Our positive results exploit the simpler structure of outcomes under
the greedy allocation rule,3 while all negative results hold for both allocation rules.

For a given allocation rule, payments are finally defined as follows: the VCG auction charges
each agent the difference in social welfare of the other agents when the agent is absent and when
it is present, both with regard to reported valuations; the GSP auction charges each agent the
next-highest bid on the position it is assigned coming from an agent that is not assigned a higher
position; the GFP auction charges each agent its bid on the position it is assigned.

1.2. Results. It turns out that most candidate auctions are disqualified by prior results,
as shown in Table 1. All versions of the VCG and GSP auctions—with simplified or expressive
bids, efficient or greedy allocation rule—have an efficient complete-information equilibrium with
arbitrarily small revenue compared to the truthful VCG revenue [34, 16]. This result is quite
robust and continues to hold for example when the auctioneer uses incorrect multipliers α 6= β in
place of β [16]. An additional disadvantage of the simplified GSP auction is that it may not have
any (Bayes-Nash) equilibrium when information is incomplete [25]. The simplified GFP auction,
on the other hand, has a unique (Bayes-Nash) equilibrium under incomplete information [11], but
may not have an equilibrium under complete information [21].

The only remaining candidate is the expressive GFP auction, and we show that the version with
a greedy allocation rule indeed possesses the desired properties. Under complete information it
has an efficient equilibrium, and all of its equilibria are efficient and yield at least the truthful
VCG revenue. Under incomplete information it has an efficient equilibrium, and every efficient
equilibrium yields the truthful VCG revenue.

Efficient equilibria in the two cases can be obtained via profit-target strategies, a notion proposed
by Bernheim and Whinston [6] for settings with complete information,4 and via an appropriate
generalization thereof to settings with incomplete information. In following a profit-target strategy
an agent uses its knowledge of the valuations of others to determine a profit it can achieve and then
bids in a way that guarantees this profit no matter which allocation is reached. We generalize the
idea to settings with incomplete information by replacing profit by expected profit and the uniform
target by a per-allocation target, as befits new uncertainty regarding the allocation eventually
selected. We also observe that such conditioning on the allocation is in fact necessary to obtain an
equilibrium, even in a single-item auction.

3 An allocation maximizing reported social welfare corresponds to a maximum-weight matching, which means in
particular that the decision to allocate position j to agent i depends on the bids of all agents on all positions. For
the greedy allocation rule this decision is independent of bids on positions ` > j.

4 Bernheim and Whinston in fact refer to the strategies in question as “truthful,” Ausubel and Milgrom [3] as “semi-
sincere.” Milgrom [33] argues that the term profit-target strategy is more appropriate, because agents submit bids
that guarantee them a certain utility or profit in case they are allocated.
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Interestingly, it is the same target that leads to an efficient equilibrium under both complete and
incomplete information, namely the utility each agent would obtain in the truthful equilibrium of
the VCG auction. In both cases it can be reached only via multi-dimensional bids, which explains
why expressiveness beyond the valuation space is necessary. That not only the same mechanism
can be used in both settings, but that the same approach to bidding leads to an equilibrium, is the
best outcome one might hope for from a practical perspective. It means that both the auctioneer
and the bidders can follow the same approach irrespective of the actual amount of information
available to the bidders.

1.3. Techniques. Our analysis of the complete-information case is technically similar to the
classic analysis of Bernheim and Whinston [6] that links equilibria of first-price auctions to the
core, and to more recent approaches that also make this connection [14, 29]. The common feature
is the use of profit-target strategies, and we show specifically that using the truthful VCG utility
of each agent as its target utility yields an efficient equilibrium. By construction, revenue in this
equilibrium equals the truthful VCG revenue. We then exclude the possibility of inefficient equi-
libria by showing how inefficiencies in the allocation create opportunities for beneficial unilateral
deviation. To establish the revenue guarantee for efficient equilibria we consider certain unilateral
deviations from the proposed efficient equilibrium and use the fact that these deviations cannot be
beneficial to derive lower bounds on payments in equilibrium.

In the incomplete-information setting, the combination of one-dimensional valuations and multi-
dimensional bids poses two technical challenges. Firstly, Myerson’s [35] equilibrium characterization
only provides a necessary but not a sufficient condition on possible equilibrium bids: it tells us that
payments in every efficient equilibrium must equal those in the truthful equilibrium of the VCG
auction. However, since bids are multi-dimensional, there are many different bids that satisfy the
condition and thus many candidate equilibrium bids. Secondly, the standard technique to verify
that a particular candidate is an equilibrium involves integrating the derivative of an agent’s utility,
as a function of both valuation and bid, along a path between two bids. This technique breaks
down in our setting, where the bid space has higher dimension than the valuation space and the
utility function may not be defined everywhere on the path.

We address the first difficulty through an appropriate generalization of the profit-target idea
from complete to incomplete information and obtain a strategy where an agent’s bid on a given
position equals its expected truthful VCG payment under the condition of being allocated that
position. We then establish that these bids constitute an equilibrium, and thus overcome the second
difficulty, by showing that for a particular agent and any position j it is optimal to bid according
to the conjectured equilibrium on position j, given that the other agents bid according to the
conjectured equilibrium and the agent bids according to the conjectured equilibrium on positions
j+ 1 to k. We believe that similar techniques could be used to show equilibrium existence in more
general settings, including settings with multi-dimensional valuations.

1.4. Related work. The design of expressive auctions for specific applications is an impor-
tant topic of contemporary mechanism design [e.g., 2, 23, 13, 20, 15, 18, 24]. The intuition that
expressiveness is generally desirable is supported by results of Benisch et al. [5], who showed that
the maximum social welfare a mechanism can achieve strictly increases with a measure of expres-
siveness based on a concept from computational learning theory.

The classic analysis of position auctions is due to Varian [37] and Edelman et al. [21]. Working
under the assumption that agents have complete information, the authors showed that the GSP
auction—although not truthful—has certain desirable equilibria, and that revenue in these equilib-
ria is at least that in the truthful equilibrium of the VCG auction. Under incomplete information,
the GSP auction may not possess an efficient equilibrium [25]. The GFP auction, on the other
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hand, always has a unique, efficient (Bayes-Nash) equilibrium under incomplete information, which
yields the truthful VCG revenue [11], but may not have a (Nash) equilibrium under complete infor-
mation [21]. Neither the simplified GSP auction nor the simplified GFP auction should thus be
expected to perform well under both complete and incomplete information. However, in a situation
where one of them does perform well, it may do so more widely than the VCG auction once the
latter’s truthfulness is compromised [17].

Under both complete and incomplete information, the social welfare in any equilibrium of the
GSP auction is within a constant factor of the maximum social welfare [10, 36]. The revenue of
the GSP auction can be arbitrarily small compared to the truthful VCG revenue under complete
information, whereas under incomplete information it is always within a constant factor of the
optimal revenue of Myerson [35] when reserve prices are chosen appropriately [32, 9].

To the best of our knowledge, the study of position auctions that admit efficient equilibria and
yield high revenue in every efficient equilibrium under both complete and incomplete information,
and the use of additional expressiveness to achieve this goal, is novel to the present work. Our
analysis differs from earlier results in its use of an expressive bidding language to overcome the
negative result for complete-information settings.

The role of expressiveness in position-auction environments was first highlighted by Milgrom
[34] and Dütting et al. [16], who considered VCG and GSP auctions under complete information
and argued that a restriction of the bidding space to a subspace of the valuation space can rule
out zero-revenue equilibria without introducing new and potentially undesirable ones. Also in a
complete-information setting and for VCG and GSP auctions, Blumrosen et al. [8] and Abrams
et al. [1] bounded the reduction in equilibrium quality resulting from a restriction of the bidding
space to a subspace of the valuation space.

Independently from our work, and again focusing on complete-information environments, Hoy
et al. [29] argued in favor of expressive designs for first-price auctions. For an auction enabling the
explicit revelation of target utilities the authors showed that an efficient equilibrium resulting in the
truthful VCG revenue is guaranteed to exist, and that every equilibrium satisfying an additional
envy-freeness property is efficient and yields the truthful VCG revenue. Our results for complete-
information environments do not require envy-freeness for the latter to be the case. In addition we
also provide an analysis for settings with incomplete information, in what we believe is the first
application of the notion of profit-target strategies in such settings.

2. Preliminaries. We study a setting with a set {1, . . . , k} of positions ordered by quality
and a set {1, . . . , n} of agents with unit demand and one-dimensional valuations for the positions.
More formally, let Rk

≥ = {x ∈ Rk : xj ≥ 0, xj ≥ xj′ if j < j′} be the set of k-dimensional vectors
whose entries are non-negative and non-increasing. Denote R+ = {x ∈ R : x≥ 0}. For β ∈ Rk

≥, let
Rk

β = {x∈Rk :x=βv, v ∈R+} be the one-dimensional subspace of Rk
+ spanned by β. The valuation

of agent i can then be represented by a vector βvi ∈Rk
β in this subspace, such that βjvi ≥ 0 is the

agent’s value for position j. We assume without loss of generality that βk > 0 and n> k.5

Our goal is to produce a one-to-one assignment of positions to agents that is efficient in the
sense that it maximizes social welfare, the sum of agents’ valuations for the positions they are
assigned. To this end, the VCG auction solicits a one-dimensional bid bi ∈ R+ from each agent
i∈N . This bid is then interpreted as a k-dimensional bid by multiplication with β, such that the
bid of agent i for position j is βjvi, and the allocation is chosen to maximize the reported social
welfare, i.e., the sum of the bids for positions assigned. The payment of an agent is the amount

5 A setting where βk = 0 is equivalent to a setting with k− 1 positions. A setting with k > n positions is equivalent
to a setting with n positions, as the greedy allocation rule never assigns the other positions. A setting where k = n
finally is equivalent to a setting with k′ < n positions, where k′ = arg max{i : βi − βk > 0}, as in the former each
agent i is guaranteed a value of at least βkvi.
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by which its presence reduces the reported social welfare of the other agents. Assuming agents are
ordered such that b1 ≥ b2 ≥ · · · ≥ bn, agent i is assigned position i and pays

∑k

s=i(βs − βs+1)bs+1.
The expressive GFP auction solicits a vector bi ∈ Rk

+ of bids from each agent i ∈N , where bij is
interpreted as agent i’s bid on position j. The allocation is determined in a greedy manner by
considering positions 1 to k in turn, and assigning the current position to an agent with maximum
bid on that position among the agents not assigned an earlier position. The payment of an agent i
assigned position j is its bid bij on that position.

When reasoning about strategic behavior by the agents we assume quasi-linear utilities, such
that the utility ui(b, vi) of agent i with value vi in a given auction and for a given bid profile
b= (b1, . . . ,bn) is equal to its valuation for the position it is assigned minus its payment for that
position, and use two models for the information available to the agents regarding one another’s
valuations. Both models assume β to be common knowledge among the agents. In the complete-
information model the same is true also for the values vi, and a bid profile (b1, . . . ,bn) is a Nash
equilibrium of an auction if no agent has an incentive to change its bid assuming that the other
agents don’t change their bids, i.e., if for every i∈N and every b′i ∈Rk

+,

ui

(
(b1, . . . ,bi, . . . ,bn), vi

)
≥ ui

(
(b1, . . . ,b

′
i, . . . ,bn), vi

)
.

The incomplete-information model assumes instead that the values vi are drawn independently
from a continuous distribution F with density f supported on [0, v̄] for some finite v̄ ∈ R+, and
that F is common knowledge among the agents.6 The strategy of a particular agent can then be
represented in terms of a bidding function b : R+→Rk

+ that maps the agent’s value v to a vector
b(v) = (b1(v), . . . , bk(v)) of bids on positions 1 to k.

It is not difficult to see that to obtain an efficient allocation with probability one, the bidding
functions of all agents must be identical except on a set of measure zero. Indeed, consider a situation
where two different bidding functions b and b′ are being used and let j be the first position where
the two functions differ. Then there must exist v, v′ with v < v′ and bj(v) > b′j(v

′), which for
appropriately chosen valuations leads to a contradiction to efficiency. Bidding function b then is a
Bayes-Nash equilibrium if no agent has an incentive to unilaterally change its bid assuming that
all other agents have valuations drawn from F and bid according to b, i.e., if for every i∈N , every
vi ∈ [0, v̄], and every bidding function b′,

Evj∼F,j 6=i

[
ui

(
(b(v1), . . . ,b(vi−1),b(vi),b(vi+1), . . . ,b(vn)), vi

)]
≥

Evj∼F,j 6=i

[
ui

(
(b(v1), . . . ,b(vi−1),b

′(vi),b(vi+1), . . . ,b(vn)), vi
)]
.

3. Complete information. We begin our analysis of the expressive GFP auction for settings
with complete information and show that it always possesses a Nash equilibrium, that all its Nash
equilibria are efficient, and that payments in any Nash equilibrium are at least the truthful VCG
payments. The first result is established via profit-target strategies where each agent targets its
utility in the truthful equilibrium of the VCG auction. The bid of agent i on position j then
equals its value βjvi minus its truthful VCG utility, or zero if this difference is negative.7 For the
second result we argue that any inefficiency in the allocation creates an opportunity for beneficial
unilateral deviation. The proof of the third result uses the non-existence of beneficial unilateral
deviations in a Nash equilibrium to derive lower bounds on payments.8

6 The assumption of boundedness is made for notational convenience. Our results also hold for example for distribu-
tions with finite expectation.

7 It is worth noting that a one-dimensional bid will not usually be enough to express the target utility for each
position, even if the target utility is identical across positions.

8 An alternative proof could use the connections between the VCG outcome and Walrasian equilibria [26] and between
Walrasian equilibria and equilibria of expressive first-price auctions [27]. Our proof from first principles has the
advantage that it makes the role of profit-target strategies explicit.
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Theorem 1. In a position auction with complete information, the expressive GFP auction with
greedy allocation rule has the following properties:

1. it possesses an efficient Nash equilibrium in which the payment of every agent is the same as
in the truthful equilibrium of the VCG auction;

2. all of its Nash equilibria are efficient;
3. in all of its Nash equilibria the payment of every agent is at least its payment in the truthful

equilibrium of the VCG auction.

Proof. We prove each of the claims in turn.
For the first claim, consider without loss of generality the case where agents are ordered by non-

increasing value, such that v1 ≥ v2 ≥ · · · ≥ vn, and the efficient allocation where agent i is assigned
position i, for 1≤ i≤ k. Denote by ui the truthful VCG utility of agent i, for 1≤ i≤ n, and by pi
the truthful VCG payment for position i, for 1≤ i≤ k. Then ui = βivi− pi if 1≤ i≤ k and ui = 0
if i > k. We further claim that the bid profile b with

bij = max(βjvi−ui,0)

for i= 1, . . . , n and j = 1, . . . , k is an equilibrium of the GFP auction that is efficient and yields the
truthful VCG payments.

Under this bid profile an efficient allocation assigns position i to agent i at price pi. With the
greedy allocation rule, this outcome can be obtained by letting agent i point to position i and
breaking ties in favor of the agent that points to a given position if only one agent points to the
position and in an arbitrary but fixed manner if more than one agent points to it. To see that b
is indeed an equilibrium, first observe that agent i cannot decrease its bid for position i without
being assigned a position other than i. Now assume for contradiction that agent i has a beneficial
deviation to a position j 6= i, such that

βivi− pi <βjvi− pj − ε,

for every ε > 0. Here we use that agent i can bid pj +ε on positions j and above to be assigned one of
these positions, and that it values each of them at least as highly as position j. The left-hand side of
this inequality equals the utility of agent i in the truthful equilibrium of the VCG auction, whereas
the right-hand side equals the utility agent i would obtain if it was instead assigned position j at
price pj +ε. The inequality contradicts the fact that the truthful VCG equilibrium is envy-free [31].

For the second claim, consider a Nash equilibrium b= (b1, . . . ,bn) and assume for contradiction
that it leads to an inefficient assignment. Then there exist agents i and j with vi > vj such that
agent i is assigned position s and agent j is assigned position t < s such that βt >βs.

First assume that agent i bids bjt + ε on positions t and above, which means that it is assigned
one of these positions. Since b is an equilibrium this deviation is not beneficial, i.e., for every ε > 0,

βsvi− bis ≥ βtvi− bjt− ε. (1)

Now consider the situation where agent j bids according to bid vector b′j with

b′j,` =

{
bis + ε if 1≤ `≤ s
0 otherwise

for some ε > 0. We claim that with these bids agent j will either be assigned a position above s, or
will compete for position s with bids that are at most bis and will therefore be assigned position
s. For the latter observe that because assignments are made greedily, agents other than j who
are assigned a position above s when agent j bids according to bj can only be assigned a higher
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position when agent j bids according to b′j. This suffices because agents other than j who were
assigned position s or below bid at most bis on position s.

Since b is an equilibrium agent j does not benefit from bidding according to b′j, and thus for
every ε > 0,

βtvj − bjt ≥ βsvj − bis− ε. (2)

By adding (1) and (2) and rearranging,

βsvi +βtvj ≥ βsvj +βtvi− 2ε,

and thus

vj ≥ vi−
2ε

βt−βs

,

where we have used that βt − βs > 0. Since the inequality holds for every ε > 0, we obtain a
contradiction to the assumption that vi > vj.

For the third claim, consider a Nash equilibrium b = (b1, . . . ,bn) and assume without loss of
generality that it leads to an assignment where agent i is assigned position i for 1≤ i≤ k. Further
assume that the assignment is efficient, i.e., that v1 ≥ v2 ≥ · · · ≥ vk. For 1≤ i≤ k, agent i+ 1 does
not benefit from bidding bi,i + ε= pi + ε on position i and above, so for every ε > 0,

βi+1vi+1− pi+1 ≥ βivi+1− pi− ε

and thus

pk ≥ βkvk+1− ε, and
pi ≥ (βi−βi+1)vi+1 + pi+1− ε for 1≤ i < k.

This proves the claim. �

4. Incomplete information. We now turn to settings with incomplete information and recall
that an efficient Bayes-Nash equilibrium must be symmetric in the sense that all agents use the
same bidding function. Moreover, by Myerson’s characterization [35], the expected payment of an
agent must be the same in any efficient equilibrium of any mechanism, and identical in particular
to that in the efficient equilibrium of the VCG auction in which each agent bids its true valuation.
While this gives us an indication of equilibrium payments and thus of potential equilibrium bidding
functions, it only needs to hold in expectation and therefore does not determine the bidding function
uniquely.

Let us first see why a direct translation of the approach we used under complete information
fails under incomplete information. To this end consider a single-item auction and two agents with
valuations distributed uniformly on the unit interval. The expected truthful VCG utility of an
agent with valuation v then is u= v2/2. However, the bid b such that the utility upon allocation
coincides with u, i.e., b= max{v− u,0}= v− v2/2, does not meet the requirements of Myerson’s
characterization and thus cannot be an equilibrium. Indeed b is too high, or equivalently the
corresponding target utility u too low. Intuitively the agent should target a higher utility, as the
fact that it is assigned the item reveals additional information about its valuation relative to that
of the other agent.

This example suggests that in a position auction, the target utility upon allocation of a particular
position must differ among positions, and the most obvious way to achieve such a conditioning is
to set the bid b∗j (v) of an agent with value v for position j to be equal to the expected payment an
agent with this value would face if in the truthful equilibrium of the VCG auction it was allocated
position j. The expectation here is taken over the values of the other agents and conditioned
on v being the j-highest among all values. The bidding function b∗ : R+→ Rk

+ such that b∗(v) =
(b∗i (v), . . . , b∗k(v)) turns out to be an equilibrium.
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Theorem 2. In a position auction with incomplete information and values drawn indepen-
dently from a continuous distribution with bounded support, the expressive GFP auction with greedy
allocation rule has an efficient Bayes-Nash equilibrium in which the expected payment of every
agent is equal to its payment in the truthful equilibrium of the VCG auction.

We will define b∗ formally in Section 4.1 and call b∗j (v) the straightforward bid of an agent with
value v on position j. To establish the theorem we use three lemmas, which we prove respectively
in Sections 4.2, 4.3, and 4.4. The first lemma states that for each j, b∗j is continuous and strictly
increasing.

Lemma 1. For j ∈ {1 . . . k}, b∗j is continuous on [0, v̄]. For j ∈ {1 . . . k} and v ∈ (0, v̄),

d

dv
b∗j (v)> 0.

For v ∈R+ and x∈Rk
+, denote by u∗((x1, . . . , xk), v) the expected utility of an agent with value

v who bids b∗j (xj) on position j while all other agents bid straightforwardly. The second and
third lemma concern two properties of u∗ as a function of the agent’s value v and its bid b∗j (xj)
on position j, assuming straightforward bids on positions j + 1 to k: for any v, it is stationary
at the straightforward bid b∗j (v); and it changes more rapidly in xj as v increases, given that
straightforward bidding on positions j + 1 to k is optimal irrespective of the bids on positions 1
to k.

Lemma 2. For j ∈ {1 . . . k}, v ∈ (0, v̄], and x1, . . . , xj−1 ∈R+,

d

dxj

u∗
(
(x1, . . . , xj, v, . . . , v), v

)∣∣∣
xj=v

= 0.

Lemma 3. Let j ∈ {1, . . . , k} such that for all v ∈ [0, v̄] and all x∈Rk
+, u∗((x1, . . . , xj, v, . . . , v), v)≥

u∗(x, v). Let v ∈ [0, v̄] and x1, . . . , xj−1 ∈R+. Then

d

dv

d

dxj

u∗
(
(x1, . . . , xj−1, xj, v, . . . , v), v

)
≥ 0.

We are now ready to prove the theorem.

Proof of Theorem 2. That bidding according to b∗ leads to an efficient assignment follows from
Lemma 1 and the fact that positions are assigned greedily. The claim concerning the payments
then holds by definition of b∗ and because each agent pays its bid on the position it is assigned.

For the equilibrium property consider a situation where n− 1 agents bid according to b∗. Note
that for the remaining agent it is enough to consider bids b∗j (v) where v is in the support of F ,
since any other bid is dominated by a bid of this type. Let j ≥ 0 be the minimum value such that
for all v and all x, u∗((x1, . . . , xj, v, . . . , v), v)≥ u∗(x, v), and note that b∗ is an equilibrium when
j = 0. Assume for contradiction that j > 0 and consider v ∈R+ and x∈Rk

+ such that xj 6= v and

u∗
(
(x1, . . . , xj−1, xj, v, . . . , v), v

)
>u∗

(
(x1, . . . , xj−1, v, v, . . . , v), v

)
.

From continuity of b∗j , which holds by Lemma 1, it follows that u∗((x1, . . . , xj−1, xj, v, . . . , v), v) is
continuous in both xj and v. We can thus assume without loss of generality that xj > 0 and v > 0.
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If xj < v, then

u∗
(
(x1, . . . , xj−1, v, v, . . . , v), v

)
−u∗

(
(x1, . . . , xj−1, xj, v, . . . , v), v

)
=

∫ v

y=xj

d

dy
u∗
(
(x1, . . . , xj−1, y, v, . . . , v), v

)
dy

≥
∫ v

y=xj

(
d

dz
u∗
(
(x1, . . . , xj−1, z, y, . . . , y), y

))∣∣∣∣
z=y

dz = 0,

which is a contradiction. Here the inequality holds because by Lemma 3, for y≤ v,

d

dz
u∗
(
(x1, . . . , xj−1, z, v, . . . , v), v

)
≥ d

dz
u∗
(
(x1, . . . , xj−1, z, y, . . . , y), y

)
.

The second equality holds by Lemma 2.
The same contradiction can also be obtained if xj > v, in which case

u∗
(
(x1, . . . , xj−1, v, v, . . . , v), v

)
−u∗

(
(x1, . . . , xj−1, xj, v, . . . , v), v

)
=

∫ v

y=xj

d

dy
u∗
(
(x1, . . . , xj−1, y, v, . . . , v), v

)
dy

=−
∫ xj

y=v

d

dy
u∗
(
(x1, . . . , xj−1, y, v, . . . , v), v

)
dy

≥−
∫ xj

y=v

(
d

dz
u∗
(
(x1, . . . , xj−1, z, y, . . . , y), y

))∣∣∣∣
z=y

dz = 0.

Here the inequality holds because by Lemma 3, for y≥ v,

− d

dz
u∗
(
(x1, . . . , xj−1, z, v, . . . , v), v

)
≥− d

dz
u∗
(
(x1, . . . , xj−1, z, y, . . . , y), y

)
. �

4.1. Truthful VCG payments and allocation probabilities. For j ∈ {1, . . . , k} and v ∈
[0, v̄] we defined the straightforward bid b∗j (v) on position j of an agent with value v as its expected
payment in the truthful equilibrium of the VCG auction, given that it has value v and is allocated
position j. This quantity is equal to the sum of the differences βs−βs+1 multiplied by the expected
value of the s+1-highest among n values drawn independently from distribution F , and conditioned
on v being the j-highest value. Thus b∗j (0) = 0 and for v ∈ (0, v̄],

b∗j (v) =
k∑

s=j

(βs−βs+1)

∫ v

u=0

(n− j)!
(n− s− 1)!(s− j)!

(
F (u)

F (v)

)n−s−1(
1− F (u)

F (v)

)s−j
f(u)

F (v)
u du. (3)

For x ∈Rk
+ let Ps,m(x) be the probability that an agent is assigned position s against m other

agents who bid straightforwardly if it bids b∗(x) = (b∗1(x1), . . . , b
∗
k(xk)). Since the agent is assigned

position s if m−s+1 of the m other agents have values no larger than xs and it is not assigned one
of the positions 1, .., s−1 against the remaining s−1 agents, Ps,m(x) can be written recursively as

P1,m(x) = F (x1)
m, and

Ps,m(x) =

(
m

m− s+ 1

)
F (xs)

m−s+1

(
1−

s−1∑
t=1

Pt,s−1(x)

)
.

(4)

An important observation is that Ps,m(x) does not depend on xt for t > s.
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4.2. Proof of Lemma 1. Note first that, by the binomial theorem,(
1− F (u)

F (v)

)s−j

=

s−j∑
t=0

(−1)t
(
s− j
t

)(
F (u)

F (v)

)t

. (5)

Application to (3) and rearranging yields that for v > 0,

b∗j (v) =
k∑

s=j

(βs−βs+1)(n− j)!
(n− s− 1)!(s− j)!

s−j∑
t=0

(−1)t
(
s− j
t

)∫ v

u=0
F (u)n−s+t−1f(u)u du

F (v)n−s+t
. (6)

Continuity on [0, v̄] now follows because

lim
v→0

b∗j (v) = lim
v→0

k∑
s=j

(βs−βs+1)(n− j)!
(n− s− 1)!(s− j)!

s−j∑
t=0

(−1)t
(
s− j
t

)
F (v)n−s+t−1f(v)v

(n− s+ t)F (v)n−s+t−1f(v)
= 0,

where the first equality holds by (6) and by l’Hospital’s rule.
Now assume that v > 0 and let Zn−s+t(v) = ( 1

F (v)
)n−s+t

∫ v

u=0
F (u)n−s+t du. Then∫ v

u=0
(n− s+ t)F (u)n−s+t−1f(u)udu

F (v)n−s+t
=
F (v)n−s+tv−

∫ v

u=0
F (u)n−s+t du

F (v)n−s+t
= v−Zn−s+t(v),

where the first equality follows by applying integration by parts to the numerator, and thus, by (6),

b∗j (v) =
k∑

s=j

(βs−βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)

(
v−Zn−s+t(v)

)
. (7)

Moreover

d

dv

(
v−Zn−s+t(v)

)
=

d

dv

(
v−

(
1

F (v)

)n−s+t ∫ v

u=0

F (u)n−s+t du

)
= 1 + (n− s+ t)

f(v)

F (v)

1

F (v)n−s+t

∫ v

u=0

F (u)n−s+t du− 1

= (n− s+ t)
f(v)

F (v)
Zn−s+t(v), (8)

where the first and last equality hold by definition of Zn−s+t(v), and for the second equality we
have used the product rule. We now claim that

d

dv
b∗j (v) =

k∑
s=j

(βs−βs+1)

s−j∑
t=0

(−1)t
(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)
Zn−s+t(v)

=
k∑

s=j

(βs−βs+1)

∫ v

u=0

(n− j)!
(n− s− 1)!(s− j)!

(
1− F (u)

F (v)

)s−j(
F (u)

F (v)

)n−s
f(v)

F (v)
du> 0. (9)

Indeed the first equality holds by (7) and (8), and the second equality by definition of Zn−s+t(v),
by (5), and by rearranging. The inequality follows because the integral is strictly positive for all
s∈ {j, . . . , k}, which is the case since v > 0 and since f(v)> 0 by continuity of F , and because, by
assumption, βk−βk+1 > 0.
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4.3. Proof of Lemma 2. We write u∗(x, v) as a sum of contributions Ts(x, v) =
Ps,n−1(x)(βsv − b∗s(xs)) of position s = 1, . . . , k, group these contributions into those of positions
s < j, those of positions j and j + 1, and those of positions s > j + 1, and argue for each group
separately that the derivative in xj vanishes at xj = v.

For the contribution
∑j−1

s=1 Ts(x, v) of positions s < j this is easy, as neither the allocation proba-
bility Ps,n−1(x) nor the utility βsv−b∗s(xs) subject to allocation depends on xj. Hence the derivative
in xj is zero everywhere, and in particular at xj = v.

To prove the claim for Tj(x, v) + Tj+1(x, v), we first apply the recursive formulation of the
allocation probabilities to compute the derivatives in xj of Tj(x, v) and Tj+1(x, v). We then observe
that the derivative of Tj(x, v) + Tj+1(x, v) vanishes at xj = v if a certain differential equation
involving the bids b∗j (v) and b∗j+1(v) is satisfied. To establish that the differential equation does
indeed hold we use the following combinatorial identity, which is proved in the appendix.

Lemma 4. For all m∈N and `∈N+,

m∑
t=0

(−1)t
(
m

t

)
(m+ `)!

(`− 1)!m! (t+ `)
= 1.

Lemma 5. Fix a particular agent with value v > 0 and a position j. Assume that all other
agents bid straightforwardly and that the agent bids straightforwardly on positions j+1, . . . , k. Then

d

dxj

(
Tj(x, v) +Tj+1(x, v)

)∣∣∣
xj=v

= 0.

Proof. We begin by considering the contributions Tj(x, v) and Tj+1(x, v) of positions j and j+1
separately. For position j,

Tj(x, v) = Pj,n−1(x)
(
βjv− b∗j (xj)

)
=

(
n− 1

n− j

)
F (xj)

n−j
(

1−
j−1∑
t=1

Pt,j−1(x)

)(
βjv− b∗j (xj)

)
,

where the second equality holds by (4), and thus

d

dxj

Tj(x, v) =

(
n− 1

n− j

)(
1−

j−1∑
t=1

Pt,j−1(x)

)(
(n− j)F (xj)

n−j−1f(xj)
(
βjv− b∗j (xj)

)
−F (xj)

n−j d

dxj

b∗j (xj)
)

=

(
n− 1

n− j

)(
1−

j−1∑
t=1

Pt,j−1(x)

)
(n− j)F (xj)

n−j−1f(xj)
(

(βjv− b∗j (xj))

− F (xj)

f(xj)(n− j)
d

dxj

b∗j (xj)
)

. (10)

For position j+ 1,

Tj+1(x, v) = Pj+1,n−1(x)
(
βj+1v− b∗j+1(xj+1)

)
=

(
n− 1

n− j− 1

)
F (v)n−j−1

(
1−

j∑
t=1

Pt,j(x)

)(
βj+1v− b∗j+1(v)

)
=

(
n− 1

n− j− 1

)
F (v)n−j−1

(
1−

j−1∑
t=1

Pt,j(x)−(
j

1

)
F (xj)

(
1−

j−1∑
t=1

Pt,j−1(x)
))(

βj+1v− b∗j+1(v)
)
,
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where the second equality holds by (4) and the third equality can be obtained by pulling Pj,j(x)
out of the sum and applying (4) again. Thus,

d

dxj

Tj+1(x, v) =−
(

n− 1

n− j− 1

)
F (v)n−j−1

(
j

1

)
f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

)(
βj+1v− b∗j+1(v)

)
=−

(
n− 1

n− j

)(
1−

j−1∑
t=1

Pt,j−1(x)

)
(n− j)F (v)n−j−1f(xj)

(
βj+1v− b∗j+1(v)

)
. (11)

From (10) and (11) we see that the claim holds if((
βjv− b∗j (v)

)
− F (v)

f(v)(n− j)
d

dxj

b∗j (xj)
∣∣∣
xj=v

)
−
(
βj+1v− b∗j+1(v)

)
= 0,

i.e., if

d

dxj

b∗j (xj)
∣∣∣
xj=v

= (n− j) f(v)

F (v)

((
βjv− b∗j (v)

)
−
(
βj+1v− b∗j+1(v)

))
. (12)

We proceed to show that this is indeed the case.
Recalling (7), we can write b∗z(v) as

b∗z(v) =Az(v)−Bz(v),

where

Az(v) =
k∑

s=z

(βs−βs+1)
s−z∑
t=0

(−1)t
(
s− z
t

)
(n− z)!

(n− s− 1)!(s− z)!
1

(n− s+ t)
v and

Bz(v) =
k∑

s=z

(βs−βs+1)
s−z∑
t=0

(−1)t
(
s− z
t

)
(n− z)!

(n− s− 1)!(s− z)!
1

(n− s+ t)
Zn−s+t(v).

By applying Lemma 4 for m= s− z and `= n− s we see that

Az(v) =
k∑

s=z

(βs−βs+1)v= βzv.

For (12) it thus suffices to show that

d

dxj

b∗j (xj)
∣∣∣
xj=v

= (n− j) f(v)

F (v)

(
Bj(v)−Bj+1(v)

)
.

Denoting

Cz,s,t(v) = (−1)t
(
s− z
t

)
(n− z)!

(n− s− 1)!(s− z)!
1

(n− s+ t)

f(v)

F (v)
Zn−s+t(v)

we see that indeed,

(n− j) f(v)

F (v)

(
Bj(v)−Bj+1(v)

)
= (n− j)

( k∑
s=j

(βs−βs+1)

s−j∑
t=0

Cj,s,t(v)−
k∑

s=j+1

(βs−βs+1)

s−j−1∑
t=0

Cj+1,s,t(v)

)
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= (n− j)
(

(βj −βj+1)Cj,j,0(v) +
k∑

s=j+1

(βs−βs+1)

s−j−1∑
t=0

(
Cj,s,t(v)−Cj+1,s,t(v)

)
+

k∑
s=j+1

(βs−βs+1)Cj,s,s−j(v)

)
= (n− j)(βj −βj+1)Cj,j,0(v) +

k∑
s=j+1

(βs−βs+1)

s−j−1∑
t=0

(n− s+ t)Cj,s,t(v)

+ (n− j)
k∑

s=j+1

(βs−βs+1)Cj,s,s−j(v)

=
k∑

s=j

(βs−βs+1)

s−j∑
t=0

(n− s+ t)Cj,s,t(v) =
d

dxj

b∗j (xj)
∣∣∣
xj=v

,

where the second equality holds because

(n− j)
(
Cj,s,t(v)−Cj+1,s,t(v)

)
= (n− j)

(
(−1)t

(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)

f(v)

F (v)
Zn−s+t(v)−

(−1)t
(
s− j− 1

t

)
(n− j− 1)!

(n− s− 1)!(s− j− 1)!

1

(n− s+ t)

f(v)

F (v)
Zn−s+t(v)

)
= (n− j)

(
(−1)t

(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
1

(n− s+ t)

f(v)

F (v)
Zn−s+t(v)−

(−1)t
(
s− j
t

)
s− j− t
s− j

(n− j− 1)!

(n− s− 1)!(s− j− 1)!

1

(n− s+ t)

f(v)

F (v)
Zn−s+t(v)

)
= (−1)t

(
s− j
t

)
(n− j)!

(n− s− 1)!(s− j)!
f(v)

F (v)

(
n− j

n− s+ t
− s− j− t
n− s+ t

)
Zn−s+t(v)

= (n− s+ t)Cj,s,t(v)

and the last equality follows from (9). �

We now turn to the contribution
∑k

s=j+2 Ts(x, v) of positions s > j+ 1.

Lemma 6. Fix a particular agent with value v and a position j. Assume that all other agents
bid straightforwardly and that the agent bids straightforwardly on positions j+ 1, . . . , k. Then

d

dxj

( k∑
s=j+2

Ts(x, v)

)∣∣∣∣
xj=v

= 0.

For s > j + 1, Ts(x, v) = Ps,n−1(x, v)(βsv − b∗s(xs)) depends on xj only through the allocation
probability Ps,n−1(x, v). It therefore suffices to show that the derivative in xj of Ps,n−1(x, v) vanishes
at xj = v. We establish this claim with the help of two auxiliary lemmas, which are proved in the
appendix and which again exploit the recursive formulation of the allocation probabilities.

Lemma 7. Fix a particular agent with value v and a position j. Assume that all other agents
bid straightforwardly and that the agent bids straightforwardly on positions j + 1, . . . , k. Then, for
all m≥ j+ 1,

d

dxj

(
Pj,m(x) +Pj+1,m(x)

)∣∣∣
xj=v

= 0.
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Lemma 8. Fix a particular agent with value v and a position j. Assume that all other agents
bid straightforwardly and that the agent bids straightforwardly on positions j + 1, . . . , k. Then, for
all m and ` with m≥ `≥ j+ 2,

d

dxj

P`,m(x)
∣∣∣
xj=v

= 0.

Proof of Lemma 6. For s > j+ 1

d

dxj

Ts(x, v) =
d

dxj

[
Ps,n−1(x, v)(βsv− b∗s(xs))

]
=

d

dxj

[(
n− 1

n− s

)
F (xs)

n−s
(

1−
s−1∑
t=1

Pt,s−1(x)

)(
βsv− b∗s(xs)

)]

=
d

dxj

[(
n− 1

n− s

)
F (xs)

n−s
(

1−
j−1∑
t=1

Pt,s−1(x)−
s−1∑
t=j

Pt,s−1(x)

)(
βsv− b∗s(xs)

)]

=

(
n− 1

n− s

)
F (xs)

n−s
(
− d

dxj

s−1∑
t=j

Pt,s−1(x)

)(
βsv− b∗s(xs)

)
= 0,

where the second equality holds by (4), the fourth equality because Pt,s−1(x) does not depend on
xj when j > t, and the last equality by Lemma 7 and Lemma 8. �

4.4. Proof of Lemma 3. We can again write u∗(x, v) as a sum of the contributions Ts(x, v) =
Ps,n−1(x)(βsv− b∗s(xs)), and observe that Ts(x, v) does not depend on xj when j > s, to see that

d

dxj

u∗(x, v) =
d

dxj

( k∑
s=1

Ts(x, v)

)
=

d

dxj

( k∑
s=j

Ts(x, v)

)
=

d

dxj

(
Tj(x, v) +

k∑
s=j+1

Ts(x, v)

)
. (13)

For the contribution of position j,

d

dxj

Tj(x, v) =
d

dxj

(
Pj,n−1(x)(βjv− b∗j (xj))

)
= βjv

d

dxj

Pj,n−1(x)− b∗j (xj)
d

dxj

Pj,n−1(x)−Pj,n−1(x)
d

dxj

b∗j (xj),

and, since Pj,n−1(x) does not depend on xs for s > j,

d

dv

d

dxj

Tj

(
(x1, . . . , xj, v, . . . , v), v

)
= βj

d

dxj

Pj,n−1(x1, . . . , xj, v, . . . , v). (14)

For the contribution of positions s > j we use a variation of the standard technique
for one-dimensional settings due to Myerson [35] to write the expected utility as an inte-
gral of the expected allocation. Denote ū(z, v) =

∑k

s=j+1 Ts((x1, . . . .xj, z, . . . , z), v) and recall

that ū(z, v) = x̄(z, v)v − p̄(z), where x̄(z, v) =
∑k

s=j+1 βsPs,n−1(x1, . . . , xj, z, . . . , z)v and p̄(z) =∑k

s=j+1 βsPs,n−1(x1, . . . , xj, z, . . . , z)b
∗
s(z). Note further that(

d

dz
ū(z, v)

)∣∣∣∣
z=v

=

(
d

dz
u∗
(
(x1, . . . , xj, z, . . . , z), v

))∣∣∣∣
z=v

= 0,

where the first equality holds because the expected utility from positions 1 to j is independent of
the bid z on positions j+ 1 to k, and the second equality by the assumption that for all x and v,
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u∗((x1, . . . , xj, v, v, . . . , v), v)≥ u∗((x1, . . . , xk), v). Since this holds for all values of v, it must be the
case that (

d

dz
x̄(z)

)
z =

d

dz
p̄(z),

and by integrating both sides from 0 to v and setting p̄(0) = 0 we see that

p̄(v) =

∫ v

z=0

(
d

dz
x̄(z)

)
zdz =

[
x̄(z)z

]v
z=0
−
∫ v

z=0

x̄(z)dz = x̄(v)v−
∫ v

z=0

x̄(z)dz

and thus
k∑

s=j+1

Ts

(
(x1, . . . , xj, v, . . . , v), v

)
= ū(v, v) = x̄(v)v− p̄(v) =

∫ v

z=0

x̄(z)dz

=
k∑

s=j+1

βs

∫ v

t=0

Ps,n−1(x1, . . . , xj, t, . . . , t)dt.

By taking derivatives in xj and v,

d

dv

d

dxj

k∑
s=j+1

Ts

(
(x1, . . . , xj, v, . . . , v), v

)
=

d

dv

d

dxj

( k∑
s=j+1

βs

∫ v

t=0

Ps,n−1(x1, . . . , xj, t, . . . , t)dt

)
=

k∑
s=j+1

βs

d

dv

∫ v

t=0

d

dxj

Ps,n−1(x1, . . . , xj, t, . . . , t)dt

=
k∑

s=j+1

βs

d

dxj

Ps,n−1(x1, . . . , xj, v, . . . , v). (15)

Finally

d

dv

d

dxj

u∗
(
(x1, . . . , xj, v, . . . , v), v

)
=

d

dxj

k∑
s=j

βsPs,n−1(x1, . . . , xj, v, . . . , v)> 0,

where the equality holds by (13), (14), and (15), and the inequality by an ex-post argument: if the
agent is currently allocated a position s≤ j, then changing its reported valuation xj for position j
has no effect and it will still be allocated position s; if the agent is currently allocated a position
s > j or no position at all, then after increasing xj it will either be allocated the same position as
before or position j.

5. Conclusion. We have studied a one-dimensional position auction setting and have identi-
fied a generalized first-price auction with multi-dimensional bids as the only standard design able
to guarantee existence of an efficient equilibrium, and high revenue in every efficient equilibrium,
under both complete and incomplete information. That expressiveness beyond that of the valuation
space is necessary for robust performance across multiple equilibria and under varying informa-
tional assumptions provides a counterpoint to work on position auctions that had highlighted the
benefits of simplicity [34, 16]. A conjecture compatible with both lines of work, and also with
recent results showing an increased robustness of non-truthful auctions to imprecise modeling by
the auctioneer [17], is that simplicity of payment rules rather than simplicity of bids is what drives
good performance. This conjecture deserves further investigation.

One may of course wonder whether expressiveness is necessary for robustness in other contexts
as well, and whether the techniques we have used to show equilibrium existence can be applied
more widely. Natural settings to consider are those with multi-dimensional valuations such as
combinatorial auctions, where simplified designs have recently received significant attention [12, 7,
22, 19, 4], and two-sided markets with strategic buyers and sellers such as assortative matching [28].
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Appendix A: Proof of Lemma 4 We prove the claim by induction on `. For `= 1,

m∑
t=0

(−1)t
(
m

t

)
(m+ `)!

(`− 1)!m! (t+ `)
=

m∑
t=0

(−1)t
(
m

t

)
(m+ 1)!

0!m! (t+ 1)

=
m∑
t=0

(−1)t
(
m+ 1

t+ 1

)

=
m+1∑
t=1

(−1)t−1
(
m+ 1

t

)
= 1−

m+1∑
t=0

(−1)t
(
m+ 1

t

)
= 1− (1− 1)m+1 = 1,

where the penultimate equality holds by the binomial theorem.
Now let `≥ 2 and assume that the claim holds for `− 1, i.e., that

m∑
t=0

(−1)t
(
m

t

)
(m+ `− 1)!

(`− 2)!m! (t+ `− 1)
= 1. (16)

Then
m∑
t=0

(−1)t
(
m

t

)
(m+ `)!

(`− 1)!m! (t+ `)

=
m∑
t=0

(−1)t
m! (m+ `)!

t! (m− t)! (`− 1)!m! (t+ `)
=

m∑
t=0

(−1)t
(
m+ `

t+ `

)∏`−1
s=1(t+ s)

(`− 1)!

=
m∑
t=0

(−1)t
(
m+ `− 1

t+ `− 1

)∏`−1
s=1(t+ s)

(`− 1)!
+

m∑
t=0

(−1)t
(
m+ `− 1

t+ `

)∏`−1
s=1(t+ s)

(`− 1)!

=
m∑
t=0

(−1)t
(
m+ `− 1

t+ `− 1

)∏`−2
s=1(t+ s)

(`− 2)!
(1 +

t

`− 1
) +

m+1∑
t=1

(−1)t−1
(
m+ `− 1

t+ `− 1

)∏`−2
s=0(t+ s)

(`− 1)!

=
m∑
t=0

(−1)t
(
m+ `− 1

t+ `− 1

)∏`−2
s=1(t+ s)

(`− 2)!
+

m∑
t=0

(−1)t
(
m+ `− 1

t+ `− 1

)∏`−2
s=0(t+ s)

(`− 1)!

+
m∑
t=0

(−1)t−1
(
m+ `− 1

t+ `− 1

)∏`−2
s=0(t+ s)

(`− 1)!

=
m∑
t=0

(−1)t
(
m+ `− 1

t+ `− 1

)∏`−2
s=1(t+ s)

(`− 2)!
=

m∑
t=0

(−1)t
(m+ `− 1)!

∏`−2
s=1(t+ s)

(t+ `− 1)! (m− t)! (`− 2)!

=
m∑
t=0

(−1)t
(
m

t

)
(m+ `− 1)!

(`− 2)!m! (t+ `− 1)
= 1,

where the third equality holds by Pascal’s identity and the last equality by (16).

Appendix B: Proof of Lemma 7. We consider the derivatives of Pj,m(x) and Pj+1,m(x) in
turn. For Pj,m(x),

d

dxj

Pj,m(x) =
d

dxj

[(
m

m− j+ 1

)
F (xj)

m−j+1

(
1−

j−1∑
t=1

Pt,j−1(x)

)]
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=

(
m

m− j+ 1

)
(m− j+ 1)F (xj)

m−jf(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

)
,

where the first equality holds by (4) and the second equality because Pt,j−1(x) does not depend on
xj when t < j. For Pj+1,m(x),

d

dxj

Pj+1,m(x) =
d

dxj

[(
m

m− j

)
F (v)m−j

(
1−

j∑
t=1

Pt,j(x)

)]

=
d

dxj

[(
m

m− j

)
F (v)m−j

(
1−

j−1∑
t=1

Pt,j(x)−
(
j

1

)
F (xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))]

=

(
m

m− j

)
F (v)m−j

(
−
(
j

1

)
f(xj)

(
1−

j−1∑
t=1

Pt,j−1(x)

))
,

where the first equality holds by (4), the second equality is obtained by pulling Pj,j(x) out of the
sum and applying (4) again, and the third equality holds because Pt,j(x) and Pt,j−1(x) do not
depend on xj when t < j. Thus

d

dxj

(
Pj,m(x) +Pj+1,m(x)

)∣∣∣
xj=v

=

(
m

m− j+ 1

)
(m− j+ 1)F (v)m−jf(v)

−
(

m

m− j

)
F (v)m−j

(
j

1

)
f(v)

= 0,

where the second equality holds because
(

m
m−j

)(
j
1

)
=
(

m
m−j+1

)
(m− j+ 1).

Appendix C: Proof of Lemma 8. We prove the claim by induction on m. When m= j+2,
the only possible value for ` is j+ 2 and

d

dxj

Pj+2,j+2(x) =
d

dxj

[(
j+ 2

1

)
F (v)

(
1−

j+1∑
t=1

Pt,j+1(x)

)]

=
d

dxj

[(
j+ 2

1

)
F (v)

(
1−

j−1∑
t=1

Pt,j+1(x)−
(
Pj,j+1(x) +Pj+1,j+1(x)

))]
=−

(
j+ 2

1

)
F (v)

d

dxj

(
Pj,j+1(x) +Pj+1,j+1(x)

)
,

where the first equality holds by (4) and the third equality because Pt,j+1(x) does not depend on xj

when t < j. By Lemma 7, d
dxj

(Pj,j+1(x) +Pj+1,j+1(x))|xj=v = 0, and thus d
dxj
Pj+2,j+2(x)|xj=v = 0.

Now consider m > j + 2 and assume that for all m′ and ` such that m > m′ ≥ ` ≥ j + 2,
d

dxj
P`,m′(x)|xj=v = 0. Then, for m and ` with m≥ `≥ j+ 2,

d

dxj

P`,m(x) =
d

dxj

[(
m

m− `+ 1

)
F (v)m−`+1

(
1−

`−1∑
t=1

Pt,`−1(x)

)]

=
d

dxj

[(
m

m− `+ 1

)
F (v)m−`+1

(
1−

j−1∑
t=1

Pt,`−1(x)−
j+1∑
t=j

Pt,`−1(x)−
`−1∑

t=j+2

Pt,`−1(x)

)]

=−
(

m

m− `+ 1

)
F (v)m−`+1

(
d

dxj

j+1∑
t=j

Pt,`−1(x) +
d

dxj

`−1∑
t=j+2

Pt,`−1(x)

)
,
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where the third equality holds because Pt,`−1(x) does not depend on xj when t < j. Since `− 1≥
j+ 1, by Lemma 7, ( d

dxj

j+1∑
t=j

Pt,`−1(x)
)∣∣∣

xj=v
= 0.

Moreover `− 1≤m− 1<m, so by the induction hypothesis,( d

dxj

`−1∑
t=j+2

Pt,`−1(x)
)∣∣∣

xj=v
= 0.

Thus d
dxj
P`,m(x)|xj=v = 0, as claimed.
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[12] Christodoulou, G., A. Kovács, M. Schapira. 2008. Bayesian combinatorial auctions. Proceedings of the
35th International Colloquium on Automata, Languages and Programming . 820–832.

[13] Constantin, F., M. Rao, C.-C. Huang, D. C. Parkes. 2011. On expressing value externalities in position
auctions. Proceedings of the 25th AAAI Conference on Artificial Intelligence. 644–649.

[14] Day, R., P. Milgrom. 2008. Core-selecting package auctions. International Journal of Game Theory
36(3) 393–407.

[15] Dobzinski, S., R. Lavi, N. Nisan. 2012. Multi-unit auctions with budget limits. Games and Economic
Behavior 74(2) 486–503.



Dütting, Fischer, and Parkes: Expressiveness and Robustness of First-Price Position Auctions
20 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

[16] Dütting, P., F. Fischer, D. C. Parkes. 2011. Simplicity-expressiveness tradeoffs in mechanism design.
Proceedings of the 12th ACM Conference on Electronic Commerce. 341–350.

[17] Dütting, P., F. Fischer, D. C. Parkes. 2016. Truthful outcomes from non-truthful position auctions.
Proceedings of the 17th ACM Conference on Economics and Computation. ACM Press, 813.

[18] Dütting, P., M. Henzinger, M. Starnberger. 2012. Auctions for heterogeneous items and budget limits.
Proceedings of the 8th Workshop on Internet and Network Economics. 44–57.

[19] Dütting, P., M. Henzinger, M. Starnberger. 2013. Valuation compressions in VCG-based combinatorial
auctions. Proceedings of the 9th Conference on Web and Internet Economics. 146–159.

[20] Dütting, P., M. Henzinger, I. Weber. 2015. An expressive mechanism for auctions on the web. ACM
Transactions on Economics and Computation 4(1) Article 1.

[21] Edelman, B., M. Ostrovsky, M. Schwartz. 2007. Internet advertising and the generalized second price
auction: Selling billions of dollars worth of keywords. American Economic Review 97(1) 242–259.

[22] Feldman, M., H. Fu, N. Gravin, B. Lucier. 2013. Simultaneous auctions are (almost) efficient. Proceedings
of the 45th Annual ACM Symposium on Theory of Computing . 201–210.

[23] Ghosh, A., A. Sayedi. 2010. Expressive auctions for externalities in online advertising. Proceedings of
the 19th International Conference on World Wide Web. 371–380.

[24] Goel, G., V. S. Mirrokni, R. Paes Leme. 2015. Polyhedral clinching auctions and the adwords polytope.
Journal of the ACM 62(3) Article 18.

[25] Gomes, R., K. S. Sweeney. 2014. Bayes-Nash equilibria of the generalized second-price auction. Games
and Economic Behavior 86 421–437.

[26] Gul, F., E. Stacchetti. 1999. Walrasian equilibrium with gross substitutes. Journal of Economic Theory
87(1) 95–124.

[27] Hassidim, A., H. Kaplan, Y. Mansour, N. Nisan. 2011. Non-price equilibria in markets of discrete goods.
Proceedings of the 12th ACM Conference on Electronic Commerce. 295–296.

[28] Hoppe, H. C., B. Moldovanu, A. Sela. 2009. The theory of assortative matching based on costly signals.
Review of Economic Studies 76(1) 253–281.

[29] Hoy, D., K. Jain, C. A. Wilkens. 2013. A dynamic axiomatic approach to first-price auctions. Proceedings
of the 14th ACM Conference on Electronic Commerce. 583–584.

[30] Krishna, V., M. Perry. 2000. Efficient mechanism design. Manuscript.

[31] Leonard, H. B. 1983. Elicitation of honest preferences for the assignment of individuals to positions.
Journal of Political Economy 91(3) 461–479.
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