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1 Introduction

Our main theme here is the interplay between additivity (as in the Cauchy
functional equation), subadditivity and linearity. As is well known, in the
presence of smoothness conditions (such as continuity), additive functions
A : R → R are linear, so of the form A(x) = cx. There is much scope for
weakening the smoothness requirement and also much scope for weakening
the universal quantifier by thinning its range A below from the classical
context A = R:

A(u+ v) = A(u) + A(v) (∀u, v ∈ A). (AddA(A))

We address the Cauchy functional equation in §2 below. The philosophy be-
hind our quantifier weakening1 theorems is to establish linearity of a function
F on R from its additivity on a thinner set A and from additional (‘side’)

1or ‘quantifier easing’
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conditions, which include its extendability to a subadditive function; recall
that S : R→ R ∪ {−∞,+∞} is subadditive [HilP, Ch. 3] if for all u, v ∈ R

S(u+ v) ≤ S(u) + S(v), (Sub)

whenever meaningful on the right-hand side (cf. [Kuc, 16.1] for subbadditive
and [Roc, p. 23 ffol] for convex functions); see also [MatS], [BinO4]. (This
choice for the setting is more convenient than alternatively working on R+,
even though one-sided side-conditions are important here.) To motivate our
main result we begin with an automatic continuity theorem, devoted entirely
to subadditive functions; it implies a result about those linear functions that
have subadditive extensions — see Proposition 7 below (on uniqueness of
extension). This (Theorem 0 below) makes explicit an argument springing
from a step in a proof by Goldie, of Th. 3.2.5 in [BinGT] (BGT below, for
brevity), recently improved and generalized in [BinO14] (though still implicit
even there).
We recall that for S subadditive and finite-valued, S(0) ≥ 0, as S(0) ≤

S(0) + S(0), so that S(0) = 0 iff S(−z) = −S(z) for some z, as will be the
case below when S extends an additive function; cf. [Kuc, p. 457].

Theorem 0. For subadditive S : R→ R∪{−∞,+∞} with S(0+) = S(0) =
0 : S is continuous at 0 iff S(zn) → 0, for some sequence zn ↑ 0, and then
S is continuous everywhere, if finite-valued.

The last part above draws on [HilP, Th. 2.5.2] that, for a subadditive
function, continuity at the origin implies continuity everywhere. Theorem 0
above, in the presence of right-sided continuity, asserts that the merest hint
of left-sided continuity gives full continuity; contrast this with the behaviour
of the subadditive function 1[0,∞), which is continuous on the right but not
on the left. This leads to the question of whether right-sided continuity can
be thinned out. We are able to do so in the next two results below, but at
the cost of imposing more structure, either on the left, or on the right. We
need the following two definitions.

Definitions. 1. Say that Σ is locally Steinhaus-Weil (SW), or has the SW
property locally, if for x, y ∈ Σ and, for all δ > 0 suffi ciently small, the sets

Σδ
z := Σ ∩Bδ(z),
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for z = x, y, have the interior-point property, that Σδ
x ± Σδ

y has x ± y in its
interior. (Here Bδ(x) is the open ball about x of radius δ.) See [BinO9] for
conditions under which this property is implied by the interior-point property
of the sets Σδ

x − Σδ
x (cf. [BarFN]); for a rich list of examples, see §4.

2. Say that Σ ⊆ R is shift-compact if for each null sequence {zn} (i.e. with
zn → 0) there are t ∈ Σ and an infinite M ⊆ N such that

{t+ zm : m ∈M} ⊆ Σ.

See [BinO11], and for the group-action aspects, [MilO].

For connections between these two, and related result, see §8.3. Thus
armed, we begin with symmetric (two-sided) thinning. The second part of
the result below is a variant of the Berz Theorem for sublinear functions
([Berz], §5, [BinO16]).

Theorem 0′ [BinO14, Th. 3]. If S : R → R is subadditive with S(0) = 0
and there is a symmetric set Σ containing 0 with:
(i) S is continuous at 0 on Σ;
(ii) for all small enough δ > 0, Σδ

0 is locally Steinhaus-Weil
—then S is continuous at 0 and so everywhere.
In particular, this conclusion holds if there is a symmetric set Σ, Baire/measurable

and non-negligible in each (0, δ) for δ > 0, on which

S(u) = c±u for some c± ∈ R and all u ∈ R+ ∩ Σ, or all u ∈ R− ∩ Σ resp.

The alternative case to two-sided thinning is one-sided thinning accompa-
nied by linear bounding. Although one tries to impose continuity conditions
on a thin set below, these cannot be ‘too thin’as the example of the indica-
tor function of the irrationals shows: 1R\Q is subadditive and additive on Q
(indeed Q-homogeneous), but not continuous. More thinning is possible by
involving more structure: the ability to ‘span’(see below).
To motivate the accompanying side-condition, consider a subadditive S

that is locally bounded, say by some ε > 0 on (0, a]. For any x > 0, choose
n ∈ N with (n− 1) < x/a ≤ n; then

S(x) ≤ (n− 1)S(a) + S(x− (n− 1)a) ≤ xS(a)/a+ ε.

In particular, for x ≥ a, S(x) ≤ cax, for ca := [εa+S(a)]/a, i.e. S is linearly
bounded away and to the right of the origin. Theorem 0+ below derives

3



global linear boundedness from similar behaviour on a thin set near 0 when
ca itself is bounded above on the thin set.

Theorem 0+. Let Σ ⊆ [0,∞) be locally SW accumulating at 0. Suppose
S : R→ R is subadditive with S(0) = 0 and:
S|Σ is linearly bounded above by G(x) := cx, i.e. S(σ) ≤ cσ for some c and
all σ ∈ Σ, so that in particular,

lim supσ↓0, σ∈Σ S(σ) ≤ 0.

Then S(x) ≤ cx for all x > 0, so

lim sup
x↓0

S(x) ≤ 0,

and so S(0+) = 0.
In particular, if furthermore there exists a sequence {zn}n∈N with zn ↑ 0

and S(zn)→ 0, then S is continuous at 0 and so everywhere.

Boundedness in the latter case could be provided on an open set U ⊆ (0, 1)
accumulating at 0; continuity in the former case on a set Σ = (−U)∪{0}∪U
with U as before. Indeed, in this context one may equivalently assume that
the set Σ has precisely this form: see §4.

Theorem 1, our quantifier weakening theorem, was our original moti-
vation, for reasons explained later in the paper. The Heiberg-Seneta side-
condition of Theorem 1 is due to Heiberg ([Hei] in 1971) and Seneta ([Sen]
in 1973) —see BGT Th. 1.4.3.

Theorem 1. For S : R → R ∪ {−∞,+∞} subadditive, and A ⊆ R an
additive subgroup, suppose that
(i) A is dense;
(ii) A := S|A is finite and additive, i.e. AddA(S) holds;
(iii) S satisfies the one-sided (Heiberg-Seneta) boundedness condition

lim sup
u↓0

S(u) ≤ 0. (HS(S))

Then S is linear: S(u) = cu for some c ∈ R, and all u ∈ R.

Its proof relies on Theorem 0. Our next result, Theorem 1′ based (in
part) on Theorem 0′, is formulated in the spirit of Theorem 1 so far as the
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Heiberg-Seneta-style condition is concerned. However, the passage to the
limit below is through a set Σ which may be (very) thin (‘ghost-like’); the
limit may be one-sided or two-sided, depending both on Σ and the ambient
context.

Theorem 1′ (cf. [BinO15, §6 Th. 5]). Theorem 1 above holds with condition
(iii) replaced by any one of the following:
(iii-a) S satisfies the Heiberg-Seneta boundedness condition thinned out to a
symmetric set Σ that is locally SW, i.e.

lim supu→0, u∈Σ S(u) ≤ 0;

(iii-b) S is linearly bounded above on a locally SW subset Σ ⊆ R+ = (0,∞)
accumulating at 0, so that in particular

lim supu↓0, u∈Σ S(u) ≤ 0;

(iii-c) S is bounded above on a locally SW subset Σ ⊆ A+ accumulating at
0, that is, the following lim sup is finite:

lim supu↓0, u∈Σ S(u) <∞; (SW -HS(S))

(iii-d) S is bounded on a subset Σ ⊆ A that is shift-compact (e.g. on a set
that is locally SW, and so on an open set) and

A = AS := {u : G(u) := lim
x→∞

[S(u+ x)− S(x)] exists and is finite}.

Theorem 1′(c) above encompasses as an immediate corollary Ostrowski’s
Theorem [BinO11] and its classical generalizations. Below we use negligible
to mean meagre or null, according as (Baire) category or (Lebesgue) measure
is considered; we use non-negligible to mean a Baire/Lebesgue set that is not
correspondingly negligible. Further discussion here involves set-theoretic as-
sumptions (typically, alternatives to the alternatives to the Axiom of Choice,
AC, see §8.5 for references).

Theorem O ([Darb], [Ostr], [Meh]; cf. [BinO11]). If A : R→ R is additive
and bounded above on a non-negligible set, then A is linear.

The measure-theoretic development here came earlier chronologically; it
was then noticed that the Baire (or category) case was closely analogous.
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The two cases are developed in parallel in BGT. It has emerged recently that
the primary case is in fact the category case; see e.g. [BinO2,10], [Ost2].
The point of introducing side-conditions of Heiberg-Seneta type is that

they enable one to avoid assuming that our functions are either Baire or mea-
surable. This is in stark contrast to all the other major results in the theory
of regular variation (for which see below), when such an assumption is neces-
sary —e.g., to avoid the Hamel pathology (see e.g. [HilP, p. 238], BGT p. 5)
of discontinuous additive functions (necessarily wildly non-measurable/non-
Baire). See e.g. the property of local boundedness in Prop. 9 below (§4),
and foundational results such as the Uniform Convergence Theorem [BinO3].
We strengthen results of this type by imposing the side-condition on as thin
a set as possible (‘ghost-like Heiberg-Seneta conditions’), albeit with some
regularity of structure.
Our results here concern, as well as quantifier weakening and automatic

continuity, various results on additive, subadditive and sublinear functions.
Our original motivation was (quantifier weakening in the context of) regular
variation (§7: Karamata theory and its extensions; see e.g. BGT). This
specific motivation turns out to be valuable here: our viewpoint on the area,
informed by this, is complementary to (indeed, contrasts with) that of the
standard work in the area, Kuczma ([Kuc, Ch. 16]).
The rest of the paper is structured as follows. The backdrop of the Cauchy

equation is considered in §2; then we pass in §3 to developing the theme
of linearity first from additivity then from subadditivity, proving Theorems
0 and 1 and their variants, and also Theorem 2. We stop to clarify the
thinning aspect of the classical Heiberg-Seneta condition in §4. Using the
theme of linearity from subadditivity we extend in §5 Berz’s Theorem on
sublinearity [Berz] from the classical measurable case to the Baire category
case, more natural for us here, since refining the Euclidean topology to the
density topology (which converts measurable sets into Baire sets, i.e. sets
with the Baire property —see e.g. [BinO10, 17]) yields a parallel new proof
of Berz’s Theorem. In §6 we discuss thinning by spanning: we want to
weaken quantifiers by thinning their range as much as possible. But limits
are imposed on this: a set which is too thin will not be able to span. We
are thinking here of the reals R as a vector space over the rationals Q,
Hamel bases etc. All this is motivated by regular variation, for which see
§7. This makes good on the claim we have already made elsewhere (see
[BinO7,8,11,12]): this reduces the number of hard proofs in the theory of
regular variation to zero.
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2 Cauchy theory

Theorem 1 (to be proved in §3, where further results of this kind are estab-
lished) is concerned with weakening the quantifier in the classical Cauchy
functional equation, by thinning the range A of the universal quantifier in
(AddA) above from the classical context A = R. The philosophy behind the
theorems is to establish linearity of a function F on R from its additivity
on a thinner set A and from additional (‘side’) conditions, which include its
extendability to a subadditive function. The principal motivation for such
an approach arises in regular variation (§7) and rests on the following result,
which identifies the additive kernel G of the function F ∗ below. The paper
studies conditions under which F ∗ coincides with this kernel. The condition
(i) below motivated further study in [BinO15, §5 especially Prop. 6] (within
a more subtle group structure, and under the more demanding requirements
of uniform convergence).

Proposition 1 (Additive Kernel). For F : R→ R put

AF := {u : G(u) := lim
x→∞

[F (u+ x)− F (x)] exists and is finite},

and, for u ∈ R define

F ∗(u) := lim supx→∞[F (u+ x)− F (x)].

Then:
(i) AF is an additive subgroup;
(ii) G is an additive function on AF ;
(iii) F ∗ : R→ R ∪ {+∞,−∞} is a subadditive extension of G;
(iv) F ∗ is finite-valued and additive iff AF = R and F ∗(u) = G(u) for all u.

Proof. (i) 0 ∈ AF . Next, from

F (u+ v + x)− F (x) = [F (u+ v + x)− F (v + x)] + [F (v + x)− F (x)], (*)

we see that AF is a subsemigroup of R. In fact it is a subgroup: for u ∈ AF
one has −u ∈ AF , because on writing y = u+ x one has

F (−u+ y)− F (y) = −[F (u+ x)− F (x)]. � (i)

(iii) The identity (∗) also implies subadditivity of F ∗ and the partial additivity
result that

F ∗(u+ v) = F ∗(u) + F ∗(v) ∀u ∈ AF ∀v ∈ R. (∗∗)
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We note that for u ∈ AF , i.e. when G(u) exists, then F ∗(u) = G(u), so
proving part (iii) for u ∈ AF . � (iii)
(ii) With v ∈ AF , (**) above yields additivity of G. � (ii)
(iv) If F ∗ is finite-valued and additive, then F ∗(−u) = −F ∗(u) for all u. The
substitution y = u+ x yields

lim infx→∞[F (u+ x)− F (x)] = − lim supx→∞[F (x)− F (u+ x)]

= − lim supy→∞[F (−u+ y)− F (y)]

= −F ∗(−u) = F ∗(u).

That is, lim infx→∞[F (u + x) − F (x)] = lim supx→∞[F (u + x) − F (x)], i.e.
F ∗(u) = limx→∞[F (u+x)−F (x)] = G(u) for all u; so AF = R. The converse
follows from (i) and (ii). � (iv). �

Remark. With the Axiom of Choice AC replaced by an axiom (such as the
Axiom of Determinacy, AD) under which all sets are Baire/measurable (a
price that most mathematicians most of the time will not be willing to pay!),
Prop. 1 (helped by Prop. 6 below) is all we need, and the remaining results
below become unnecessary. See [BinO16, Appendix 1] and §8.5; cf. [BinO15,
§7 Th. 6].

Proposition 2 below leads from Theorem 1 to Theorem 1′ in §3 below.

Proposition 2. For A : R→ R additive, the following are equivalent:
(i) A is bounded above on a non-negligible Baire/measurable set;
(ii) A is bounded above on an interval;
(iii) for some M ∈ R

lim sup
u↓0

A(u) ≤M ; (lim supM)

(iv) (lim sup)0 holds, i.e. (HS(A)) holds;

Proof. (i)→(ii): If A is bounded above on a non-negligible Baire/measurable
set L, then it is bounded above on L + L, which contains an interval by
the Steinhaus-Piccard-Pettis Sum-Theorem ([BinO9, Th. E]; cf. [GroE],
[BinO11] and the recent [BinO18]).
(ii)→(iii): By additivity, (lim sup)M holds for some M ∈ R.
(iii)→(iv): Without loss of generality (w.l.o.g.) M ≥ 0. For any K > M, if
sup{A(u) : 0 < u < δ} < K, then by additivity sup{A(u) : 0 < u < δ/2} <
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K/2, as 2A(u) = A(2u) < K, so (lim sup)M/2 holds, and so the least M ≥ 0
for which the condition holds is M = 0.
(iv)→(i): Clear. �

Remark. Once Theorem 1 is established, we may apply Theorem 1 to
S = A with A = R to deduce a further equivalent condition:
(v) A is linear on R: A(u) = cu for some c ∈ R, and all u ∈ R.

The analogue of Prop. 2 for an additive subgroup is also relevant below.

Proposition 2′ (Automatic continuity, after Darboux, [Darb]). For
A a dense additive subgroup and A : A → R additive, the following are
equivalent:
(i) A is continuous;
(ii) A is right-continuous at 0;
(iii) A is continuous at 0;
(iv) A is locally bounded;
(v) A is locally bounded above on some interval.

Proof. As this is routine, we refer to [BinO11] for details, save to say that
(v)→(iv) is as in Prop. 5 below, and to show that (iv)→(i). If A is locally
bounded at 0, there is δ > 0 and M such that |A(a)| ≤ M for a ∈ A with
|a| < δ. Given ε > 0, choose an integer N with N > M/ε. For a ∈ A with
|a| < δ/N, |NA(a)| = |A(Na)| ≤M, so

|A(a)| ≤ ε,

as M/N < ε. This gives continuity.�

Remark. In the next section Prop. 6 establishes the further equivalent
condition:
(vi) A is linear: A(u) = cu for some c ∈ R, and all u ∈ A.

3 Linearity from subadditivity

Here we establish a paradigm for identifying circumstances when linearity
may be deduced from subadditivity —encapsulated in Theorem 2 below —by
showing that S(y)/S(x) = y/x on a dense subspace and appealing to right-
continuity.
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We begin with a result linking the Heiberg-Seneta condition (HS) of
Theorem 1 with automatic one-sided continuity. We need some preliminaries:
we turn first to conditions implying finite-valued subadditivity. The first
result requires a mixture of one-sided and two-sided information.

Proposition 3. For S : R → R ∪ {−∞,+∞} subadditive, write Σ+ :=
{u ∈ R : S(u) < ∞}. If Σ+ ∩ [0,∞) contains an interval and Σ+ " [0,∞),
then either S is finite everywhere or is identically −∞. In particular, if
(i) S is finite on a subset Σ unbounded below (e.g. a dense subset of R);
(ii) S is bounded above on (0, δ) for some δ > 0, e.g. S satisfies the condition
(HS(S)),
—then S is finite everywhere.

Proof. As Σ+ is a subsemigroup of the additive group R, and contains
an interval, it contains a ray [A,∞) (see e.g. BGT Cor. 1.1.5). Choose
c ∈ (−∞, 0) ∩ Σ+. Then nc + (A,∞) ⊆ Σ+ for all n ∈ N, so Σ+ = R, i.e.
S(u) <∞ for all u ∈ R. If S 6≡ −∞, say S(u0) > −∞, then for any u ∈ R

S(u) ≥ S(u0)− S(u0 − u) > −∞.

The particular case now follows, since by (i) Σ " [0,∞), and by (ii) S is
bounded on an interval: there is δ > 0 such that S(x) < 1 for all x ∈ (0, δ),
so Σ ∩ [0,∞) contains (0, δ). �

We will soon prove in Proposition 3′ a one-sided variant. The argument
used can yield more; so, it is more convenient to prove first

Proposition 4. If S : R → R with S(0) = 0 is subadditive and linearly
bounded above by G(x) = cx on an open set U accumulating to the right at
0, then S is linearly bounded above by G on R+.
Furthermore, if S(x) = G(x) on a dense set D, then S(x) = cx on R+.

Proof. The set Σ+ := {v : S(v) ≤ cv} is an (additive) semigroup containing
U . By a theorem of Kingman [BinO18, Th. 3.5], Σ+ is dense in R+ : for any
interval I ⊆ R+ there is η ∈ I such that η/m ∈ U for infinitely many m ∈ N;
for such an η and any corresponding m ∈ N,

S(η) ≤ mS(η/m) ≤ mc(η/m) = cη.

So η ∈ Σ+∩I, proving density. Since Σ+ is a semigroup η+(a, b) ⊆ Σ+ for any
interval (a, b) ⊆ U, with a chosen as small as desired, since U accumulates at
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0. So the family of open intervals J contained in Σ+ have dense union in Σ+:
in sum, int(Σ+) accumulates to the right and left of any point of (0, 1). Fix
any x ∈ (0, 1). There exists h > 0 as small as desired such that x− h ∈ Σ+.
For such an h,

S(x) ≤ S(x− h) + S(h) ≤ c(x− h) + S(h).

Taking limits as h ↓ 0 through such h, yields

S(x) ≤ cx,

since S(0+) = 0, by Theorem 0+. This holds for any x ∈ (0, 1) and by
assumption for x = 0.
For the last part, a similar appeal to subadditivity and Theorem 0+ yields

S(x+) ≤ S(x), for any x > 0. So, for any x ≥ 0, if x+ h ∈ D, then

S(x) ≥ lim sup
h>0

S(x+h) ≥ lim sup
h>0,x+h∈D

S(x+h) = lim sup
h>0,x+h∈D

c(x+h) = cx.

Combining, S(x) = cx. �

A similar but simpler argument yields:

Proposition 3′. For S : R → R ∪ {−∞,+∞} subadditive with S(0) = 0,
write Σ+ := {u ∈ R : S(u) < ∞}. If Σ+ ∩ [0,∞) contains an open set
accumulating on the right at 0, and S is finite on a dense subset of R+, then
S|R+ is finite.
If, further, S is finite on a subset unbounded below, then also S|R− is

finite.

Proof. For the first assertion, argue just as before, replacing ‘≤ cx’above
by ‘< ∞’to show that Σ+ ∩ R+ = R+. Then S(x) < ∞ for all x > 0. For
any x > 0 choose u0 > x with S(u0) finite; then, as u0 − x > 0,

S(x) ≥ S(u0)− S(u0 − x) > −∞.

For the last part, if S is finite at u0 < 0, then for u ∈ (u0, 0)

S(u) ≤ S(u0) + S(x− u0) <∞ : R− ⊆ Σ+.

Finally, S|R− is finite, since −∞ < −S(u) ≤ S(−u), for u > 0. �
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Proposition 5. For S : R→ R subadditive:
(i) if S is bounded above on some interval, say by K on Bδ(a), for instance
if (HS(S)) holds, then for any b ∈ R

S(b+ a)−K ≤ S(x) ≤ S(b− a) +K (x ∈ Bδ(b)),

in particular it is locally bounded;
(ii) if S is locally bounded, then lim inft→0 S(t) ≥ 0, so S(0+) = 0 if (HS(S))
holds.

Proof. (i) If S is bounded above by K on Bδ(a) = a + (−δ,+δ), then for
any b ∈ R, S is bounded on b + (−δ,+δ). Indeed, for any x ∈ b + (−δ,+δ),
since both a+ (x− b) and a− (x− b) are in Bδ(a),

S(x) ≤ S(b− a) + S(a+ x− b) ≤ S(b− a) +K,
S(x) ≥ S(b+ a)− S(a+ b− x) ≥ S(b+ a)−K.

}
(?)

If S satisfies (HS), then S(x) < 1 for x ∈ (0, δ) for some δ > 0.
(ii) Following [HilP, 7.4.3], select a sequence {zn} with zn → 0 and S(zn)→
λ− := infu→0 S(u). By local boundedness, λ− is finite, so for any ε > 0 and n
large enough λ− − ε ≤ S(2zn) ≤ 2S(zn) < 2(λ− + ε). So λ− ≤ 2λ−, yielding
λ− ≥ 0. �

Having motivated right-sided continuity as in Theorem 0, we now prove
it.

Proof of Theorem 0. The condition is evidently necessary. As for suffi -
ciency, suppose given zn ↑ 0 as in the hypothesis, xn ↑ 0 with S(xn) → λ,
and any ε > 0; we will show that λ = 0.
Choose δ > 0 with S(t) ≤ ε for 0 ≤ t ≤ δ. W.l.o.g. we assume that z1 >

−δ. Now choose m(n) for n ∈ N with zn ≤ xm(n). Then 0 ≤ xm(n) − zn ≤ δ,
as xm(n), zn ∈ (−δ, 0), and so

S(xm(n)) ≤ S(xm(n) − zn) + S(zn) ≤ ε+ S(zn).

Passing to the limit gives
λ ≤ ε+ 0 = ε.

Taking limits as ε ↓ 0 gives λ ≤ 0. But, as −xm(n) ∈ (0, δ),

0 = S(0) ≤ S(xm(n)) + S(−xm(n)) ≤ S(xm(n)) + ε,
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so taking limits gives
0 ≤ λ+ ε,

so λ ≥ 0, as above. Combining, λ = 0, so S is continuous at 0. Finally, if S
is finite-valued and continuous at 0, it is so at any x, since

−S(−h) ≤ S(x+ h)− S(x) ≤ S(h). �

Proof of Theorem 0′. Since S|Σ is continuous at 0 it is bounded above on
Σδ := Σ ∩ (−δ, δ) for some δ > 0; but Σδ + Σδ contains an interval, so S is
bounded on an interval, and so locally bounded by Prop. 5(i). If S is not
continuous at 0, then by Prop. 5(ii) λ+ := lim supt→0 S(t) > lim inft→0 S(t) ≥
0. Choose a null sequence {zn} with S(zn)→ λ+ > 0. Let ε := λ+/4.W.l.o.g.
S(zn) > λ+−ε for all n. By continuity on Σ at 0 there is δ > 0 with |S(t)| < ε
for t ∈ Σδ. As before and using symmetry, Σδ + Σδ = Σδ − Σδ contains an
interval I around 0. For any n with zn ∈ I, there are un, vn ∈ Σδ with
zn = un + vn; then

S(zn) ≤ S(un) + S(vn) ≤ 2ε < λ+,

and so

3λ+/4 = λ+ − ε < S(zn) ≤ S(un) + S(vn) ≤ 2ε < λ+/2,

a contradiction. So S is continuous at 0 and so continuous everywhere, as
in Theorem 0. The last part follows since Σ∩ (0, δ), being Baire/measurable
and non-negligible, has the SW property for each δ > 0. �

Proof of Theorem 0+. We may take c = 0, since S ′(t) := S(t) − ct is
linearly bounded above by 0 on Σ, and S ′ is subadditive. (Also the thinned
Heiberg-Seneta condition holds for S ′.) Thus S(t) ≤ 0 for t ∈ Σ.
Fix an arbitrary x > 0. We show that S(x) ≤ 0. As Σ accumulates at

0, there is a point σx ∈ Σ ∩ (0, x/2). Then Σ′ := Σ ∩ (σx,
1
2
(σx + x/2)) has

the SW property locally, and so Σ′ + Σ′ contains a proper interval [a, b] in
(2σx, σx + x/2).
With a, b fixed, choose σ ∈ Σ∩ (0, b−a)∩ (0, a). By density of Σ, we may

suppose that a, x /∈ Nσ. Then there is m ∈ N with a < mσ < mσ + σ < b.
Now, as (m + 1)σ < b < x, we may choose n > m + 1 in N with nσ < x <
nσ + σ. Then, as 0 < x− nσ < σ, adding mσ gives

a < mσ < x+ (m− n)σ < (m+ 1)σ < b.
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Now pick u, v ∈ Σ′ with u+ v ∈ (a, b) such that

u+ v = x− (n−m)σ : x = u+ v + (n−m)σ.

By subadditivity, as n−m ∈ N, and as u, v, σ ∈ Σ,

S(x) ≤ (n−m)S(σ) + S(u) + S(v) ≤ 0.

Thus S(x) ≤ cx for all x > 0. In particular

lim sup
x↓0

S(x) ≤ 0.

Being linearly bounded above on Σ, S is also relatively locally bounded
above on Σ, hence also on Σ + Σ, and so on an interval; so by Prop. 5(ii)
lim infx↓0 S(x) ≥ 0.
The final assertion follows from Theorem 0. �

We may now turn to linearity from additivity rather than subadditivity,
for which see later. A key step follows. By appealing to Kronecker’s Theorem
([HarW, XXIII, Th. 438]), the proof rolls together the two ingredients of
density and of routine use of continuity (as in Prop. 2′ above); we thank the
Referee for this elegant approach. See Proposition 6′ in §5 for an alternative
approach.

Proposition 6. For A a dense subgroup of R, if G : A→ R is additive and
bounded above on (0, ε)∩A, for some ε > 0, then G is linear: G(a) = ca for
some c ∈ R and all a ∈ A.

Proof. Being subadditive, G may be assumed bounded on I = (0, ε) for
some ε > 0, by Prop. 5(i).
Fix any non-zero u0 ∈ A and put c = G(u0)/u0.We prove that G(a) = ca

for all a ∈ A by showing that H(a) := G(a)− ca (a ∈ A) is identically zero.
Now H is bounded on I ∩ A , by M say. By additivity, H(a) = 0 for

a ∈ u0Z, as H(u0) = 0. Suppose that H(u) 6= 0 for some u ∈ A; then for any
p ∈ N, pu /∈ u0Z (as otherwise pH(u) = H(pu) = 0). Fix p ∈ N arbitrarily.
As pu and u0 are incommensurable, the subgroup they generate, u0Z+puZ,
is dense, by Kronecker’s theorem. So mpu+ nu0 ∈ I ∩ (0, |u0|)∩A, for some
m,n ∈ Z. As m 6= 0 (since nu0 ∈ (0, |u0|) is not possible),

M ≥ |H(mpu+ nu0)| = |m|p |H(u)| ≥ p|H(u)|.
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So M/p ≥ |H(u)|. But p ∈ N was arbitrary, so H(u) = 0, after all. �

Proposition 7 (Unique extension). For Σ ⊆ R dense and closed under
integer scaling (e.g. a subgroup), let G : Σ → R be linear: G(σ) = cσ
(σ ∈ Σ). If S : R → R with S(0+) = S(0) is any subadditive extension of
G, then S is also linear on R and S(u) = S(1)u = cu for all u ∈ R.

Proof. Here S(0) = 0, since S(−σ) = G(−σ) = −G(σ) = −S(−σ) for any
σ ∈ Σ. Take zn ∈ Σ∩ (−1, 0) converging to 0; then S(zn) = G(zn) = czn → 0
for some c. By Theorem 0, S is continuous. Now S(σ) = G(σ) = cσ on Σ;
so, as Σ is dense in R, by continuity S(t) = ct = tS(1) on R. �

Linearity from subadditivity is now a corollary of Prop. 5, 6 and 7:

Proof of Theorem 1. Here S(0) = 0 as S|A is additive on A. As (HS(S))
holds, for each ε > 0 there is δ > 0 with S(t) ≤ ε for 0 < t < δ and so
S(0+) = S(0). In particular G = S|A is additive on A and bounded above
on (0, δ). By Prop. 6, G(a) = ca for some c ∈ R and all a ∈ A. By Prop. 7,
S(t) = ct for all t ∈ R. �

Proof of Theorem 1′. (a) This follows from Theorem 1 by Theorem 0′. �a

(b) This follows from Theorem 1 by Theorem 0+. �b

(c) Here A ⊇Σ + Σ, so contains an interval, and, being a dense additive
subgroup, A = R. So S is additive and is bounded on Σ + Σ, and so on some
interval; so S is linear, by Prop. 6. �c

(d) As before, S is subadditive, and by assumption is, in view of Prop. 1,
finite on the dense (additive) subgroup A = AS of R. As A is shift-compact,
A ⊇ A + A contains an interval, so by density again A = R, i.e. S is finite
everywhere. So S = S|A is additive on the subgroup A = R. In particular
[S(u + x) − S(x)] = S(u) and so G(u) = S(u) for u ∈ A. By Prop. 5, S is
locally bounded, and so by Prop. 6 S is linear on A = R. �d �

Theorem 2 (On linearity). Let S : R→ R be subadditive with S(0+) = 0.
If, for some dense additive subgroup A of R, the restriction S|A is additive,
then S is linear on R: S(u) = cu for some c ∈ R and all u ∈ R.

Proof. S extends G := S|A, additive and continuous by Prop. 7. �

Cautionary Example. Recall from §1 that S := 1R\Q is subadditive, and
for A = Q, S|A = 0 is linear; but S is not linear. We return to the relation
of this example to Theorem 2 later in §7.
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Remark. In Theorem 0′ above, it is not enough to assume only that the
subadditive function S is locally bounded above and Q-homogeneous on a
set Σ that is dense (i.e. S(qσ) = qS(σ) for all σ ∈ Σ and rational q);
indeed, the indicator function 1R\Q just considered is subadditive and also
Q-homogeneous on Σ = Q, but not continuous. Such a weaker assumption
yields only that lim inft→0 S(t) = 0 = S(0). (Proof: As S is locally bounded,
choose K and δ > 0 with S bounded by K on [−δ, δ]. Fix σ ∈ Σ ∩ (0, δ);
then |S(σ/n)| = |S(σ)|/n ≤ K/n for all n ∈ N.)

4 Thinnings of Heiberg-Seneta conditions and
subadditive functions

We turn now from functional equations (whose prototype for us is the Cauchy
functional equation (Add) from §1) to functional inequalities (the prototype
of which for us is the corresponding inequality (Sub) from §1). The classical
sources here are [HilP, Ch. 3] (for the measurable case only, but we need the
category version also, for which see [BinO1]) and [Kuc, Ch. 16]; cf. [MatS]).
Kuczma makes the contrast between the surprisingly great affi nity between
Cauchy’s equation and Jensen’s inequality, and the differences between (Add)
and (Sub). Here matters are reversed: what is surprising in our context is
the similarity between (Add) and (Sub).
The motivation in this section is the quantifier weakening of our title, in

the context of regular variation (§7 below). The prototypical results here
are characterization theorems (BGT, Th. 1.4.3, 3.2.4). The prototypical
conditions for these are the Heiberg-Seneta conditions, of ‘limsup limsup’
type. There are links with Tauberian conditions, of ‘lim limsup sup’type;
see e.g. BGT Ch. 4. Here we start with the classical condition (HS(S))

lim supu↓0 S(u) ≤M

for M ∈ R, re-phrased as follows:

lim sup
n→∞

sup{S(x) : x ∈ (0, 1/n)} ≤M,

which we generalize so as to ‘thin out’the intervals (0, 1/n) in various senses
(including with the help of category and measure), appropriately expanding
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the notation (lim sup)M . We focus here on sets that have the local Steinhaus-
Weil property of §1, and begin with a list of those relevant here. For an
alternative mode of thinning (via spanning) see §6.

Examples of families of locally Steinhaus-Weil sets.
The sets listed below are typically, though not always, members of a

topology on an underlying set.2

(o) Σ a usual (Euclidean) open set in R (and in Rn) —this is the ‘trivial’
example;
(i) Σ density-open subset of R (similarly in Rn) (by Steinhaus’s Theorem —
see e.g. BGT Th. 1.1.1, [BinO18], [Oxt, Ch. 8]);
(ii) Σ locally non-meagre at all points x ∈ Σ (by the Piccard-Pettis Theorem
—as in BGT Th. 1.1.2, [BinO18], [Oxt, Ch. 8] —such sets can be ‘thinned
out’, i.e. extracted as subsets of a second-category set, using separability or
by reference to the Banach Category Theorem [Oxt, Ch.16]);
(iii) Σ the Cantor ‘middle-thirds excluded’subset of [0, 1] (since Σ + Σ =
[0, 2]);
(iv) Σ universally measurable and open in the ideal topology ([LukMZ],
[BinO17]) generated by omitting Haar null sets (by the Christensen-Solecki
Interior-points Theorem of [Sol]);
(v) Σ a Borel subset of a Polish abelian group and and open in the ideal topol-
ogy generated by omitting Haar meagre sets in the sense of Darji [Darj] (by
Jabłońska’s generalization of the Piccard Theorem, [Jab1, Th.2], cf. [Jab3],
and since the Haar-meagre sets form a σ-ideal [Darj, Th. 2.9]); for details
see [BinO18].
If Σ is Baire (has the Baire property) and is locally non-meagre, then it

is co-meagre (since its quasi interior is everywhere dense).
Caveat. 1. Care is needed in identifying locally SW sets: Matoŭsková and
Zelený [MatZ] show that in any non-locally compact abelian Polish group
there are closed non-Haar null sets A,B such that A+B has empty interior.
Recently, Jabłońska [Jab4] has shown that likewise in any non-locally com-
pact abelian Polish group there are closed non-Haar meager sets A,B such
that A+B has empty interior.
2. For an example on R of a compact subset S such that S − S contains an
interval, but S + S has measure zero and so does not, see [CrnGH].
3. Below we are concerned with subsets Σ ⊆ R where such ‘anomalies’are
assumed not to occur.

2Below we refer to ideal topologies in the sense of [LukMZ].
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Definition. Say that (SW )-lim supu↓0 S(u) ≤ M ∈ R if there is Σ ⊆ (0, 1)
accumulating at 0 with the local Steinhaus-Weil property such that, for Σn :=
Σ ∩ (0, 1/n),

lim sup
n→∞

supS(Σn) := lim sup
n→∞

sup{S(x) : x ∈ Σn} ≤M. (SW -lim supM(S))

Evidently, (SW )-lim supu↓0 S(u) ≤ M ∈ R holds if lim supu↓0 S(u) ≤
M ∈ R holds (refer to Σ = (0, 1)).
For later use, say that (SSW )-lim supu↓0 S(u) ≤ M ∈ R if there is a

symmetric set Σ ⊆ (−1, 1), i.e. Σ = −Σ, with the local Steinhaus-Weil
property and Σ∩ (0, 1) accumulating at 0, such that SW -lim supM(S) above
holds for Σn := Σ ∩ (−1/n, 1/n).
It is thematic for us that, inasmuch as they affect subadditive functions,

the quantifier weakening that thinness offers implies a level of informative-
ness equal to that of the trivial example (o). We thank the Referee for the
following ‘bridging’result, clarifying the relationship with lim supu↓0 S(u) ≤
M ∈ R.

Proposition 8. For S : R→ R subadditive, SW -limsupM(S) holds for some
M iff: for some K,

S is bounded above by K on some open U ⊆ (0,∞) with 0 ∈ Ū . (†)

Proof. Suppose that SW -lim supM(S) holds for some M. Then, with the
notation above, for some infinite set M

S(u) < M + 1 (u ∈ Σm,m ∈M).

So for x = u+ v with u, v ∈ Σm

S(x) < 2(M + 1).

By the Steinhaus-Weil property Σm+Σm contains an interval Im in (0, 2/m);
then U :=

⋃
m∈M Im is open, 0 ∈ Ū and S is bounded above byK := 2(M+1)

on P.
The converse is clear: given U and K as in (†) above, take Σ := U ; then

SW -lim supM(S) holds for M = K. �

The occurrence above of the infinite setM justifies a combinatorial depar-
ture ‘beyond Lebesgue and Baire’. A wider combinatorial characterization

18



involving the embedding of a convergent subsequence (rather than only of a
null subsequence) may be obtained by reference to the level sets of a function
S, defined by

Hr, or Hr(S) := {x : |S(x)| < r}.
Proposition 9. If the subadditive function S : R→ R is Baire/measurable,
then for every convergent sequence {un} with un → u, there exist k ∈ N,
t ∈ Hk and M infinite with

{t+ um : m ∈M} ⊆ Hk.

In particular, S is locally bounded above, and so locally bounded.

Proof. We argue as in [BinO3]: since R =
⋃
k∈NH

k, there is K ∈ N with
HK non-negligible Baire/measurable and S|HK is bounded by K. Given a
sequence {un} with un → u, put zn := un − u → 0; by the bilateral version
of KBD [BinO5, §3], choose t ∈ HK and M infinite with {t + zm, t − zm :
m ∈ M} ⊆ HK . Then, with a = t, b = t + u and x = t + u + zm for m ∈ M,
we may apply (?) as in the proof of Prop. 5 but with HK for Bδ(a), since
a + b − x = t − zm ∈ HK and x + a − b = t + zm ∈ HK . This yields, since
b+ a = u+ 2t and b− a = u,

S(2t+ u)−K ≤ S(t+ um) ≤ S(u) +K.

So for some k and infinite M one has {t+ um : m ∈M} ⊆ Hk.
Suppose that S is not locally bounded above; then for some u and se-

quence {un} with un → u, the sequence {S(un)} is unbounded above. But
for some k ∈ N, t ∈ Hk and M infinite as above, since t + um ∈ Hk for
m ∈M,

S(un) ≤ S(t+ um) + S(−t) ≤ k + S(−t),
a contradiction. Now apply Prop. 5(i). �

Remark. For Σ shift-compact and S : R→ R subadditive, if S is bounded
above on Σ, then S is bounded above on R [BinO1, Th. 2(ii)]. Proposition
3′′ below extends this to the range R ∪ {−∞,+∞}.

Proposition 3′′ (On finiteness). Suppose that S : R → R ∪ {−∞,+∞}
is subadditive and satisfies:
(i) S is finite on a subset Σ unbounded below (e.g. a dense subset of R), and
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(ii) for some M ∈ R, SW -lim supM(S) holds.
Then S is finite everywhere, and so locally bounded.

Proof. By (ii) S is bounded above, by K say, on some locally-SW set T (e.g.
a Baire/measurable non-negligible); as above, by the Steinhaus property,
T + T contains an interval on which S is bounded above by 2K. Apply
Proposition 3 to deduce that S is finite everywhere.
As S is finite and subadditive and bounded above on an interval, by Prop.

4 (cf. [BinO1, Th. 2(ii)]) S is locally bounded. �

We close with an alternative approach to Theorem 0′.

Proposition 4′. If S : R → R is subadditive with S(0) = 0 and satisfies
SSW -lim sup(S)0, then S is continuous.

Proof. Otherwise, S is not continuous at 0 (as at the end of Prop. 11),
and so as above λ+ := lim supt→0 S(t) > lim inft→0 S(t) ≥ 0, the latter by
Prop. 5(ii) (by the Remark above, combined with Prop. 5(i), S is locally
bounded). Choose a null sequence {zn} with S(zn) → λ+ > 0, and Σ as in
SSW -lim sup(S)0. For any ε > 0, take N = N(ε) such that supS(ΣN) < ε/4.
As ΣN+ΣN contains an open interval, r+I with 0 ∈ I say, then r+zn ∈ r+I
for all large n; write r = s+ t and r+zn = un+vn for s, t, un, vn ∈ ΣN . Then

S(zn) ≤ S(un) + S(vn) + S(−s) + S(−t) < ε/4 + ε/4 + ε/4 + ε/4 ≤ ε,

as −s,−t ∈ ΣN (symmetry). Taking limits yields λ+ ≤ ε, for each ε > 0,
so λ+ ≤ 0, a contradiction. So λ+ = 0, and so limt→0 S(t) = 0 = S(0),
contradicting our initial assumption. �

5 Sublinearity and Berz’s Theorem

Theorem 2 above is reminiscent of the following classical result. Recall that
for Σ closed under positive rational scaling S is sublinear on Σ in the sense
of Berz [Berz] if S is subadditive and S(nx) = nS(x) for x ∈ Σ, n = 0, 1, 2, ...
(i.e. S is positively Q-homogeneous and S(0) = 0).

Theorem B (Berz’s Theorem, [Berz]; cf. [Kuc, Th. 16.4.3]). If S : R→
R is measurable and sublinear, then there are c± ∈ R such that S(u) = c+u
for u ≥ 0 and S(v) = c−v for v ≤ 0.
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Theorem 3 below is its category analogue; cf. [BinO16] and §8.4. We will
need the following variant of Prop. 6, which in fact includes it (below take
Σ = A a dense subgroup of R, and S = A an additive function: continuity
below is then equivalent to local boundedness at 0, by Prop. 2′).

Proposition 6′ (Relative linearity). Let S : Σ → R be subadditive with
Σ ∩ R+ dense on R+ and closed under positive-integer scaling. If S is N-
homogeneous and right-continuous, then S is linear on Σ∩R+: S(σ) = c+σ
for some c+ ∈ R and all σ ∈ Σ ∩ R+.

Proof. The proof is adapted from BGT Th. 3.2.5 (see also [BinG, Proof of
Th. 5.7]). Fix any positive σ0 ∈ Σ and put c := S(σ0)/σ0. We show that
S(σ) = cσ for all σ ∈ Σ. To this end, fix any σ ∈ Σ. Now define for 0 < δ ∈ Σ

i = i(δ) := min{n ∈ N : nδ > σ}, i0 = i0(δ) := min{n ∈ N : nδ > σ0},

so that i(δ)δ ↓ σ and i0(δ)δ ↓ σ0 as δ ↓ 0; here w.l.o.g. G(δ) 6= 0 (otherwise
G = 0 on (0, ε) ∩ Σ, for some ε > 0, implying below that S(σ) = 0 and so
S ≡ 0 on Σ ∩ R+).
Since δ, u0 ∈ Σ ∩R+ and Σ ∩R+ is closed under integer scaling, we have

by N-homogeneity of S that S(iδ) = iS(δ); likewise S(i0δ) = i0S(δ). Taking
limits here and below through Σ as δ ↓ 0 and using right-continuity of S at
σ0 and σ,

S(σ0) = limδ↓0 S(i0(δ)δ), S(σ) = limδ↓0 S(i(δ)δ).

Dividing these two, as σ0 6= 0,

σ/σ0 = lim
δ↓0

i(δ)δ/i0(δ)δ = lim
δ↓0

i(δ)/i0(δ) = lim
δ↓0

i(δ)S(δ)/i0(δ)S(δ) = S(σ)/S(σ0).

Cross-multiplying, S(σ) = cσ for any u ∈ Σ ∩ R+. �

Theorem 3 (Baire-Berz Theorem). If S : R→ R is Baire and sublinear,
there are c± ∈ R such that S(u) = c+u for u ≥ 0 and S(v) = c−v for v ≤ 0.

Proof. By a theorem of Baire, we may choose a meagre set M such that
S|(R\M) is continuous (see [Oxt, Th. 8.1]). Expand M to a union of closed
nowhere dense sets, if necessary. Take Σ := R\

⋃
q∈Q qM , which is closed

under rational scaling and is dense on R (by Baire’s Theorem — as each
R\qM is a dense Gδ). In particular Σ = −Σ. By Prop. 6′, S is linear on
Σ ∩ R+. By Theorem 0+, S is continuous. So as S is linear on Σ ∩ R+, a
dense subset of R+, it is linear on R+; likewise S(−x) is linear on R+. �
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6 Thinning via spanning

Weakening of quantifiers amounts to thinning of the relevant set. Theorem
1 may be viewed as a two-pronged test of the subadditive function S on
thin sets: one prong a domain condition, density, the other a boundedness
condition at 0. As A is a subgroup, the first condition reduces to density of
A at 0. On R it further reduces to a two-point condition: for Theorem 1 to
hold, the set A necessarily has at least two incommensurable members (recall
the example 1R\Q); by Kronecker’s Theorem ([HarW] XXIII, Th. 438) A is
then dense. That is, A needs to be at least a two-dimensional subspace of R,
regarded as a vector space over Q.
Say that T ⊆ R is a spanning set if it spans R regarded as a vector space

over Q (e.g. contains a Hamel basis). We work below with analytic sets; for
background see e.g. [Rog], [BinO6]. The approach below is motivated by a
theorem due to F. Burton Jones and its later strengthening by Z. Kominek
—see below. Recall from §4 that T is symmetric if −T := {−t : t ∈ T} = T,
and that T is shift-symmetric if for some τ the set T + τ := {t+ τ : t ∈ T} is
symmetric (T + τ = −T − τ), and the latter is equivalent to self-similarity,
in the sense of [BinO9]: that T = a − T for some a (as then T − a/2 =
−(T − a/2)).
The vectorial view brings further insights. Jones [Jon] proved that for

additive A : R→ R, if A|T is continuous on an analytic spanning set T , then
it is continuous. Much later, Kominek [Kom] showed that, for such a set T,
if A|T is bounded above on T , then T is continuous —cf. [BinO6, Th. JK]
and §8.6. Kominek’s Theorem is stronger: it implies Jones’s, for which see
again [BinO6, §3]. The Jones-Kominek results show how to test on thin sets
T properties of interest on R.
In Theorem 1′d above the oscillation condition is further thinned by using

only shift-compact subsets in neighbourhoods of the origin3. This raises
the question of establishing further quantifier weakening by testing only on
analytic spanning sets, as these need not be shift-compact. This is indeed
possible on both prongs, as follows.
As we have seen, Theorem 1 rests on the presence of enough of the fol-

3Say that T is k-thinned shift-compact if the k-fold sum: k · T := T + ...T is shift-
compact. These thinned subsets could in principle do the work of shift-compactness, as
in [BinO4, §4]; the standard Cantor set C is 2-thinned shift-compact, as C + C contains
an interval (see Remarks, below): boundedness of a subadditive function on C yields local
boundedness.
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lowing three properties: finiteness, local boundedness and continuity. These
are aided by density, and easy to achieve for additive functions by demand-
ing them on a spanning set. Kominek’s Theorem cannot be applied directly
to S, as S is only subadditive, but a simple modification of its proof will
work below. It is convenient to use a result of Erdős, for which we need the
following.

Definition. For H a Hamel basis, and by extension for H a spanning set,
we write

Z(H) := {k1h1 + ...+ knhn : ki ∈ Z, hi ∈ H}
for the Erd̋os set of H (for which see e.g. [Kuc, §11.5]).

Theorem E (Erdős; see e.g. [Kuc, Lemma 11.5.3]). For H a Hamel basis
and, more generally, for H a spanning set, the Erd̋os set Z(H) is a dense
subgroup.

We need a modified version of the Analytic Dichotomy Lemma in [BinO6,
§2], which refers to the k-fold sum k · T := T + ...+ T (k times).

Proposition 10. If T ⊆ R is a symmetric analytic spanning set, then for
some k ∈ N the k-fold sum k · T contains the interval (−1, 1). If T is a
shift-symmetric analytic spanning set, then for some k ∈ N the k-fold sum
k · T contains an interval.

Proof. We indicate the necessary modification to the proof in [BinO6, §2].
As there, with T an analytic spanning set, for some m-tuple of rationals
ri = pi/N with pi ∈ Z, for 1 ≤ i ≤ m, the set (r1T + ...+rmT ) is non-null. So
too is (p1T+...+pmT ), and so (p1T+...+pmT )−(p1T+...+pmT ) contains an
interval around 0 (by the Steinhaus property, again). So, in the T symmetric
case, as T = −T we conclude that T ′ := |p1|T+...+|pm|T+|p1|T+...+|pm|T
contains an interval around 0, say (−1/n, 1/n). Since n · T ′ ⊇ (−1, 1), one
has k · T ⊇ (−1, 1) for k = 2n(|p1|+ ...+ |pm|).
If, however, τ + T rather than T is symmetric, then kT = k(τ + T )− kτ

and the shift-symmetric case follows from the symmetric case. �

We may now give the analytic-spanning version of Theorem 1.

Theorem 4. For S : R → R ∪ {−∞,+∞} subadditive, and A ⊆ R an
additive subgroup, suppose that
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(i) S|A is finite and additive;
(ii) there exists a shift-symmetric (self-similar), analytic, spanning set T ⊆
A such that S|T is locally bounded above.
Then S is linear: S(u) = cu, for some c ∈ R and all u ∈ R.

Proof. By Prop. 10, fix k ∈ N such that k ·T contains (−1, 1). By Theorem
E above, the Erdős set Z(T ), and so also A, is a dense subgroup. Now
k · T ⊆ A, as A is a subgroup. As k · T contains an interval, A = R (cf. Th.
S in §8.3). As S|T is locally bounded above, by subadditivity S is locally
bounded above on k · T (by continuity of addition), and so on an interval.
But S is additive on R and bounded above on an interval, so locally bounded,
by Prop. 5(i). So S is linear by Prop. 7. �

The condition that S be linearly bounded on a symmetric analytic span-
ning set, stronger than (ii), yields automatic linearity —without any need for
(i) above. There are echos here of Theorem 0+.

Proposition 11. If the subadditive function S : R→ R is linear on a sym-
metric analytic spanning set, then S is linear.

Proof. Suppose that S(t) = ct for t ∈ T with T a symmetric analytic
spanning set. By Prop. 10 there exists k ∈ N with k · T containing I :=

(−1, 1). So R =
⋃∞

n=k
n ·T, since n ·T contains the interval (n/k)I for n ∈ N

with n > k. Now consider any k ∈ N with k · T containing a symmetric

interval J about 0. For u ∈ J ⊆ kT, choose ti ∈ T with u =
∑k

i=1
ti; then

S(u) ≤
∑k

i=1
S(ti) =

∑k

i=1
cti = cu,

by linearity of S on T. Likewise, as −u ∈ J,

S(−u) ≤ c(−u) = −cu.

Note that S(0) = 0, by subadditivity, as S(−t) = −ct = −S(t) for t ∈ T ; so
−S(u) ≤ S(−u), again by subadditivity. Combining,

−cu ≤ −S(u) ≤ S(−u) ≤ −cu : S(u) = cu (u ∈ I).

As J is symmetric and can have arbitrary length, S(u) = cu for all u. �
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Remarks. 1. We raise the question of whether symmetry can be omitted in
Theorem 4.
2. With C the standard Cantor set, consider its translate T := C − 1

2
, which

is symmetric. It is a spanning set as C + C = [0, 2], T + T = [−1, 1], as in
Proposition 10; so, assuming the Axiom of Choice AC, a Hamel basis H may
also be selected in T, and H is non-dense as C and T are. So a (nowhere
dense) shift-symmetric Cantor set, such as T, would suffi ce to test for local
boundedness. Though density is not explicitly mentioned, it remains present
implicitly as T, being uncountable, contains incommensurables.
3. In view of the Jones-Kominek theorems above, the question arises as to
whether a subadditive S with S|T right-continuous on an analytic spanning
set T is right-continuous on a dense set. Note that S := 1R\Q is continuous
on the (analytic) spanning set T := R\Q, yet S is not continuous.
A continuous function f : T → R is termed (extensibly continuous or just)

precompact in [BinO6, §5] if {f(tn)} is a Cauchy sequence whenever {tn} is
a Cauchy sequence in T (cf. [Ful]). For f : R→ R additive, precompactness
of f |T on an analytic spanning set T implies continuity, but this feature does
not extend to subadditive functions, as 1R\Q|(R\Q) is precompact.

Definition. Altering the property SW -lim sup(S)0 so that the limsup is
taken with reference to symmetric sets Pn ⊆ (−1/n, 1/n) of the scaled form
Pn := T/n = {t/n : t ∈ T}, with T a fixed symmetric analytic spanning set
in (−1, 1), yields JK(T )0 —the (JK)0 property for T.

This yields an analogue of Theorem 4 for general subadditive functions
S rather than those that are linear on an additive subgroup A containing an
analytic spanning set T with S|T bounded. As each Pn is a spanning set,
the semigroup argument underpinning Prop. 3′ remains valid, and so Prop.
3′′ holds with (JK)0 replacing (SW -lim sup)M .

Theorem 5 (Automatic right-continuity, after Jones-Kominek). If
S : R → R is subadditive, and JK(T )0 holds for some symmetric analytic
spanning set T with S|T locally bounded above —then S(0+) = 0.

Proof. By the Compact Spanning Approximation Theorem of [BinO6, §3],
passing to a symmetric compact subset of T if necessary, we may assume
that T is compact, and, scaling if necessary, that T ⊆ (−1, 1). By Prop. 10,
fix k ∈ N such that k · T contains (−1, 1). If S is locally bounded above on
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T by M, then S is locally bounded above on (−1, 1) by kN, as k ·T contains
(−1, 1); so S is locally bounded above, and so locally bounded by Prop. 5.
With this in mind, consider an arbitrary sequence {vn} with vn → 0 and

S(vn) → a. For each n, as k · (T/n) contains (−1/n, 1/n), we may assume,
by passing to a subsequence of {vn} if necessary, that |vn| ≤ 1/n, and so
vn = u1

n + ...+ ukn with u
i
n ∈ T/n for each i = 1, 2, ..., k. Again by passing to

a subsequence if necessary, by JK0(T ) we may assume that limn S(uin) ≤ 0
for i = 1, ..., k. By subadditivity,

S(vn) ≤ S(u1
n) + ...+ S(ukn),

so a = limn S(vn) ≤ 0. Suppose that a < 0. W. l. o. g., w :=
∑

i vi < ∞.
Put wn :=

∑
i≤n vi → w. By subadditivity,

S(wn) ≤
∑

i≤n
S(vi)→ −∞.

This contradicts local boundedness at w. So a = 0; i.e. S(0+) = 0. �

Remark. The very last step in the proof above is inspired by the Goldie
argument in BGT, p. 142.

7 Quantifier weakening in regular variation

The standard work on the Karamata theory of regular variation is BGT. The
present authors have returned to this area in a number of papers, together
and separately, largely addressed to matters left open there. First, we ad-
dress the foundational question: what is the appropriate generalization of the
measurability and Baire-property settings of BGT? Secondly, we address the
contextual question: what, beyond the real-line setting of BGT (and other
settings briefly addressed in BGT Appendix 1 such as the complex plane,
Euclidean space and topological groups), is the natural context for the the-
ory? In Theorem 6 here, we complete our reduction of the number of hard
proofs in the area to zero, thus making good on a claim we have already
made elsewhere (see §1). It is striking that Th. 1.4.3 of BGT, in the context
of Karamata Theory,

limx→∞ f(λx)/f(x) = g(λ) (∀λ > 0), (K)
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is no harder than Th. 3.2.5 of BGT, in the context of Bojaníc-Karamata/de
Haan Theory ([BojK], [dHa]; cf. [BinO14])

limx→∞{f(λx)− f(x)}/g(x) = k(λ) (∀λ > 0). (BKdH)

Here we weaken the quantifier ∀ above as much as possible (cf. [BinG]).
Results of this nature are false if the quantifier is weakened too much, for
reasons connected with Hamel pathology (BGT § 1.1.4; cf. [Kuc, Ch. 11]).
As is usual in this area, of course, one encounters a dichotomy: matters
are either very nice or very nasty —even the merest hint of good behaviour
being suffi cient to guarantee the former; cf. [BinO7, 11]. Here, the condition
needed, the Heiberg-Seneta condition, is a one-sided one of ‘liminf liminf’
type, as in the BGT results cited above, [BinG], [Hei], [Sen], or equivalently
(below) of ‘limsup limsup’type.
As usual for proofs, we work with Karamata theory written additively

rather than multiplicatively. As in Prop. 1 above, we write

G(u) := limx→∞ F (u+ x)− F (x)

for the limit on the right where this exists; AF the set on which the limit
exists; and F ∗ for the limsup, again as in §1.

Theorem 6 (Quantifier-Weakening Theorem, cf. [BinO15, Th. 6]).
With F ∗ and AF as above, suppose that
(i) AF is dense in R;
(ii) F ∗ satisfies the one-sided Heiberg-Seneta boundedness condition

lim supu↓0 F
∗(u) ≤ 0 (HS)

— then AF = R and F ∗ is linear: F ∗(u) = limx→∞[F (u + x) − F (x)] = cu
for some c ∈ R, and all u ∈ R.

Proof of Theorem 6. By Prop. 1, 3 and 6, F ∗ is a finite, subadditive,
right-continuous extension of G. So G is continuous on AF , and so linear by
Prop. 6: G(σ) = cσ for some c and all σ ∈ AF . As AF is dense, by Prop. 7,
F ∗(u) = cu for all u. By Prop. 1, AF = R and F ∗(u) = G(u). �

Cautionary Example. For F := 1R\Q and q ∈ Q, one has F (q+x)−F (x) =
0 for all x, and so AF is dense. Also F ∗ = 1R\Q. Indeed, fix t /∈ Q; then
F (t+ q)− F (q) = 1 for q ∈ Q and F (t+ x)− F (x) ∈ {−1, 0} for x /∈ Q, so
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that F ∗(t) = 1 and AF = Q. As F ∗ does not satisfy (HS(F ∗)), Theorem 6
does not apply, and indeed its conclusion fails. Also Theorem 2 (on linearity)
—which is at the heart of Theorem 6 (via Theorem 1) — fails, as here the
domain of G is Q and G = 0 with a linear extension S = 0 to all of R. This
shows the full force of Prop. 1(iv).

Variants of Th. 6 are possible. In the preceding argument Theorem 1
may be replaced by Theorem 1′a to yield:

Theorem 6′ (Quantifier-Weakening Theorem). Theorem 6 holds with
(ii) replaced by:
(ii_a)′ F ∗ satisfies the Heiberg-Seneta boundedness condition thinned to a
symmetric set Σ that is locally SW, i.e.

lim sup
u→0, u∈Σ

S(u) ≤ 0.

Likewise, using Theorem 1′d yields:

Theorem 6′′ (Strong Quantifier-Weakening Theorem). Theorem 6
holds with (ii) replaced by:
(ii_d)′ F ∗ is bounded on a subset of AF that is shift-compact (e.g. on a set
that is locally SW, and so on an open set).

Proof. Again AF is a subgroup and G = F ∗|AF is additive (Prop. 1);
the condition (lim sup)0 follows from the assumption that SW -lim supM(F ∗)
holds for some M. As F ∗ is bounded on a shift-compact subset of AF , The-
orem 1′ applies to S = F ∗. �

Cautionary Example Again. Recall that for F := 1R\Q one has F ∗ = 1R\Q
and AF = Q. So here AF is dense but not shift-compact, and F ∗, though
linear on AF , does not satisfy (ii).

The density assumption above may be weakened by using Theorem 4:

Theorem 7. With AF as above, suppose that there exists a shift-symmetric,
analytic, spanning set T ⊆ AF such that F ∗|T is locally bounded above.
Then F ∗ is linear: F ∗(u) = limx→∞[F (u+ x)− F (x)] = cu, for some c ∈ R
and all u ∈ R.
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Proof. As AF is a subgroup and G = F ∗|AF is additive (by Prop. 1), apply
Theorem 4 to S = F ∗. �

Remark. The sharpenings of Theorem 6 make use of relatives of the
Heiberg-Seneta condition. Their formulation draws on shift-compactness
(and so sequential) properties of various ‘test sets’, T say. The classical
development relies on the classic Steinhaus property, more properly: the
Steinhaus-Weil4 (interior points) property of test sets (that T−T has interior
points): see BGT Th. 1.1.1; we study the links between the Steinhaus-Weil
property and shift-compactness elsewhere [BinO17].

The classical Quantifier Weakening Theorems of regular variation (BGT
§1.4.3 and §3.2.5) are re-stated below as Theorems K and BKdH. There, one
needs as side-condition the Heiberg-Seneta conditionHS restated multiplica-
tively here as (lim sup) (or a thinned version of it, as in Theorems 6′, 6′′).
Recall from above the ∗ notation (as in g∗) signifying that limsup replaces
lim .

Theorem K (cf. BGT: Th. 1.4.3). Suppose that

lim supλ↓1 g
∗(λ) ≤ 1. (lim sup)

Then the following are equivalent:
(i) there exists ρ ∈ R such that

f(λx)/f(x)→ λρ (x→∞)(∀λ > 0);

(ii) g(λ) = limx→∞ f(λx)/f(x) exists, finite for all λ in a non-negligible set;
(iii) g(λ) exists, finite, for all λ in a dense subset of (0,∞);
(iv) g(λ) exists, finite for λ = λ1, λ2 with (log λ1)/ log λ2 irrational.

TheoremK is an immediate corollary of Theorem 6, as (limsup) iff(HS(F ∗)).

Theorem BKdH (cf. BGT: Th. 3.2.5). For g with

lim
x→∞

g(λx)/g(x) = λρ (λ > 0),

and
lim supλ↓1 f

∗(λ) ≤ 0, (lim sup)

4Here, as with Steinhaus, the context is R; Weil’s context is (Haar) measurability in
locally compact groups [Wei], cf. [GroE].
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the following are equivalent:
(i) k(λ) := limx→∞[f(λx)−f(x)]/g(x) exists, finite for all λ > 0, and k(λ) =
c[λρ − 1]/ρ for some c and all λ on a non-negligible set;
(ii) k(λ) exists, finite for all λ in a non-negligible set;
(iii) k(λ) exists, finite, for all λ in a dense subset of (0,∞);
(iv) k(λ) exists, finite for λ = λ1, λ2 with (log λ1)/ log λ2 irrational.

Implicit in the proofs in BGT is the Goldie functional equation (GFE)
and Goldie functional inequality (GFI). This is made explicit in [BinO14].
See (AddA); cf. BGT, Equation (3.2.7)), and [Ost3] (on the relation between
(GFE) and homomorphisms); we refer to these sources for background. In
results of this type, the usual Baire/measurable assumptions are conspicuous
by their absence. GFE in its simplest form below bears little relation to CFE:

K(u+ v) = K(u) + euK(v) (u, v ∈ A), (GFE)

K(u+ v) ≤ K(u) + euK(v). (GFI)

It is immediate from (GFE) that either K is trivial: K ≡ 0, or for some
ρ 6= 0

K(u) = (eu − 1)/ρ (u ∈ A).

Only the latter case is of interest here. Define H by

H(x) := K(log x) (x ∈ E : = expA).

Writing u = log x etc. gives

K(u+ v) = K(log(xy)) = K(log x) + xK(log y),

H(xy) = H(x) + xH(y).

As K(log x) = (x − 1)/ρ for some ρ > 0, H : E→ R is injective and order-
preserving, so that G = K[A] is dense, if A is. Put

η(y) := 1 + ρy,

so that H−1(y) = η(y) for y ∈ G. Now consider on G the Popa ‘circle’
operation (Popa [Pop] in 1965, and Javor [Jav] in 1968):

x ◦ y = x ◦ρ y := x+ η(x)y.
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This is indeed a group operation with neutral element 1ρ = 0 and inverse
x−1
◦ = −x/η(x); for background see [BinO15] and [Ost3]. This group struc-
ture allows the Goldie equation to express homomorphy:

H(xy) = H(x)◦H(y) = H(x)+η(H(x))H(y) = H(x)+xH(y) (x, y ∈ E).

Alternatively, again as H is invertible, with X = H(x) etc, the equation may
be re-configured to the celebrated Goł̨ab-Schinzel equation:

η(X ◦ Y ) = η(X)η(Y ) (X, Y ∈ G), (GS)

introduced for the study of one-parameter subgroups of affi ne groups, for
which see [AczD, Ch. 19] and the more recent [Brz].
Theorems 0, 0′, and 0+ are transferable, on the basis of two simple facts

stated in Prop. 12 below, to the context of functions f : R+→ G, with G
equipped with the Popa circle operation and with subadditivity replaced by:

f(xy) ≤ f(x) ◦ρ f(y)

so as to yield GFI. (This development with its associated side-conditions
complements the alternative inequality

f(x+ f(x)y) ≤ f(x)f(y),

studied in [Jab2]; cf. the ‘suboperative’functions of [HilP, 8.9].) Thus the
BKdH-RV version comes at little cost, as do the corresponding Quantifier
Weakening Theorems (Th. 6, 6′, 6′′) with linear ρx replaced by the affi ne
1 + ρx. We write

Gρ
+ := {x : 1 + ρx > 0}.

Proposition 12. For ρ ≥ 0, the set [0,∞) is a sub-semigroup of Gρ
+; the

induced order: y ≤ρ x iff x◦ρy−1 ∈ [0,∞) coincides with y ≤ x. Furthermore,
if c > 0 and a < b, then

a ◦ρ c ≤ b ◦ρ c;
in particular,

(a, b) ◦ρ c = (a ◦ρ c, b ◦ρ c),
i.e. the Euclidean topology on R+ is invariant under positive translation
under ◦ρ.
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Likewise, for ρ > 0, if 0 < c < d, and a < b with a, b ∈ G+
ρ , then

a ◦ρ c ≤ b ◦ρ d.

Proof. For the first assertion observe that

0 ≤ x−(1+ρx)y/(1+ρy) iff 0 ≤ x(1+ρy)−(1+ρx)y = x−y, as 1+ρy > 0.

The rest is immediate, since, ηρ is positive on G
ρ
+ ⊇ R+ and order-preserving

for ρ > 0. �

We hope to give a more detailed account of this area elsewhere. Suffi ce it
to say here that the two forms, Karamata and Bojaníc-Karamata/de Haan,
of regular variation above are related to —and indeed, subsumed within —a
third form, Beurling slow and regular variation; see [BinO13, 10.3], [BinO15,
§7]. The link here is the Popa circle operation above.

8 Complements

8.1 Sources. This paper is a sequel to three sources: [BinO11] (on the
theorems of Steinhaus and Ostrowski, which underpin everything in this
area), [BinO14] (on the Goldie functional equation (GFE) and inequality)
and [Ost3] (on the relation between the more general Goldie-Beurling equa-
tion and homomorphisms between Popa groups) which here specializes to
(GFE).
8.2 Frullani integrals. A classical situation where quantifier weakening is
important (which, as it happened, was the original motivation for [BinG,
I,II.6], and so for this paper and [BinO11] via BGT) is the theory of Frullani
integrals ([BinG, II §6], BGT §1.6.4; Berndt [Bern]), important in many
areas of analysis and probability. This in turn is a combination of two results
from regular variation, the Aljančíc-Karamata theorem (a result ofMercerian
type) and the Characterisation Theorem (BGT §1.4), a central result in the
area inseparable from quantifier weakening. One reason why regular variation
is so ubiquitous and useful is its relevance to scaling [Bin].
8.3 Shift-compactness and Theorem S. Evidently any (non-degenerate) inter-
val is shift-compact; more generally, so are non-negligible Baire/measurable
sets — this is the Kestelman-Borwein-Ditor Theorem, KBD, for which see
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[BinO11, Th. 4.2]. Any shift-compact set Σ has the classic Steinhaus prop-
erty (terminology of [BarFN]): 0 is an interior point of Σ − Σ, see [BinO9,
Th. 2]. The following combinatorial version of the Steinhaus Subgroup The-
orem, Theorem S below, will be seen capable of bearing the burden of the
proof of our version Theorem 1′d above. See [BinO11] for further equivalences
in Theorem S (e.g. that S has finite index in R, and statements involving
Ramsey theory).

Theorem S ([BinO11, Th. 6.2]) For an additive subgroup A of R, the
following are equivalent:
(i) A = R,
(ii) A contains a subset that is locally Steinhaus-Weil (e.g. a non-negligible
Baire/measurable set),
(iii) A is shift-compact.

8.4 Bitopological Berz Theorem. The proof of Theorem 3 in §5 above can
be dualized to yield a parallel alternative and new proof for Theorem B.
Here, in place of Baire’s continuity theorem, a careful use of Lusin’s theorem
([Hal, §55]; cf. [BinO8, §2] for a ‘near-analogue’) demonstrates linearity on
a subset Σ ∩ R+ covering almost all of R+, and likewise on a subset Σ ∩ R−
covering almost all of R−; then Props 10 and 7 above complete the proof.
However, an argument proving simultaneously Theorem 3 and Theorem B
can be given [BinO16], by appeal to density-topology arguments, for which
see [BinO10,11], cf. [Wil] and [Ost1].
8.5 Dependence on axioms of set theory. For a summary of the background
information needed to appreciate the various set-theoretic axioms which im-
plicitly confront analysts we refer to Appendix 1 of the fuller arXiv version
of [BinO16]; the earlier article [Wri] of 1977 had a similar motivation. This
may be omitted by the expert (or uninterested) reader.
8.6 Kominek’s Theorem. We include this (discussed in §6) here, as it is an
immediate corollary of Prop. 6.

Kominek’s Theorem ([Kom], cf. [Jon]). For additive A : R→ R, if A|T
is bounded on an analytic spanning set T , then A is continuous.

Proof. If T is analytic and spans R then, as A(T − T ) is bounded, w.l.o.g.
T = −T (otherwise repace T by T ∪ (−T )), and

R =
⋃

n∈N

⋃
q∈Qn

(q1T + ...+ qnT ).
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So there are n ∈ N and m1, ...mn ∈ N with S := m1T + ...+mnT of positive
measure. So A is bounded on S + S and so on an interval. Now apply Prop.
6 (with A = R). �
8.7 Kingman’s Subadditive Ergodic Theorem. Detailed study of subadditiv-
ity is partially motivated by links with the Kingman subadditive ergodic
theorem, for which see e.g. [Kin1, 2], Steele [Ste].
8.8 Sublinearity and risk measures. An important class of functions with
the two properties of subadditivity and positive homogeneity but with a
more general domain occurs in mathematical finance — the coherent risk
measures introduced by Artzner et al. [ArtDEH]; for textbook treatments see
[McNFE], [FolS, 4.1]. For the more general domains (and brief commentary
on the context) see again [BinO16].
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