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Abstract

Extending the notions of inverse transversal and associate subgroup, we consider a regular

semigroup S with the property that there exists a subsemigroup T which contains, for each x ∈ S,

a unique y such that both xy and yx are idempotent. Such a subsemigroup is necessarily a group

which we call a special subgroup. Here we investigate regular semigroups with this property. In

particular, we determine when the subset of perfect elements is a subsemigroup and describe its

structure in naturally arising situations.
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1. SPECIAL SUBGROUPS

If S is a regular semigroup then for each x ∈ S we denote the set of inverses of x by V(x), and the set

of associates of x by A(x) = {y ∈ S | xyx = x}. Well known is the concept of an inverse transversal

of S, namely an inverse subsemigroup S◦ = {x◦ | x ∈ S} with the property that |S◦ ∩ V(x)| = 1

for every x ∈ S (1). Corresponding to this is the notion of an associate subgroup of S, namely a

subgroup S⋆ = {x⋆ | x ∈ S} with the property that |S⋆ ∩ A(x)| = 1 for every x ∈ S (2). Here we

shall be concerned with the subset

I(x) = {y ∈ S | xy, yx ∈ E(S)}

where E(S) denotes the set of idempotents of S. Clearly, V(x) ⊆ A(x) ⊆ I(x). Moreover, equality

holds throughout if and only if S is completely simple (5)(6).

Our purpose here is to investigate the more general notion of a subsemigroup T of S with the

property that

(∀x ∈ S) |T ∩ I(x)| = 1.

Given such a subsemigroup T , we define x∼ for every x ∈ S by

T ∩ I(x) = {x∼}.

Thus xx∼, x∼x ∈ E(S) for every x ∈ S, and we observe first that every x ∈ T is such that x ∈

T ∩ I(x∼) = {x∼∼} whence x = x∼∼ and consequently T ⊆ S∼ = {x∼ | x ∈ S}. The converse
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inclusion being clear from the definition of x∼, it follows that T = S∼. Then x∼ = x∼∼∼ for

every x ∈ S. Since T is a subsemigroup, for every x ∈ T we have x∼xx∼ ∈ T ∩ I(x) whence

x∼xx∼ = x∼ and so xx∼x ∈ V(x∼) ⊆ I(x∼). Since also xx∼x ∈ T it follows that every x ∈ T is

such that xx∼x = x∼∼ = x and so S∼ = T is regular. Now if y is any inverse of x∼ in S∼ then

y ∈ S∼ ∩ I(x∼) = {x∼∼} whence y = x∼∼ and consequently S∼ is an inverse semigroup in which

(x∼)−1 = x∼∼. But if e, f ∈ E(S∼) then ef = fe ∈ E(S∼) gives e, f ∈ S∼∩ I(ef ) = {(ef )∼} whence

e = (ef )∼ = f . Thus we conclude that S∼ is a subgroup of S.

In what follows we shall call such a subgroup S∼ a special subgroup of S.

Theorem 1. Let S∼ be a special subgroup of the regular semigroup S. If ξ is the identity element

of S∼ then S∼ = Hξ .

Proof. Since the maximal subgroups of S are precisely the H-classes which contain idempotents,

it follows that S∼ ⊆ Hξ . To obtain the reverse inclusion, let x ∈ Hξ . Then xx∼, x∼x ∈ E(Hξ ) and

so xx∼ = ξ = x∼x, whence x−1 = x∼ and x = (x∼)−1 = x∼∼ ∈ S∼. Thus S∼ = Hξ .

Example 1. Let S be an orthodox completely simple semigroup. As is well-known, we can

represent S as the cartesian product semigroup S = G × B of a group G and a rectangular

band B. Choose and fix an element α ∈ B. The H-class of the idempotent e = (1G, α), namely

He = G × {α}, is a group transversal of S under the definition (g, x)◦ = (g−1, α). Let S1 be the
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monoid obtained from S by the adjunction of a new identity element 1 and define, for each t ∈ S1,

t∼ =

{

t◦ if t ∈ S;
e ift = 1.

Then (S1)∼ = He. For each (g, x) ∈ S we have that

(h, y) ∈ He ∩ I(g, x) ⇐⇒ h = g−1, y = α

whence He ∩ I(g, x) = {(g−1, α)} = {(g, x)◦} = {(g, x)∼}. Since also He ∩ I(1) = He ∩ E(S1) =

{e} = {1∼}, it follows that He is a special subgroup of S1. Note that since A(1) = {1} the semigroup

S1 has no associate subgroups. Indeed, any such subgroup would have to contain 1 and the only

subgroup of S1 which does so is {1}.

Example 2. Let k > 1 be a fixed integer and for each n ∈ Z let nk be the biggest multiple of k

that is less than or equal to n. Consider the cartesian product set S = Z × Z equipped with the

multiplication

(m, n)(p, q) = (max{m, p}, n + qk).

Since mk + nk = (m + nk)k = (mk + n)k it follows that S is a semigroup which is regular; for

example, (m, n)(m, −nk)(m, n) = (m, n). Here E(S) = {(m, n) | nk = 0} and

I(m, n) = {(p, q) | qk + nk = 0} = {(p, q) | − nk 6 q 6 −nk + k − 1}.
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The subsemigroup S∼ = {(0, tk) | t ∈ Z} is such that S∼∩ I(m, n) = {(0, −nk)} and so is a special

subgroup. Here also

V(m, n) = {(p, q) | p = m, qk + nk = 0}; A(m, n) = {(p, q) | p 6 m, qk + nk = 0}.

The following result, which involves formulae similar to those for inverse transversals, will be used

throughout what follows.

Theorem 2. Let S be a regular semigroup. If S∼ is a special subgroup of S then

(1) (∀x, y ∈ S) (xy∼)∼ = y∼∼x∼ and (x∼y)∼ = y∼x∼∼;

(2) (∀x, y ∈ S) (xy)∼ = (x∼xy)∼x∼ = y∼(xyy∼)∼.

Proof.

(1) Let ξ be the identity element of S∼. Then on the one hand xy∼ · y∼∼x∼ = xξx∼ = xx∼ ∈ E(S),

and on the other,

y∼∼x∼xy∼ · y∼∼x∼xy∼ = y∼∼x∼xξx∼xy∼ = y∼∼x∼xy∼

whence also y∼∼x∼ ·xy∼ ∈ E(S). Consequently, y∼∼x∼ ∈ S∼∩I(xy∼) and hence (xy∼)∼ = y∼∼x∼.

Similarly, (x∼y)∼ = y∼x∼∼.
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(2) Using (1), we have (x∼xy)∼x∼ = (xy)∼x∼∼x∼ = (xy)∼ξ = (xy)∼, and similarly y∼(xyy∼)∼ =

y∼y∼∼(xy)∼ = ξ(xy)∼ = (xy)∼.

2. PARTICULAR SUBSETS

In the presence of an inverse transversal S◦, or of an associate subgroup S⋆, Green’s relations are

nicely describable. Indeed, in those situations they are as follows:

(x, y) ∈ R ⇐⇒ xx◦ = yy◦ [resp. xx⋆ = yy⋆];
(x, y) ∈ L ⇐⇒ x◦x = y◦y [resp. x⋆x = y⋆y].

This is not so in general for regular semigroups with special subgroups. For instance, in Example

1 we have ee∼ = e = 11∼ but (e, 1) /∈ R since 1 /∈ eS1. So a separate investigation of the sets

J = {xx∼ | x ∈ S} and K = {x∼x | x ∈ S} is warranted. For this, we note that J and K have the

equivalent descriptions

J = {x ∈ S | x = xx∼}, K = {x ∈ S | x = x∼x}.

For example, if x ∈ J then there exists y ∈ S such that x = yy∼ whence, by Theorem 2(1),

xx∼ = yy∼(yy∼)∼ = yy∼y∼∼y∼ = yy∼ = x.

Likewise, we shall consider the subsemigroups

Sξ = {xξ | x ∈ S}, ξS = {ξx | x ∈ S}.

The subsets of idempotents of Sξ and ξS are identified as follows.
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Theorem 3. E(Sξ) = J and E(ξS) = K.

Proof. If j ∈ J then j = jj∼ whence j = jξ and therefore J ⊆ E(Sξ). Conversely, if e ∈ E(Sξ)

then e = eξ gives ξeξe = ξe, so that eξ , ξe ∈ E(S) and consequently ξ ∈ S∼ ∩ I(e) = {e∼}. Then

e∼ = ξ and e = eξ = ee∼ ∈ J. Thus E(Sξ) = J and dually E(ξS) = K.

A further subset that is of structural importance is

P = {x ∈ S | x = xx∼x}.

Concordant with the terminology of (5), this may be called the set of perfect elements of S.

By the formulae in Theorem 2, it is readily seen that, equivalently,

P = {xx∼x | x ∈ S},

with, moreover,

(∀x ∈ S) (xx∼x)∼ = x∼.

Since for every j ∈ J we have j = jj∼j we see that J ⊆ P, and similarly K ⊆ P. Also, for every

x ∈ S, we have x∼x∼∼x∼ = ξx∼ = x∼ and therefore also S∼ ⊆ P. Moreover, by the above,

S∼ = P∼.
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As seen in Example 1 above, special subgroups are in general distinct from associate subgroups.

Precisely when they coincide is determined as follows.

Theorem 4. A special subgroup S∼ of S is an associate subgroup of S if and only if P = S.

Proof. If P = S then every x ∈ S is such that x = xx∼x whence S∼ ∩ A(x) 6= ∅. But if y ∈

S∼∩ A(x) then y ∈ S∼∩ I(x) = {x∼}. Hence S∼∩ A(x) = {x∼} and so S∼ is an associate subgroup.

Conversely, if the special subgroup S∼ is an associate subgroup then for every x ∈ S we have

x = xx⋆x = xx∼x ∈ P whence P = S.

Precisely when P is a subsemigroup of S is the substance of the following result.

Theorem 5. The following statements are equivalent:

(1) P is a (regular) subsemigroup of S;

(2) KJ ⊆ P.

Proof.

(1) ⇒ (2): If P is a subsemigroup of S then, since both J and K are contained in P, it follows that

KJ ⊆ P.
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(2) ⇒ (1): If x, y ∈ P then since x∼xyy∼ ∈ KJ ⊆ P we have, by Theorem 2(2),

x∼xyy∼ = x∼xyy∼(x∼xyy∼)∼x∼xyy∼ = x∼xy(xy)∼xyy∼.

Pre-multiplying by x and post-multiplying by y, we obtain xy = xy(xy)∼xy so that xy ∈ P and

therefore P is a subsemigroup which is regular since S∼ ⊆ P.

In the case of an inverse transversal S◦ the sets which correspond to J and K are denoted by I and 3.

It is natural therefore to consider properties which are analogous to the principal properties listed

in (4).

Recalling that E(S∼) = {ξ}, we shall say that the special subgroup S∼ is

prime if KJ = {ξ} [cf. S◦ multiplicative if 3I ⊆ E(S◦)];
weakly prime if (KJ)∼ = {ξ} [cf. S◦ weakly multiplicative if (3I)◦ ⊆ E(S◦)];
a quasi − ideal if S∼SS∼ ⊆ S∼ [cf. S◦SS◦ ⊆ S◦ or, equivalently, 3I ⊆ S◦].

In what follows we shall consider the characteristic properties of each of these types and how they

are related. For this purpose, throughout what follows, S will denote a regular semigroup with a

special subgroup S∼whose identity element is ξ , and the subsets J, K, P are as defined above.

3. S
∼ WEAKLY PRIME

The weakly prime special subgroups have the following characterisations.
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Theorem 6. The following statements are equivalent:

(1) S∼ is weakly prime;

(2) (∀x, y ∈ S) (xy)∼ = y∼x∼;

(3) the mapping ζ : S → S described by ζ : x 7→ x∼∼ is a morphism;

(4)
(

∀x ∈ 〈E(S)〉
)

x∼ = ξ ;

(5) KJ ⊆ E(P).

Proof.

(1) ⇒ (2): If S∼ is weakly prime then, for all x, y ∈ S, we have (x∼xyy∼)∼ ∈ (KJ)∼ = {ξ}. It

follows by Theorem 2(2) that (xy)∼ = y∼(x∼xyy∼)∼x∼ = y∼ξx∼ = y∼x∼.

(2) ⇒ (3): This is clear.

(3) ⇒ (2): By (3) and Theorem 2(1), (xy)∼ = (xy)∼∼∼ = (x∼∼y∼∼)∼ = y∼x∼.

(2) ⇒ (4): If (2) holds and e ∈ E(S) then e∼ = (ee)∼ = e∼e∼ gives e∼ ∈ E(S∼) and therefore

e∼ = ξ . An inductive argument using (2) now gives x∼ = ξ for every x ∈ 〈E(S)〉.
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(4) ⇒ (5): If (4) holds then for all k ∈ K and all j ∈ J we have (kj)∼ = ξ . Consequently, by

Theorem 3,

kj = kjξ = kj(kj)∼ ∈ J ⊆ E(P)

and (5) follows.

(5) ⇒ (1): If (5) holds then kjξ = kj ∈ E(P) and likewise ξkj ∈ E(P) whence it follows that

ξ ∈ S∼ ∩ I(kj) = {(kj)∼}. Thus (KJ)∼ = {ξ} and so S∼ is weakly prime.

Corollary. If S∼ is weakly prime then J, K are sub-bands and P is a regular subsemigroup. Also,

S∼ is an associate subgroup of P and its identity element ξ is a medial idempotent of P.

Proof. By Theorem 2, for every x ∈ J we have x∼ = (xx∼)∼ = x∼∼x∼ = ξ and so x = xx∼ = xξ .

Thus, if x, y ∈ J then, using Theorem 6(2), xy = xyξ = xyy∼x∼ = xy(xy)∼ ∈ J whence J, and

likewise K, is a sub-band of S. That P is a subsemigroup follows from Theorem 6(5) and Theorem

5. Now for every x ∈ S we have that x∼ = (xx∼x)∼. That S∼ = P∼ is then an associate subgroup

of P follows from Theorem 4 applied to P. Finally, by Theorem 6(4), for every x ∈ 〈E(P)〉 we have

x = xx∼x = xξx and so ξ is a medial idempotent of P (3).
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A structure theorem for regular semigroups with an associate subgroup whose identity element is

a medial idempotent (and therefore that of P when S∼ is weakly prime) was established in (2); see

also (8).

Example 3. In Example 2, P = {(m, n) | m > 0}, J = {(m, n) | m > 0, nk = 0} and

K = {(m, 0) | m > 0}. Then KJ = K and, since K∼ = {(0, 0)}, it follows that S∼ is a weakly prime

special subgroup. Here S∼ is neither prime nor a quasi-ideal.

Example 4. If L is a semilattice and G is a group, consider the inverse semigroup S = L×G. Here

E(S) = L × {1G} and, for every (x, g) ∈ S,

I(x, g) = L × {g−1}.

For every idempotent ξ = (e, 1G) of S, the group Hξ = {e} × G is a special subgroup of S with

(x, g)∼ = (e, g−1) for every (x, g) ∈ S. With respect to this,

P = {(x, g) | x 6 e, g ∈ G}, J = K = {(x, 1G) | x 6 e} = E(P).

It follows by Theorem 6 that Hξ is a weakly prime special subgroup of S. It is prime or a quasi-ideal

if and only if L has a bottom element 0 and e = 0.

Example 5. Consider the semidirect product semigroup Q ×ζ G of a band Q with an identity

element ξ and a group G. With respect to a given morphism ζ : G → Aut Q described by ζ :

g 7→ ζg, this consists of the set Q × G together with the multiplication defined by (x, g)(y, h) =
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(xζg(y), gh). That Q ×ζ G is regular follows from the observation that

(x, g)(ξ , g−1)(x, g) =
(

xζg(ξ)ζ1G(x), gg−1g
)

= (xξx, g) = (x, g).

Since (x, g)(x, g) = (xζg(x), g2) it follows that E(Q ×ζ G) = {(x, 1G) | x ∈ Q}. Consider now the

subset H = {ξ} × G. This is clearly a subgroup of Q ×ζ G. Moreover,

(ξ , h) ∈ I(x, g) ⇐⇒
(

ξζh(x), hg
)

,
(

xζg(ξ), gh
)

∈ E(Q ×ζ G) ⇐⇒ h = g−1

so that H ∩ I(x, g) = {(ξ , g−1)}. Consequently, H is a special subgroup of Q ×ζ G under (x, g)∼ =

(ξ , g−1), and H is isomorphic to G. It follows by Theorem 6(2) that H is weakly prime. It is readily

seen that if Q 6= {ξ} then H is neither prime nor a quasi-ideal.

The situation described in Example 5 is highlighted in the following result.

Theorem 7. If S∼ is weakly prime then the subsemigroup ξPξ of P is isomorphic to a semidirect

product of a band with an identity and a group. More precisely, if 1 = {x ∈ P | x∼ = ξ} then

ξ1ξ is a sub-band of P with identity ξ . For each g ∈ S∼ the mapping ζg : x 7→ gxg∼ is an

automorphism of ξ1ξ , and ζ : g 7→ ζg is a morphism. Finally,

ξPξ ≃ ξ1ξ ×ζ S∼

under the mapping ϑ : x 7→ (xx∼, x∼∼).
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Proof. If x, y ∈ 1 then, by Theorem 6(2), (xy)∼ = y∼x∼ = ξ and so 1 is a subsemigroup of P.

Now, for every x ∈ 1, xξ = xx∼ ∈ J whence it follows that ξxξ ∈ J ⊆ E(P). Also, if x, y ∈ 1

then xξy ∈ 1 gives ξxξ · ξyξ ∈ ξ1ξ and therefore ξ1ξ is a sub-band of P with identity element

ξ . Moreover, for every g ∈ S∼ and every x ∈ ξ1ξ , we have gxg∼ ∈ ξ1ξ .

For each g ∈ S∼ consider the mapping ζg : ξ1ξ → ξ1ξ given by ζg(x) = gxg∼. We have

ζg(ξ) = gξg∼ = gg∼ = ξ . Moreover, if x, y ∈ ξ1ξ then

ζg(xy) = gxyg∼ = gxξyg∼ = gxg∼gyg∼ = ζg(x)ζg(y)

and so ζg ∈ End ξ1ξ . Since g∼xg ∈ ξ1ξ with ζg(g∼xg) = gg∼xgg∼ = ξxξ = x, it follows that ζg

is surjective. Moreover, if ζg(x) = ζg(y) then, applying ζg−1 to this, we obtain x = ξxξ = ξyξ = y.

Consequently, each ζg ∈ Aut ξ1ξ .

Since ζg[ζh(x)] = ghxh∼g∼ = ghx(gh)∼ = ζgh(x), the mapping ζ : S∼ → Aut ξ1ξ given by

ζ(g) = ζg is a morphism.

It follows from the above that we can construct the semidirect product ξ1ξ ×ζ S∼.

Since xx∼ ∈ 1 by Theorem 2, it follows that xx∼ ∈ ξ1ξ for every x ∈ ξPξ . Consider therefore

the mapping ϑ : ξPξ → ξ1ξ ×ζ S∼ given by

ϑ(x) = (xx∼, x∼∼).
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That ϑ is a morphism follows from the observation that, for x, y ∈ ξPξ ,

ϑ(x)ϑ(y) = (xx∼, x∼∼)(yy∼, y∼∼)

= (xx∼ζx∼∼(yy∼), x∼∼y∼∼)

= (xx∼ · x∼∼yy∼x∼, x∼∼y∼∼)

= (xξyy∼x∼, (xy)∼∼)

= (xy(xy)∼, (xy)∼∼)

= ϑ(xy).

That ϑ is injective follows from the fact that if ϑ(x) = ϑ(y) then xx∼ = yy∼ and x∼∼ = y∼∼

whence x = ξxξ = ξxx∼x∼∼ = ξyy∼y∼∼ = ξyξ = y. Finally, given y ∈ ξ1ξ and g ∈ S∼ we

have yg ∈ ξPξ with

ϑ(yg) = (yg(yg)∼, (yg)∼∼) = (ygg∼y∼, y∼∼g∼∼) = (yξ , ξg) = (y, g)

and so ϑ is also surjective. Consequently, ξPξ ≃ ξ1ξ ×ζ S∼.

4. S
∼ A QUASI-IDEAL

The quasi-ideal special subgroups have the following characterisations.

Theorem 8. The following statements are equivalent:

(1) S∼ is a quasi-ideal of S;
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(2) KJ ⊆ S∼;

(3) KJ = [E(S)]∼;

(4) ξPξ = S∼;

(5) (∀x ∈ S) x∼ = x∼xx∼;

(6) (∀x ∈ S) x∼∼ = ξxξ .

Proof. We establish (1) ⇒ (2) ⇒ (3) ⇒ (1) and (1) ⇒ (4) ⇒ (5) ⇒ (6) ⇒ (1).

(1) ⇒ (2): If S∼ is a quasi-ideal then for all x, y ∈ S we have x∼xyy∼ ∈ S∼SS∼ ⊆ S∼ whence

KJ ⊆ S∼.

(2) ⇒ (3): If (2) holds then for all j ∈ J and k ∈ K we have that kj = (kj)∼∼ ∈ S∼ ⊆ P, whence

it follows that (kj)∼ ∈ V(kj).

Given j ∈ J and k ∈ K, recall (7) that the sandwich set S(k, j) is given by

S(k, j) = {g ∈ E(S) | g = jg = gk, kgj = kj} = j V(kj) k.

Consider now the element g = j(kj)∼k which, by the above, belongs to S(k, j). Since kjg = kg ∈

E(S) and gkj = gj ∈ E(S) we have that kj ∈ S∼ ∩ I(g) whence kj = g∼ and consequently KJ ⊆

[E(S)]∼. Conversely, for every e ∈ E(S) we have e∼ee∼ = e∼e · ee∼ ∈ KJ ⊆ S∼ whence, using
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Theorem 2(1), e∼ = e∼∼∼ = (e∼∼e∼e∼∼)∼ = (e∼ee∼)∼∼ = e∼ee∼ ∈ KJ. Thus [E(S)]∼ ⊆ KJ

and (3) follows.

(3) ⇒ (1): If (3) holds then x∼xyy∼ ∈ S∼ whence, taking x = ξ , we obtain ξyy∼ ∈ S∼. It follows

that ξyξ = ξyy∼y∼∼ ∈ S∼ whence x∼yz∼ = x∼ξyξz∼ ∈ S∼ and consequently S∼SS∼ ⊆ S∼.

(1) ⇒ (4): If (1) holds then S∼ = ξS∼ξ ⊆ ξSξ ⊆ S∼SS∼ ⊆ S∼. Thus ξSξ = S∼ ⊆ P whence

ξPξ = ξSξ and (4) follows..

(4) ⇒ (5): If (4) holds then for every p ∈ P we have, by Theorem 2, ξpξ = (ξpξ)∼∼ = ξp∼∼ξ =

p∼∼ whence p∼pp∼ = p∼p∼∼p∼ = p∼. Consequently,

(∀x ∈ S) (xx∼x)∼xx∼x (xx∼x)∼ = (xx∼x)∼

which reduces to x∼xx∼ = x∼ which is (5).

(5) ⇒ (6): If (5) holds then on pre- and post-multiplying by x∼∼ we obtain (6).

(6) ⇒ (1): If (6) holds then for all x, y, z ∈ S, x∼yz∼ = x∼ξyξz∼ = x∼y∼∼z∼ ∈ S∼ whence

S∼SS∼ ⊆ S∼ and we have (1).
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Example 6. Consider the following sets of real 2 × 2 matrices:

A =

{[

x x
x x

]

,

[

x 0
x 0

]

,

[

x x
0 0

]

,

[

x 0
0 0

]

∣

∣ x 6= 0

}

; B =

{[

x 0
0 x

]

∣

∣ x 6= 0

}

.

Let S = A ∪ B. Then S is a regular monoid with

E(S) =

{[

1
2

1
2

1
2

1
2

]

,

[

1 1
0 0

]

,

[

1 0
1 0

]

,

[

1 0
0 0

]

,

[

1 0
0 1

]}

.

For each X ∈ S define X∼ =

[

x−1 0
0 0

]

. Then S∼ =

{[

x 0
0 0

]

∣

∣ x 6= 0

}

is a special subgroup. Here

K =

{[

1 1
0 0

]

,

[

1 0
0 0

]}

; J =

{[

1 0
1 0

]

,

[

1 0
0 0

]}

,

and consequently

KJ =

{[

2 0
0 0

]

,

[

1 0
0 0

]}

= [E(S)]∼.

Thus, by Theorem 8, the special subgroup S∼ is a quasi-ideal of S.

Clearly, S∼ is neither prime nor weakly prime.

When S∼ is a quasi-ideal, we have the following useful identification of the subsemigroups ξS and

Sξ as, respectively, the R-class and the L-class of ξ .

Theorem 9. If S∼ is a quasi-ideal then
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(1) ξS = Rξ = {x ∈ S | xR ξ}, Sξ = Lξ = {x ∈ S | xL ξ};

(2) J = E(Lξ ) and is a left zero semigroup;

(3) K = E(Rξ ) and is a right zero semigroup;

(4) J ∩ K = {ξ}.

Proof.

(1) If xL ξ then Sx = Sξ whence there exists y ∈ S such that x = yξ . Then x = xξ ∈ Sξ .

Conversely, if x ∈ Sξ then x = xξ gives, on the one hand Sx ⊆ Sξ , and on the other by Theorem

8(5), x∼x = x∼xξ = x∼ξxξ = x∼x∼∼ = ξ , whence Sξ ⊆ Sx. The resulting equality now gives

xL ξ . Thus Sξ = Lξ and similarly ξS = Rξ .

(2) and (3) follow immediately from (1) and Theorem 3.

As for (4), it follows from (2) and (3) that

J ∩ K = E(Lξ ) ∩ E(Rξ ) = E(Lξ ∩ Rξ ) = E(Hξ ) = {ξ}.

Theorem 10. If S∼ is a quasi-ideal then P is an ideal of S, and S∼ is a group transversal of P.
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Proof. If S∼ is a quasi-ideal then, from S∼ ⊆ P and Theorem 8(2), we obtain KJ ⊆ P. It follows by

Theorem 5 that P is a regular subsemigroup of S. Moreover, if p ∈ P and x ∈ S then, by Theorem

9(2),

px(px)∼px = pp∼px(px)∼px = pp∼px = px

whence PS ⊆ P. Similarly, by Theorem 9(3), SP ⊆ P and consequently P is an ideal of S.

Now since Theorem 8(5) holds, if x ∈ P then x∼ ∈ V(x) so S∼ ∩ V(x) 6= ∅. But if y ∈ S∼ ∩ V(x)

then y ∈ S∼ ∩ I(x) = {x∼}. Hence |S∼ ∩ V(x)| = 1 and so S∼ is a group transversal of P with

x◦ = x∼.

Corollary. If S∼ is a quasi-ideal then P is completely simple.

Proof. Since S∼ is a group transversal of P, this follows from a basic theorem of Saito (9); see also

(1, Theorem 4.3).

When S∼ is a quasi-ideal, the structure of P can be described in terms of Sξ = Lξ and ξS = Rξ .

For this purpose, consider the spined product set

Sξ |×| ξS = {(x, a) ∈ Sξ × ξS | x∼ = a∼}.
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For x, y ∈ Sξ and a, b ∈ ξS, it follows by Theorem 2 and Theorem 8(5) that

(xx∼ay)∼ = (x∼xx∼ay)∼x∼ = (x∼ay)∼x∼ = (ay)∼x∼∼x∼ = (ay)∼.

Similarly, (ayb∼b)∼ = (ay)∼. We can therefore define a law of composition on Sξ |×| ξS by the

prescription

(x, a)(y, b) = (xx∼ay, ayb∼b).

Then

[(x, a)(y, b)](z, c) = (xx∼ay, ayb∼b)(z, c)

= (xx∼ay(xx∼ay)∼ayb∼bz, ayb∼bzc∼c)

= (xx∼ay(x∼xx∼ay)∼x∼ayb∼bz, ayb∼bzc∼c) by Theorem 2

= (xx∼ay · (x∼ay)∼x∼ay · b∼b · z, ayb∼bzc∼c) by Theorem 8(5)

= (xx∼ayb∼bz, ayb∼bzc∼c); by Theorem 9(3)

(x, a)[(y, b)(z, c)] = (x, a)(yy∼bz, bzc∼c)

= (xx∼ayy∼bz, ayy∼bz(bzc∼c)∼bzc∼c)

= (xx∼ayy∼bz, ayy∼bzc∼(bzc∼cc∼)∼bzc∼c) by Theorem 2

= (xx∼ayy∼bz, a · yy∼ · bzc∼(bzc∼)∼ · bzc∼c) by Theorem 8(5)

= (xx∼ayy∼bz, ayy∼bzc∼c). by Theorem 9(2)
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Since y∼ = b∼, these products are equal and therefore Sξ |×| ξS is a semigroup which we now

show is isomorphic to P.

Theorem 11. If S∼ is a quasi-ideal then P = JS∼K and P ≃ Sξ |×| ξS = Lξ |×| Rξ .

Proof. For every x ∈ P we have x = xx∼x = xx∼x∼∼x∼x ∈ JS∼K so that P ⊆ JS∼K. The reverse

inclusion is immediate from the fact that J, S, K ⊆ P and P is a subsemigroup.

Consider now the mapping ϑ : P → Sξ |×| ξS given by ϑ(p) = (pξ , ξp).

(a) ϑ is injective.

If ϑ(p) = ϑ(q) then, by Theorem 2(1),

p = pp∼p = pξ(pξ)∼ξp = qξ(qξ)∼ξq = qq∼q = q.

(b) ϑ is surjective. Let (p, q) ∈ Sξ |×| ξS. Then p∼ = q∼ and, by Theorem 8(5),

ϑ(pp∼q) = (pp∼qξ , ξpp∼q) = (pp∼q∼∼, p∼∼p∼q) = (pξ , ξq) = (p, q).

(c) ϑ is a morphism.
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In fact,

ϑ(p)ϑ(q) = (pξ , ξp)(qξ , ξq) =
(

pξ(pξ)∼ξpqξ , ξpqξ(ξq)∼ξq
)

= (pp∼pqξ , ξpqq∼q)

= (pqξ , ξpq)

= ϑ(pq).

It follows by (a), (b), (c) that ϑ is a semigroup isomorphism.

Example 7. In Example 6 we have ξ =

[

1 0
0 0

]

and

Sξ =

{[

x 0
x 0

]

,

[

x 0
0 0

]

| x 6= 0

}

, ξS =

{[

x x
0 0

]

,

[

x 0
0 0

]

| x 6= 0

}

.

In this example, as can readily be verified, P coincides with the subsemigroup A and Theorems 10

and 11 apply.

5. S
∼ PRIME

Finally, we consider the special subgroups that are prime. In relation to the previous properties,

these have the following characterisation.
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Theorem 12. The following statements are equivalent:

(1) S∼ is prime;

(2) S∼ is weakly prime and a quasi-ideal of S;

(3) S∼ is a quasi-ideal of S and ξ is a middle unit of P.

Proof.

(1) ⇒ (2): If (1) holds then KJ = {ξ} and consequently, by Theorem 6(5) and Theorem 8(2), S∼

is both weakly prime and a quasi-ideal.

(2) ⇒ (3): If S∼ is weakly prime and a quasi-ideal then, by Theorem 8(5) and Theorem 6(4), for

all x, y ∈ P,

xy = xξx∼xyy∼ξy = x(x∼xyy∼)∼∼y = xξy

whence ξ is a middle unit of P.

(3) ⇒ (1): If S∼ is a quasi-ideal and ξ is a middle unit of P then, by Theorem 9(2,3),

x∼xyy∼ = x∼xξyy∼ = x∼xξ = ξ .
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Consequently KJ = {ξ} and so S∼ is prime.

Theorem 13. If S∼ is prime then

(1)JK = E(P) = {x ∈ P | x∼ = ξ};

(2)P is orthodox.

Proof.

(1) If x = jk ∈ JK then, since J, K ⊆ P and, by Theorem 12 and the Corollary to Theorem 6, P is

a subsemigroup, we see that x ∈ P. Moreover, by Theorem 9, xξ = jkξ = jξ = j and ξx = ξ jk =

ξk = k. Consequently, since ξ is a middle unit of P by Theorem 12, x = jk = xξξx = x2. Thus

JK ⊆ E(P).

Conversely, if e ∈ E(P) then, by Theorem 6(4) and Theorem 9,

e = ee∼e = eξe = eξξe ∈ JK

whence E(P) ⊆ JK and we have equality.

If now x ∈ P with x∼ = ξ then x = xx∼x = xξx = x2, so {x ∈ P | x∼ = ξ} ⊆ E(P). The reverse

inclusion follows by Theorem 5(4).
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(2) If e, f ∈ E(P) then, by (1) and the fact that ξ is a middle unit of P,

ef ∈ JKJK = JξK = JK = E(P)

and so P is orthodox.

If S∼ is prime then, by the Corollary to Theorem 10, P is a completely simple subsemigroup which,

by Theorem 13, is orthodox. In this case, P can therefore be expressed as the cartesian product of

a group and a rectangular band. The identification of these is the substance of the following.

Theorem 14. If S∼ is prime then J × K is a rectangular band and P ≃ J × S∼× K.

Proof. That J × K is a rectangular band is immediate from Theorem 9(2,3).

Consider the mapping ϑ : P → J × S∼× K given by ϑ(x) = (xx∼, x∼∼, x∼x).

Since every x ∈ P is such that x = xx∼x = xx∼ · x∼∼ · x∼x, it is clear that ϑ is injective.

To see that ϑ is also surjective, let (j, g, k) ∈ J × S∼ × K and consider the element jgk which,

by Theorem 11, belongs to P. By Theorem 9(2), jgk(jgk)∼ = jj∼ · jgk(jgk)∼ = jj∼ = j, and

likewise, by Theorem 8(3), (jgk)∼jgk = k. Since, by Theorem 5, (jgk)∼∼ = g∼∼ = g it follows

that ϑ(jgk) = (j, g, k) and hence ϑ is surjective.

26



A
cc
ep
te
d
M
an
us
cr
ip
t

Furthermore, for all x, y ∈ P, it follows by Theorem 9 and Theorem 6 that

ϑ(x)ϑ(y) = (xx∼, x∼∼, x∼x)(yy∼, y∼∼, y∼y)

= (xx∼yy∼, x∼∼y∼∼, x∼xy∼y)

= (xx∼, (xy)∼∼, y∼y)

= (xx∼ · xy(xy)∼, (xy)∼∼, (xy)∼xy · y∼y)

= (xy(xy)∼, (xy)∼∼, (xy)∼xy)

= ϑ(xy).

Consequently, ϑ is a semigroup isomorphism.

Example 8. Consider the subsemigroup T = −N × Z of the semigroup S in Example 2. Here

T∼ = {(0, nk) | n ∈ Z} with J = {(0, n) | nk = 0} and K = {(0, 0)}. Then KJ = {(0, 0)} and so T∼

is prime. Here P = {(0, n) | n ∈ Z} and, since K is trivial, P ≃ J × T∼.

Example 9. Similar to Example 4, let S = L × G where L is a left zero semigroup and G is a

group. Here E(S) = L × {1G} and I(x, g) = L × {g−1}. For every idempotent ξ = (e, 1G) the

group Hξ = {e}×G is a special subgroup with (x, g)∼ = (e, g−1). Here (x, g)(x, g)∼ = (x, 1G) and

(x, g)∼(x, g) = (e, 1G) so that J = E(S) and K = {ξ}. Then KJ = {ξ} and so every Hξ is prime.
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