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Abstract  27 

The metabolic syndrome is associated with an increase in the activation of renin angiotensin 28 

system (RAS) and inhibition of RAS reduces the incidence of new onset diabetes. Importantly, 29 

angiotensin II (AngII), independently of its vasoconstrictor action causes beta-cell 30 

inflammation and dysfunction, which may be an early step in the development of type-2 31 

diabetes. The aim of this study was to determine how AngII causes beta cell dysfunction. Islets 32 

of Langerhans were isolated from C57BL/6J mice that had been infused with AngII in the 33 

presence or absence of taurine-conjugated ursodeoxycholic acid (TUDCA) and effects on ER 34 

stress, inflammation and beta cell function determined. The mechanism of action of AngII was 35 

further investigated using isolated murine islets and clonal beta cells. 36 

We show that AngII triggers ER stress, an increase in the mRNA expression of pro-37 

inflammatory cytokines, and beta cell dysfunction in murine islets of Langerhans both in vivo 38 

and ex vivo. These effects were significantly attenuated by TUDCA, an inhibitor of ER stress. 39 

We also show that AngII-induced ER stress, is required for the increased expression of pro-40 

inflammatory cytokines and, is caused by ROS and IP3 receptor activation. 41 

These data reveal that the induction of ER stress is critical for AngII-induced beta cell 42 

dysfunction and indicates how therapies that promote ER homeostasis may be beneficial in the 43 

prevention of type-2 diabetes.  44 

 45 

Abbreviations: AngII (angiotensin II), 2APB (2-aminoethoxydiphenyl borate), AT1R 46 

(angiotensin type 1 receptor), ATF4 (activating transcription factor 4), CHOP (C/EBP 47 

Homologous Protein), ER (endoplasmic reticulum), GK (glucokinase), IRE1 (inositol 48 

requiring enzyme 1), PERK (PKR-like ER kinase), RAS (renin angiotensin system), TUDCA 49 

(taurine-conjugated ursodeoxycholic acid), UPR (unfolded protein response),   50 
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Introduction 51 

 52 

Elevated blood pressure due to increased activation of the renin angiotensin system (RAS) is 53 

an important feature of the metabolic syndrome. This constitutes a series of metabolic disorders 54 

that increase the risk of developing type-2 diabetes and cardiovascular disease. Importantly, 55 

the pharmacological inhibition of RAS reduces the incidence of new onset type-2 diabetes in 56 

high risk populations (1–3) and RAS blockade in several animal models of diabetes improves 57 

pancreatic beta cell function (4–8). Conversely, the infusion of AngII into mice causes beta 58 

cell dysfunction (9–11). As the components of the RAS system have been detected in islets and 59 

this ‘local’ RAS plays an important role in regulating islet mass and function (7,9), the effects 60 

of RAS blockade in vivo is likely mediated by inhibiting locally produced AngII.  61 

 62 

The detrimental effects of AngII on beta cell function were largely attributed to 63 

vasoconstriction resulting in decreased delivery of glucose to pancreatic beta cells (12–14). 64 

However, it has recently been shown that AngII infusion in mice causes beta cell dysfunction 65 

independently of AngII’s effect on blood pressure (11). In support of this, the treatment of 66 

either isolated human or rodent islets with AngII also causes beta cell dysfunction (9–11). The 67 

damaging effects of AngII on beta cell function, both in vivo and in vitro, have been ascribed 68 

to an increase in the expression of pro-inflammatory cytokines, in particular IL-1β (11), and 69 

there is a growing body of evidence indicating that inflammation is important in the 70 

development of beta cell dysfunction in type-2 diabetes (15–17). Endoplasmic reticulum (ER) 71 

stress is also associated with the loss of beta cell function and viability in type-2 diabetes (18–72 

21). This stress is sensed by the ER transmembrane proteins: PKR-like ER kinase (PERK), 73 

activating transcription factor 6 (ATF6) and inositol requiring enzyme 1α (IRE1) that activate 74 

an adaptive response called the unfolded protein response (UPR) (21–23). If the UPR is unable 75 
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to alleviate ER stress beta cell dysfunction and death can occur through the chronic activation 76 

of a UPR, which activates a number of pro-apoptotic and pro-inflammatory signaling pathways 77 

(16,23,24). Given that AngII also increases the expression of pro-inflammatory cytokines and 78 

causes beta cell dysfunction (11), we hypothesised that ER stress may play an important role 79 

in AngII-mediated beta cell inflammation and dysfunction.  80 

 81 

 82 

Materials and Methods 83 

Cell culture. Mouse insulinoma 6 (MIN6) cells (25) were used between passages 25 and 35 at 84 

~80% confluence and cultured as previously described (26).  85 

 86 

Islet isolation. Pancreatic islets were isolated from adult C57BL/6J mice (Animal Resources 87 

Centre, Perth, Australia)). Briefly the pancreas was inflated by injecting 3 ml of RPMI 1640 88 

(Invitrogen) containing 1mg/ml collagenase (Sigma-Aldrich, Australia) through the common 89 

pancreatic duct and the pancreas excised.  Islets were then isolated  as previously described 90 

(26). 91 

 92 

Animal experimentation. All experiments were approved by the Animal Ethics Committee of 93 

RMIT University (#1504). Male C57BL/6J mice (10 weeks of age) obtained from the Animal 94 

Resources Centre (Perth, Australia) were kept at 22±1°C on a 12-h light/dark cycle. All mice 95 

were fed standard mouse chow and water ad libitum. After 1 week of acclimatization, the mice 96 

were randomly assigned to 3 groups: 1) sham (control mice infused with PBS, n=8); AngII 97 

(mice infused with human AngII, dissolved in sterile 1XPBS, at 416ng.kg-1.min-1 using 98 

subcutaneous ALZET® mini-osmotic pumps (USA) for 2 weeks, n=8); or AT (mice infused 99 

with AngII with daily intra-peritoneal injection of TUDCA at 150 mg.kg-1.day-1 for 2 weeks, 100 
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n=8). Human Ang II (≥93%HPLC) was purchased from Sigma. The body weight and plasma 101 

glucose levels were recorded three times weekly during the experiment. Systolic blood pressure 102 

(SBP) was measured using the CODA tail-cuff blood pressure system (ADInstruments Pty 103 

Ltd., Australia). 104 

For Glucose tolerance tests (GTT; 2.5 g glucose/kg BW, ip) mice were fasted for 5 h 105 

prior to blood samples being collected via the tail vein and blood glucose concentration 106 

determined using a glucometer (AccuCheck Proforma Nano; Roche, Victoria, Australia). For 107 

insulin measurements blood samples were centrifuged (2000 rpm, 2 min at 4oC) and the plasma 108 

insulin concentrations measured by ELISA (Linco Research, St. Louis, MO) in collaboration 109 

with the Department of Physiology, Monash University, Melbourne. Mice were euthanized 110 

with CO2. The disposition index, a composite measure of beta cell function (27), was also 111 

calculated using the following formula: ∆I0-30/∆G0-30 × 1/fasting insulin.  112 

 113 

Western-blotting and Immunohistochemistry. SDS-PAGE and western blotting were 114 

performed as previously described (28) using antibodies against: BiP (BD Transduction 115 

Laboratories, USA), phospho-IRE1α (Ser 724) (Abcam, USA), phospho-PERK (Thr 980), 116 

phospho-eIF2α (Ser 51), CHOP, ATF4, and GAPDH (Cell Signaling Technology, USA). 117 

Immunohistochemistry was performed on fixed and paraffin embedded pancreatic sections 118 

using anti-CHOP, and Alexa Fluor 488 conjugated antibodies. All antibodies were used as per 119 

manufacturer’s instructions.  120 

  121 

Transfection, RNA isolation and qPCR analyses. Silencer® Select siRNAs against Ire (cat. no. 122 

S95857) and Xbp (cat. no. S76114) were purchased from from Ambion®oligos (Thermo 123 

Scientific, USA).siRNA oligos were tranfected using Lipofectamine® RNAiMAX (Thermo 124 

Scientific, USA) according to the manufacturer’s protocol. Total RNA was isolated using the 125 
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ReliaPrep™ RNA Cell Miniprep System (Promega, USA). Reverse transcription was carried 126 

out using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, UK). 127 

Quantitative PCR was carried out using the SYBR® Green PCR Master Mix (Applied 128 

Biosystems, UK) using primers described in ESM Table 1. The gene expression from each 129 

sample was analysed in duplicate and normalized against the housekeeper 18S. All reactions 130 

were performed on the Rotor-Gene Q (Qiagen, USA). The results are expressed as relative 131 

gene expression using the ΔCt method (29). 132 

 133 

Glucose stimulated insulin secretion (GSIS). Isolated islets were cultured overnight in RPMI 134 

1640 medium supplemented with L-glutamine (20 mmol/l), and FBS (5%). GSIS was 135 

performed as previously described (28). Insulin ELISA was performed as described above. 136 

 137 

Quantification of superoxide levels Superoxide levels were measured using L-012 (Tocris 138 

Bioscience, USA) enhanced chemiluminescence as previously described (30). MIN6 cells were 139 

plated on a 96-well Optiplate (PerkinElmer, Melbourne, Australia), incubated with 100 µmol/L 140 

L-012, and luminescence measured using a BMG Clariostar plate reader (BMG Labtech, 141 

Melbourne, Australia).  142 

 143 

Statistical analysis Data are expressed as mean ± SE, unless otherwise stated. Data were 144 

analysed by one-way ANOVA followed by Tukey’s post-hoc test for multiple comparison 145 

between means using Prism 6 (GraphPad Software, USA). Differences were considered 146 

statistically significant at p < 0.05. 147 

 148 

Results 149 
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Angiotensin II induces ER stress and impairs beta cell function in mouse islets of Langerhans. 150 

To investigate the role of ER stress on AngII-dependent beta cell dysfunction, mouse islets of 151 

Langerhans were treated with AngII for 96 h in the presence or absence of TUDCA, a chemical 152 

chaperone that inhibits ER stress (31). AngII caused beta cell dysfunction as demonstrated by 153 

a marked increase of basal insulin secretion and significant decrease in the stimulatory index 154 

compared to control islets reflecting the loss of the glucose-stimulated insulin secretion (GSIS) 155 

(Fig. 1a and b). This correlated with a decrease in the mRNA expression of glucokinase (Gk) 156 

(Fig. 1c), whereas the mRNA expression of glucose transporter-2 (Glut-2) and pancreatic and 157 

duodenal homeobox 1 (Pdx1) were increased (Fig 1c). AngII treatment also significantly 158 

increased the expression of the pro-inflammatory cytokines interleukin 1β (Il-1β) and tumor 159 

necrosis factor α (Tnf-α) (Fig. 1d). However, no significant changes in monocyte chemotactic 160 

protein 1 (Mcp-1) were detected. Importantly, AngII caused a marked increase in the 161 

expression of markers of ER stress (Fig. 1e), including immunoglobulin binding protein 162 

(BiP/Grp78), the spliced form of X-box binding protein 1 (Xbp1s), endoplasmic reticulum 163 

oxidoreductin 1 (Ero1l), peptidyl-prolyl cis-trans isomerase (Fkbp11), ER degradation 164 

enhancing α-mannosidase-like protein (Edem), activating transcription factor 4 (Atf4) and the 165 

pro-apoptotic transcription factor C/EBP Homologous Protein (Chop also known as Gadd153) 166 

(32,33). The co-administration of TUDCA with AngII significantly restored beta cell function, 167 

as demonstrated by a reduction in basal insulin secretion (Fig. 1a), an improved stimulatory 168 

index (Fig. 1b) and the restoration of glucokinase expression to control levels (Fig 1c). TUDCA 169 

also significantly decreased the expression of the pro-inflammatory cytokines Il-1β and Tnf-α 170 

(Fig 1d) and all the markers of ER stress investigated (Fig. 1e). Thus AngII causes beta cell 171 

dysfunction, ER stress and inflammation in mouse islets of Langerhans and these effects occur 172 

independently of AngII’s systemic vasoconstrictive effects. Moreover, as TUDCA counteracts 173 
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the effects of AngII it is likely that the deleterious effects of AngII treatment observed here are 174 

mediated through ER stress. 175 

 176 

ER stress precedes the induction of pro-inflammatory cytokines in AngII treated MIN6 cells 177 

and Islets of Langerhans.  We initially investigated the efficacy of using the pancreatic beta 178 

cell line MIN6 as a model to further investigate AngII-induced-ER stress and inflammation. 179 

MIN6 cells were treated with AngII or thapsigargin, a pharmacological inducer of ER stress, 180 

in the presence or absence of TUDCA (ESM Fig 1). As observed in islets, AngII treatment 181 

caused ER stress and an increase in the expression of Il-1β, which was inhibited by TUDCA. 182 

Thapsigargin also evoked a UPR and increased the expression of Il-1β.  183 

To investigate the temporal relationship between AngII-induced ER stress and the expression 184 

of pro-inflammatory cytokines, MIN6 cells were treated with AngII for up to 96 h and the 185 

induction of ER stress and the expression of Il-1β, Tnf-α and Mcp-1 were monitored. AngII 186 

rapidly induced ER stress (within 2 h) as determined by the phosphorylation status of: IRE1α, 187 

PERK, PERK’s substrate eIF2α, and an increase in the expression of BiP, ATF4 and CHOP 188 

and Xbp1s, (Fig. 2a and b). AngII increased the expression of thioredoxin interacting protein 189 

(TXNIP) (16) (Fig. 2b) at 6h and the expression of the pro-inflammatory cytokine Il-1β and 190 

Tnf-α mRNA by 6 h and 48 h respectively (Fig. 2c).  No changes in the expression of Mcp1 191 

were detected (Fig. 2c). AngII treatment of mouse islets caused an increased in the expression 192 

of Xbp1s, Atf4 and Chop which preceded an increase in the expression of Il-1β and Tnfα (Fig 193 

2d).  194 

Therefore, the occurrence of ER stress precedes an increase in the expression of the pro-195 

inflammatory cytokines providing evidence that AngII-induced ER stress may promote 196 

inflammation in beta cells.  197 
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 198 

The role of PERK and IRE1α in AngII-induced expression of the pro-inflammatory cytokines. 199 

To determine how ER stress increases the expression of the pro-inflammatory cytokines, we 200 

investigated the effect of a selective inhibitor of PERK (GSK2606414 (PERKi)) and siRNA 201 

mediated knock-down of Ire1α or Xbp1 on AngII-induced Il-1β expression. GSK2606414 202 

inhibited AngII-induced phosphorylation of eIF2α (Fig. 3a) and expression of ATF4, CHOP 203 

(Fig. 3a), Txnip (Fig. 3b) and importantly Il-1β (Fig. 3b). As anticipated siRNAs directed 204 

towards Ire1α or Xbp1 significantly reduced Xbp1s basal expression and AngII induced 205 

increases in Xbp1s expression (Fig. 3c). Importantly, siRNA-mediated knock-down of Ire1α 206 

or Xbp1 also inhibited AngII evoked increases in Txnip and Il-1β expression (Fig. 3d). These 207 

results provide evidence that both PERK and IRE1α are required for Ang II to induce a pro-208 

inflammatory response. 209 

 210 

Angiotensin-II induced ER stress is dependent upon both IP3R and NOX activation. AngII-211 

induced ER stress and inflammation is dependent on AT1R activation as irbesartan (IRB), an 212 

angiotensin 1 receptor (AT1R) antagonist, attenuated both AngII-induced ER stress and Il-1β 213 

expression (ESM Fig. 2). The AT1R classically couples to Gq/11 and activates NADPH 214 

oxidase (NOX) and phospholipase-C (PLC) resulting in an increase in IP3 and ROS (34,35). 215 

IP3 stimulates ER calcium release (34) and ROS has been shown to sensitise the IP3 receptor 216 

(IP3R) (36). As a decrease in ER calcium can induce ER stress (26) we investigated whether 217 

the effects of AngII were mediated by an IP3R-dependent mechanism. MIN6 cells were treated 218 

with AngII in the presence or absence of selective IP3 receptor antagonists, 2-219 

aminoethoxydiphenyl borate (2APB) and xestospongin-C (XestC). 2APB and Xest-C inhibited 220 

AngII-induced ER stress as determined by a significant decrease in eIF2α phosphorylation, as 221 
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well as the expression of ATF4 and CHOP (Fig. 4a). Therefore, AngII-induced ER stress 222 

requires IP3R activation indicating that AngII-induced ER stress is likely to be mediated by a 223 

decrease in ER calcium. However, for reasons which are unclear, at 6h treatment of cells with 224 

AngII in the presence of xestospongin-C potentiated AngII-induced eIF2α phosphorylation 225 

(Fig. 4a).  226 

To investigate the role of ROS, changes in superoxide production in MIN6 cells in response to 227 

AngII in the presence or absence of the AT1R antagonist irbesartan, and two selective 228 

inhibitors of NOX, apocyin and  diphenyleneiodonium (DPI) was determined (Fig. 4b). As 229 

anticipated AngII increased superoxide levels and this was inhibited by apocynin (at 10 and 230 

300 μM), DPI and irbesartan (Fig. 4b). Importantly, apocynin or DPI also inhibited AngII-231 

induced ER stress as determined by the phosphorylation of eIF2α and the expression of ATF4 232 

and CHOP (Fig. 4c). These data provide evidence that ROS is required for AngII-induced ER 233 

stress. Given that IP3R activation is also required, it is possible that ROS promotes ER stress 234 

by sensitizing the IP3R (36).  235 

High glucose potentiates AngII-induced ER stress. To investigated the effect of glucose 236 

concentration on AngII-induced ER stress. MIN6 cells were incubated at either low (5.5mM) 237 

glucose or high (25mM) glucose and the effect of AngII on ER stress determined. AngII 238 

treatment of MIN6 cells incubated at low glucose caused a significant increase in the 239 

expression of CHOP and ATF4 which marks the presence of ER stress. Interesting, incubation 240 

at high glucose (25mM) potentiated the effect of AngII on ER stress (ESM Fig 3a).  These 241 

experiments were repeated using isolated murine islets and similar results were obtained (ESM 242 

Fig 3b). Thus, high glucose potentiates the effects of AngII on ER stress. 243 

 244 
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Angiotensin II infusion of mice causes ER stress and an increase in the expression of pro-245 

inflammatory cytokines in pancreatic islets. To assess whether a chronic elevation in AngII 246 

caused ER stress in islets in vivo and whether this was important in the induction of pro-247 

inflammatory cytokines, mice were infused with AngII for 2 weeks with or without the co-248 

administration of TUDCA. Following AngII infusion, mice displayed a marked impairment of 249 

glucose tolerance (Fig. 5a, b) together with elevated levels of fasting plasma insulin (Fig. 5c), 250 

likely due to the known detrimental effects of AngII on insulin sensitivity (37). Interestingly, 251 

there was also evidence of beta cell dysfunction as determined by a decrease in the disposition 252 

index (Fig. 5d). The co-administration of TUDCA improved glucose tolerance, reduced plasma 253 

insulin levels (Fig. 5a and c) and rescued beta cell function (Fig. 5d). All these effects occurred 254 

independently of changes in body weight, adiposity, or a sustained increase in systolic blood 255 

pressure (SBP;ESM Fig 4). Importantly, islets isolated from these AngII infused animals 256 

showed signs of ER stress as evidenced by an increase in the expression of Xbp1s, Fkbp11, 257 

Ero1l, Edem, Atf4 and Chop and Txnip (Fig. 5e). Although no change in the expression of BiP, 258 

an adaptive marker of the UPR, was detected (Fig. 5e). Importantly, Il-1β and Tnf-α, expression 259 

were also augmented by AngII infusion (Fig. 5f). Interestingly, as observed in isolated islets, 260 

AngII caused an increase in Pdx1 and Glut2 expression but a decrease in glucokinase 261 

expression (Fig. 5g). The co-administration of TUDCA inhibited AngII-stimulated increase in 262 

the expression of markers of ER stress (Fig. 5e), the pro-inflammatory cytokines (Fig. 5f) and 263 

the markers of beta-cell function (Fig. 5g). Taken together, these data provide evidence that in 264 

vivo AngII causes ER stress and that this increases the production of pro-inflammatory 265 

cytokines in islets.  266 

To determine whether macrophages were present in islets isolated from AngII treated mice we 267 

looked for the presence of F4/80, a macrophage specific marker, by qPCR (ESM Fig. 5). 268 
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Although F4/80 mRNA was detected in islets its expression was unchanged by AngII indicating 269 

the macrophages are unlikely to be the source of the pro-inflammatory cytokines. 270 

    271 

Discussion 272 

This study provides strong evidence that AngII causes ER stress to beta cells/islets both in vitro 273 

and in vivo and that this results in a pro-inflammatory phenotype and beta cell dysfunction. In 274 

addition, we provide a novel insight into how AngII causes ER stress (Fig. 6). We show that at 275 

high glucose AngII, via AT1R activation, promotes IP3R activation and an increase in ROS. 276 

This, likely via a decrease in ER calcium, results in ER stress and an increase in the expression 277 

of pro-inflammatory cytokines mediated by the activation of PERK and IRE1α.  278 

Although inflammation and the UPR are protective responses, chronic inflammation and/or 279 

UPR activation is associated with the pathogenesis of many diseases including type-2 diabetes 280 

(23). Indeed chronic inflammation has been implicated in beta cell dysfunction in type-2 281 

diabetes and treatment with either anakinra, an IL-1 receptor antagonist, or anti IL-1β 282 

antibodies improves beta cell function, improves glycemic control and reduces inflammation 283 

(38–40).  Moreover, IL-1β antagonism protects against the deleterious effects of AngII on islet 284 

function in HFD fed mice (11). Thus inflammation is a key mediator of AngII-induced beta 285 

cell dysfunction (11). A role for ER stress in AngII-mediated inflammation has recently been 286 

shown in other cell types/tissues (41–43), yet the mechanism by which this occurs had not been 287 

fully explored.  288 

In this study we demonstrate that AngII-stimulated increase in pro-inflammatory cytokine 289 

expression in islets and beta cells is caused by ER stress as: 1) Il-1β and Tnf-α expression is 290 

inhibited by TUDCA; 2) Il-1β expression is inhibited by inhibition/reduced expression of 291 
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PERK and IRE1α/XBP1 ; 3) ER stress precedes an increase in the expression of Il-1β and Tnf-292 

α and; 4) thapsigargin increases the expression of Il-1β and Tnf-α. This ER stress-induced 293 

increase in cytokine expression may be mediated by TXNIP promoted by the activation of 294 

PERK and IRE1α as: 1) pharmacologically induced ER stress increases Il-1β mRNA 295 

expression through an increase in TXNIP expression, stimulated by the activation of PERK 296 

and IRE1 (16,44); 2)  AngII increases Txnip expression via a PERK- and IRE1α- dependent 297 

mechanism (Fig. 3) and; 3) Txnip precedes the expression of Tnf-α and Il-1β and is inhibited 298 

by TUDCA AngII induced ER stress is prevented by IP3R inhibition (Fig. 4). Intriguingly, 299 

inhibitors of NOX or the IP3R inhibit AngII-induced ER stress.As ER calcium depletion is 300 

known to cause ER stress (26,45–48) and ROS can potentiate IP3-dependent calcium release 301 

(36), ER calcium depletion is the likely cause of AngII-induced ER stress.  302 

We show that chronic AngII treatment causes a decrease in beta cell function both in vitro and 303 

in vivo as evaluated by a loss of GSIS caused by an increase in the release of insulin at a lower 304 

threshold of glucose (Fig. 1 and 5). Similar results have been observed in rodent and human 305 

islets chronically treated with AngII and in HFD fed mice infused with AngII (11). 306 

Interestingly, the loss of GSIS observed in this study was associated with decreased 307 

glucokinase expression (Fig. 1 and 6), a protein which sets the threshold for GSIS (49,50). As 308 

the expression of glucokinase and GLUT2 are positively related to the state of differentiation 309 

of the beta cells and their expression is stimulated by PDX1 (51–53), it is surprising that AngII 310 

increases Pdx1 and Glut2 expression both in vitro and in vivo (Fig. 1 and 6). However, we 311 

detected no change in PDX1 protein expression (results not shown). Thus the significance of 312 

these changes in mRNA expression are unclear.  313 

The components of the RAS system are expressed in islets and these are up-regulated in animal 314 

models of diabetes. Thus locally generated AngII rather than systemic AngII likely play an 315 



14 
 

important role in islet inflammation and ultimately beta cell dysfunction in type-2 diabetes 316 

(7,9,54). Interestingly, the AT1R antagonist losartan reduces high glucose induced ER stress 317 

and decreased beta cell function in human islets (55). Moreover, the administration of losartan 318 

to db/db mice improves islet function and mass, delays the onset of diabetes yet, has no effect 319 

on insulin sensitivity (7). Thus high glucose induced ER stress and beta cell dysfunction is, at 320 

least in part, mediated by AngII acting via the AT1R. Interestingly, we found that high glucose 321 

potentiated the effects of AngII on ER stress in MIN6 cells and murine islets. In addition, AngII 322 

exacerbates palmitate-induced ER stress in MIN6 cells (unpublished results). Therefore 323 

hyperglyceamia and/or obesity may potentiate the deleterious effect of increased local AngII 324 

on beta cell function by exacerbating ER stress.   325 

Together, these findings provide evidence that ER stress is a critical link between AngII and 326 

the induction of pro-inflammatory cytokines and that this may represent an initiating and/or 327 

early step in the development of beta cell dysfunction in type-2 diabetes.    328 

 329 
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 506 

Figure legends 507 

Figure 1. Angiotensin II evokes ER stress and impairs beta cell function in mouse islets 508 

of Langerhans. Mouse islets of Langerhans were treated with AngII (1μmol/l) (AngII) in the 509 

absence or presence of TUDCA (500 μg/ml) (AngII plus TUDCA = A+T) for 4 days prior to: 510 

(a) performing a GSIS assay to determine (b) the stimulatory index or (c-e) qPCR analyses of: 511 

(c) markers of beta cell function (glucokinase (Gk); Glut2 and Pdx1); (d) pro-inflammatory 512 

cytokines (Il-1β, Tnf-α, and Mcp-1);(e) markers of ER stress (BiP, Xbp1s, Ero1l, Fkbp11, 513 

Edem, Atf4, Chop,); The results are expressed as the mean +/- S.E.M of three independent 514 

experiments. * p<0.05, ** p<0.01 vs control; †† p<0.01 for the compared groups. 515 

 516 

Figure 2. ER stress precedes the expression of pro-inflammatory cytokines. MIN6 cells 517 

were treated for up to 96 h with 1μmol/l AngII. (a) Western-blot analysis of BiP, ATF4, CHOP 518 

and the phosphorylated form of IRE1α (p-IRE1), PERK (p-PERK) and eIF2α (p-eIF2α). 519 
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GAPDH was used as a loading control. Densitometric analyses of the results are presented 520 

below. qPCR analyses of: (b) markers of ER stress (Xbp1s, Chop, Tnxip) and; (c) pro-521 

inflammatory cytokines (Il-1β, Tnf-α and Mcp-1). (d) Mouse islets were treated for up to 42 h 522 

with 1μmol/l AngII. qPCR analyses of markers of ER stress (Xbp1s, Atf4, Chop, Tnxip) and 523 

pro-inflammatory cytokines (Il-1β and Tnf-α). The results are expressed as mean +/- S.E.M of 524 

four independent experiments. * p<0.05, ** p<0.01 vs control.  525 

 526 

Figure 3. Role of PERK and IRE1 in Angiotensin II induced expression of Il-1β. MIN6 527 

cells were treated with 1µmol/l AngII for 6 h in the presence or absence of vehicle (DMSO), 528 

0.5 μmol/l GSK2606414 (PERKi) (a) Western-blot analysis of BiP, ATF4, CHOP phospho-529 

IRE1α (p-IRE1α), phospho-PERK (p-PERK) and phospho-eIF2α (p-eIF2α). GAPDH was 530 

used as a loading control. Densitometric analyses of the results are presented below. (b) qPCR 531 

analyses of Txnip, Il-1β and Xbp1s. The results are expressed as mean +/- S.E.M of three 532 

independent experiments. * p<0.05, ** p<0.01 vs their control; ♦♦ p<0.01 vs the control group 533 

of siCon. MIN6 cells were transfected with control siRNA or siRNA against Ire or Xbp. 96 h 534 

post transfection cells were treated with 1µmol/l AngII for 6 h prior to qPCR analyses of (c) 535 

Xbp1s, Ire1α and (d) Txnip, and Il-1β. 536 

 537 

Figure 4. IP3R and NOX activation is required for angiotensin II induced ER stress. (a) 538 

MIN6 cells were treated with 1µmol/l AngII for 2 or 6 h in the presence of 2-539 

aminoethoxydiphenyl borate (2APB) or xestospongin-C (XestC) (10µmol/l). Western-blot 540 

analysis of BiP, ATF4, CHOP, phospho-IRE1α (p-IRE1α) and phospho-eIF2α (p-eIF2α). 541 

GAPDH was used as a loading control. Densitometric analyses of the results are presented 542 

below. The results are expressed as mean +/- S.E.M of three independent experiments. * 543 
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p<0.05, ** p<0.01 vs control; # p<0.05 for the compared groups. (b) MIN6 were treated with 544 

1µmol/l AngII for 6 h in the presence or absence of: 100 nmol/l irbesartan (IRB); 1 (+), 10 (++) 545 

or 300 μmol/l (+++) apocycin (Apo) or; 10 μmol/l diphenyleneiodonium (DPI). Superoxide 546 

levels were measured using L-012 enhanced chemiluminescence. The results are expressed as 547 

mean +/- S.E.M (NS (not significant)), ** p<0.01, * p<0.05; vs AngII treated and †† p<0.01 548 

vs control). (c) Representitive western-blot of BiP, ATF4, CHOP, phospho-IRE1and phospho-549 

eIF2α. GAPDH was used as a loading control. DPI and Apo used was 10 μmol/l.  550 

 551 

Figure 5. Angiotensin II infusion in mice causes beta cell dysfunction, ER stress and and 552 

increase in the expression of pro-inflammatory cytokines. C57BL/6J male mice were 553 

infused with AngII (at 416ng.kg-1.min-1) for 2 weeks. Where indicated TUDCA (150 mg.kg-554 

1.day-1) was also administered (Sham ( ), AngII ( ), AngII plus TUDCA (A+T) / ( )).(a) 555 

A GTT was conducted after 2 weeks of infusion and (b) the incremental area under the curve 556 

(iAUC) and (c) plasma insulin levels determined. (d) Disposition index is expressed as median 557 

+/- interquartile range. The results are expressed as mean +/- S.E.M. with eight mice per group 558 

unless otherwise stated. * p<0.05, ** p<0.01 vs sham; †† p<0.01 vs AngII. Pancreatic islets 559 

were then isolated and mRNA expression of:(e) markers of ER stress; (f) pro-inflammatory 560 

cytokines and; (g) genes related to beta cell function were determined by qPCR analysis. The 561 

results are expressed as mean +/- S.E.M. with four mice per group. * p<0.05, ** p<0.01 vs 562 

control; † p<0.05, †† p<0.01 for the compared groups.  563 

 564 

Figure 7. Schematic showing how angiotensin II causes inflammation in beta cells. AngII 565 

binds to the AT1R resulting in the activation of Gαq/PLCβ and NOX. This increases the 566 

production of ROS and IP3. ROS possibly sensitizes the IP3R for subsequent IP3-dependent 567 
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calcium release from the ER. This causes ER stress and the activation of the UPR, which 568 

promotes an increase in the expression of pro-inflammatory cytokines. 569 
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Figure 2 continued
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Figure 3 continued
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p-IRE1α (S724)

Figure 4 continued
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Figure 5 continued
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