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Abstract – We run numerical simulations of strongly confined suspensions of model spherical
swimmers called “squirmers”. Because of the confinement, the Stokeslet dipoles generated by the
particles are quickly screened and the far-field flow is dominated by the source dipole for all the
different kinds of squirmers. However, we show that the collective behavior of the suspension still
depends on the self-propelling mechanism of the swimmers as polar states can only be observed for
neutral squirmers. We demonstrate that the near-field hydrodynamic interactions play a crucial
role in the alignment of the orientation vectors of spherical particles. Moreover, we point out that
the enstrophy and the fluid fluctuations of an active suspension also depend on the nature of the
squirmers.

Copyright c© EPLA, 2016

Understanding the physics of “active matter” has
become a major preoccupation in statistical physics.
Self-propelling objects being fundamentally out-of-
equilibrium, they can exhibit various interesting collec-
tive behaviors: experimental works pointed out swarming
in systems of bacteria [1–6] or self-propelled droplets [7],
dynamic clustering [8,9] and phase separation of Janus
particles [10] or directional motion in suspensions of ro-
tating colloids [11], vibrated rods [12] and asymmetric
hard disks [13,14]. The onset of directional motion in
suspensions of swimmers has been intensively studied nu-
merically and theoretically to try to determine in what
kind of systems this collective behavior may be observed.
Many numerical simulations focused on a simple and well-
known model of swimmers called “squirmers” introduced
for the first time by Lighthill [15] and refined further by
Blake [16]. It was pointed out that the self-propelling
mechanism of these squirmers has a strong influence on
the collective dynamics and that only some specific kinds
of active particles can exhibit polar states [17–19]. These
results were explained by demonstrating that if the motion
of the swimmers generates Stokeslet dipoles, these singu-
larities will dominate the far-field hydrodynamic flow and
destabilize the polar state [20–23]. Yet when it comes
to strongly confined suspensions, the situation is quite
different: in that case, these singularities are screened

exponentially [24] and hydrodynamics interactions become
independent of the details of the self-propelling mecha-
nism, at least in the far-field approximation [22,23]. It
was thus predicted that the usual distinction between
the different kinds of squirmers (pushers, pullers, neutral
squirmers) should become irrelevant for strongly confined
suspensions [25]. However, this statement only holds if
we assume that the collective dynamics of a suspension is
mainly determined by the far-field hydrodynamic interac-
tions. In particular, we can wonder if the near-field inter-
actions do not play a significant role in the alignment of
the orientation vectors of the swimmers, which is essential
in the formation of polar states. To our knowledge, this
question has not been clearly answered yet for squirmers.

In this paper, we run periodic simulations of self-
propelled spherical particles with 2D orientations at a
constant density. The system is confined vertically by
two walls with no-slip boundary conditions. Our numeri-
cal simulations are based on the “smooth-profile” method
(SPM), which has been described in detail in previous
publications [26]. The key concept of this method is to
consider that the interface between the particles and the
fluid is not discrete but continuous, with a given thick-
ness. We define a continuous density function ψ(r, t) such
as ψ = 1 inside the particles, 0 < ψ < 1 inside the inter-
face and ψ = 0 in the fluid. If up(r, t) is the velocity of
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the particles, then the function ψup(r, t) is a continuous
velocity field for the particles over the whole system. The
following modified Navier-Stokes equation is then solved
assuming momentum conservation between the fluid and
the particles

⎧⎨
⎩
∂tv + (v · ∇)v = −∇p

ρ
+ η∇2v + (ψfp + fsq) ,

∇ · v = 0,
(1)

where v is the total fluid velocity given by
v = ψup + (1 − u) (u being the fluid velocity), p is
the pressure, η the kinematic viscosity and ρ the density
of the solvant. ψfp and fsq are the forces necessary to
enforce the particles rigidity and the required surface
slip velocities ur|r=a and uθ|r=a (given in the following
paragraph). Finally, eq. (1) is coupled to the under-
damped Newton-Euler equations for the center of mass
and the angular velocity of the rigid particles. The
self-propelling force thus originates from the interactions
between the particles and the fluid, when we enforce
the required slip velocities and assuming momentum
conservation. Our simulations are nondimensionalized so
that ρ = η = Δ = 1, Δ being the size of the integration
grid. Rotational and translational thermal fluctuations
can be added to these equations [27] even though most
of the results shown here were obtained for T = 0. Also,
we will focus here on rather dilute regimes (with packing
fractions φ generally close to 0.3, far from the jamming
threshold) so that the continuous nature of the interface
particle-fluid does not raise any controversy.

As for the particles, we are considering squirmers which
means that we enforce the following “squirming” slip ve-
locity conditions at the interface between the particles and
the fluid:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ur|r=a =
∞∑

n=1

AnPn (cos θ) r̂,

uθ|r=a =
∞∑

n=1

2
n(n+ 1)

Bn sin θP ′
n (cos θ) θ̂

(2)

with r̂ and θ̂ the radial and tangential unit vectors, θ
the angle of the orientation vector e, Pn the n-th order
Legendre polynomial and a the radius of the particles.
In our case, we will consider the simplest squirmer with
An = 0 for ∀n and Bn = 0 for ∀n > 2. The slip velocity
is thus purely tangential:

uθ|r=a = B1 sin θ (1 + α cos θ) θ̂, (3)

where α = B2/B1 is the ratio between the amplitude
of the first two squirming modes. It was shown ana-
lytically [28,29] and numerically [30] that the swimming
velocity of a squirmer is entirely determined by B1 in
Newtonian fluids. α, on the other hand, characterizes the
self-propelling mechanism of the squirmer: if α > 0, the
particle is a “puller”, if α < 0 it is a “pusher” and if α = 0,

Fig. 1: (Color online) Velocity of the flow field u generated by
three different kinds of squirmers with respect to the distance
r/a. (a) No confinement. (b) Two no-slip walls separated by
h = 5.2 a. The dashed and dotted black lines correspond to
r−2 and r−3, respectively.

it is a “neutral squirmer”. The velocity field generated by
such swimmers can be calculated analytically [16] and the
agreement between the numerical streamlines and the an-
alytical ones is very good, thus validating our method [31].
In the bulk, the far-field velocity field generated by pushers
and pullers is dominated by the Stokeslet dipole singular-
ity and decays like r−2, whereas it is dominated by the
source dipole singularity for neutral squirmers and decays
like r−3 (see fig. 1(a)).

The orientation vector of the squirmers e was kept two-
dimensional here, with ez(t) = 0 for ∀t. This would corre-
spond to experimental systems like Janus particles moving
by self-induced electrophoresis, which are subjected to a
torque preventing e to go out of the xy plane [32]. To pre-
vent overlap, the particles also interact through a soft-core
repulsive core potential (truncated Lennard-Jones). A lot
of actual experiments on swimmers involve monolayers
of particles or bacteria moving in quasi–two-dimensional
systems. To take into account the influence of the fluid
confinement, we added to the simulations two walls with
no-slip boundary conditions such as u (z = ±h/2) = 0
with h the system height. In this paper, h was kept con-
stant at h = 5.2 a. Under such a strong confinement,
the Stokeslet dipole singularities are screened exponen-
tially [24] and the source dipole becomes dominant in the
far-field for all squirmers. Thus, the far-field flow decays
like r−2 independently of the self-propelling mechanism as
can be seen in fig. 1(b) so that the hydrodynamic far-field
interactions become generic.

Figure 2 shows snapshots of suspensions of 60 squirm-
ers with α = −5, 0 and 5 after thousands of time steps,
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Fig. 2: (Color online) Simulations of 60 squirmers starting from
random positions and orientations at T = 0. The packing frac-
tion is φ ≈ 0.29 and the Reynolds number 8 × 10−3. (a) and
(b): pushers with α = −5; (c) and (d): neutral squirmers;
(e) and (f): pullers with α = 5. Left column: snapshots of
the suspensions after 2 millions of time steps [33]. The arrows
correspond to the orientation vectors of the particles and the
colors to their angle θ. Right column: probability density func-
tion P (θi, θf ), where θi and θf are the relative angles between
two squirmers before and after they interact through near-field
interactions, respectively. We measured θi and θf when the
distance between the two particles crosses a given threshold
‖rij‖ = 2.6a. The colors correspond to the probability of the
pair (θi, θf ) such that

∫∫
P (θi, θf ) dθidθf = 1. The angles

were measured during the entire simulation (starting t = 0).

initially starting from random positions and orientations.
One can immediately notice the onset of directional mo-
tion in the system of neutral squirmers (fig. 2(b): over
time, particles align their orientation vectors, which is
clearly shown in fig. 3 by the regular increase of the system
order parameter 〈e(t)〉 = ‖ ∑N

i ei(t)‖/N that eventually
reaches 1. On the other hand, the suspensions of strong
pullers or pushers shown in fig. 3 never exhibit directional
motion and their order parameter fluctuates around 0 at
all times for high values of |α|, even at zero temperature.
The existence of globally aligned states in confined active
suspensions has been predicted and observed numerically

Fig. 3: (Color online) Time evolution of the order parameter
〈e〉 in suspensions of 60 squirmers for different values of α, tem-
peratures and interaction forces. t is the number of time steps.
The squirmers start from random positions and orientations,
the Reynolds number is 8 × 10−3 and the packing fraction is
φ ≈ 0.29. The gray circles and red empty circles show the in-
fluence of thermal fluctuations and of the additional repulsive
force given by eq. (4) on the collective behavior in systems of
neutral squirmers.

in simulations where the flow field is calculated using
purely two-dimensional far-field approximations [25,34].
In that context, it was claimed that the distinction be-
tween the different types of squirmers should be irrelevant
as they all generate similar far-field flows, as shown in
fig. 1(b). But in our simulations, the collective behavior
of the suspension still clearly depends on the value of α.
We can draw two conclusions from here: first, the dis-
tinction between squirmers with different self-propelling
mechanisms does not systematically become irrelevant un-
der rigid confinement as only the neutral squirmers exhibit
polarized states. Second, it seems that the collective be-
havior of an active suspension cannot always be predicted
using only far-field approximation.

Our second conclusion suggests that the near-field
hydrodynamic interactions also need to be taken into
account. In order to understand their role, we ran
simulations with an additional repulsive short-range force

F (rij) =

⎧⎪⎨
⎪⎩

[
U

λ
exp

(−rij
λ

)
+ c

]
r̂ij , if rij ≤ 4a,

0, if rij > 4a
(4)

with c a constant such that F (4a) = 0 and λ = 2a the
characteristic length of the force. U and λ are tuned so
that F (rij) prevents the particles from being too close
but remains small enough so that there is no jamming
at this packing fraction. As F (rij) has a cutoff equal
to 4a, the far-field interactions between squirmers remain
purely hydrodynamic and are exactly identical as in our
previous simulations. Moreover, it has no direct effect
on the relative alignment of the squirmers as it does not
induce any torque. Figure 3 shows that with this addi-
tional force, the order parameter 〈e(t)〉 fluctuates around
zero during the whole simulation. Therefore, without
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near-field hydrodynamic interactions, directional motion
cannot be observed anymore, which confirms that they
play a crucial role in the collective behavior of confined
active suspensions.

Ishikawa et al. [28] found analytical expressions for the
force and torque between squirmers in the near-field ap-
proximation (in the absence of confinement but here we
assume that the confinement will not modify the interac-
tions at very small distances). The structure of the torque
map appears quite different between pullers or pushers
and neutral squirmers [31]. Moreover, the amplitude of
the torque increases with |α|. In order to see how this
can influence the alignment between squirmers, we plot-
ted the relative angle between the orientation vectors of
two particles, before and after they interact at near-field
distances (fig. 2, right column). This plot can be viewed
as some kind of “collision rules” [35], even if in our case
a collision is not strictly defined and we have to choose
an arbitrary distance to delimit this event. In the case of
neutral squirmers, we can see that a lot of data points col-
lapse on the straight line of slope 1 which means that many
near-field interactions are ineffective with respect to the
relative angle. However, one also has to note the presence
of a red rectangle in the middle of the plot showing that
for small θi, we get almost all the time |θf | ≤ |θi|. This
means that an effective alignment is induced by the near-
field interactions at small angles. For pushers or pullers,
on the other hand, the near-field interactions have a much
more complicated effect on the relative orientations and
the same initial θi can lead to very different θf , even at
T = 0. In particular, it is frequent to get |θf | ≥ |θi| even
for low values of θi, which corresponds to dis-aligning in-
teractions. Note that this is particularly visible in the case
of the pullers. One way to quantify the overall alignment
induced by the near-field interactions is to compute the
alignment integral defined as [35]

〈ΔA〉 = | cos (θi/2)| − | cos (θf/2)|, (5)

where the bracket 〈. . .〉 is an average over all the possi-
ble collisions. Using the data of fig. 2(b), (d) and (f),
we found 〈ΔA〉 ≈ 0.017, 0.028 and 0.005 for α = −5, 0
and 5, respectively. We thus have the confirmation that
the effective alignment decreases when |α| increases.

Another notable difference between the squirmers is the
strength of the far-field flow they generate. As we can see
in fig. 1(b), even if the far-field flow decays in the same
way for all swimmers, |u(r)| still increases with |α|. In
order to quantify the disorder in hydrodynamic interac-
tions for several suspensions, we calculated the averaged
enstrophy 〈(∇ × u)2〉 for several suspensions. Figure 4(a)
shows that the enstrophy clearly increases with |α|. It is
then logical to assume that the fluid fluctuations should
also increase with respect to this parameter, which is con-
firmed by the numerical measurements of the effective dif-
fusion coefficient of the particles [30] shown in fig. 4(b).
As a consequence, increasing |α| is equivalent to increas-
ing the strength of the orientational noise which is known

Fig. 4: (Color online) (a) Enstrophy and (b) effective diffusion
coefficient with respect to α in suspensions of squirmers at
T = 0 for two different packing fractions. The values of D̃T

are obtained by calculating the mean-square displacement of
the particles. At long times, we have 〈Δr2〉 ∝ D̃T t so that we
can extract the effective diffusion coefficients. The two plots
have been normalized by |∇ × u|2(α = 0) = 5.5 × 10−6 and
D̃T (α = 0) = 8.1 × 10−2, respectively.

to prevent the onset of directional motion. Note that a
systematic asymmetry between pullers and pushers can
once again be observed.

Recent numerical and theoretical studies have proved
that the onset of directional motion strongly depends on
how much particles align their orientations during binary
collisions. Hanke and collaborators showed that collision
rules generating a weak relative alignment were enough
to induce a polarized state for similar packing fractions at
low noise [35]. Simulations of active hard disks highlighted
that the details of the scattering map do not matter as long
as an effective alignment takes place for low angular sepa-
ration collisions [36]. Figure 2(d) clearly shows that there
is such a relative alignment at small angles for neutral
swimmers. When |α| increases, however, the alignment
becomes weaker as shown by the decrease of the align-
ment integral 〈ΔA〉 and the strength of the orientational
noise increases simultaneously as shown by the increase of
the effective diffusion coefficient. We believe that these
two phenomena explain why directional motion cannot be
observed in suspensions of strong pushers or pullers. Even
if we report here simulations of small systems, we believe
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the eventual finite-size effects will not change qualitatively
these conclusions as the suspensions are big enough to see
the influence of the confinement on the far-field hydrody-
namic flow field (see fig. 1(b)).

In summary, we have shown that in confined geome-
tries, the collective behavior of an active suspension still
strongly depends on the self-propelling mechanism of the
swimmers. Despite the fact that pushers, neutral squirm-
ers and pullers generate similar far-field hydrodynamic
fields in thin suspensions, stable polar states were only
observed for small values of α. Our results suggest that
collective behaviors cannot be predicted only by using
far-field approximations of the flow field. In particular,
one also has to look at the scattering map induced by
the combination of near-field hydrodynamic forces and
steric interactions. For squirmers, we demonstrated that
an effective alignment exist for collisions at small rela-
tive angles. When the parameter |α| increases, the re-
duction of this effective alignment coupled to the increase
of the amplitude of the fluid fluctuations make the polar
states unstable. We believe our results help us understand
why there are so few experimental observations of direc-
tional motion in active suspensions: even if these ones
are strongly confined, the formation of polar states is still
strongly dependent on the nature of the mutual near-field
interactions, which will be a function of the self-propelling
mechanism of the swimmers. To our knowledge, many ar-
tificial swimmers used in experiments like Janus particles
can be considered as pushers or pullers, for which we have
seen that this effective alignment was quite weak.
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