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Inhibitory loop robustly induces anticipated synchronization in neuronal microcircuits
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We investigate the synchronization properties between two excitatory coupled neurons in the presence of
an inhibitory loop mediated by an interneuron. Dynamic inhibition together with noise independently applied
to each neuron provide phase diversity in the dynamics of the neuronal motif. We show that the interplay
between the coupling strengths and the external noise controls the phase relations between the neurons in
a counterintuitive way. For a master-slave configuration (unidirectional coupling) we find that the slave can
anticipate the master, on average, if the slave is subject to the inhibitory feedback. In this nonusual regime, called
anticipated synchronization (AS), the phase of the postsynaptic neuron is advanced with respect to that of the
presynaptic neuron. We also show that the AS regime survives even in the presence of unbalanced bidirectional
excitatory coupling. Moreover, for the symmetric mutually coupled situation, the neuron that is subject to the
inhibitory loop leads in phase.
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I. INTRODUCTION

Neuronal synchronization is a common feature of nervous
systems [1]. According to the principle of communication
through coherence [2], the phase difference between sender
and receiver circuits influences the effectiveness of the infor-
mation transmission [3,4]. Recent studies showing nonzero
phase lag between synchronized areas in the brain [5–10]
have sparked interest in the potential function of phase
diversity [11]. In electrical brain signals, the phase was usually
associated with delays in axonal transmission and synaptic
effects [12–16]. However, modeling studies have shown that
the phase difference can be determined, among other things,
by a local inhibitory loop at the receiving end [17,18], a
mechanism that could explain unexpected negative phase lags
found in neuronal data [18–20].

The counterintuitive kind of synchronization in which a
unidirectionally coupled system exhibits negative phase lag is
called anticipated synchronization (AS) [21]. AS, as proposed
by Voss [21], was originally defined between two identical
autonomous dynamical systems coupled in a unidirectional
(“master-slave”) configuration in the presence of a negative
delayed feedback. Such a system is described by the following
equations:

ṁ = f[m(t)],
(1)

ṡ = f[s(t)] + K[m(t) − s(t − td )].

m and s ∈ Rn are dynamical variables representing, respec-
tively, the master and the slave systems, f is a vector function
that defines each autonomous dynamical system, K is a cou-
pling matrix, and td > 0 is the delay in the slave’s negative self-
feedback. In such a system, s(t) = m(t + td ) is a solution of
the system, which can be easily verified by direct substitution
in Eq. (1). The striking aspect of this solution is its meaning:
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the state of the receiver system s anticipates the sender’s state
m. In other words, the slave predicts the master behavior.

After several theoretical [22–30] and experimental [31–37]
works in physical systems, a reasonable question was whether
AS could occur in natural (not manmade) systems. The
first verification of AS in a neuronal model was done by
Ciszak et al. [38] using two unidirectionally and electrically
coupled FitzHugh-Nagumo neuron models in the presence of a
negative delayed self-feedback in the slave. Though potentially
interesting for neuroscience, it is not trivial to compare these
theoretical results with real neuronal data. It is not evident
how (or whether) the delayed inhibitory self-coupling of the
slave membrane potential employed by Ciszak et al. [32,38,39]
could be implemented by the brain.

Recently, AS was found in more realistic neuronal models
such as nonidentical chaotic neurons [40], map-based neurons
with a memory term [41], and two Hodgkin-Huxley neurons
with different depolarization parameters [42]. In particular, it
has been shown that periodically spiking neurons can show AS
within a plausible biological scenario, in which the delayed
self-feedback of Eq. (1) was replaced by an inhibitory loop
mediated by chemical synapses [17]. Those results were
later extended to assess the effects of spike-timing-dependent
plasticity [43]. Furthermore, AS mediated by inhibition has
also been found in a model of neuronal populations, which
can explain coherent oscillations with the negative phase-lag
observed between areas of the monkey cortex [18].

Here we study the phase diversity induced by anticipated
synchronization due to dynamical inhibition and noise in a
neuronal motif described by the Hodgkin-Huxley equations,
which is introduced in Sec. II. In Sec. III we present our results,
showing that in a more realistic scenario where neurons are
subject to independent noise realizations, the anticipation does
not occur for every spike, but it survives on average. Moreover,
we find that the mean spike-timing difference between master
and slave neurons (see Fig. 1) is a continuous function of
inhibitory conductance, which controls the phase diversity.
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FIG. 1. Neuronal motif: master-slave-interneuron (MSI). Each
node represents a neuron described by the Hodgkin-Huxley model
connected to other neurons by chemical synapses. The important
parameters to determine the mean spike-timing difference τ between
M and S are the synaptic conductances gxy (where x,y = M,S,I
indicate the presynaptic and the postsynaptic neurons, respectively).
Each neuron is subject to an independent Poisson spike train.

We also show that AS is robust in the presence of an excitatory
feedback from the slave to the master. Finally, in Sec. IV
we present our conclusions and briefly discuss the potential
significance of our results for neuronal circuits.

II. MODEL

The results obtained in Ref. [17] are important as a first step
toward the demonstration that AS can indeed occur in neuronal
circuits. However, the assumptions of strict unidirectionality
and the absence of noise call into question the robustness
of the results. In this paper, we study new configurations
and assume stochastic input currents to verify whether AS
holds in a more realistic environment. In our scheme, sketched
in Fig. 1, the two excitatory neurons, master (M) and slave
(S), are bidirectionally connected via excitatory chemical
synapses (with synaptic conductance gMS and gSM). The
slave neuron feeds an interneuron I with conductance gSI.
The interneuron feeds S back with an inhibitory chemical
synapse with conductance gIS. The three neurons M, S, and
I are subject to an independent Poisson spike train. This
kind of configuration is found in several circuits, including
the spinal cord [44], the thalamus [45,46], the olfactory
system [47,48], and the motor circuits for self-regulation [49].
It was also proposed in hybrid experiments with real and
simulated neurons [50]. In particular, this motif is one of the
most overrepresented three-neuron motifs of the C. elegans
connectome [51]. We will refer to this circuit as the MSI motif.
Each neuron here is modeled by the Hodgkin-Huxley (HH)
equations [52,53], whereas chemical synapses are modeled
with standard first-order kinetic equations [54]. Details of the
model are described in the Appendix.

In the HH model, the external constant current Ic determines
the activity of the neuron when all other currents are zero [55].
For the chosen parameters and Ic � 177.13 pA, the neuron
is in a stable fixed point. For 177.13 pA � Ic � 276.51 pA,
the stable fixed point coexists with a stable limit cycle. For
Ic � 276.51 pA, the fixed point loses stability (via a subcritical
Hopf bifurcation) and the neuron spikes periodically with a
frequency that increases slightly with Ic. Unless otherwise
stated, each neuron is in the excitable regime subject to an
external constant current Ic = 170 pA and to an independent
noisy spike train described by a Poisson distribution with rate
R (see the Appendix for details).
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FIG. 2. Membrane potential of the neurons in the presence of
noise. (a) Time series of the master neuron receiving both a constant
external current Ic = 170 pA and an excitatory input, obeying the
Poisson statistic shown on top, mediated by chemical synapses with
neurotransmitter concentration [T ]. (b)–(d) Time traces of the slave
neuron for different values of the inhibitory conductance gIS. As we
increase the inhibition, the order between M and S spikes changes
from pre-post (MS) to post-pre (SM): (b) gIS = 10 nS (DS), (c) gIS =
40 nS (AS), (d) gIS = 60 nS (AS). (e) Time series of M and S neurons
with lower frequencies, modeled by the modified Hodgkin-Huxley
equations described in the Appendix with gMS = 50 nS and gIS =
150 nS. Note that to represent all data in the same scale, we have
added +55 mV to the membrane potential in the modified model (see
the Appendix for details).

An example of the evolution of the neuronal membrane
potential for an external current Ic = 170 pA and a Poisson
input with rate R = 63 Hz is shown in Fig. 2(a). The neu-
rotransmitter concentration [T ] is represented by the Poisson
train at the top of panel (a). Note that the noise effectively puts
the neuron in the bistable regime. Time series for the master
and slave neurons are shown in Figs. 2(b)–2(d) for different
gIS. The S and I neurons also receive different, independent
realizations of the Poisson train, with the same rate, which
are not shown. As can be seen, inhibition affects the time
difference between the spikes of the master and the slave
in each cycle. To probe the generality of the phenomenon
at lower frequencies, we used a modified version of the
Hodgkin-Huxley model that contains an extra delayed-rectifier
slow K+ current (see the Appendix for details). As is shown
in Fig. 2(e), AS is also observed for these slower pulsating
neurons. In the following, and without loss of generality, we
concentrate on the standard Hodgkin-Huxley model.

III. RESULTS

A. The inhibitory loop entails a counterintuitive average
spike-timing difference

Contrary to the system described by Eq. (1), when we
replace the self-feedback loop by a dynamical inhibition,
the spike-timing difference between the master and the
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FIG. 3. Characterization of the delayed synchronization regime
(DS) and the anticipated synchronization regime (AS). Left panels:
gIS = 10 nS (DS, τ > 0), middle panels: gIS = 40 nS (AS, τ < 0),
right panels: modified Hodgkin-Huxley model (AS, τ < 0, gMS =
50 nS and gIS = 150 nS). (a)–(c) The spike-timing differences (τn−1

and τn) between a spike of the master neuron and a spike of the slave
neuron in two consecutive periods. (d)–(f) τn as a function of the
cycle number n. (g)–(i) Return map τn vs τn−1.

slave neurons is not hardwired anymore. It emerges as a
property of the system dynamics, depending on the synap-
tic parameters [17]. We define the spike-timing difference
τn between the M and S neuron in each cycle as the
difference

τn ≡ tS
n − tM

n , (2)

where tM
n and tS

n are the closest spike times (defined by a peak
in the membrane potential) of the M and S neurons in each
cycle (Fig. 3). The spike-timing difference is calculated only
if the M neuron produces a spike. Since we expect τn to be
different in each period, we define the average spike-timing τ

as the mean value of τn, and we represent its standard error
of the mean as error bars. Initial conditions were randomly
chosen. We compute τ and its standard error of the mean over
40 s of the time trace. A transient time is always discarded in
the simulations.

From our definition, if τn > 0 the M neuron fires a spike
before the S neuron in a given cycle. As an example, we
show in Fig. 2(b) time series for M and S neurons, subject
to an independent noise input and synaptic conductances
gSM = 0 and gMS = gSI = gIS = 10 nS. In this example,
the M neuron (blue) fires before the S neuron (red) in all
cycles shown. Despite the variations in the values of τn, the
average spike-timing characterizing this situation is positive:
τ > 0.

When the M neuron lags behind the S neuron, we have
τn < 0. For example, for the neuronal activity shown in
Fig. 2(c) with the parameters gSM = 0, gMS = gSI = 10 nS,
and gIS = 40 nS, the S neuron anticipates the M neuron in at
least 12 cycles. In this example, the average spike-timing is
negative (τ < 0) even though there are some positive values of
τn (see the first cycle, for example). A similar behavior is found
for larger inhibition, for example, with gIS = 60 nS as shown
in Fig. 2(d). Therefore, the sign of the spike-timing difference

τ determines the neuron that leads the dynamics in each cycle,
or, in other words, the sign of the relative phase locking. When
τ > 0, the activity of M leads that of S, on average. On the
other hand, if τ < 0, the S neuron leads the M neuron. For
unidirectional coupling (gSM = 0 in Fig. 1), only the M neuron
sends information to the S neuron, and the nomenclature
master-slave is justified. The master neuron is the sender and
the slave neuron is the receiver. In this situation, we use the
term delayed synchronization (DS) to describe the regime
in which the master leads the slave [τ > 0, Fig. 2(b)], and
we use the term anticipated synchronization (AS) to describe
the counterintuitive situation in which the slave anticipates or
“predicts” the activity of the master [τ < 0, Figs. 2(c) and
2(d)]. This means that the neuron that sends the information
lags behind the neuron that receives the information. Naturally,
because the system is in a phase-locked regime, and because
there is no violation of causality nor any real anticipation, the
slave’s dynamics in any cycle is influenced by the master’s
dynamics in the preceding cycle(s).

Another useful way to characterize the synchronization
regime is to plot τn in each cycle (Fig. 3). As we increase
gIS, the standard error of the mean of τ also increases, but the
average value decreases, reaching negative values. The return
map of the spike-timing difference can also be employed to
visualize the AS and DS regimes. In the τn versus τn−1 plane,
a larger concentration of points in the first quadrant indicates
a DS regime, whereas a denser region in the third quadrant
indicates an AS regime.

The average spike-timing difference is a smooth function of
the inhibitory conductance [Fig. 4(a)]. As we increase gIS, the
system undergoes a continuous transition from DS to AS. Since
the HH model exhibits a Hopf bifurcation, one question that
arises is whether the existence of the AS regime depends on
the applied constant current. The answer is that for sufficiently
intense noise, ensuring that the master neuron can fire few
consecutive spikes before returning to the silent state, there
is always a transition from DS to AS. In Fig. 4(a) we plot
τ as a function of gIS for Ic = 170 and 280 pA. Results are
qualitatively similar for intermediate values of Ic. Small values
of Ic yield large average spiking-time differences (for both
anticipation and delay). For sufficiently large Ic, a second
transition from AS to DS for gIS > 90 nS exists. The error
bars represent the standard deviation σ .

In Figs. 4(b) and 4(c), we investigate the role of the external
noise in a systematic way. We show how the spike-timing
difference changes with both the conductance of the external
synapses gext and the Poissonian rate R. We plot τ versus
gext for gIS = 50 nS and R = 33, 45, 63, and 75 Hz. For
Ic = 170 pA [below the Hopf bifurcation, Fig. 4(b)], the noise
is necessary for the neurons to fire, whereas for Ic = 280 pA
[beyond the Hopf bifurcation, Fig. 4(c)] the noise acts as a
perturbation. In both cases, the anticipation time increases
with R and decreases with gext. The error bars represent the
standard error of the mean (SEM).

Finally, in order to assess to which extent different noise
sources affect the spread in the spike-timing difference,
we also performed simulations with identical Poisson trains
impinging on the M and S neurons. The results are very
similar to those shown in Fig. 4(a), only with slightly smaller
variance.
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FIG. 4. Comparison of the effects of the inhibition in two different
situations: when neurons are in the excitable regime (Ic = 170 pA)
and when neurons are tonically spiking (Ic = 280 pA). (a) The spike-
timing difference τ is a smooth function of the inhibitory conductance
gIS, which controls the transition from DS to AS (with gext = 2.0
nS and R = 63 Hz). Points are the mean τ and error bars are the
standard deviation. The standard error of the mean is comparable to
the size of the symbols. (b) and (c) τ as a function of the conductance
of the external synapses gext for different Poissonian rates R and
gIS = 50 nS. In the excitable regime, if R or gext is too small, the
master does not fire a spike. The error bars are the standard error of
the mean.

B. Phase relation diversity is modulated by inhibition

Phase relations are considered to play an important role
in fast neuronal mechanisms that underlie cognitive functions
[11]. For a given frequency band, synchronization is defined as
a consistent phase relation between given pairs of neurons (in
these cases, the relative phase is mapped to the spike-timing
difference). Nonzero-lag phase differences have been reported
in different experiments between individual neurons [3,6,7,56]
and between local field potentials measured in different
electrodes [3,5,6]. In most of them, the phase relation exhibits
diversity, which, as we show in Fig. 5, our simple motif model
can reproduce.

In the uncoupled situation (gMS = gSM = 0), the master
and the slave-interneuron systems oscillate with similar mean
firing rates due to the external input. However, the distribution
of spike-timing difference between the master and the slave is
almost uniform [Fig. 5(a)], which means that there is neither
consistency in the phase relation nor synchronization between
the neurons. On the other hand, the MSI motif (gMS �= 0)
exhibits a richer histogram. For weak inhibition, when the
neurons fire in the DS regime, there is a sharp unimodal
distribution [Fig. 5(b)] at positive τn values. For stronger
inhibition, in the AS regime, the distribution exhibits two
peaks: one close to the average spike-timing difference and
a smaller one close to the characteristic time of the excitatory
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FIG. 5. Phase diversity for a unidirectional excitatory synapse
between master and slave. Histogram of the spike-timing difference
between M and S in the uncoupled situation [gMS = 0, (a) and (c)]
and in the MSI motif [gMS = 10 nS, (b) and (d)] for two different
inhibitory conductances gIS = 10 nS [(a) and (b)] and gIS = 40 nS
[(c) and (d)]. The dashed lines in (b) (DS) and in (d) (AS) indicate
that the mean of these distributions is not zero. On the contrary, the
distributions have an almost zero mean in panels (a) and (c).

synapse [Fig. 5(d)]. Despite the large standard deviation,
this histogram is clearly different from the one for the
uncoupled case [Fig. 5(c)]. We observed that inhibition alone
cannot account for the spike-timing difference [Fig. 5(c)],
which depends rather on the interplay between excitation and
inhibition impinging on the slave neuron.

C. The excitatory neuron participating in the inhibitory loop
leads the other

For the sake of simplicity, we will maintain the terminology
master-slave even in the presence of an excitatory feedback
from the slave to the master (gSM �= 0, i.e., for mutual
coupling). However, in this situation one should be careful
in the determination of the synchronization regimes. DS
refers to the regime in which the sender leads the receiver,
whereas AS refers to the regime in which the receiver leads
the sender. If gMS > gSM, the master neuron is the sender
(as in our unidirectional situation). However, if gSM > gMS,
the slave neuron is the sender. Our aim is to understand
how the system behaves as it changes from the unidirec-
tional coupling to the completely symmetrical bidirectional
coupling.

Motivated by the existence of plenty of excitatory neurons
that are bidirectionally connected in the brain [57], we analyze
the phase effects by increasing, from zero, the synaptic
conductance gSM in Fig. 1. When the system starts in the
AS regime for gSM = 0, increasing the excitatory feedback
gSM does not change the sign of τ (the spike-timing difference
remains negative, Fig. 6). This means that S leads M despite
the excitatory feedback. For gSM � gMS this is not surprising,
since S becomes the effective sender in the microcircuit,
whereas M becomes the receiver.

Perhaps less intuitive is the situation in which the system
is in the DS regime in the absence of excitatory feedback
(gIS = 10 nS in Fig. 6). Increasing gSM, a transition from
DS to AS occurs even for gSM < gMS. The transition can be
understood as a change of dominance between two competing
mechanisms. On one extreme, if two identical neurons are
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function of gSM. In both plots, gMS = 10 nS.

unidirectionally connected, phase locking occurs with τ > 0
[58]. On the other extreme, if excitatory neurons with different
natural frequencies are mutually connected, the neuron with
the largest natural frequency is the leader in a phase-locking
regime, as can be demonstrated by a simple model of two phase
oscillators [59]. Increasing gSM from zero provides a transition
between these two extremes, because in the AS regime the SI
subsystem has a higher natural frequency than M (as we have
checked numerically). In our case, the feedback inhibition
in the slave neuron facilitates the slave-interneuron circuit
to fire faster than the master in the uncoupled situation. For
instance, for the parameters used in Fig. 5(c) (uncoupled case,
gIS = 40 nS), the master neuron fires with f = 63.65 Hz while
the slave-interneuron fires with f = 66.67 Hz. We believe
this mechanism is responsible for the AS phenomenon in
different situations. Our conclusion goes in the same direction
as that presented by Hayashi and co-workers [60] when
analyzing systems described by Eq. (1). Additionally, it is
worth noting that when gSM is increased in the presence of
noise, the spike-timing distribution becomes sharper (Fig. 6,
inset).

In Fig. 7, we display two-dimensional projections of
different phase diagrams of our model for Ic = 170 pA.
We employ the standard values described in Secs. II and A
except for gMS, gSM, and gIS. The spike-timing difference τ is
color-coded as defined by the right bar. Negative values of τ

(red) represent regions in which the slave neuron is the leader,
whereas τ > 0 (blue) represents the master leadership.

In Fig. 7(a), gMS and gIS are varied along the vertical and
the horizontal axis, respectively. Since gSM = 0, negative τ

also accounts for AS, whereas positive τ means DS. The
two different regimes are distributed in large continuous
regions, with a clear transition between them. Furthermore,
the transition from the DS to the AS regimes can be well
approximated by the linear relation gMS/gIS � 0.3. Note that
the curve represented by circles in Fig. 4 corresponds to the
horizontal cut at gMS = 10 nS in Fig. 7(a).
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FIG. 7. Dependence of the spike-timing difference with the
synaptic conductances. τ is color-coded by the right bar in the
(gIS,gMS) projection of parameter space for (a) gSM = 0 and (b)
gSM = 4 nS. (c) τ in the (gSM,gMS) projection for gIS = 10 nS. Dashed
lines at gMS = 10 nS in (a) and (c) correspond, respectively, to the
curve for Ic = 170 pA in Fig. 4 and to the black curve in Fig. 6.

If gMS = 0 and gSM �= 0, the S neuron is the sender and also
the leader, which characterizes the usual DS regime but with
the unidirectional connection from the slave to the master. In
particular, S is the sender and the leader if gSM > gMS and
gIS = 0. This means that the excitatory synapse from S to
M facilitates the leadership of S. In fact, the presence of the
excitatory feedback enlarges the region of τ < 0 [compare
Fig. 7(b), which has gSM = 4 nS, with Fig. 7(a)]. For small
inhibition, M is the leader if gMS � gSM, whereas S is the
leader if gMS � gSM. In Fig. 7(c), we show the spike-timing
difference τ in the (gSM,gMS) projection of parameter space for
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gIS = 10 nS. Note that the black curve in Fig. 6 corresponds
to the dashed line at gMS = 10 nS in Fig. 7(c).

IV. CONCLUDING REMARKS

To summarize, we have probed the robustness of the
phenomenon of anticipated synchronization in a simple
master-slave-interneuron motif of chemically connected
neurons. In the presence of noise independently applied to
the neurons, the spike-timing difference between master and
slave neurons τn was shown to have a well-defined mean τ .
We have shown that τ undergoes a transition from positive
to negative values as a function of the inhibitory synaptic
conductance gIS, corresponding to a transition between
delayed and anticipated synchronization.

Importantly, the distribution of spike-timing difference
shows that, regardless of whether the system has τ > 0 (de-
layed synchronization) or τ < 0 (anticipated synchronization),
there is a nonzero probability that τn eventually exhibits an
opposite sign with respect to the mean value τ . In practice,
this corresponds to a diversity of phase relations that includes
changes in sign. This is similar to what has been observed
experimentally in a variety of setups [5–7,56].

The phenomenon of anticipated synchronization has also
proven to be robust against a mutual coupling between master
and slave neurons. Indeed, if AS is present in a unidirectional
master-slave connection, the nonzero slave-to-master synaptic
conductance gSM will not only maintain, but also stabilize
the anticipation phenomenon by decreasing its variance. For
gSM � gMS, the definitions of master and slave are naturally
interchanged. In that case, S, the neuron subject to the
inhibitory feedback loop (as defined in Fig. 1), leads M.
This reinforces the notion that when one excitatory and
one inhibitory neuron are mutually connected, they may be
regarded as a functional unit whose dynamics will typically
lead that of another single neuron with which it is connected
via mutual excitation (provided that the single neuron does not
have an inhibitory loop of itself) [61].

Our results offer a number of possibilities for further
investigation. The interplay between spike-timing-dependent
plasticity (STDP) [62] and AS can have a major influence over
the structural organization of neuronal networks [43]. When
the synchronization regime changes from DS to AS, the mean
spike-timing difference between pre and postsynaptic neurons
is inverted, leading to an inversion of the STDP (e.g., from
potentiation to depression). However, a study of the combined
effects of plasticity, AS, and noise in microcircuits is still
lacking. Interestingly, the three-neuron motif shown in Fig. 1
can be experimentally reproduced in a hybrid patch clamp
setup as employed by LeMasson et al. [50]. In such a setup,
the noise plays an important role in the neuronal activity.
Therefore, we believe that our results can be extremely
relevant for the verification of AS in vitro.
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APPENDIX

Each neuron in the circuit is represented by a Hodgkin-
Huxley model [53]. It consists of four differential equations
associating the currents flowing across a patch of an axonal
membrane and specifying the evolution of the gating variables
[52]:

Cm

dV

dt
= GNam

3h(ENa − V ) + GKn4(EK − V )

+Gm(Vrest − V ) + Ic + IP +
∑

Isyn, (A1)

dx

dt
= αx(V )(1 − x) − βx(V )x. (A2)

V is the the membrane potential; the ionic currents are
the Na+, K+, and leakage currents; and x ∈ {h,m,n} are
the gating variables for sodium (h and m) and potassium
(n). The membrane capacitance of a 30 × 30 × π μm2

equipotential patch of membrane is Cm = 9π μF [52]. The
reversal potentials are ENa = 115 mV, EK = −12 mV, and
Vrest = 10.6 mV, with maximal conductances GNa = 1080π

mS, GK = 324π mS, and Gm = 2.7π mS, respectively. Isyn

accounts for the chemical synapses from other neurons and
IP represents the Poisson input. The voltage-dependent rate
constants in the Hodgkin-Huxley model have the form

αn(V ) = 10 − V

100(e(10−V )/10 − 1)
, (A3)

βn(V ) = 0.125e−V/80, (A4)

αm(V ) = 25 − V

10(e(25−V )/10 − 1)
, (A5)

βm(V ) = 4e−V/18, (A6)

αh(V ) = 0.07e−V/20, (A7)

βh(V ) = 1

(e(30−V )/10 + 1)
, (A8)

where all voltages are measured in mV.
Neurons are coupled through unidirectional excitatory or

inhibitory chemical synapses, which, we assume, are mediated
by AMPA and GABAA receptors, respectively. The synaptic
current received by the postsynaptic neuron is given by

I (i)
syn = gr (i)(Ei − V ), (A9)

where V is the postsynaptic membrane potential, g is the
synaptic conductance, and Ei is the reversal potential. The
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fraction of bound (i.e., open) synaptic receptors r (i) is modeled
by a first-order kinetic dynamics:

dr (i)

dt
= αi[T ](1 − r (i)) − βir

(i), (A10)

where αi and βi are rate constants. [T ] is the neurotransmitter
concentration in the synaptic cleft. In its simplest model, it
is an instantaneous function of the presynaptic potential Vpre

[54]:

[T ](Vpre) = Tmax

1 + e[−(Vpre−Vp)/Kp] . (A11)

In our model, Tmax = 1 mM−1, Kp = 5 mV, and Vp = 62 mV.
The AMPA and GABA reversal potentials are, respectively,
EA = 60 mV and EG = −20 mV. The rate constants are αA =
1.1 mM−1 ms−1, βA = 0.19 ms−1, αG = 5.0 mM−1 ms−1,
and βG = 0.30 ms−1 similarly to the ones in Refs. [17,54].
However, these values depend on a number of different factors
and can vary significantly [63,64].

The Poisson input IP mimics external excitatory synapses,
with conductances gext = 2.0 nS, from n presynaptic neurons,
each one spiking with a Poisson rate R/n. These external
excitatory synapses are similar to the AMPA synapses de-
scribed above, but [T ] was replaced by a Poisson train of
quadratic pulses with 1 ms width and 1 mM−1 height as shown
in Fig. 2(a). The Poisson rate is R = 63 Hz. We employed a
fourth-order Runge-Kutta algorithm to numerically integrate
the equations with a 0.01 ms time step.

To investigate the existence of the AS phenomenon in
neurons spiking with smaller firing rates (f � 17 Hz), we
have used a modified version of the Hodgkin-Huxley model
that includes an extra delayed-rectifier slow K+ current to
Eq. (A1) [65]:

IK+ = GMp(EK − V ), (A12)

where GM = 0.07 mS/cm2, EK = −100 mV, and the gating
variable obeys the following equations:

dp

dt
= [p∞(V ) − p]/τM (V ),

p∞(V ) = 1

1 + e−(V +35)/10
, (A13)

τM (V ) = 1

3.3e(V +35)/20 + e−(V +35)/20
,

with τmax = 1 s. The modified parameters in Eq. (A1) are
GNa = 50 mS/cm2, GK = 5 mS/cm2, Gm = 0.1 mS/cm2,
Vrest = 10.6 mV, EK = −100 mV, and ENa = 50 mV. The
voltage-dependent rate constants in Eq. (A2) are given by

αn = −0.032(V − VT − 15)

e−(V −VT −15)/5 − 1
,

βn = 0.5e−(V −VT −10)/40 − 1,

αm = −0.32(V − VT − 13)

e−(V −VT −13)/4 − 1
,

(A14)

βm = 0.28(V − VT − 40)

e(V −VT −40)/5 − 1
,

αh = 0.128e−(V −VT −17)/18,

βh = 4

1 + e−(V −VT −40)/5
,

with VT = 55 mV. Indeed, the resting potential for this model is
−55 mV. Synaptic parameters in Eq. (A9) are modified accord-
ing to the resting potential: EA = 5 mV and EG = −75 mV.
The rate constants in Eq. (A10) are αA = 1.1 mM−1 ms−1,
βA = 0.6 ms−1, αG = 5.0 mM−1 ms−1, and βG = 0.60 ms−1.
The external applied current is Ic = 900 pA, the Poissonian
rate is r = 9.5 Hz, and the synaptic conductances are gMS =
gSI = 50 nS, gext = 0.1 nS, and gSM = 0.0. For inhibitory
conductance gIS = 150 nS, the system presents AS [Fig. 2(e),
τ = −1.0 ms], whereas for gIS = 50 nS the system exhibits
DS.
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