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Abstract

Hippocampal formation is an structure of the brain localised in the temporal

lobe. It has important functions related to the creation of memories, space

memory, orientation and speech. In this work we propose a model to study the

e↵ect of a inhibition population in the dentate gyrus, one basic component of

the hippocampus. The objective is based on the determination of plausible

mechanisms to explain experimental results obtained by the group of Dr.

Canals at the Instituto de Neurociencias de Alicante.
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Chapter 1

Introduction

1.1 A journey through the brain

Simple situations in your life as going to the job, talking with someone, studying

or others that you can imagine are processed by an organ. You are using now

the organ to read, to understand words that are you reading, or even to think in

other subjects. Obviously, the organ I am talking about is the brain which we

use without understanding much about it. In this work, it is my aim to analyse

a simple, but important, circuit of the brain related to the memory and learning

process, and that it is part of the hippocampus.

The brain have been studied in the field of neuroscience since Luigi Galvani

observed, in dissected frogs, the role of electricity in nerves in 18th century and

Santiago Ramón y Cajal created the neuron doctrine with the hypothesis that

the elemental units of the brain were neurons [1]. Nowadays, neuroscience is

a multidisciplinary field covering disciplines as biology, medicine, biochemistry,

chemistry, physics and mathematics. These two fields, physics and mathematics,

are gaining leadership in last years due to their contributions based on the dy-

namical system theory applied on brain and the use of mathematics models to

represent neurons and build connections between them achieving neuron popula-

tions [2–4].

Models in the neuroscience world can be as important as experiments. The

use of models helps us to understand the dynamical behaviour of the system and

to analyse how information flows, sometimes di�cult aspects to obtain from the

experiments. Therefore, models allow us to mimic experiments, compare experi-

7
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mental data with numerically simulated result, or even to contribute on ideas to

design new experiments.

The brain is a complex organ responsible for making an enormous number of

activities and functions, being one of the most complicated biological networks.

The brain is divided in two hemispheres (left and right) and is structured in four

lobes. The frontal lobe is related to executive functions and motivational compo-

nents. The parietal lobe are responsible for receiving sensations and coordinate

the equilibrium. The occipital lobe to the speech and the visual system. Finally,

the temporal lobe are related to the speech, processing of information and mem-

ory.

The temporal lobe is the most interesting part for us because it contains the

hippocampus and the introducing modelled in this work. Before introducing the

motivation of, we do a brief presentation of the most important elements of the

brain, i.e. neurons and synapses, and address the hippocampal structure and in

particular the regions that I am going to model.

1.1.1 Neuron, the base of our brain.

Basic cells of the nervous system are called neurons [5]. They are distributed

around all the body, nevertheless in this work we are going to focus on neurons

of the brain. The quantity of neurons in the brain is approximatelly 109, and are

connected between them through electrical and chemical synapses providing dis-

tinct dynamics. There are many kind of neurons which are classified depending

on the size, the anatomical structure, their chemical connections or the quantity

of connections per neuron [6].

Each neuron is composed by three basic parts (see Figure 1.1). The first is

the soma, which contains the neural nucleus and is the body of the neuron. The

second part are the dendrites. They are small branches that receive the inputs

from pre-synaptic neurons. Finally, the axon is the largest part of the neuron

and it transports the electrical signal from the soma to the axon terminals. Some

axon are surrounded by Schwann cells, which relies the axon on the myelin sheath

that prevent the conduction of the electrical signal through the membrane except

at specific places cells known as nodes of Ranvier [7].
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Figure 1.1: Scheme of a neuronal structure with its basic components.

The neuron is like an electronic device, which has a current, a potential, a

certain capacitance and resistances. The current of the neuron is generate by

exchanging ions. Specifically, a flow of Na+ ions is driven from the external to

the internal region of the neural membrane, while other flow of K+ ions moves

from inside the neuron to the external cellular part. A typical characteristic of

the neuron, which is usually measured experimentally, is the voltage between the

external and internal parts of the cell, called membrane potential.

Dynamically, neurons are considered excitable cells. Their membrane poten-

tial at the equilibrium, which is the stable state of an excitable system, is called

resting potential and it is a negative voltage, indicating that the internal part of

the cell is at a lower voltage than the external part. In this equilibrium state, it

is said that the neuron is polarised. When the neuron is externally stimulated

the membrane potential can increase (depolarization) until ir reaches a threshold,

after which an action potential, or spike, is generated [8]. In that process, sodium

channels are open increasing the Na+ conductance, i.e. ions go into the neural

membrane rising the internal potential to larger values. However in the maxi-

mum peak of the action potentialthe potassium channels are open and the K+

conductance increases, i.e. the ion flows to the extra cellular medium decreasing

the membrane potential until reaching a value after which the membrane recov-

ers to its stationary condition. There is a refractory time where neurons cannot

generate another spike until recovering its equilibrium state (Figure 1.2) [9].
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Figure 1.2: Dynamical process of an action potential indicating the membrane
potential (A) and the conductance of the sodium (G

Na

) and the potassium (G
K

)
which show an increment of their values at the moment of opening channels (B).
Picture from Bioelectromagnetism book [9].

The process of the spike generation is a local e↵ect, nevertheless the spike

travels along the axon. The spike is usually propagates from the soma to the

axon and arrives to neuron axon terminals of the neuron, where neurotransmit-

ters are released, facilitating the communication with the postsynaptic neuron

(see Figure 1.3) [7].

Figure 1.3: Representation of the spread direction of an action potential in a
neuron.
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1.1.2 Synapse, the bridge between neurons.

Figure 1.4: Scheme of the chem-
ical synaptic process.

The synapse refers to the connection be-

tween neurons. There are two kinds of

synapses. The electrical synapse where the

signal propagates through a small gap be-

tween the neurons in a fast process and

the chemical synapse, where the signal is

transmitted due to the release of neurotrans-

mitters from the presynaptic to the post-

synaptic neuron. Chemical synapses are

slower and the synaptic space larger than

the one in the electrical synapse. The

chemical synapses are more abundant and

consequently are the most used in models.

This synapse will be considered in this work

and is explained in details in the next sec-

tion.

Chemical connections are established by a synaptic space where there is an ex-

tracellular liquid between the pre- and postynaptic membranes. The performance

in the connection is simple: the electrical impulse in the presynaptic neuron re-

leases chemical neurotransmitters through the synaptic space which are captured

by the receptors of the postsynaptic neuron (Figure 1.4). There are several factors

that can change the response of the postsynaptic neuron [7]:

• The type of neurotransmitters. For instance, excitatory or inhibitory neu-

rotransmitters generate di↵erent e↵ects in the postsynaptic neuron depo-

larising or hyperpolarising it.

• The amount of neurotransmitters that are released, which modifies the

strength of the connection and the signal transmission.

• The nature of the postsynaptical receptors influences the synaptic process.

Synapses can be of two type, depending on the kind of neurotransmitters

that are released: i) an excitatory synapse, which depolarises the postsynaptic

membrane and, ii) an inhibitory synapse that hyperpolarizes the postsynaptic

membrane. In the excitatory process, the interaction of neurotransmitters with
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receptors of the postsynaptic neuron open sodium (Na+) and potassium (K+)

channels. The sodium goes into the membrane whereas the potassium tends to

go out the membrane.The quantity of sodium, which penetrates into the internal

region of the neuron, is far larger than potassium quantity drived to the external

membrane, depolarising the membrane by increasing its membrane potential (see

Figure 1.5.A) [7]. Neurotransmitters participating in inhibitory synapses interact

with receptors opening channels of potassium (K+) and chloride (Cl�), where the

potassium has the same behaviour than in the excitatory case and the chloride

tends to penetrate inside the neuron hyperpolarising the membrane (see Figure

1.5.B) [7].

Figure 1.5: Scheme of the synaptic processes: the excitatory synapse (A) and
inhibitory synapse(B). Both show transmissions of ions and their directions of
propagation. The left element represents the presynaptic neuron whereas the
right one is the postsynaptic neuron. In each type of synapse there is a di↵usion
of potassium (K+) from the postsynaptic membrane to the external side but
there is a flow of sodium (Na+) in the excitatory synapse and chlorine (Cl�) in
the inhibitory synapse. Picture from Neurophysiology book [7].

The main excitatory neurotransmitter released from the presynaptic neuron

is glutamate and the postsynaptic receptors are called AMPA (the ↵-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid receptor) and NMDA (the N -methyl-

D-aspartic acid receptor), both with a reversal potential of 0 mV . The recep-

tors are distinguished because the AMPA receptor is significantly faster than the

NMDA in the activation and deactivation processes [10].
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The main inhibitory neurotransmitter is the GABA (�-Aminobutyric acid)

and there are two receptors GABA
A

and GABA
B

. The former is much faster

than the later in the process of activation/deactivation [10].

1.1.3 The Hippocampus, your memory manager

Figure 1.6: Comparison between
the hippocampus and the sea-
horse.

The name hippocampus comes from the latin

hippo=hourse and kampos=monster due to the

similitude with the seahorse (see Figure 1.6).

The hippocampus forms part of a group of

structures called hippocampal formation. It

is localised in the temporal lobule and as ob-

served in Figure 1.7, is a part of the limbic sys-

tem. The group is constituted by the: 1) den-

tate gyrus (DG), 2) the hippocampus (which is

formed by di↵erent areas called cornu ammoni

and know as CA1, CA2 and CA3 regions) 3)

the subiculum (S) (Figure 1.8), 4) presubivu-

lum (PrS) and parasubivulum (PaS), and 5)the entorhinal cortex (EC). In par-

ticular, the entorhinal cortex is the structure bridges the hippocampus with other

cortical regions, becoming the major input of the dentate gyrus through projec-

tions known as perforant path (PP) [11].

Figure 1.7: Scheme of the limbic system with their components labelled.
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Figure 1.8: Hippocampus of a human brain in the left panel and its scheme with
principal components (cornu ammoni regions, dentate gyrus and subiculum).

The information in the hippocampal region tends to spread unidirectionally,

beginning and ending at the entorhinal cortex. The flux of information flows from

the second layer of the entorhinal cortex through the perforant path to the den-

tate gyrus. Neurons from the dentate gyrus project their axons to CA3. However,

CA3 does not project back to the dentate gyrus but it projects to CA1, which

is the major excitatory input of the subiculum region. Finally, the subicumlum

projects to the entorhinal cortex closing the neural circuit (see Figure 1.9). [12].

Figure 1.9: Neural circuit of the hippocampal formation with connections dis-
played on solid lines where the black point indicates the beginning of the con-
nection and the white point its ending. The unidirectional trajectory can be
appreciated it. Picture from The Hippocampus Book. [12]

The hippocampus structure has been studied for years because of its role

in the process of memory, specifically, in the creation of memories as well as
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the mechanism used to transfer information [13–15], although the function and

mechanism are not fully understood. The role of the hippocampus started to be

clearer after the article published by Scoville and Milner exlpaining the results

of a failed surgery in that region, that finished with the destruction of the hip-

pocampus [16]. The patient had problems to create spontaneous memories and

su↵ered two cases of amnesia (anterograde and retrograde). Nevertheless, the

patient was able to remember old memories giving the idea that the memories

are transmitted to another structure after a certain time.

The hippocampus is also related with spatial memory and the ability to find

new ways to arrive to the destiny in a familiar environment. One curious evi-

dence is the study of the relation between the volume of the grey matter in the

hippocampus and the ability to learn a large complex network of roads, streets,

monuments and directions of a city and navigate within it (this ability is the

typical task carried out by licensed London taxi drivers) [17]. Moreover, there is

a kind of neurons called place cells founded in the rat and mouse hippocampus,

that have the bility to generate an action potentials depending on the place that

the animal is or the direction that they are seeing [18, 19]. These cells together

with the grid cells from the entorhinal cortex constitute a circuit working as an

internal GPS of the brain [20].

Due to the importance of the hippocampus there is a growing interest to un-

derstand the behaviour and mechanism that the hippocampus uses to achieve the

di↵erent functions. This aim of this work is much less ambitious. The core struc-

ture is the dentate gyrus that exhibits a pattern separation function [21].In other

words, the dentate gyrus can distinguish similar signals to avoid interferences

when remembering memories. Probably, the reader will associate this function

with the typical algorithm for classification in the machine learning field, which

is a good association. Machine learning is inspired in the brain performance and

this interesting function of the dentate gyrus is a perfect example of that inspi-

ration. Hence, the study of the dentate gyrus is being a chance to understand

the real performance that people are copying with information-processing models.

The major part of the dentate gyrus is composed by excitatory granule cells

in a number of approximately 1.2 ⇥ 106 in rats [22]. But there is also a small
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number of inhibitory neurons, the pyramidal basket cell, that interact with the

granule cells.

The goal of this Master thesis is to make a model of a neural circuit of the

hippocampal formation, in particular, the entorhinal cortex connected to the den-

tate gyrus. Our model will be the first step to check the dynamical behaviour

of the dentate gyrus focused on the e↵ect that inhibitory interneurons exert over

the excitatory granule cells. It is the aim to suggest possible mechanisms that

can clarify some experimental findings.

1.2 Neural Model: How a physicist draws a neu-

ron on a paper

The brain is a complex system composed by millions of neurons connected be-

tween them. In order to understand the brain performance in the neuroscience

field there is a cooperation between modelling and experimentation, which is

needed to get consistent and reliable scientific results. A model can provide in-

formation about the system that is sometimes di�cult to find in experiments.

For instance, it is possible to determine the mechanism of certain dynamical be-

haviour or to study a particular population with a type of interneuron without

adding external factors. In addition, studies of neural network features such as

causality, spread of information or cluster formations are more manageable and

less expensive by means of modelling than in the laboratory.

However, modelling the neurons is not an easy task due to their di↵erent

dynamics, the amount of morphologically di↵erent cells and their corresponding

role. For this reason, there are many models depending on the region of interest

and di↵erent goals since models cannot reproduce all existent features, focusing

only on particular neural properties.

The simplest model is the Integrate and Fire model (I&F ) that uses one

equation to describe the behaviour of the neuron below the threshold potential.

Nonetheless, the I&F model does not generate an action potential and cannot

show di↵erent rhythms and many well-known spiking patterns [23]. However the

model has been improved adding more parameters and equations to extend its
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functionality . There are more biologically plausible, although more complicated,

models as the Hodgink and Huxley model (H.H.), which simulates the dynamics

of the potassium (K+) and sodium (Na+) currents and couples them with the

membrane potential equation [24,25]. This model provides more biological infor-

mation since it is focused on the e↵ects of the current to the membrane potential.

Unfortunately, modelling has a considerable compromise between the compu-

tational e�ciency and the biological approximation to real neuronal behaviour.

The two models mentioned above are two extremely contraries examples. On

one hand, I&F model is fast and simple, then, there is not a computational cost

although the biological features and dynamics are poor. On the contrary, the

H.H. model is biologically plausibile, but the computational cost much higher.

Basically, the more the model approximates to real neurons, the higher the com-

putational e↵ort is needed [26].

Figure 1.10: Classification of models by their biological plausibility (vertical axe)
and computational cost (horizontal axe). Graphic from the Izhikevich work [26].

To get an equilibrium between computational cost and a rich dynamic many

models with di↵erent properties have been developed, some of them focused on a

biological representation, others showing a wide range of neural spiking. Figure

1.10 shows a classification of most popular models depending on their biological

features and computational cost.

In Figure 1.10 the Izhikevich model appears, exhibiting the best relation be-

tween biological approximation and computational e�ciency. This model was
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proposed by Eugene M. Izhikevich in 2003 [27]. By simply changing few parame-

ters, the model allows to represent a large range of particular spiking behaviours

from the neural cortex (see Figure 1.11). Figure 1.11 shows di↵erent dynamics

that appear in brain neurons. It is worth highlighting two particualr classes of

neurons.The class I generates action potentials with low frequency for small in-

jection currents and the frequency increases gradually as function of the current.

Class II neurons generate action potentials in a certain range of frequencies, they

start with high frequency right after the thresold and are relatively insensitive to

the current [8].

Figure 1.11: Dynamics of spiking from the Izhikevich model. Each plot shows
the membrane potential of the neuron (top) stimulated by the input current
(bottom). The di↵erent types of spiking represent recorded activity from cortex
neurons. Graphic from Izhikevich work [26].
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1.2.1 Excitability, the neural property.

One of the most important property of the neuron is the excitability. The spike is

produced when the superthreshold synaptic input evokes a large postsinaptic po-

tential, because the threshold of the membrane potential is crossed. Conversely,

a subthreshold synaptic input produces a small postsynatic potential, therefore

it is not strong enough to generate a spike.

A system can be classified as excitable as long as it fulfils the following three

properties:

• A threshold value exists above which an excitation can occur.

• The form and size of the response of the excitation is invariant to the

magnitude of the perturbation.

• A refractory time exists. Right after an excitation, the probability to gen-

erate another pulse is much smaller.

Neurons are considered excitable cells since they fulfil the previous require-

ments and for this reason they can be understood within the framework of the

Dynamical System Theory. However, not all neurons have a well defined thresh-

old, but they have a range of values of the membrane potential where the action

potential takes place.

1.2.2 Izhikevich model, simple and brilliant.

The Izhikevich model o↵ers particular spiking styles patterns as shown in Figure

1.11 using a two dimensional system (Equations (1.1) and (1.2)). The variable v

is the membrane potential whereas the variable u represents a membrane recovery

taking into account the activation and deactivation of ionic currents like sodium

and potassium [27].

v̇ = 0.04v2 + 5v + 140� u + I, (1.1)

u̇ = a(bv � u). (1.2)

Numeric coe�cients from the Equation (1.1) have been fitted to fit the spiking

dynamics of a cortical neuron. The membrane potential scale is mV and the time
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scale is ms. In addition, when the peak of the spike, i.e. the maximum value of

the membrane potential (v), reaches 30 mV , the v and u variables are reset as,

if v � 30 mV !

8
<

:
v  c

u u + d
. (1.3)

Another important feature of the Izhikevich model is the absence of a fixed

threshold. It has not a given value for the potential threshold else it changes ac-

cording to the neuron simulated between �70 mV and �50 mV . This variation

of the threshold potential depends on the parameter b.

Parameters responsible for the neural dynamic shown in Figure 1.11 are known

as Izhikevich parameters (a, b, c, d). The summary of parameter values and the

type of spiking patterns is shown in Figure 1.12.

Figure 1.12: E↵ects of parameters a, b, c, d of the Izhikevich model. The left
side shows their role in variables v and u. Others two plots are a summary
of parameters values and the dynamics of spiking: Regular Spiking (RS), In-
trinsically Bursting (IB), Chattering (CH), Fast Spiking (FS), Thalamo-Cortical
(TC), Resonator (RZ), Low-Threshold Spiking (LTS). Graphic from the Izhike-
vich work [27].

Each parameter has an important function in the model for characterising the

type of neuron (see Figure 1.12). Parameter a influences in the time scale of the

recovery variable u, which becomes slower with smaller values of a. Parameter

b controls the sensitivity of u to the subthreshold fluctuations of the membrane

potential v. In other words, defines the strength of the coupling between both

variables u and v, i.e. the larger the value of b, the stronger will be the influ-

ence of the membrane potential to the recovery variable. The third and fourth



Chapter 1. Introduction 21

variables,c and d, describes reset values for the membrane potential and recovery

variable, respectively [27].

Interestingly, as previously mentioned, the model can exhibit two di↵erent

kind of bifurcations depending on the parameters a and b. They are the Saddle

node bifurcation if b < a and the Andronov-Hopf bifurcation if b > a.

1.2.3 Synaptic model, our virtual bridge.

The synapse explained in the first chapter is an important ingredient in the recipe

to make a realistic model. The synaptic process is characterised by the proba-

bility that neurotransmitters are released from the presynaptic neuron (P
pr

) and

the probability to be captured by the receptors in the postsynaptic cell (P
po

),

providing the probability for the process as P = P
pr

P
po

[10].

It is possible to simplify the problem assuming a direct transmission of re-

leased neurotransmitters. Therefore, the synaptic process can be summarised in

the probability that receptors gates in the postsynatic cell are opened or closed

(P
po

⌘ P ). The temporal evolution of the probability relies on the open (↵) and

close (�) rates of the gates according to the Equation (1.4). Typically, the close

rate is assumed to be constant whereas the open rate tends to depend on the

neurotransmitter concentration [10].

dP (t)

dt
= ↵(1� P (t))� �P (t). (1.4)

When the presynaptic neuron generates an action potential the parameter

↵ grows rapidly increasing the probability to open channels of the postsynaptic

neuron. During this process the parameter � is much smaller than ↵ and it is

ignored. A a consequence, the Equation (1.4) can be solved as,

P (t) = 1 + (P (0)� 1)e�↵t for 0  t  T, (1.5)

where T is the time at which the maximum probability occurs. Afterwards,

the probability decays exponentially and is restricted by the close rate �, and the

solution of Equation(1.4) becomes



Chapter 1. Introduction 22

P (t) = P (t)e��(t�T ) for t � T. (1.6)

Experimental results were used to fit the ↵ and � parameters. In addition,

results show faster growing for AMPA and GABA
A

receptors in comparison with

decaying process (see Figure 1.13). Due to this fact, it is possible to assume that

the decaying part of the synaptic performance is the relevant one and therefore

the Equation (1.5) can be disregarded. The assumption is fulfilled by Equation

(1.7), whose time constant ⌧ is 1/�, with the condition P ! P + P
max

(1 � P )

to reset the probability to the maximum value after the generation of an action

potential in the presynaptic neuron [10].

⌧
dP

dt
= �P, (1.7)

Figure 1.13: Experimental result
of a excitatory postsynaptic cur-
rent recorded from a mossy fiber
input to a CA3 pyramidal cell in
a hippocampal slice preparation.

The synaptic model shown in the Equa-

tion (1.8) (where subindex i=AMPA, GABA)

reproduces the same process than the Equa-

tion (1.7). The value of the time con-

stant ⌧ is chosen as 5.26 ms and 5.6 ms

for the AMPA and GABA receptors, respec-

tively. The second term of the Equation (1.8)

expresses the reset condition of the proba-

bility, and the parameter, when a spike ar-

rives att
k

, � is the maximum probability

[28].

⌧
i

dP
i

dt
= �P

i

+ �
i

�(t� t
k

) (1.8)

Finally, the synaptic current is computed using the Equation (1.9) where the

g
i

is the maximum conductance of the synapse, v the postsynaptic membrane po-

tential and E
s

the reversal potential, taking 0 mV for the excitatory postsynaptic

potential (EPSP) and �65 mV for the inhibitory postsynapatic potential (IPSP).
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I
syn

= �g
i

P
i

(v � E
s

) (1.9)

Equations (1.8) and (1.9) together with the Izhikevich model (Equations (1.1)

and (1.2)) are the basic components for making a reasonable model of three

populations.



Chapter 2

Objectives of the Master thesis

The general objective of this work is to study the flux of information in a part of

the hippocampus. In particular, the Master thesis is focused on the connection

between the entorhinal cortex and the dentate gyrus and the performance of the

inhibition in that region making a model of three neural populations. Two of

them belong to the dentate gyrus (being one an excitatory population and the

other one inhibitory). The final aim of the model is to explain the experimental

results obtained by the group of Dr. Canals at the Instituto de Neurociencias de

Alicante.

Since the experimental findings are not still published, we are going to only

briefly summarise their initial results. The experiment is set by the three popula-

tions, but they can only record the information from granule cells, the excitatory

cell of the dentate gyrus. In a typical process of learning or memory a long term

potential (LTP) usually occurs, i.e. a series of impulses strong enough produce

alterations in the connections, producing synaptic plasticity. LTP is generated

in the connection from entorhinal cortex to dentate gyrus and as a consequence

of those excitatory stimuli. The expected result is a rising of the excitatory and

inhibitory currents from the entorhinal cortex and the interneurons neighbour-

hood, respectively.

Nevertheless, they have obtained an increment of the excitatory current and

a decrease of the inhibitory current. In addition, the correlation between the

excitatory and inhibitory signal decreases as well. The way to see the e↵ect is

generating an evoked stimulus (called evoked), which is strong enough to be vis-

ible but weak enough to not to produce changes in the system, before and after

24



Chapter 2. Objectives of the Master thesis 25

the LTP. Then, the stimulus in the inhibitory current generated by the evoked is

larger before the LTP.

To achieve these objective, the work is structured in two chapters described

below, chapter 3 Hippocampal model and chapter 4 Discussion: the model begins

to speak where we explain in detail the di↵erent results we obtain and the best

mechanism for the experimental results recorded in the laboratory. The line of

research proceeds as follow:

1) Fitting of the individual model for each neuron: in this part 1 focus is fo-

cused on the study of the model used to represent the neuron. In this

project, we use the Izhikevich model explained before in the introduction.

Therefore, we have searched the parameters of the Izhikevich model cor-

responding to the kind of neurons that composes the second layer of the

entorhinal cortex and the dentate gyrus.

2) Creation of neural populations : the important key in this part is to deter-

mine the connectivity, the conductance of the synapses and the maximum

probability of capturing neurotransmitters in the synaptic process for each

population according to their features.

3) Determining the external connections : the connection between the three

populations depends on the influence of the entorhinal cortex and the

inhibitory population to the excitatory population of the dentate gyrus.

Therefore, this part is focused on the parameters that are necessary to

obtain the behaviour recorded at the dentate gyrus.

4) Explanation of the experimental result : this is the final part of the process

where, we try to relate the theoretical results with the experimental results

obtained bt Dr. Canals, with whom we were collaborating. To understand

the results, we will briefly explain some experimental results and the pos-

sible mechanism that the theoretical model proposed in this master thesis

o↵ers.



Chapter 3

The Hippocampal model: The

first step to remember

In this chapter we will focus on explaining the simulation that provides the dy-

namical behaviour of the three populations. In particular, we model the first

part of the hippocampal circuit, i.e. projections from the entorhinal cortex, the

perforant path, to the dentate gyrus. We would like to highlight that in this

work we propose a model with the goal to observe the role of each population

giving a plausible mechanism that explain experimental results and the e↵ect of

the inhibitory population in the dentate gyrus. Before building populations, the

three types of neurons used in this work will be explained.

This section is a good example of the crucial relation between the experi-

mental and simulated data. To start a model it is necessary to know biological

properties like the connections between neurons, the conductances, the type of

inhibition or excitation, the type of plasticity, among others. It would be perfect

to have all this information. However, there is no an exact number of connec-

tions or details in the neural structure because getting that information is very

di�cult. Then, finding a set of model parameters that reproduce the behaviour

shown in experiments is a complicated task. Moreover, the basic model, in our

case the Izhikevich model, was developed for individual neurons, therefore we do

not have many clues on how many coupled neurons will behave.

26
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3.1 Individual neurons, the brick of the build-

ing.

There are three particular types of neurons in our model. The second layer of

the entorhinal cortex is composed by excitatory stellate cells and a group of in-

hibitory interneurons [12]. The dentate gyrus is modelled by one population of

excitatory granule cells and another one constituted by inhibitory pyramidal bas-

ket cells [29, 30].

Each kind of neurons is characterised by a dynamical spiking regime accord-

ing to Izhikevich parameters (a, b, c, d). However, to fit them to the real neurons

we have to take into account their biological features and external influences like

a bias current or the noise generated by external connections caused by other

regions of the brain.

A train of Poisson noise is usually used to model the noise in the brain. That

noise mimics inputs of neurons from external regions following a Poisson distri-

bution. There are two ways of simulating the noise from external neurons, by

assuming temporal or spatial integration [7].

• The spatial integration generates a train of Poisson for each external neuron

connected to cells of our system with a Poisson rate relatively slow, i.e. we

will generate 1000 trains of Poisson for one neuron.Therefore, since our

model would have 1300 neurons, it would be necessary to generate 1.3⇥106

trains of Poisson.

• The temporal integration reduces the computational cost because it is as-

sumed only one train of Poisson for each neuron of our model. However, the

rate of that train will be much larger than that used in the spatial integra-

tion simulating an amount of external neurons. If we have 1000 trains with

a rate of 2 Hz with the spatial integration for one neuron, in the temporal

integration it can be approximated by 1 train with a rate of 2000 Hz.
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3.1.1 Stellate cell

Figure 3.1: Photography of a
Stellate cell.

Stellate cells are dominant neurons of the sec-

ond layer of the entorhinal cortex. They are

neurons with a star shape due to their numer-

ous dendrites radiating out from the soma (see

Figure 3.1) [12, 31]. Studies of stellate cell re-

ported subthreshold oscillations with slow dy-

namics [8], i.e., generating groups of spikes in

periods of time that depend on the current.

In the simple model of Izhikevich we can sim-

ulate the dynamical behaviour shown in Fig-

ure 3.2 with parameters a = 0.03, b = 0.15,

c = �60, d = 4. In Figure 3.3, di↵erent dy-

namical regimes, as a function of the param-

eter a for the same bias current and Poisson noise are shown. Therefore, to

generate a population with diversity, the parameter a will be a good choice to

create heterogeneous responses.

Figure 3.2: In vitro recording of a stellate cell of entorhinal cortex shows sub-
threshold oscillations and ocasional spikes for di↵erent values of input current.
Graphic from Izhikevich book [8].
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Figure 3.3: Simulation of a stellate cell through the Izhikevich model using the
parameters b = 0.15, c = �60, d = 4 and a = 0.02 (top), a = 0.03 (middle),
a = 0.04 (bottom). External conditions like the bias current or the Poisson noise
is the same for three cases.

3.1.2 Dentate granule cell

Granule cells are the most abundant neuron in the dentate gyrus, as previously

mentioned in the first chapter. They have a characteristic cone-shaped tree spiny

apical dendrite whose length is, on average, 3500 µm (Figure 3.4a). The esti-

mated number of spines in total is 9000, indicating the approximated number

of excitatory synapses that granule cells receive from all sources, in particular

the perforant paths that connects the second layer of the entorhinal cortex with

them [12]. Granule cells show an excitatory regular spiking that we obtain by

taking the parameters a = 0.02, b = 0.2, c = �69 and d = 2 [32].
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(b) Regular spiking dynamics

Figure 3.4: Granule cell picture at the left side of the figure and the its dynam-
ics at the right side shows a regular spiking under a Poisson noise distribution
obtained by the Izhikevich model.

3.1.3 Inhibitory interneuron

Figure 3.5:
Photography of a
pyramidal basket cell

The name interneuron refers to neurons between cells

which receives and transmit external inputs and out-

puts [6]. They involve a heterogeneous range of in-

hibitory and excitatory neurons, in particular, in this

model there are two type of inhibitory interneurons.

One of them is localised into the entorhinal cortex, in a

minor quantity in comparison with stellate cells. They

are fast spiking neurons and are modelled by Izhike-

vich parameters a = 0.1, b = 0.2, c = �65, d = 2.

The second type is the basket cell of the dentate gyrus.

Populations of these cells fire at the � frequency, ap-

proximately 60 Hz. Then, Izhikevich parameters are

in this case a = 0.35, b = 0.25, c = �65, d = 2. This

allow us to achieve the frequency required from a small

perturbation due to the Poisson trains.
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(b) Dentate Interneuron

Figure 3.6: Dynamics for di↵erent types of interneurons generate by the Izhikevich
model. The first one (a) corresponds to a typical interneuron fast spiking in the
entorhinal cortex. The second one (b) is a fast spiking with a high frequency
according to interneurons from the dentate gyrus. The frequency is larger than
60 Hz, however due to their inhibition the population oscillates in the required
frequency.
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3.2 Neural population, the neighbourhood of neu-

rons.

Separated populations do not exist in the brain. However, simulations of the

brain or its structures with all their factors (the amount of neurons, connections,

synapses...) is impossible to achieve due to the insu�cient experimental infor-

mation. However, with all the information it would be impossible due to the

required computational cost. For this reason we assume a model composed by

populations that contains an amount of neurons that represents the structure

understudy. Evidently, the population fulfil neural structural requirements to

produce the correct dynamic of each region.

When the model contains di↵erent populations, the number of components of

each population has to be such that it reproduces the behaviour occurring in the

brain. In this way, one can be sure that the results obtained by the model are

most reliable.

The model developed here is constituted by three populations. They are the

second layer of the entorhinal cortex and two populations of the dentate gyrus

(the inhibitory population of basket cells and the excitatory population of granule

cells). The entorhinal cortex population will act as the master population, i.e., it

is the input to the other two populations. For this reason, the model is flexible

with it since there is no a strict requirement. Instead the inhibitory population

is a key ingredient for the model because it is only composed by inhibitory cells,

as a consequence, the unique contribution of inhibition to granule cells.

The dentate granule population plays the role of the slave because it receives

information from the entorhinal cortex and the interneurons. However, since the

experimental data is recorded from granule cells, then, this population is our

point of reference.
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3.2.1 Entorhinal cortex: second layer

The second layer of the entorhinal cortex, where the perforant path stars, is

mostly composed by stellate cells oscillating in a very precise ✓ frequency [33].

The population for our model is formed by stellate cells with Izhikevich parame-

ters a = 0.04� 0.03�, b = 0.15, c = �60 and d = 4 and innhibitory interneurons

with a = 0.09+0.01�, b = 0.25� 0.05�, c = �65 and d = 2, where � is a random

number uniformly distributed between 0 and 1. We assume the usual amount

of 80% excitatory and 20% inhibitory cells. . The total number of neurons is

200, consequently, 160 are excitatory stellate cells and 40 are inhibitory interneu-

rons. For the population it is assumed a 6% connectivity, i.e., each pre-synaptic

neuron is randomly connected, on average, with six post-synaptic neurons. The

conductance used in the synapse is g
AMPA

= 0.025 nS for stellate cells whereas

the g
GABA

= 0.1 nS for inhibitory cells.

Figure 3.7: Population of the second layer of entorhinal cortex with a number
of 200 neurons where 160 are excitatory stellate cells and 40 are inhibitory in-
terneurons. The probability of connections is a 6% and conductances used are
g
AMPA

= 0.025 nS and g
GABA

= 0.1 nS.
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3.2.2 Dentate pyramidal basket population

The role of inhibitory interneurons of the dentate gyrus is not fully understood.

Nevertheless, its function is a key point in the behaviour of the granule cells, that

recieve � oscillatory inputs from the interneural neighbourhood and, as a result,

a role in the separation pattern function of the dentate gyrus. The inhibitory

population is formed by 100 inhibitory interneurons generating � rythm using

the parameters a = 0.30+0.04�, b = 0.25, c = �65 and d = 2. Their neurotrans-

mitters are GABA and the conductance of the interneuron is g
GABA

= 10 nS.

The internal connection of the population is extremely low (2% [34]).

Interestingly, this population is completely inhibitory, hence one problem

found in the model and explicitly explained in the next chapter is how it is

possible to achieve a synchronization without excitatory neurons.

INTERNEURONS 
DENTATE GYRUS 

TOTAL NEURONS 
100 
 

Pyramidal basket cell 
Inhibitory 

 
g=10 nS 

 
Internal connectivity: 

2% 
 

Figure 3.8: Population of interneurons localised in the dentate gyrus with a
number of 100 which are inhibitory interneurons. The probability of connections
is a 2% and the conductance used is g

GABA

= 10 nS.
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3.2.3 Dentate granule population

This populations is the reference to fit external parameters of the model. I

would like to remember that the dentate gyrus shows the electrical signal from

granule cells that involve two types of frequency, ✓ and � [35]. The external

connection and conductance between populations are determined to achieve the

dual behaviour in the granule population. The latter, in the model, is com-

posed by 1000 excitatory neurons with parameters a = 0.02 + 0.002�, b = 0.2,

c = �69 and d = 2, a low internal connection (2%) and a conductance of

g
AMPA

= 0.025 nS [34].

GRANULE  
DENTATE GYRUS 

TOTAL NEURONS 
1000 

 
Granule cell 
Excitatory 

 
G=0.025 nS 

 
Internal connectivity: 

2% 
 

Figure 3.9: Population granule cells localised in the dentate gyrus with a number
of 1000 which are excitatory neurons. The probability of connections is a 2% and
the conductance used is g

AMPA

= 0.025 nS.

3.3 Simulation of the Dentate Gyrus

The model has three vertices where each vertex is a population (see Figure 3.10).

The stellate cells from the entorhincal cortex (EC) are connected to the interneu-

ron and granule population and there is an unidirectional connection from the

interneuron group (IN) to the granule dentate gyrus (GC).

The perforant path has the same conductance (g = 0.5 nS) and maximum

probability of captured neurotransmitters (P = 0.2) for its external connections,
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but axon terminals are connected to each population with particular connectivi-

ties, being 1% for EC-IN and 15% for EC-GC.

Dentate interneurons are connected to granule cells with a significant higher

probability (20%), a conductance g = 3 nS and a probability of neurotransmitters

captured in the synapse of P = 0.5. In this model there is no feedback between

interneurons and granule and delays in connections are neglected because both

populations are in the same structure (the dentate gyrus).

The way to get an accurate set of parameters for the model is checking the

result of the spectrum, the temporal dynamics and raster plots with the experi-

mental observations. This fit is not an easy task.

Figure 3.10: Scheme of the model of the neural circuit of the hippocampus.
Concretely, the dentate gyrus formed by an interneuron population (IN) and a
dentate granule population (GC) and the second layer of the entorhinal cortex
(EC).
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Discussion: The model begins to

speak

The model was written in Fortran and the Runge-Kutta method was used for

computing the di↵erential equations of the Izhikevich model (Equation (1.1) and

(1.2)) with a step of integration of 0.01 ms. For the noise we have generated a

Poisson train of 1.5 kHz for each neuron of our model with a excitatory synapse

conductance of approximately 0.03 nS. Finally, we added a bias current in the

stellate cells.

This section is organised in two parts. The first one focuses on the basic

model and the comparison between the model and the publication of Andrade

and Jonas, which is our guide for the model [36]. The second part of our results

is targeted to explain four possible mechanisms explaining what happens in the

experiment, commented in the chapter 2, carried out by Dr. Canals at the Insti-

tuto de Neurociencias de Alicante.

4.1 Reliability of the model

One of the most important objective of the model is to reproduce the main be-

haviour of the structure of interest before using it to search behind experiments.

In order to accomplish our model two features have to fit the Andrade and Jonas

study mentioned above. Those are a characteristic ✓ frequency in granule cells

from the entorhinal cortex and a � frequency from dentate interneurons. Conse-

37
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quently, dentate granle cells generate a burst spiking (Figure 4.1).

Figure 4.1: Single action poten-
tial and burst in awake rats. [36].

Nevertheless, since dentate interneurons

are complicated cells to measure, the experi-

mental results from the guide study show the

coherence between the inhibitory postsynap-

tic current (IPSC) coming from interneurons

and the local field potential (LFP) of the gran-

ule population and the excitatory postsynaptic

current (EPSC) coming from stellate cells and

their LFP.

Parameters shown in the previous chapter

are used to achieve an entorhinal and interneu-

ron populations with frequencies at maximum

peaks of coherence between EPSC/IPSC-LFP

(Figure 4.2). As a result of the model we ob-

tain from simulations the spectrum of granule

cell population which su↵ers the combination

of both frequencies, � and ✓ (see Figure 4.2). In addition, the temporal dynamic

of the granule population shown in Figure 4.3 (bottom) displays a sparse burst

spiking.

The result shown in Figure 4.2 is an average power spectrum over fifty itera-

tions producing an insignificant error.
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(a) Spectrum of entorhinal cortex population (b) Coherence between LFP from granule
cells and EPSC.

(c) Spectrum of interneuron population (d) Coherence between LFP from granule
cells and IPSC.

(e) Spectrum of granule population (f) Spectrum of granule cells

Figure 4.2: Spectrum of each population simulated in the left column and their
respective experimental indications from the study of Alejandro Javier and Peter
Jonas. C) coherence between the LFP of granule cells and the EPSC. D) coher-
ence between the LFP of granule cells and IPSC. The scale of the granule cells
spectrum is logarithmic for a better comparison. F) spectrum of granule cells
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Figure 4.3: Temporal traces of the potential of each population of the model.
The potential is an average on the membrane potential of all members of the
population. The trace green is the entorhinal cortex, the red is the interneuron
group and the blue is the dentate granule population.

4.2 What is doing the dentate gyrus?

We want to knows, through the model designed, which is the possible change pro-

duced by the LTP in the interneuron population. In our model, the dynamical

variable related to the postsynaptic current is the probability of capturing the

neurotransmitters (P ) described by the Equation (1.8). Hence, the e↵ect of the

evoked influences its dynamic. We generate the evoked stimulus forcing an action

potential into all neurons of the entorhinal cortex at a given time propagating a

remarkable pulse to the interneuron population.

Our measurement is the size of the evoked in the dynamical postsynaptic

probability of interneuron population, which is the average on the postsynaptic

probability of all interneurons. That size is the di↵erence between the signal with

and without evoked. To reduce the noise e↵ects we have done fifty iterations for

both cases before subtracting them. Therefore, we have compared the evoked size
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before and after the LTP, which produces a change in the system. There are four

hypothesis of possible e↵ects caused by the LTP (Test 2-5 ) compared with the

original model, the system before LTP (Test 1 ).

• Test 1 : Original structure before the LTP.

• Test 2 : The maximum postsynaptic probability increases in the connections

of EC-IN and EC-GC. The value raised from P
max

= 0.2! 0.5.

• Test 3 : The maximum postsynaptic probability reduces due to a depression

in the IN-GC connections, P
max

= 0.5! 0.2.

• Test 4 : The connectivity inside the interneuron population increases (2%!
10%), consequently, the inhibition of the population rises and changes the

dynamical behaviour.

• Test 5 : The conductance in the synapse of EC-IN and EC-GC increases

from g = 0.5 nS to g = 1.5 nS.

In Figure 4.4 we plot the size of the evoked for each Test explained before.

It is observed that Test 2 and Test 5 have a significantly larger size and Test

3 and Test 4 have a much lower peak than Test 1. In addition, Tests 2 and

Tests 5 have the same behaviour because both cases play the same role. From

the Equation (1.9) I
syn

= �g
i

P
i

(v�E
s

), i.e., increasing the conductance g or the

maximum value of P produces a bigger influence from the entorhinal cortex to

the dentate gyrus. However, that fact does not reduce the inhibitory postsynaptic

current. Finally, Tests 3 and 4 reduce the inhibition, nevertheless, the reasons

are di↵erent. In Test 3 the e↵ect is forced by depressing in the axon, but in the

Test 4 is the dynamic of the interneuron population that produces the e↵ect. In

this last case, a larger number of interneurons couple producing a larger silence

in the population due to the inhibition decreasing its projection to the granule

cells.

Then, we have two possible mechanisms to explain the experimental results;

Test 4 and Test 3. However, in the experiment the correlation between the post-

synaptic current from entorhinal cortex and interneurons to granule cells is lower

after the LTP.
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Figure 4.4: Size of the evoked signal in the dynamical variable of the inhibitory
postsynaptic current. Tests correspond to di↵erent hypothesis of changing after
the LTP and they are compared with the test 1 which shows the size of the
evoked in the normal neural circuit simulated in the previous section. The vertical
variable is a relative variable to compare the value between the tests and the
horizontal variable is a temporal window of 10 ms which contains the evoked
e↵ect.

Figure 4.5 displays the correlation between the synaptic signal from the en-

torhinal cortex to granule cells and from inhibitory population to granule cells

(maximum of the cross-correlation function). Basically, is the cross-correlation

function between the inhibitory postsynaptic current from interneurons and the

excitatory current from entorhinal cortex. It is observed that Test 1 and Test 3

are exactly equals due to the fact that Test 3 only modifies the amplitude of the

signal, not its dynamic. Test 2 and Test 5 have similar values as well, following

their relation of increasing the entorhinal influence. Finally Test 4 is the unique

case where the correlation decays. This means, that the modification in the in-

ternal population changes the dynamical behaviour becoming the case closer to

the experimental results.
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Figure 4.5: Cross-correlation function between the inhibitory signal from in-
terneurons to granule cells and excitatory signal from entorhinal cortex to granule
cells for each Test. Test 1 is hidden by the Test 3 because both have the same
correlation.



Chapter 5

Conclusions: The ending is the

new beginning

Finally, the results of this Master thesis can be summarized in two key statements.

The first idea is that the study of the brain as a complex system is feasible de-

spite of all the di�culties involved. Neuroscience is a multi-disciplinary field

where physics and mathematics are starting new contributions gaining a place

in that study. However, a good relation between physics/mathematics and the

biomedical sciences is essential to improve our knowledge about the brain. The

second idea is why we need a model, which are their advantages and how it works.

In particular, this project is an example of the development of a model, the steps

to follow, their setbacks and benefits. The model of the dentate gyrus with an

input from the second layer of the entorhinal cortex shows a correct behaviour as

compared with experimental results from Andrade and Perna studies, which show

a ✓ frequency from entorhinal cortex and � rhythm from interneurons in granule

cells. In addition, we have benefited from this model to search possible mecha-

nisms caused by a LTP in that region with the aim to explain the experimental

results from the research group of Dr. Canals at the Institute of Neurosciences

of Alicante (the hypothesis Test 4 ).

44
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This hypothesis suggests that an increase in the connections inside of dentate

interneuron population because of the LTP is the reason of the observed decay of

the inhibition due to the evoked stimulus. This result gives an idea of a possible

study focused on interneurons connections in dentate gyrus and their variations

depending on the input.

5.1 What is the next step?

However, this is the beginning of new story. Although we were able to o↵er an

explanation to the experimental results, still there are many questions to answer.

Evidently, this is not a completed work, there are many aspects to improve. First

of all, we could modify the Izhikevich model to an improved version adding more

biological details, such as the capacitance of the neuron. This will increase the

di�culty because there are more parameters to fit, however, the model would be

more stable.

One question is, what happens with the interneurons? The result of this

projects yields a reason to focus on the study of particular inhibitory population.

How do they achieve a synchronization? or How does the synaptic plasticity af-

fect in the connections of an inhibitory population?

Nevertheless, we believe that it is possible use the model developed in this

Master thesis to study the spread of information or the performance of the neu-

ral circuit in the separation pattern function. What would be obtained in the

granule population if we put a given input, like a letter, in the entorhinal cortex

population?

All these questions open di↵erent ways to study the brain and to know more

about the key organ, which is constantly developing and which we use without

getting to know how.
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