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ABSTRACT
Mitosis in metazoans is characterized by abundant phosphorylation of histone H3 and involves the
recruitment of condensin complexes to chromatin. The relationship between the 2 phenomena and
their respective contributions to chromosome condensation in vivo remain poorly understood.
Recent studies have shown that H3T3 phosphorylation decreases binding of histone readers to
methylated H3K4 in vitro and is essential to displace the corresponding proteins from mitotic
chromatin in vivo. Together with previous observations, these data provide further evidence for a
role of mitotic histone H3 phosphorylation in blocking transcriptional programs or preserving the
‘memory’ PTMs. Mitotic protein exclusion can also have a role in depopulating the chromatin
template for subsequent condensin loading. H3 phosphorylation thus serves as an integral step in
the condensation of chromosome arms.
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Introduction

A rapid increase in chromatin compaction during
mitosis, known as chromosome condensation, is
essential for the faithful distribution of identical
genetic material between daughter cells. Chromosome
condensation involves the recruitment of condensin
complexes to chromatin1 and is characterized by a
pattern of posttranslational modifications (PTMs) in
histones.2-5 In prophase, the kinases Haspin and
Aurora B phosphorylate T3, S10, and S28 of histone
H3 through evolutionarily conserved mechanisms.6-8

Even though chromosome condensation becomes evi-
dent at the onset of mitosis, H3 phosphorylation con-
tinues increasing from prophase to metaphase due to
transactivation of Aurora B and a positive feedback
loop involving Haspin.9 In addition, other kinases can
be recruited to ensure robust H3 phosphorylation.10

Histone phosphorylation is so abundant that phos-
phorylation-dependent conformational changes were
occasionally thought to drive chromatin condensa-
tion.11 The discovery of condensins that promote

condensation by physically wrapping the chromatin
however has provided an alternative explanation,12

which is now widely accepted. Although experiments
on chromatin condensation in vitro reveal that phos-
phorylation of condensin I is the sole mitosis-specific
modification required for the compaction of reconsti-
tuted chromatids,13,14 accumulating evidence suggests
that additional components contribute to this process
in vivo.

One of the significant outcomes of chromatin con-
densation is the modulation of general gene transcrip-
tion.15 Although production of some non-coding RNAs
continues at the centromere,16 bulk transcription of
spliced messengers is largely suppressed in mitosis and
resumes at the end of cell division. Transcription pro-
grams require the association of histone readers in chro-
matin-associating proteins and complexes with
regulatory PTMs such as methylated lysine.17-19 Binding
of methyllysine readers can in turn be modulated by
removing the corresponding PTM or through a mecha-
nism termed phospho/methyl switch.20,21 (Fig. 1). The
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phospho/methyl switch can displace reader-containing
proteins from chromatin or prevent priming of deme-
thylases and therefore preserve or “memorize” the
methyllysine PTM. In contrast to demethylation that
permanently erases an epigenetic modification, phos-
phorylation of serine and threonine residues adjacent to
methyllysine provides a tool to temporarily prevent
binding of reader proteins without affecting the PTM
itself 20,22-24 A recent study that compared the behavior
of methyllysine-interacting domains in vitro and in vivo
revealed novel aspects of histone H3 phosphorylation,
by linking the expulsion of reader proteins and chroma-
tin condensation.23

Chromosome condensation in early mitosis

Prophase chromatin compaction coincides with his-
tone phosphorylation6-8 and dissociation of a wide
array of nuclear proteins from chromatin.20,23-26 Even
organisms that divide by closed mitosis – without
breakdown of the nuclear envelope – redirect a por-
tion of nuclear proteins to the cytoplasm during chro-
mosome segregation.27 In contrast to protein
expulsion in early mitosis, recruitment to prophase
chromatin is limited to a specific subset of proteins,
many of which have a role in directing mitosis pro-
gression. Of particular importance are the condensin
complexes that form and stabilize chromatin loops28

and the kinases that phosphorylate histone H3.6,7

Haspin is one of the main kinases to act on histones
in early mitosis.6 It phosphorylates T3 of histone H3
producing the epigenetic mark H3T3ph, which is rec-
ognized by Survivin, a component of the chromosomal
passenger complex.5,29,30 Survivin is required for the
recruitment of Aurora B kinase and subsequent phos-
phorylation of H3S10 and H3S28.7,8,29 Small molecule
inhibition of Haspin has a marked effect on early mito-
sis and chromosome condensation,23 but inhibition of
Aurora B produces its effect only when decatenation
and spindle attachment become important.31 These
data agree with the idea that Haspin acts upstream of
Aurora B; inhibition of the former affects phosphoryla-
tion of both H3T3 and H3S10 in vivo, but inhibition of
the latter still permits H3T3ph accumulation.

Mitotic H3 phosphorylation first occurs close to the
pericentromeric heterochromatin and subsequently
spreads out over the chromosome arms.2-4 H3K4me3,
a PTM enriched at transcription start sites, has been
shown to decrease Haspin activity in vitro,32-34 which
may account for the delayed euchromatin condensa-
tion in vivo. The H3K9ac modification, linked to gene
activation, suppresses H3 phosphorylation,35 whereas
the heterochromatin-associated H3K9me3 mark does
not affect in vitro catalytic activities of Haspin and
Aurora B.33,34 Differential mitotic condensation of
hetero- and euchromatin might have important func-
tional consequences; whereas hardly any heterochro-
matin along chromosome arms is actively transcribed,

Figure 1. Haspin- and Aurora B-targeted threonine and serine sites in histone H3 tail. A wide array of cellular events requires posttrans-
lational modifications on H3K4, H3K9 and H3K27 in interphase, however protein complexes that bind these PTMs can interfere with
mitosis. Mitotic histone H3 phosphorylation at H3T3, H3S10 and H3S28 can pause the transcriptional programs, preserve the ‘memory’
PTMs, or play a role in preparing a chromatin template for condensins.
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delayed euchromatin condensation shortens the time
without general gene transcription. Even though the
spatiotemporal patterns are different, many outcomes
of H3T3 and H3S10 phosphorylation at the molecular
level are similar – addition of a bulky negatively
charged phosphate group can impede the function of
the adjacent methyllysine PTM (Fig. 1). Eventually,
H3T3ph and H3S10ph entirely cover the chromo-
somes from late prophase to metaphase. Maximum
H3 phosphorylation and chromosome compaction
coincide in metaphase and early anaphase,36,37 sug-
gesting that the 2 are functionally linked in vivo.

While the importance of histone phosphorylation
in vivo has been documented, experiments on chro-
matin condensation in vitro suggest that histone phos-
phorylation is not essential for the actual process of
condensation, which primarily depends on the loop-
forming proteins condensins.13,14 A minimal in vitro
system functions without the H3 kinases and requires
only core histones, topoisomerase, chaperones, and
condensin.14 Depletion of condensin by RNA interfer-
ence in cells leads to a delay though not the loss of
prophase chromatin condensation.1 Likewise, condi-
tional knockout cells without the SMC2 condensin
subunit undergo residual albeit delayed chromatin
compaction.28 The resulting metaphase chromosomes
are easily disrupted, suggesting structural differences
between compacted chromosomes in the presence and
absence of condensin. Interestingly, studies using
immunofluorescence show that efficient in vivo depo-
sition of condensin, particularly condensin I in prom-
etaphase, requires a prior H3 phosphorylation by
Aurora B,7,38,39 (Fig. 2). Since conditional knockout

cells without SMC2 undergo chromosome condensa-
tion only after nuclear envelope breakdown28 conden-
sin II – which enters the nucleus before mitosis in
contrast to condensin I – probably contributes to pro-
phase chromatin compaction, either by acting before
or by collaborating with histone kinases. In agreement
with this idea, depletion of the early condensin
II, but not the late condensin I, partially reduces H3
phosphorylation.40

Maintaining and terminating chromatin
condensation

In mid-mitosis, Haspin and Aurora B translocate to
centromeres and their concentration along chromo-
some arms decreases.9 Accordingly, histone H3 phos-
phorylation levels show a peak at metaphase and are
gradually reduced after the metaphase-anaphase tran-
sition.41 Despite the reduction in H3 phosphorylation,
chromatin condensation persists until telophase, sug-
gesting a relaxed requirement for H3 phosphorylation
once chromatin condensation has reached a threshold.
Even at the time when Haspin and Aurora B localize
mainly at centromeres, an experimentally induced
transient loss of H3S10ph along chromosome arms is
quickly restored.4 These data are consistent with the
idea that metaphase re-phosphorylation of H3S10 on
chromosome arms involves the continuous exchange
of kinases,42 and that residual low-level phosphoryla-
tion is important for sustained condensation. The con-
tinuous evolution of chromosomes during mitosis is
reflected in the dynamic behavior of proteins associ-
ated with mitotic chromosomes. A general survey

Figure 2. Sequential events control chromosome condensation in vivo. Early mitosis is characterized by phosphorylation of key residues
in histone H3 by Haspin (left) and Aurora B (center), which coincide with the exclusion of a set of H3K4me3-specific and H3K9me3-spe-
cific reader proteins. The resulting template, which is less populated than interphase chromatin, can be readily compacted by mitotic
condensins (right). The reader-containing proteins excluded from chromatin are depicted above the nucleosomes.
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identified hundreds of candidates,43 the majority of
which comprise several multicomponent complexes.36

Interestingly, a large proportion of the associated pro-
teins form part of the so-called chromosome periph-
ery, which assembles around the chromosomes after
nuclear envelope breakdown.36

The metaphase-anaphase transition marks a critical
turning point in mitosis. It is controlled by the ana-
phase promoting complex and triggered by the
proteasomal degradation of Cyclin B.44 The same
mechanism eliminates a fraction of Aurora B,45 with
the remaining part redistributing to the spindle mid-
zone and midbody for the control of later events. Even
though decatenation completes in early anaphase,
chromatin compaction persists until late mitosis and
could reduce resistance during poleward chromosome
movement. During the second half of mitosis, PP1/
Repo-man promotes gradual dephosphorylation of
histone H3.41 Residual H3 phosphorylation is none-
theless important in the second part of mitosis, as cells
subjected to sub-optimal Haspin inhibition in vivo
undergo chromosome condensation until anaphase
but show extensive incorporation of PHD finger-
containing proteins into telophase chromosomes.23

Since Haspin inhibition reduces H3T3ph levels, its
effect at the end of mitosis resembles the action of
PP1/Repo-man – the removal of H3 phosphorylation.
Controlling the balance between phosphorylation and
dephosphorylation might thus be important until the
end of mitosis and could protect chromatin from the
premature recruitment of the methyllysine reader-
containing proteins. In normal cells, the nuclear enve-
lope reassembles around chromosomes when they are
still condensed,46 indicating that nuclear protein
import resumes before chromatin decondensation. In
addition, several studies have implicated ATPases in
removing residual Aurora B, and thus the final traces
of H3S10ph, from chromatin.47,48 Complete chroma-
tin decondensation thus comprises an active process
instead of simple inactivation of condensation factors.

Concluding remarks

Over the past decade substantial progress has been
made in our understanding of the physiologic impor-
tance of mitotic chromatin condensation, however
many questions remain. For example, the precise role of
histone H3 phosphorylation sites in chromatin conden-
sation remains unclear, and we do not fully understand

the antagonistic or cooperative effects and functional
crosstalk involving phosphorylation and other histone
PTMs. Further studies are also needed to examine
whether the exclusion of reader-containing protein
complexes frommitotic chromatin depends on collabo-
ration between phosphorylation sites. Finally, a set of
PHD finger-containing proteins show a notable ten-
dency to accumulate on spindle microtubules, particu-
larly on those adjacent to the spindle poles in metaphase
and spindle midzone in late mitosis.23 It will be interest-
ing to investigate whether protein accumulation on
microtubules is a mechanism to avert premature reasso-
ciation of histone readers with chromatin or to ensure
equal distribution of important factors between daugh-
ter cells duringmitosis.
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