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Neuronal cell cycle: the neuron itself
and its circumstances

Jos�e M Frade* and María C Ovejero-Benitoy

Department of Molecular, Cellular and Developmental Neurobiology; Instituto Cajal; Consejo Superior de Investigaciones Científicas (IC-CSIC); Madrid, Spain

yCurrent address: Department of Cell Biology; University of Valencia; Burjassot, Spain
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Abbreviations: AD, Alzheimer disease; BDNF, brain-derived neurotrophic factor; BrdU, 5-bromo-20-deoxyuridine; Cdk, cyclin-
dependent kinase; CKI, Cdk-inhibitor; Cip/Kip, cyclin inhibitor protein/kinase inhibitor protein; CNS, central nervous system;
G0, quiescent state; G1, growth phase 1; G2, growth phase 2; Ink, inhibitor of kinase; Mcm2, minichromosome maintenance 2;
p38MAPK, p38 mitogen-activated protein kinase; p75NTR, neurotrophin receptor p75; PCNA, proliferating cell nuclear antigen;

PD, Parkinson disease; Rb, Retinoblastoma; RGCs, retinal ganglion cells; S-phase, synthesis phase.

Neurons are usually regarded as postmitotic cells that
undergo apoptosis in response to cell cycle reactivation.
Nevertheless, recent evidence indicates the existence of a
defined developmental program that induces DNA
replication in specific populations of neurons, which remain
in a tetraploid state for the rest of their adult life. Similarly, de
novo neuronal tetraploidization has also been described in
the adult brain as an early hallmark of neurodegeneration.
The aim of this review is to integrate these recent
developments in the context of cell cycle regulation and
apoptotic cell death in neurons. We conclude that a variety of
mechanisms exists in neuronal cells for G1/S and G2/M
checkpoint regulation. These mechanisms, which are
connected with the apoptotic machinery, can be modulated
by environmental signals and the neuronal phenotype itself,
thus resulting in a variety of outcomes ranging from cell
death at the G1/S checkpoint to full proliferation of
differentiated neurons.

The Cell Cycle: A Rapid Overview

Mitosis represents a crucial event by which eukaryotic cells
divide and equally segregate their genetic material into 2 daughter
cells.1,2 This process consists of 4 consecutive phases: prophase,
when chromatin is condensed, nucleoli and nuclear membrane
disappear, and the mitotic spindle is formed; metaphase, when
chromosomes are arranged at the equatorial plane of the cell; ana-
phase, when chromatids separate toward the opposite sides of the
mitotic spindle; and telophase, in which chromosomes decondense
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into diffuse chromatin, the nuclear membrane becomes generated,
2 new nuclei are formed, and cytokinesis begins to take place.
Once the daughter cells have been produced, they go through an
interphase period subdivided in 3 different stages: G1, when the
proteins responsible for DNA replication are synthesized; S phase,
when nuclear DNA is replicated; and G2, when the proteins
responsible for cell division are synthesized. Cells can also be
found in G0 when they have withdrawn from the cell cycle, as
happens with most differentiated cells.1,2 As shown in Figure 1,
the transitions between these stages are regulated by cyclins that
bind to their specific Cdks, activating their kinase activity.3 Cyclin
D is synthesized at the beginning of G1, and it binds and activates
Cdk4/6 when the cell leaves the quiescent state. Cdk4/6 phosphor-
ylates Rb protein, inducing the release of the transcription factor
E2F1, which in turn induces the synthesis of the proteins necessary
for DNA replication.4 G1/S progression is regulated by the associ-
ation between cyclin E and Cdk2, which phosphorylates addi-
tional residues of Rb.5 DNA synthesis is then driven by the
association of cyclin A with Cdk2.6 During late S-phase, the cyclin
A/Cdk1 complex activates late replication origins and during late
G2 phase, this complex initiates the condensation of chromo-
somes.7-9 Finally, G2/M transition is regulated by the formation
of the Cdk1/cyclin B complex.1,3,10-15

As shown in Figure 1, cell cycle progression can also be regu-
lated by CKIs from the Ink and Cip/Kip families, which inhibit
the activity of the Cdk/cyclin complexes. In this regard, the mem-
bers of the Ink family (p15Ink4b, p16Ink4a, p18Ink4c, and p19Ink4d)
regulate the quiescent state by their specific binding to Cdk4/6,
thus preventing the interaction of the latter with cyclin D.16 In
contrast to the Ink family members, whose inhibitory capacity is
restricted to a specific cell cycle stage, the members of the Cip/Kip
family (p21Cip1, p27Kip1, and p57Kip2) can bind and modulate the
activity of specific complexes formed by Cdks and cyclins.17 Inter-
estingly, the interaction of p27Kip1 and p21Cip1 with cyclin D-
dependent kinases relieves cyclin E/Cdk2 from Cip/Kip constraint,
thereby facilitating cyclin E/Cdk2 activation later in G1 phase.5

Progression through the different phases of the cell cycle is reg-
ulated by checkpoints that ensure that the cell has completed a
phase before entering the next one.15 These checkpoints result
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from the activation of different signaling pathways leading to the
inhibition of Cdk/cyclin complexes.18 If a defect is detected, these
checkpoints induce the blockade of cell cycle until it has been
repaired, thus impeding its transmission to the resulting daughter
cells or inducing apoptosis if the defect cannot be corrected.12,19

Different kinds of checkpoints are distributed along the cell cycle,
especially in the transitions between the different cell cycle
stages.1,2,15 Two different checkpoints regulate G1: the first one at
the beginning of this phase, when the cell senses the accessibility
of growth factors responsible for the suppression of the quiescent
signaling, and the other one during late G1, when the cell checks
the availability of nutrients and also if the cell has reached the
appropriate size to undergo DNA replication.20 The intra-S-phase
checkpoint is activated by DNA damage produced during DNA
synthesis or by unrepaired DNA damage that has not been
detected by the G1/S checkpoint.18 Before undergoing mitosis,
the cell must verify that the DNA is not damaged to avoid trans-
mission of mutations to the daughter cells. In both of the latter
cases, the tumor suppressor gene p53 is activated if DNA has been
damaged, blocking the cell cycle until the damage has been
repaired or inducing apoptosis if this damage is unrepairable.

G2/M transition is the last step before mitosis, so it is tightly
controlled to avoid that either incomplete DNA synthesis or
aberrant distribution of chromosomes could eventually lead to

cancer.2,12 Therefore, this transition is subjected to a number of
checkpoints to control that the previous steps have been correctly
completed.15,21 Although the detailed sequence of events that
lead to the activation of G2/M transition is not fully understood,
it includes the activatory phosphorylation of the Thr160/Thr161
motif of Cdk1, catalyzed by the Cdk-activating kinase com-
plex.22-26 In addition, Cdk1 is also subjected to inhibitory phos-
phorylation, catalyzed by both Wee1, which phosphorylates this
kinase in Tyr15,27-30 and Myt1, which phosphorylates Cdk1 in
Thr14.31 Both phosphorylation events can be reverted by the
phosphatase Cdc25, thus fully activating the Cdk1 complex.32,33

The regulation of the subcellular location of every protein and
their regulators, as well as the absence or inactivation of the cyclin
kinase inhibitors also plays a role in the activation of the Cdk1/
Cyclin B complex.34 Finally, other checkpoints monitor the cor-
rect position of the mitotic spindle, separation of the chromo-
somes and cell cycle exit.1,2,15

Cell Cycle in Neurons

Cell cycle re-entry in neurons and apoptosis
Unlike most cell types, neurons are believed to have perma-

nently blocked their capacity to proliferate once they are

Figure 1. A scheme showing the canonical cell cycle and its main regulatory mechanisms.
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differentiated, being typically found in a quiescent state in the
adult nervous system. However, a number of genes that encode
for regulators of G1/S transition, including cyclin D1, Cdk4,
Rb proteins, E2Fs, and CKIs, can be detected in different struc-
tures of the normal adult brain (see Table 1). Most of these
transcripts are actually translated, as evidenced by the detection
of the proteins they encode in normal adult neurons.35-40 Tradi-
tionally, the presence of core cell cycle regulators in adult neu-
rons has been explained as these molecules may fulfill
differentiative functions, including neuronal migration, neuro-
nal maturation, and synaptic plasticity.41,42 Nevertheless, it
remains plausible that, potentially, these proteins could also
lead to cell cycle re-entry provided that specific conditions are
met. In this regard, there are examples in which specific neuro-
nal types, including sympathetic and cortical neurons, upregu-
late the expression of cell cycle markers and try to reactivate the
cell cycle when subjected to acute insults such as neurotrophic
factor deprivation, activity withdrawal, DNA damage, oxidative
stress, and excitotoxicity. Under these conditions, they usually
die at the G1/S checkpoint before any sign of DNA synthesis
can be observed (for a review see refs. 43,44). This process, clas-
sically referred to as “abortive cell cycle re-entry,” is character-
ized by upregulation of cyclin D-Cdk4/6 activity and
deregulation of E2F transcription factors,45-51 followed by cell
death. In this regard, E2F1 can be a trigger of neuronal apopto-
sis,52,53 and 2 proapoptotic signaling pathways have been shown
to be activated by this transcription factor in cerebellar granule
cells and cortical neurons. These pathways include the activation
of Bax/caspase-3 in a p53-independent manner54,55 and the
induction of the Cdk1/FOXO1/Bad pathway.56-58 In addition,
deregulation of p130/E2F4, a repressive complex that maintains
the postmitotic state of neurons, has also been shown to partici-
pate in the induction of neuronal apoptosis through the upregu-
lation of B-myb and C-myb.59,60 Overall, these observations
indicate that a number of signaling pathways triggered by differ-
ent environmental conditions can elicit cell cycle reactivation
and cell death in specific neuronal phenotypes.

Cell cycle re-entry in neurons and tetraploidy
There are cases in which neuronal injury results in G1/S tran-

sition and DNA synthesis. Examples of this situation are cerebel-
lar granule neurons subjected to excitotoxic stimuli61 and cortical
and hippocampal neurons subjected to hypoxia/reperfusion.62

Although terminally differentiated neurons that replicate their
DNA are typically fated to die,63,64 this is not always the case,65

and these neurons may remain alive with double amount of
DNA content. For instance, sensory and sympathetic neurons are
able to replicate their DNA without any apoptotic response,66,67

and Rb-deficient brain neurons have been shown to undergo cell
cycle re-entry and remain alive with 4C DNA content.68 These
observations are consistent with the capacity for DNA replication
of a population of differentiating RGCs in the developing chick
retina.69 Evidence from our laboratory indicates that these newly
formed neurons, defined by the expression of specific differentia-
tion markers,69 re-enter into the cell cycle during their migration
to the ganglion cell layer in response to the activation of the
receptor p75NTR by nerve growth factor, and then they remain
with 4C DNA content during adulthood.69 This process, which
participates in the normal development of the nervous system, is
not generalized. Instead, tetraploid neurons in the chick retina
constitute a specific population of large RGCs that innervate
defined layers of their target tissue.69 Therefore, duplication of
the DNA content in neurons during development constitutes a
mechanism for neuronal diversification in vertebrates. As these
neurons cannot proliferate it is not possible to determine the
number of chromosomes they contain, therefore they are referred
to as somatic tetraploid neurons in a broad sense. Heteroploidy
in the retina does not seem to be exclusive of the RGCs. Indeed,
a recent study suggests that other newly formed retinal neurons,
constituting a subpopulation of horizontal cells, may also become
tetraploid.70 This observation fits with the increase in ploidy
observed in horizontal cells from mice with retina-specific knock-
out of the Rb1 gene.71 Like in the chick, the mouse retina also
contains tetraploid RGCs,69 an observation consistent with the
maintenance of proteins involved in cell cycle progression in

Table 1. Expression of cell cycle genes in the adult mouse brain. In situ hybridization raw expression values as defined by Allen Brain Atlas (http://mouse.
brain-map.org). Average values above 1.00 from all described experiments are shown. CX: isocortex, OL: olfactory areas, HP: Hippocampal formation, CS: cor-
tical subplate, ST: Striatum, PA: Pallidum, TH: Thalamus, HY: Hypothalamus, MB: Midbrain, PO: Pons, ME: Medulla, CB: Cerebellum.

Protein Gene CX OL HP CS ST PA TH HY MB PO ME CB

E2f1 E2f1 20.14 18.88 19.72 23.47 21.05 19.75 19.45 20.57 18.45 15.03 14.42 18.15
E2f2 E2f2 — — 1.02 1.58 — — — — — — — —
E2f3 E2f3 6.13 3.53 3.91 8.04 5.35 3.36 2.34 3.28 2.43 2.18 2.34 4.30
E2f4 E2f4 3.87 4.08 4.28 4.47 2.48 2.04 2.32 1.59 2.14 2.10 2.50 2.30
E2f6 E2f6 12.42 8.23 12.95 14.91 11.35 9.61 10.59 8.09 9.65 10.04 10.48 6.77
E2f8 E2f8 1.37 1.15 1.21 1.16 — — — — — — — —
Rb Rb1 4.55 3.17 4.52 2.27 1.34 — 2.25 — 1.59 — — 1.94
p130 Rbl2 1.70 2.00 2.26 — — — — — 1.61 1.03 1.36 3.09
Cdk4 Cdk4 2.24 2.86 2.72 2.52 2.65 2.19 1.97 2.14 1.65 1.47 1.54 —
Cyclin D1 Ccnd1 12.78 10.21 12.06 15.62 9.22 6.34 5.14 4.65 5.47 2.79 3.05 11.00
p18Ink4c Cdkn2c 6.48 7.75 8.63 14.63 6.18 8.06 3.81 10.73 6.33 4.54 4.79 1.32
p27Kip1 Cdkn1b 1.57 1.84 1.36 — 1.11 — 1.25 — 1.48 1.57 2.16 5.55
Cdc25b Cdc25b 1.07 — 1.33 — — — — — — — — —
Wee1 Wee1 5.44 2.53 4.03 2.94 2.05 1.93 2.43 1.37 2.87 2.47 2.14 1.76
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differentiated mouse RGCs.72 The presence of neuronal markers
in 6–7% of the Ki67C cells located in the proliferating layer of
the mouse retina72 suggests that, like in the chick, a population
of migrating RGCs undergo cell cycle re-entry and tetraploidiza-
tion in this species.

The mechanism used by p75NTR to induce cell cycle re-entry
in newly formed chick RGCs is not dependent on the activity of
Cdk4/6,73,74 an observation consistent with the absence of cyclin
D1 in a subpopulation of Ki67C/BrdUC cells located in the
developing mouse retina,72 as well as the lack of Rb in differenti-
ating chick tetraploid neurons.69 Therefore, cell cycle re-entry in
these neurons seems to differ from the canonic mechanism used
by quiescent cells when they reactivate the cell cycle, based on
Cdk4/6-dependent phosphorylation of Rb and subsequent
release of E2F1.4 In newly formed RGCs, p75NTR induces a
novel signaling pathway for cell cycle re-entry, mediated by
p38MAPK, which leads to the phosphorylation of E2F4 in a con-
served Thr-containing motif.73 The capacity of phospho-E2F4
to lead to cell cycle progression in differentiating retinal neurons
contrasts with the role of E2F4 as a cell cycle repressor that par-
ticipate in neuronal differentiation.75 E2F1, which is also
expressed in newly formed RGCs that become tetraploid,69

might cooperate with phospho-E2F4 in the production of tetra-
ploid RGCs.

The presence of tetraploid neurons in the vertebrate nervous
system is not restricted to the neural retina. In fact, around 10%
of human cortical neurons have DNA content higher than 2C,
and 2% of them are tetraploid.76 Tetraploid neurons have also
been found in the mouse cerebral cortex, where most of them
constitute a subpopulation of long-projection neurons,77 as well
as in different regions from the chick nervous system, including
the optic lobes, cerebellum, spinal cord and dorsal root ganglia.78

Cortical tetraploid neurons in the mouse are generated through a
p75NTR-dependent mechanism that differs from that observed in
the chick retina, since these neurons do actually express Rb as
they migrate through the neuroepithelium to the differentiated
layers.77 Therefore, different mechanisms for regulating G1/S
during neuronal tetraploidization seem to exist, depending on
the neuronal phenotype.

The reason why the E2F1-dependent mechanisms that induce
apoptosis when neurons trespass the G1/S checkpoint are not
active in the examples described above remains unknown, but
this may be related to their specific phenotype and/or environ-
mental conditions they are subjected to.

Neuronal cell cycle re-entry in neurodegenerative diseases
and other injuries of the nervous system

Cell cycle reactivation in adult neurons is an early hallmark of
neurodegeneration79 and CNS injury.80-82 Although cell cycle
reactivation has been classically linked to apoptosis (see above),
cumulative evidence indicates that neurons can actively re-enter
cell cycle, replicate its DNA, and survive as tetraploid neurons
during the course of different neurodegenerative diseases. Never-
theless, these neurons seem to be much more vulnerable to die
than diploid neurons, and therefore they may directly participate
in the etiology of the disease.83,84 In the next lines, we will

summarize what is currently known about cell cycle re-entry and
de novo tetraploidization of neurons in different diseases and
injuries affecting the nervous system.

AD is likely the best documented example of a neurodegener-
ative disease where affected neurons may undergo DNA replica-
tion, as evidenced by Mcm2 phosporylation,85 and de novo
tetraploidization.76,83,84,86-88 DNA replication in AD neurons is
consistent with the presence in these cells of proliferation markers
such as PCNA and the Ki-67 antigen, as well as a number of reg-
ulators of G1/S transition, including Cyclin D, Cdk4, hyperpho-
phorylated Rb, E2F1, and cyclin E.89-94 Importantly, the
presence of cell cycle events in the affected neurons is likely to be
involved in the development of the disease. In this regard, trans-
genic mice expressing oncogenes in postmitotic cortical neurons
to force these cells to re-enter the cell cycle show a phenotype
that is reminiscent of AD, which includes intracellular tau hyper-
phosphorylation64,94 and extracellular accumulation of b-amy-
loid peptide.64 In contrast to the idea that cell cycle re-entry
causes rapid neuronal death by apoptosis,92 tetraploid neurons
observed in the AD brain survive for years, as expected from the
slow progression of this neurodegenerative condition. In this
regard, the percentage of hyperploid neurons (i.e. those with a
more than diploid content) is doubled in brains from AD
patients as compared to that from non-affected individuals,76

being these neurons much more susceptible to degenerate only at
final stages of the disease.83

Not so much information is available about the mechanism
that lead to cell cycle reactivation and de novo-generated tetra-
ploidy in the diseased brain. In this regard, a recent study has
reported that cell cycle re-entry in AD may be regulated by MiR-
26b, a microRNA whose levels are elevated in relevant pathologi-
cal areas from early stages of the disease.95 MiR-26b induces cell
cycle re-entry through an Rb1/E2F dependent mechanism that
leads to upregulation of cyclin E1 and downregulation of
p27Kip1.95 It is also worth to note that p75NTR becomes upregu-
lated in response to stress in AD-affected neurons.96 Moreover,
p38MAPK has been linked with AD as well97 and its active form
can be detected in the brain of AD patients from the very early
stages of the disease, becoming increased with age.98,99 In addi-
tion, E2F4 can also be detected in the normal brain100 (Table 1),
suggesting that the p75NTR/p38MAPK/E2F4 pathway may also
participate in this neurodegenerative process.

Cell cycle markers in neurons can also be found in neural tis-
sue subjected to ischemia/hypoxia,101-103 suggesting the existence
of DNA replication in these cells. In this regard, Burns et al.104

have demonstrated this notion since the vast majority of neurons
that incorporate BrdU in response to ischemia/hypoxia do it
once they are differentiated, indicating that they had not been
generated by adult neurogenesis. Importantly, those neurons that
incorporate BrdU remain alive 7 d after stroke.104

Cell cycle reactivation, evidenced by BrdU incorporation and
FISH, has also been observed in the affected neurons of patients
suffering PD.105 In this regard, different cell cycle markers
including pRb, E2F1 and PCNA, associated with DNA replica-
tion, can be detected in affected neurons from the PD brain.106

Cell cycle markers, including E2F1, were also found by
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immunohistochemistry in animal models of PD.105,107 Further-
more, inhibition of Cdk4 by flavopiridol and removal of E2F1
have neuroprotective effects for PD as have been demonstrated
by in vivo and in vitro studies.105,108 These studies suggest that
in PD, post-mitotic dopaminergic neurons can re-enter the cell
cycle, cross the G1/S checkpoint, and then become blocked in
G2/M transition. This suggests that tetraploid neurons could be
generated during the course of PD, as occurs in AD.

G2/M transition in neurons and neuronal death
Although AD-affected neurons can re-enter into the cell cycle,

mitosis is rarely observed in these cells.109 Therefore, neurons
that undergo S-phase block cell cycle progression at the G2/M
transition, acquire a tetraploid condition, and survive for long
time in the affected brain. This situation is reminiscent of what
occurs in neurons becoming tetraploid during normal develop-
ment, which block the cell cycle at G2/M, and die if they trespass
this checkpoint.69,74,110 This suggests that in neurodegenerative
diseases where neurons become tetraploid, G2/M transition
blockade likely plays a key role for the survival of the affected
neurons.

Blockage of G2/M transition in newly formed, tetraploid neu-
rons seems to be independent of DNA damage response,111 the
canonical cause for cell cycle arrest at this stage of the cell cycle.18

Indeed, the mechanism that prevents G2/M transition in differ-
entiating tetraploid RGCs is based on the capacity of BDNF to
block this particular stage.69,110 This process is crucial for the
removal of tetraploid RGCs from the central retina.69,112 Indeed,
the use of BDNF blockers results in a significant increase of
ectopic mitoses and cell death in the differentiating chick ret-
ina.69 A similar mechanism is likely to occur in the developing
mouse retina, whose neuroepithelium also contains ectopic mito-
ses in a small proportion of b3 tubulin-positive cells,72 likely
those fated to p75NTR-dependent death.113 BDNF prevents G2/
M transition in tetraploid neurons through its neurotrophic
receptor TrkB, due to its capacity to decrease the expression of
both cyclin B and Cdk1 in differentiating retinal neurons.74,110

In addition, BDNF leads to a further decrease of Cdk1 activity
triggered by the phosphorylation of this kinase in Tyr15,110 thus
blocking G2/M transition in tetraploid neurons.

In AD-affected neurons G2/M transition seems to be also
blocked. Indeed, the Cdk1/cyclin B complex can be detected in
neurofibrilary tangle-containing neurons.89,92,114-117 However,
this complex is not translocated to the nucleus, thus likely con-
tributing to the arrest at the G2/M transition.116 The mislocation
of this complex likely facilitates the aberrant phosphorylation of
proteins such as tau or other cytoskeletal proteins, which display
many features of the mitotic phase and contribute to AD
pathology.118,119

The molecular mechanism used to block G2/M transition in
the tetraploid neurons that are generated during the course of
neuropathological conditions could derive from the DNA dam-
age response.18 Alternatively, it could be reminiscent of the inac-
tivation of Cdk1 induced by BDNF through TrkB.110 In the
absence of BDNF, differentiating tetraploid neurons try to divide
and then they die.74,110 A similar situation might occur in the

AD brain. In AD, neurons show markers of deregulated G2/M
transition. For instance, the Cdk1 activators Cdc25A and
Cdc25B show higher activity in degenerating neurons in
vivo,120,121 while a lower activity of the Cdk1 inhibitor Wee1
can be observed in these neurons.122 Moreover, pH3 phosphory-
lation, a marker of the G2/M transition, can be found in AD hip-
pocampal neurons, but aberrantly localized in the cytoplasm,
suggesting a mitotic catastrophe that leads to apoptosis.123 This
latter notion is consistent with the lack of chromatin condensa-
tion and spindle formation in AD-affected neurons, suggesting
that mitosis cannot be completed.115 BDNF increases neuronal
survival in different neurodegenerative diseases.124-126 Therefore,
the decrease of both TrkB and BDNF, observed in the late stages
of AD,127 could participate in the induction of neuronal
degeneration.84

Although the mechanisms leading to apoptosis in adult neurons
that undergo G2/M transition are not fully understood, what is
widely accepted is that Cdk1 is involved in different signaling path-
ways that lead to cell death. In this sense, Cdk1 can induce
FOXO1 phosphorylation in Ser249, which disrupts its interaction
with 14–3–3 proteins. This leads to its nuclear accumulation,
where it triggers the expression of cell death genes in neu-
rons.58,128,129 Cdk1 also induces the phosphorylation and the acti-
vation of the pro-apoptotic protein Bad by inducing its
phosphorylation in Ser128, which blocks the interaction of the
Ser136-phosphorylated Bad, induced by growth factors, with
14–3–3 proteins.57 Alternatively, apoptosis can be derived from
unknown mechanisms induced by mitosis in postmitotic neurons.

Mitosis and proliferating neurons
Interestingly, mitosis in neurons does not necessarily represent

a synonym of apoptosis. Indeed, there are examples of neurons
capable of dividing without undergoing cell death. This is the
case of retinal horizontal cells, which can proliferate in absence of
Rb and p130 while maintaining its differentiated state.130 There-
fore, under certain circumstances horizontal cells, which have
capacity to become tetraploid,70 can undergo full cell cycle pro-
gression as other proliferating cells. This astonishing observation
indicates that neurons can no longer be considered as pure post-
mitotic cells, and that they can potentially proliferate provided
that specific conditions are met. It can therefore be concluded
that it is only the particular phenotype and the environmental
signals what determines whether neurons can overcome G1/S
and G2/M checkpoints with or without dying.

Perspectives and Future Directions

Evidence described throughout this Review indicates that,
under defined situations, neurons can activate the cell cycle and
progress to the G1/S transition. If the proapoptotic signals associ-
ated with this stage are then prevented, they can undergo full
DNA replication and remain in a G2-like state, or even divide
without dying (Fig. 2). Several questions about the molecular
mechanisms regulating this complex behavior remain to be
responded, a constraint even stricter if one consider that most of
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our current knowledge about cell cycle regulation comes from
studies performed just in a few cell systems, including yeast,
oocytes, fibroblasts, and cancer cell lines, and that little is known
about the specific regulation of the cell cycle and its different
checkpoints in most vertebrate tissues,11 especially in neurons.
Therefore, further studies are required to deeply understand the
complexity of the G1/S and G2/M checkpoints in neurons, their

connection with the apo-
ptotic machinery, as well
as the molecular mecha-
nisms leading to these cells
to reactivate the cell cycle.
This will facilitate our
understanding of why
some postmitotic neurons
re-enter the cell cycle and
survive as tetraploid neu-
rons while other neurons
die by apoptosis as soon as
they reach the S-phase.
The mechanism used by
the adult brain to generate
tetraploid neurons during
the course of different neu-
rodegenerative conditions,
as well as the mechanism
employed to prevent G2/
M transition in these neu-
rons during early stages of
the disease has not yet
been determined. More-
over, little is known about
the proapoptotic pathways
that are activated in the
tetraploid neurons that are
raised de novo in the dis-
eased brain once they pre-
sumably cross the line
defined by the G2/M
checkpoint. Finally, noth-
ing is known about the
mechanism that prevents
cell death in horizontal
neurons that proliferate in
the absence of Rb and
p130 expression.130 The
answer to all these ques-
tions could help designing
specific drugs for therapy
against neurodegeneration.
In this regard, different
cell cycle modulators have
been proposed as thera-
peutic strategies for neuro-
degenerative conditions
such a stroke,82,131 excito-

toxicity,52 Alzheimer disease,52 and brain trauma.80 Preclinical
experiments using cell cycle protein inhibitors such as flavopiri-
dol, olomoucine or roscovitine demonstrated improved behav-
ioral outcomes and increased neuronal survival in a series of CNS
disease models such as AD,79 PD,108 and stroke.82,131,132 We
propose that modulation of G2/M transition can be a therapeutic
approach to avoid neuronal apoptosis in advanced stages of

Figure 2. Scheme showing the evidence for cell cycle progression in neurons. Postmitotic neurons can reactivate the
cell cycle (1) using the referred pathways. In many instances, this process is aborted at the G1/S transition and the
neuron die through a number of pathways initiated by either E2F1 or Myb proteins (2). There are also examples of
neurons that replicate their nuclear DNA and become tetraploid (3). These neurons die if they try to undergo mitosis,
and evidence exists indicating that Cdk1 is involved in this process (4). In some instances, these neurons can divide
and proliferate (5). References supporting the different steps are shown in brackets.
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neurodegeneration, to prevent the death of de novo-generated tet-
raploid neurons.
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