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Abstract. Consider a teacher who needs to assess a large number of
assignments. With massive open on-line courses (MOOCs) gaining mo-
mentum, it is now common for thousands of students to enrol in the same
course, and hence manual assessment by teachers is simply unfeasible.
Peer assessments is one way to go when auto-scoring approaches are not
possible. Current on-line courses usually use a simple aggregation of peer
assessments, but these suffer from two main pitfalls. First, simple aggre-
gation does not take into consideration how reliable each peer assessment
is. Second, simple aggregation calculates what the students think of an
assignment as opposed to what the teacher (the far more important as-
sessment source) thinks of it. This paper proposes two different models
to address these two different pitfalls. These models lay the foundation
for future work, where we intend to combine both models into a single
one that addresses both pitfalls at once.

1 Introduction

Self and peer assessment have clear pedagogical advantages. Students increase
their responsibility and autonomy, get a deeper understanding of the subject,
become more active and reflect on their role in group learning, and improve
their judgement skills. However, in this paper, we are interested in relying on
peer assessments for reducing the marking load of teachers. This is specially crit-
ical when teachers face the challenge of marking large quantities of students as
needed in the increasingly popular Massive Open Online Courses (MOOC). Ex-
isting platforms for on-line courses, like Coursera (coursera.org), apply a simple
assessment aggregation method. In this paper, we propose two different models
to address two different pitfalls of the simple aggregation method. The first pit-
fall is that a simple aggregation does not take into consideration how good is
each peer assessment.3 The academic publishing field has attempted to address
the pitfall of the simple aggregation method when aggregating reviews by asking
each reviewer to specify their confidence level. This confidence level is then used
to weigh the review. In this paper, we propose the Collaborative Judgements
(CJ) model, our first proposed model, where we go even further by stating that

3 Some MOOCS are using the mean or median of the students peer assessments.
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the confidence level provided by a reviewer is not sufficient as it completely re-
lies on how much objective is that reviewer in assessing himself. As such, our CJ
model proposes that peers judge each others assessments (or reviews). As such,
the weight used when aggregating assessments is then based on the judgements
that this assessment has received. In other words, instead of relying on one’s
self-confidence, we rely on how other peers judge each other’s assessments.

The second pitfall of the simple aggregation method of on-line courses is that
they solely aggregate student assessments, that is they aggregate what students
think of their peers assignment results. In classrooms, we believe the teacher’s
assessment of an assignment is far more important (and credible) than the stu-
dent assessments. As such, we propose the personalised automated assessment
service (PAAS), which modifies peer assessments to approximate the unknown
teacher assessments. It basically predicts how the teacher will assess an assign-
ment, given how the fellow peers have assessed it. In other words, the aggregation
is tuned to the point of view of the teacher.

While each of the models addresses a different problem of the simple aggre-
gation method used by current on-line courses, these models lay the foundation
for future work, where we intend to combine both models into a single one that
addresses both pitfalls at once.

The rest of this paper is divided as follows. Section 2 opens with an overview
of the related work; Sections 3 and 4 follow with the two models, Collaborative
Judgements and PAAS; Section 5 presents our experimental setting that we have
setup to evaluate our models, whereas our evaluation results are presented next
in Section 6; and finally, Section 7 closes with a brief summary of our work and
our plans for future work.

2 Background

Previous works have proposed several methods to generate student assessments
based on peer-student assessments. Table 1 categorises the related work, includ-
ing our CJ and PAAS models, with respect to whether the model aggregates
peer opinions by tuning them to the teacher’s view or not, and whether they
weigh assessments by their reliability. We briefly present these models next.

WbR ¬ WbR

T2T Future Work PAAS, LocPat [5],
Collaborative Filtering [11]

¬ T2T CJ, CrowdGrader [1], Simple aggregation (mean or
median)

PeerRank [13], Piech et al. [9]

Table 1. Categorisation of related work w.r.t. whether the model aggregates peer
opinions by tuning them to the teacher’s view (Tuned to Teacher – T2T) or not, and
whether they weigh assessments by their reliabiltiy (Weighed by Reliability – WbR)
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CrowdGrader [1] is a framework which defines a crowdsourcing algorithm
for peer assessments. The authors claim that, when performing assessments,
relying on a single person is often impractical and can be perceived as unfair.
Their method aggregates the assessments of an assignment made by several
students into an overall assessment for the assignment, relying on a reputation
system. The reputation of each student (or their accuracy degree as they call
it) is measured by comparing the student’s assessments with the assessments of
their fellow students for the same assignments. In other words, the reputation of
a student describes how far are her assessments from those of her fellow students.
The overall assessment (consensus grade) is calculated by aggregating all student
assessments weighted by the reputation of the students providing them. The
algorithm executes a fixed number of iterations using the consensus grade to
estimate the reputation (or accuracy degree) of students, and then uses the
updated student’s reputation to compute more precise suggested assessments.

PeerRank [13] is based on the idea that the grade of an agent is constructed
from the grades it receives from other agents, and the grade an agent gives to
another agent is weighted by the grading agent’s own grade. Thus, the grade
of each agent α is calculated as a weighted average of the grades of the agents
evaluating α, and thus the grades of α’s evaluators are themselves weighted
averages of the grades of other agents evaluating them, and so on. The final
grades are defined as a fixed point of an equation, similar to PageRank, where
web-pages are ranked according to the ranks of the web-pages that link to them.

Piech et al. [9] propose a method to estimate student reliability and to correct
student biases in an online learning scenario, presenting results over two Coursera
courses. They assume the existence of a true score for every assignment, which
is unobserved and to be estimated. Every grader is associated with a bias, which
reflects the grader’s tendency to inflate or deflate her assessments with respect to
the true score. Also, graders are associated with a reliability which reflects how
close the grader’s assessments tend to land near the corresponding true score,
after having them corrected for bias. Authors infer the values of these unobserved
variables using known approximated inference methods such as Gibbs sampling.
The model proposed is therefore probabilistic and is compared to the grade
estimation algorithm used on Coursera’s platform (mean of assessments), which
does not take into account individual biases and reliability.

Next, we present relevant recommender systems, as recommender systems
tune their results to the point of view of a specific person (as in PAAS). One
relevant system is LocPat [5], a generalised framework for personalised recom-
mendations in agent networks. LocPat builds trust measures based on mining
the graph of an agent network. For instance, trustworthy relationships are dis-
covered by studying the link structure (e.g., the number of common neighbours).
Then, it suggests to a specific requester (who requests a recommendation in the
agent network) a list of trustworthy agents for the requester to interact with.

Collaborative Filtering [11] is a classical social information filtering algo-
rithm that recommends content to users based on their previous ratings, ex-
ploiting similarities between the tastes of different users. In summary:
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1. The system maintains a user profile, which is a record of the user ratings
over specific items.

2. Then, the system computes a similarity measure among users’ profiles.
3. Finally, the system recommends items to users with a rating that is a

weighted average of the ratings on that item given by other users. The
weights are the similarity measures between the profiles of users rating the
item and the profile of the user receiving the recommendation.

3 CJ: Collaborative Judgements Model

Recall that the collaborative judgements model (CJ) aggregates peer assessments
by weighing each assessment with respect to its reliability, where reliability in this
model is referred to as the peer’s reputation, and it is based on the judgements
that this peer has received. In this section we detail our CJ algorithm, but first,
we introduce the notation, which we will use in the rest of this section.

3.1 Notation

We say an appraisal is a tuple 〈P,R,E, o, v〉, where P = {pi}i∈P is a set of
works (that is students’ solutions for the assignment); R = {rj}j∈R is a set of
peers (or students) evaluating someone’ works; E = {ei}i∈E ∪ {⊥} is a totally
ordered evaluation space, where ei ∈ N and ei < ej iff i < j and ⊥ stands for the
absence of evaluation; o : R × P → E is a function giving the opinions of peers
on someone’s work; and v : R×R× P → E is a function giving the judgements
of peers over opinions on someone’ works.

In general we might have different dimensions of evaluation, that is a number
of E spaces over which to express opinions and judgements. For instance, orig-
inality, soundness, etc. Nonetheless, here for simplicity reasons we will assume
that the evaluation of a work is made over a single dimension. Actually, the
‘overall’ opinion is what is aggregated in many real systems.

3.2 The CJ Algorithm

The steps of the CJ algorithm applied over an appraisal 〈P,R,E, o, v〉 are:

Step 1. Compute the agreement level between each pair of peers ri and rj as
a function a : R × R → [0, 1] ∪ {⊥}. This computation involves the set of
works jointly assessed by peers ri and rj , which we will formally define as
Pij = {pk ∈ P |o(ri, pk) 6= ⊥, o(rj , pk) 6= ⊥}. If two peers jointly reviewed
works, then their agreement level is based on the similarities of their opinions
on common works as well as on their judgements. Formally, we say:

a(ri, rj) =


∑
pk∈Pij

s(ri,rj ,pk)

|Pij |·d
if Pij 6= ∅

⊥ otherwise
(1)
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where d is the maximum distance in the evaluation space and:

s(ri, rj , pk) =


v(ri, rj , pk) if Pij 6= ∅ and v(ri, rj , pk) 6= ⊥
Sim(o(ri, pk), o(rj , pk)) if Pij 6= ∅ and v(ri, rj , pk) = ⊥
⊥ otherwise

(2)

Sim stands for an appropriate similarity measure. When no explicit judge-
ments are given, we use the similarity between opinions as a heuristic. This
is based on the following assumption: the more similar an opinion is to my
opinion, the better I am bound to judge that opinion.

Step 2. Compute a complete Trust Graph as an adjacency function matrix
C = {cij}i,j∈R such that:

c(ri, rj) =


a(ri, rj) if a(ri, rj) 6= ⊥

max
h∈chains(ri,rj)

∏
(k,k′)∈h

a(rk, rk′) otherwise (3)

where chains(ri, rj) is the set of sequences of peer indexes connecting i and
j. Formally, a chain h between peers i and j is a sequence 〈l1, . . . , lnh〉 such
that l1 = i, lnh = j, and a(rk, rk+1) 6= ⊥ for each pair (k, k+1) of consecutive
values in the sequence. To compute this step we use a version of Dijkstra’s
algorithm that instead of looking for the shortest path (using + and min as
mathematical operations), it looks for the path with the largest edge product
(using · and max as mathematical operators).

Step 3. Compute a reputation for each peer in R, {ti}i∈R. We follow the notion
of transitive trust: If a peer i trusts any peer j, it would also trust the peers
trusted by j. Since this principle is employed by the Eigentrust algorithm
[7], we use it to compute peer reputations. The use of Eigentrust allows us to
obtain a global trust value for each peer by the repeated and iterative mul-
tiplication and aggregation of reputation values until the trust grades for all
peers converge to stable values. Note that the trust graph generated in step
2 is aperiodic and strongly connected as required by the Eigentrust algo-
rithm. Furthermore, we normalise the powers of the matrix C at each step
to ensure its convergence. In vectorial notation, the trust vector is assessed
as t̄ = limk→∞ t̄k+1 with t̄k+1 = CT t̄k and t̄0 = ē being ēi = 1/|ē|.

Step 4. Compute the collective opinion on each work as a weighted average of
the opinions of those that expressed an opinion on the work. In other words,
given a work pj , we only consider the opinions of those peers that reviewed
pj , which we formally define as Rj ⊆ R,Rj = {r ∈ R|o(r, pj) 6= ⊥}. We can
then compute the collective opinion on a work pj as a weighted average of the
opinions of the peers in Rj using as weights the peers’ reputations. Finally,
the collective opinion computed by our collaborative judgements algorithm
for a work pj , noted as oCJ(pj), is:

oCJ(pj) =

∑
r∈Rj t̄r · o(r, pj)∑

r∈Rj t̄r
(4)

where t̄r stands for the reputation value of peer r as computed in Step 3.
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Step 5. Generate a partial ranking based on the set of collective opinionsOCJ(P ).
CJ sorts works in descending order by the collective opinion values. Thus,
the work with the highest value of collective opinion gets the first ranking
position. Works with equal collective opinion receive the same ranking num-
ber, and the work(s) on the next position receive the immediately following
ranking number (i.e. bucket index). The procedure continues until CJ assigns
bucket indexes to all works.

3.3 Comparing CJ to Related Literature

As illustrated by Table 1, several approaches have been proposed to aggregate
peer assessments by weighing each with respect to its reliability. The main dif-
ference between these approaches and CJ is the usage of judgement information
over such assessments. Here, we focus on comparing CJ to those models.

The reliability of a student in the Crowd Grader model is measured by com-
paring the student’s assessments with the assessments of their fellow students
for the same assignments. In other words, when one student’s assessments are
similar to his friends, then he is considered reliable, and vice versa. We be-
lieve our proposed CJ model is more accurate that the Crowd Grader model as
one’s assessment need not be similar to others, but needs to be highly viewed
by others. For instance, think of the clever student who always makes excellent
observations that have gone unnoticed by others.

PeerRank is another model that takes into consideration the reliability of an
assessment as the reliability of the student providing that assessment. And the
reliability of a student is calculated following an approach similar to Google’s
PageRank, where the assessment of each student is calculated as a weighted av-
erage of the assessments of the students evaluating the student in question. In
other words, PeerRank assumes that if you are assessed highly by reliable friends,
then your own assessments will be more reliable. CJ, on the other hand, differ-
entiates between one performing well in an assignment and one who provides
good assessments. For instance, one might fail at solving a difficult problem, but
might still be exceedingly capable of spotting out the mistakes of others. Unlike
PeerRank, CJ allows for that, because one’s assessments are judged by his peers
independently of his own performance in an assignment.

The model by Piech et al. [9] also uses reliability of assessments, where re-
liability is defined as the distance between one’s score and the true score of an
assignment. They assume the existence of a true score for every assignment, and
they then use Gibbs sampling to infer these values. CJ on the other hand does
not assume any true scores exist and reliability simply depends on how others
judge one’s assessment.

4 The PAAS Model

After presenting our CJ model that introduces judgements as a way for calculat-
ing the reliability of an assessment, we now present our PAAS model that tunes
assessments to the point of view of the teacher.
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4.1 Notation and Problem Definition

Let ε represent the teacher who needs to assess a large set of students’ works I,
and let P be a set of peers able to assess works in I.

We define a peer assessment eαµ (also referred to as evaluation or opinion)
as an element from a numerically ordered evaluation space E , where α ∈ I is
the work being evaluated and µ ∈ {ε} ∪ P is the evaluating peer. We define
an automated assessment eα for student work α as a metric (which could be
the mean, the median, the maximum, etc.) built from a probability distribution
P over the evaluation space E . We say P = {x1 7→ v1, . . . , xn 7→ vn}, where
{x1, . . . , xn} = E and vi ∈ [0, 1] represents the value assigned to each element
xi ∈ E , with the condition that

∑
0<i≤|E| vi = 1.

For example, one can define the evaluation space of the quality of an English
classroom homework as E = {1,2,3,4}. The distribution {1 7→ 0,2 7→ 0,3 7→
0,4 7→ 1} would represent the best possible assessment, whereas the distribu-
tion {1 7→0,2 7→ 1/2,3 7→ 1/2,4 7→ 0} would represent that the quality of the
homework is most probably average, and so on.

Finally, we define H as the history of all assessments performed, and Oα ⊂ H
as the set of past peer assessments over the work α.

4.2 The PAAS Algorithm

The ultimate goal of our model is to compute the probability distribution of ε’s
assessment over a certain work α, given the assessments of several peers over
that same work α. In other words, what is the probability that ε’s assessment of
α is x given the set of peers’ assessments Oα?

We base the computation on the notion of trust between peers built from
previous experiences, where trust is understood as the similarity between the
assessments made by those peers for the same works. In other words, our intuition
is that we expect ε will tend to agree with µ’s assessment on a work if her trust
on µ is high. Otherwise, ε’s assessment will probably be different. To build a
trust measure between ε and µ we perform a sort of analogical reasoning: if in
the past µ gave opinions that were similar to ε’s opinions to a certain degree
(trust), then ε is likely to coincide with µ’s opinion again now to the same degree.
The steps needed for calculating the teacher’s assessment are presented next.

Step 1. How much should I trust a peer? ε needs to decide how much
can she trust the assessment of a peer µ. We base this trust measure on two
intuitions. First, if ε and µ have both assessed the same work in the past, then
the similarity of their assessments for that work can give a hint on how close
their judgements/thinking are. When there are no works evaluated by both ε
and µ, ε would not know how much to trust µ’s assessments. Second, and to
cover this latter situation, we approximate the unknown trust between ε and
µ by transitivity over the path with direct trust links between ε and µ. In the
following, we make these two intuitions concrete through two different types of
trust relations: direct trust and indirect trust.
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Direct Trust. Direct trust is the trust relation that emerges between two people
or two agents that have already assessed the same works in the past.

We will define the direct trust between two peers i and j as a probability
distribution Ti,j over assessment differences built from the historical data of pre-
vious evaluations performed by i and j. First, we define the evaluation difference
between two assessments performed by i and j as:

diff (eαi , e
α
j ) = eαi − eαj (5)

We use the euclidean distance between assessments as the measure of dissimi-
larity, as it is the most used distance in the literature on similarity in metric
spaces. If diff (eαi , e

α
j ) = 0, it means that i and j provide the same assessment

for α. If diff (eαi , e
α
j ) > 0, it means that i over rates α with respect to j, if

diff (eαi , e
α
j ) < 0, it means that i under rates α with respect to j. Note that

diff (eαi , e
α
j ) 6= diff (eαj , e

α
i ).

When defining Ti,j , we are interested in maintaining information about whether
a peer under rates or over rates with respect to another peer. As such, the sup-
port of the distribution representing i’s direct trust on j (i.e. the x-axis of Ti,j)
consists of the possible evaluation difference values between i and j. Trust dis-
tribution Ti,j(x) then describes the probability that i and j would assess a work
with an evaluation difference x. Therefore, the distribution Ti,j(0) = 1 repre-
sents a trust distribution where i fully trusts on j’s opinion, since the probability
that their assessments are the same is 1.

Definition 1. Given a numeric evaluation space E = [0, b], a Trust Distribution
is any probability distribution over the differences in E, that is the interval [−b, b].

We now explain how we build direct trust distributions computationally,
based on previous experiences. We use an information theory approach where the
behaviour of the studied phenomenon is modelled by probability distributions
which are updated with every new observation. This approach is inspired by [2].

Initially, the direct trust distribution between any two peers i and j is the
distribution describing ignorance (i.e. the uniform distribution). Then, whenever
j evaluates a work α that was already evaluated by i we update Ti,j as follows:

1. We find the element x in Ti,j ’s support whose probability needs to be ad-
justed: x=diff (eαi , e

α
j ).

2. We increase the probability of x in Ti,j (p(X=x)) as follows:

p(X=x) = p(X=x) + γ · (1− p(X=x)) (6)

The update is based on increasing the current probability p(X = x) by a
fraction γ ∈ [0, 1] of the total potential increase (1−p(X=x)). For instance,
if the probability of x is 0.6 and γ is 0.1, then the new probability of x
becomes 0.6 + 0.1 · (1− 0.6) = 0.64. We note that the ideal value of γ should
be closer to 0 than to 1 so that one single experience does not result in
considerable changes in the distribution. In other words, a single assessment
cannot result in a significant change in the probability distribution.
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3. We normalize Ti,j by following the entropy based approach of [12]. The
entropy-based approach updates Ti,j such that: (1) the value p(X = x) is
maintained and (2) the resulting distribution has a minimal relative entropy
with respect to the previous one. In other words, we look for a distribution
that contains the updated probability value p(X=x) and that is at a minimal
distance from the previous Ti,j :

Ti,j(X) = arg min
P′(X)

∑
x′

p(X=x′) log
p(X=x′)

p′(X=x′)

such that {p(X=x) = p′(X=x)}
(7)

where p(X=x′) is a probability value in the original distribution, p′(X=x′)
is a probability value in the potential new distribution P′, and {p(X=x) =
p′(X=x)} specifies the constraint that needs to be satisfied by the resulting
distribution.

Indirect Trust. Indirect trust is the trust relation that is deduced between peers
when they have not assessed any works in common and thus a direct trust rela-
tion cannot be computed. The notion of indirect trust is inspired in the Eigen-
trust algorithm for reputation management [7]. In Eigentrust the transitivity in
trust is based on products and additions of positive real numbers. For example,
for a difference in opinion x between peers β and α and a difference in opinion
y between β and the teacher, the overall difference between the teacher and α
is z = x+ y, when we are in an ordinal space. However, in our case we need to
define operators to compute the transitive trust distribution from two distribu-
tions. When we move to probabilities, we then say that P(z) = P(x) ∗ P(y), as
we assume independence between opinions. Following this intuition, we define
the combined distance distribution between two peers as follows.

Definition 2. Given Trust Distributions P and Q over the numeric interval
[−b, b] we define their Combined Distance Distribution, noted R = P⊗Q, as:

r(X = x) =

∑
x1+x2=x

p(X = x1) ∗ q(X = x2) if x ∈ (−b, b)∑
x1+x2≤−b

p(X = x1) ∗ q(X = x2) if x = −b∑
x1+x2≥b

p(X = x1) ∗ q(X = x2) if x = b

(8)

This operation can be nicely applied to our case of evaluation differences
as the transitive trust is nothing else than the aggregation (addition) of the
combined probability (product) of given evaluation differences happening.

The ≤ and ≥ (in cases x = b and x = −b) are used to maintain the range
of the evaluation distance within the [−b, b] limits. For example, assume P =
{0, 0, 1} and Q = {1, 0, 0}, over the support (x-axis) [-1,1]. Now assume we
need to calculate R(−1). We say R(−1) should aggregate the product of the
probabilities of P(−1) and Q(0) (since (−1) + 0 = −1), the product of the
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probabilities of P(0) and Q(−1) (since 0 + (−1) = −1), as well as the product
of the probabilities of P(−1) and Q(−1) (since (−1) + (−1) = −2, and −2 is
outside the limits of the numeric interval of the evaluation distance).

Note that this operator, ⊗, is commutative. Its neutral element is the distri-
bution O for the ideal (or optimal) distribution where the probability that the
evaluation difference between two peers is 0 is equal to 1, that is p(X = 0) = 1.

The next problem to tackle is how to aggregate combined distances calcu-
lated from different sources (different peers). In this case, from several distance
distributions, we select the one that is closer to O, that is, the one that makes the
teacher and the student closer in their judgements. In the Eigentrust algorithm,
this would be equivalent to selecting the maximum combination (modelled as
the product of the values in the links) instead of the used weighted sum of all
the combinations. We note that other operators could be used here, for instance
selecting the distribution with minimum entropy. In the following we define this
operator.

Definition 3. Given probability distributions P and Q over the numeric interval
[a, b] we define P⊕Q, as:

P⊕Q = arg min
T∈{P,Q}

(emd(T,O)) (9)

with emd standing for the earth mover’s distance [10].

Note that this operator, ⊕, is commutative and associative so the order in
which we combine the trust distributions is irrelevant.

Next, we show how we use these operators following a similar approach to
Eigentrust. First, we store the direct trust distributions between ε’s peers in
a matrix CT , where at the position (i, j) we store the current probability dis-
tribution between peers i and j: Ti,j . We store the indirect trust distributions
between the teacher ε and each community member in a vector tε, where at
each position i we have Tε,i. Initially, tε contains the probability distributions
describing ignorance (i.e. the uniform distribution) in all rows. Let us call this
initial vector t0ε . In Eigentrust, the tε vector is updated as follows:

tk+1
ε = CT ṫkε (10)

until ‖tk+1
ε − tkε ‖ < η, where η is a specified threshold to determine that we have

reached a fix point. The trust vector tε then converges after a certain amount of
iterations. In this way, the trust that ε has on i is built aggregating the direct
trust distributions between community members and peer i weighted by the
trust (initially ignorance) that ε has on each community member. In our model,
however, the product between matrix CT and tkε is defined using the previous
definitions of ⊗ and ⊕, resulting in:

tk+1
ε,j =

⊕
0<i≤n

Ti,j ⊗ Tkε,i (11)

Finally, if a direct trust distribution is already built between ε and j, Ti,j ,
then after each step of the algorithm, tk+1

ε,j is overwritten with Ti,j , since we
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prefer to preserve direct trust distributions, which are built from the history of
assessments.

Information Decay. An important notion in our proposal is the decay of infor-
mation. We say the integrity of information decreases with time. In other words,
the information provided by a trust probability distribution should lose its value
over time and decay towards a default value. We refer to this default value as the
decay limit distribution D. For instance, D may be the ignorance distribution,
which would mean that trust information learned from past experiences tends
to ignorance over time. Information in a probability distribution T decays from
t to t′ (where t′ > t) as follows:

Tt t
′

= Λ(D,Tt) (12)

where Λ is the decay function satisfying the property: lim
t′→∞

Tt t
′

= D. In our

implementation, we adopt the decay function of [8].
Naturally, to implement such a decay mechanism in our model, we will need

to add a timestamp t to every assessment (eα
t

µ ) and every trust distribution,
direct or indirect, (Tti,j). Note that while the timestamp of an assessment is
fixed, the timestamp of a trust distribution should refer to the timestamp of the
latest assessment that modified this distribution.

Step 2: What to believe when a peer gives an opinion? Given a peer
assessment eαµ , the question now is how to compute the probability distribution
of ε’s assessment. In other words, what is the probability that ε’s assessment of
α is x given that µ evaluated α with eαµ . This is expressed as the conditional
probability:

P(Xα=x | eαµ)

To calculate this conditional probability, the intuition is that ε would tend
to agree with µ’s assessment if his trust on µ is high (that is, the expected
assessment difference between their assessments is close to 0). Otherwise, ε’s
assessment would probably be different. We perform then a sort of analogical
reasoning: if in the past µ gave assessments with a certain evaluation difference
with respect to ε, then this will probably happen again now.

We thus calculate the above conditional probability simply as:

p(Xα=x | eαµ) =



∑
y≤diff (x,eαµ)

Tε,µ(y) if x = 0∑
y≥diff (x,eαµ)

Tε,µ(y) if x = b

Tε,µ(diff (x, eαµ)) otherwise

(13)

Observe that in two cases the probabilities are computed as the summation
of the probability mass of Tε,µ for points below or over the difference between
the new opinion and the point x under consideration. This is done to cope with
the fact that we cannot under rate or over rate more as we are at the extremes
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already and consider that for instance past cases where we under rated more
should be taken into account when we are determining the probability that the
teacher gives a 0 in the assessment. Similarly for b. For example, assume µ’s
assessment is 2 when the maximum mark is 3, we are calculating the probability
of ε’s assessment, and ε usually over rates µ by 2 marks. The probability of
ε’s assessment being 2 will essentially be T(0) (since the difference 2 − 2 = 0).
However, the probability of ε’s assessment being 3, cannot simply be T(1) (since
the difference 3−2 = 1), because it is the maximum value of the evaluation space
and so it also needs to consider all the over rating possibilities described by T(2)
and T(3) as well. As such, the probability of ε’s assessment being 3 aggregates
T(1), T(2), and T(3).

Step 3: What to believe when many give opinions? In the previous section
we computed P(Xα | eαµ). That is, the probability distribution of ε’s assessment
on α given the assessment of a peer µ on α. But what does ε do when there is
more than one peer assessing α?

Given the set of opinions Oα = {eαµ1
, eαµ2

, . . . , eαµn} of a group of peers over
the work α, we define the probability of ε’s assessment being x as follows:

p(Xα=x | Oα) =

n∨
i=1

(I(Tε,µi) · p(X
α=x | eαµi))

n∑
i=1

I(Tε,µi) > δ

1/n otherwise

(14)

where ∨ is an operator that combines probabilities assuming the sources are in-
dependent:4 a∨b = a+b−a∗b, and I(Tε,µ) measures the information content of
the probability distribution Tε,µ as the earth mover’s distance to the ignorance
distribution (the uniform distribution F). In other words, the probability of ε’s
assessment being x given the set of opinions Oα is a disjunction of the probabili-
ties of ε’s assessment being x given each assessment eαµi ∈ O

α and diminished by
the information content of the assessment distributions I(Tε,µi). We diminish the
probability derived from a particular opinion when that opinion is actually not
very informative and thus very close to ignorance. In the case that most opinions
are close to ignorance,

∑n
i=1 I(Tε,µi) ≤ δ, the result of such combination might

be too close to zero (for a small δ) and thus we prefer to assume ignorance, 1/n,
for the probability value.

Finally, for several purposes (give a mark to a student, rank objects to pur-
chase, . . . ) it is practical to ‘summarise’ distributions P(Xα | Oα) into a number.
From the several methods that can be used (centre of gravity, mean, median,
. . . ) in the experiments we use the mode value of the distribution.

4 This assumption is not very restrictive for the scenarios we are considering: peer
assessments in online education or e-commerce as opinions are expressed by people
that do not know each other.
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Step 4: What should be evaluated next? The previous three steps allow
to compute assessments of students’ works that have not been assessed by ε,
based on peers opinions. The level of uncertainty of the assessments so gen-
erated by our method can be calculated as the uncertainty of the probability
distribution P(Xα | Oα). A classical method to measure this uncertainty is the
the distribution’s entropy:

H(P(Xα | Oα)) =
∑
x∈Xα

p(Xα=x | Oα) · ln p(Xα=x | Oα) (15)

We will explore in the experiments a heuristic that aims at reducing the
number of assessments made by the teacher. In other words, what work should
be assessed next by ε in order to maximally decrease the overall uncertainty?
For example, what students’ works and in which order should a tutor evaluate
so that the uncertainty of the computed assessments, i.e. the uncertainty on
the students’ marks, becomes acceptable. The heuristic is simple: we suggest
that ε evaluates works by decreasing value of the entropy of their assessment
distribution, that is the next work α that the teacher should assess is:

α = argmax
α

H(P(Xα | Oα)

4.3 Comparing PAAS to Related Literature

What is fundamentally different between our PAAS model and the related work
presented earlier is that the computation of our automated assessments is tuned
to the perspective of a specific community member, a teacher. We clarify that our
target is to accurately estimate those unknown assessments from the teacher’s
point of view. PAAS aggregates peer assessments giving more weight to those
peers that are trusted by the teacher. Such trust metrics are built, as we will see
shortly, using probability distributions based on the history of past assessments
between the teacher and his/her peers, rather than using aggregations.

Unlike LocPat, PAAS bases trust measures on the similarity of assessments.
If the student’s assessments are similar to the teacher, then the student will
be considered trustworthy by the teacher. LocPat, on the other hand, bases
trustworthiness on characteristics of the social graph, which we believe are not
as important as the similarity of assessments in the specific domain of automatic
assessment calculation for online courses.

In the experimental evaluation of our system, we compare PAAS to Collabo-
rative Filtering (CF), since CF (like PAAS) biases the final computation towards
the opinion of a particular member of the community. Furthermore, CF has been
widely adopted by the industry. Typical recommendation services, as the ones
provided by Amazon, Youtube or Last.fm, are based on the CF algorithm.

5 The English Classroom Experiment

5.1 Experimental Setting

In this section, we present experiments performed over real data coming from
two English language classrooms (30 14-years old students). Two different tasks
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were given to the classroom: an English composition task and a song vocabulary
task. A total of 71 assignments were submitted by the students and marked by
the teacher. Students assessed their fellow students during a 1 hour period. A
total of 168 student assessments were completed by the students (each student
assessed on average 2.4 assignments). Marks vary from 1 (very bad) to 4 (very
good). Students evaluated different criteria from the assignments: focus, coher-
ence, grammar in the composition task and in-time submission, requirements,
lyrics in the song vocabulary task.

We calculate the error of the generated assessments, noted as eα, as the
average difference between them and the tutor assessments, that is:

error =

∑
α∈I
‖eα − eαε ‖

|I|

In addition to the error, we are also interested in plotting the number of
deduced assessments. We note that when there is no peer or tutor assessment
for a particular assignment, an automated mark for that assignments can not be
generated.

In this experiment, we compare PAAS with the well known Collaborative
Filtering (CF) algorithm [11]. (Please note that the CJ model is evaluated in
the following section.) As discussed in Section 2, CF is a social information
filtering algorithm that recommends content to users based on their previous
preferences. CF biases the final computation towards a particular member: the
person being recommended, as our algorithm does.

In this experiment, we randomly select a subset of 6 teacher assessments
to use as the teacher’s opinion in both PAAS and CF (this subset represents
8.4% of the total number of assessments, the rest of teacher assessments are
used to calculate the error). Then, several iterations are performed, one for each
student assessment. At each iteration: (1) one student assessment is selected
randomly from the set of student assessments and added to PAAS and CF;
and (2) automated assessments are generated by PAAS and CF and the error
is calculated. To calculate the error, our groundtruth is the set of all tutor
assessments. Results are averaged over 50 executions. When an assessment for
a particular assignment could not be deduced, a default mark (ignorance) 2 is
given, since this value is situated more or less in the middle of the evaluation
space. Default marks are used in both PAAS and CF error calculations.

5.2 Results

Figure 1 shows the results of comparing PAAS tp CF. As the assignments are
different with different evaluation criteria we choose a criterion per group, nec-
essarily different, so that we can have a larger number of assignments in the
experiments. Figure 1 presents the results of one such pairing of criteria, al-
though the results of other pairings (not presented here) are very similar. It is
clear the remarkable improvement of PAAS over CF considering the number of
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final marks generated (see the right column of graphics in the figure). PAAS
has an added capability with respect to CF in using indirect trust measures
to generate assessments. In CF the opinion of someone without any similarity
in her profile with the teacher (in our case, without any common assignment
being assessed) cannot be used to suggest a recommendation (an assessement).
Thus, PAAS is capable of generating many more assessments, specially once the
graph of indirect trust relationships becomes more and more connected. This
highlights PAAS’s first point of strength: PAAS increases the number of assess-
ments that can be calculated. On the left, we show the improvement of PAAS
over CF in terms of the error with respect to the ground truth that we know
(the actual teacher assessments). The error is calculated over the entire set of
assignments, including assignments that receive the default mark. This high-
lights PAAS’s second point of strength in outperforming CF: PAAS decreases
the error of the assessments calculated. We note that when the number of peer
assessments increases PAAS and CF’s error get closer because the effect of in-
direct trust diminishes. However, we are much better than CF for a small effort
per peer (for instance, think of 5 or 6 assessments per peer instead of hundreds).

Fig. 1. Results of the English classroom experiment, focusing on the two criteria “fo-
cus” and “in-time submission”

6 The Simulation-Based Experiment

Students failed to provide sufficient judgements to allow us to properly evaluate
our CJ model. As such, the data obtained from the real experiment of Section 5
was used to evaluate PAAS, whereas we simulated data for evaluating CJ. This
section presents our simulation.
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6.1 Experimental Setting

We assume a set P = {p1, . . . , pn} of students’ works (assignments) and a func-
tion for their true quality in a range [0, 1],5 q : P → [0, 1]. We use the following
evaluation space E = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

We use beta distributions to model students’ opinions and judgements as it
is an appropriate distribution to simulate a behaviour that is subject to random
variation and is limited on both extremes, i.e. represents processes with natural
lower and upper boundaries [6].

We model two types of student assessors: good and bad, with the following
behaviour:

– Good student assessor. She provides fair opinions and fair judgements. Her
opinion on any work pk is always close to its true quality q(pk). We assume
that the absolute value of the difference between the opinion of a student
assessor and the true quality of a work (as a percent) follows a beta dis-
tribution, Beta(α, β), very positively skewed, for instance with α = 1 and
β = 30. For each work pk reviewed by a good student assessor, we sample the
assessor’s associated beta distribution for a percentage difference, apply it
to the work quality q(pk) (up or down randomly) and round the result to fit
an element in E. Her judgements on someone’s opinion are close to 0 if that
opinion is far from the true quality of the work, and close to 1 otherwise.
We implement this as the following function:

v(ri, rj , pk) = 1− |o(rj , pk)− q(pk)|

and self-judgements from Beta(5, 2), slightly negatively skewed.

We assume that when a good student assessor judges a bad student assessor
she samples a value in E from a beta distribution rather positively skewed:
Beta(2, 40). The intuition is that good student assessor poorly mark bad
student assessor.

– Bad student assessor. She provides unfair opinions, because she is incom-
petent, but provides reasonable judgements as she can interpret the opin-
ions of others as being informative or not. Thus, we sample opinions from
Beta(20, 12) (rather central with a slight positive skew), judgements for good
assessments (or opinions) and self-judgements from Beta(5, 2) as for good
student assessors (negatively skewed), and judgements on bad reviews from
Beta(2, 5) (slightly positively skewed). The overall idea is that bad student
assessors stay mostly in the central area of the evaluation space.

We use Sim(x, y) = (|E| − 1 − |τ(x) − τ(y)|)/(|E| − 1) as a simple linear
similarity function where τ is a function that gives the position of an element in
the ordered set E.

5 Assessing the true quality of an object may be difficult and it is certainly a domain
dependent issue.
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6.2 Simulation Results

Analysing the accuracy of opinions. Here, we consider the accuracy of a
collective opinion on a work as the difference between that opinion and the true
quality of that work. We compare CJ to the algorithm that weighs opinions with
the assessors’ self-assessments. This is because the models presented in Section 2
that consider the reliability of an assessment have not been adopted yet, and as
such, we compare to one that is commonly used in academia (specifically in online
conference management systems, such as Confmaster or Easychair). There, each
reviewer states his self-confidence when it comes to the assessment he has given,
and the aggregation of assessments uses this measure as a weight describing the
reliability of assessments. We will call this simple algorithm the Self-Assessment
Weighted Algorithm (SAWA).

We compare the accuracy of the opinions computed by CJ and SAWA as
the percentage of good student assessors increases. We compute the accuracy of
both CJ and SAWA as the mean absolute error of their opinions with respect to
the true qualities using the following expressions:

MAECJ =

∑
p∈P |oCJ(p)− q(p)|

|P |
MAESAWA =

∑
p∈P |oSAWA(p)− q(p)|

|P |

where q is a function that yields the true quality of each work. Figure 2 plots
the percentage error reduction of CJ with respect to SAWA (computed as (1−
MAECJ

MAESAWA
) · 100) by aggregating the values obtained from 30 runs of each al-

gorithm (each run samples all the distributions and thus generates different
collective assessments). Note that CJ outperforms SAWA, as it is much more
resilient to bad student assessors. As a matter of fact, as opposed to SAWA that
treats all student assessors equally, CJ is designed to detect bad student assessors
and diminish the importance of their opinions by the usage of the reputation
measure. We observe that CJ’s gains become larger than 20% and statistically
significant for percentages of good student assessors between 20% and 80%.

Fig. 2. Accuracy of opinions: percentage of error improvement of CJ over SAWA
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Analysing the accuracy of rankings. Now we compare the accuracy of
the rankings produced by CJ and SAWA with respect to the ranking resulting
from the true quality of works. In order to compare two partial rankings, we
largely rely on the work of [3], which provides sound mathematical principles to
compare partial rankings. In particular, we use one of the four metrics presented
in [3], the so-called Kendall distance with penalty parameter p, and we employ
the normalised Kendall distance [4] with penalty factor p = 0.5.

We employed the partial rankings resulting from 30 runs of CJ and SAWA.
We note by σCJ1 , . . . , σCJ30 the partial rankings produced by CJ by σSAWA

1 , . . . , σSAWA
30

the partial rankings produced by SAWA, and by σq the true ranking. Then,
for each partial ranking computed by CJ and SAWA, we compute its nor-
malised Kendall distance with respect to the true ranking. On the one hand,
we assess the average Kendall distance of the rankings produced by CJ as

KCJ =
∑30
i=1 K̃

(0.5)(σCJi ,σq)

30 . On the other hand, we assess the average Kendall

distance of the rankings produced by SAWA as KSAWA =
∑30
i=1 K̃

(0.5)(σSAWA
i ,σq)

30 .
Figure 3 (left) plots the average Kendall distance of the rankings produced

by CJ with respect to the true ranking, namely KCJ , as the number of good
student assessors increases. We observe that the distance between CJ rankings
and the true ranking quickly decreases as the number of good student assessors
increases. Notice that beyond 50% of good student assessors the distance drops
below 0.1. That means that CJ can produce rather accurate rankings despite
the presence of a large ratio of bad student assessors.

Figure 3 (right) shows the accuracy gain of CJ with respect to SAWA. We
calculate such accuracy gain as KSAWA−KCJ

KSAWA
·100. We observe that the accuracy

gain yield by CJ as the number of good student assessors grows, going beyond
a 40% gain with 80% good student assessors. Similarly to experiment 6.2, the
graph clearly shows that CJ performs significantly better even when the number
of bad student assessors is high. We see that CJ has been able to discriminate
poor assessments, while SAWA treats all student assessors equally. We observe
also that CJ benefits larger from good student assessors than SAWA.

Fig. 3. (Left) Normalised Kendall Ranking distance calculated for CJ ranking and
true ranking of the works. (Right) Percentage of error decrease measured as a Kendall
distance between rankings produced by CJ and SAWA and true ranking of works for
increasing percentages of good student assessors.
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Analysing the robustness against bad student assessors. As mentioned
before, we model the opinion of good student assessors with a Beta(α, β) very
positively skewed from which we sample the difference between the student as-
sessor’s opinion and the true quality. With α = 1 and β > 30 the expert is
frequently telling the true quality in her opinions (specially because we discre-
tise the sampled values into our evaluation space —i.e. almost all the distribution
mass is rounded to a distance of 0 with respect to the true quality). In figure
4 we plot the improvement of CJ with respect to SAWA for α = 1 and in-
creasing values of β (better student assessor behaviour). We observe that the
algorithm outperforms SAWA by 10% when the student assessor is frequently
mistaken (β = 5). This shows that even when good student assessors give fre-
quently inaccurate opinions, CJ is still able to capture them and increases the
importance of their assessments. The improvement asymptotically grows to 51%
with increasing quality of the student assessor behaviour.

Fig. 4. Improvement of CJ over SAWA as assessors’ quality increases (with α=1 and
increasing β values, and a population with 50% good and 50% bad student assessors).

7 Conclusion

This paper proposes two different models for tackling two different problems
of aggregating peer assessments in online classrooms. The Collaborative Judge-
ments (CJ) model, our first proposed model, requires that peers judge each
other’s assessments. This helps assess the reliability of student assessments: the
weight used when aggregating assessments is based on the judgements that
this assessment has received. The personalised automated assessment service
(PAAS), our second model, modifies peer assessments to approximate the un-
known teacher assessments. It basically predicts how the teacher will assess an
assignment, given how the fellow peers have assessed it (as opposed to calcu-
lating what the students think of this assignment). These two models lay the
foundation for our future work, where we intend to combine both models into
a single one that takes into consideration judgements when weighing student
assessments, as well as tune assessments to the point of view of the teacher. The
aim is to build an automated assessment system that results from the collabo-
ration of both students and teachers.
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