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Abstract

Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of 

dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve 

failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial 

electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis 

abnormalities. These changes are associated with increased mitochondrial reactive oxygen species 

(mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate 

for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy 

production in models of PD. Here, we review how mitochondria orchestrate the maintenance of 

cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to 

glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of 

bioenergetics.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder clinically characterized by motor 

deficits such as tremor, bradykinesia, rigidity and postural instability, eventually 

accompanied by non-motor complications such as dementia [1]. These symptoms are mainly 

associated with loss of dopaminergic neurons (DA) of the substantia nigra (SN). The 

mechanisms underlying DA death have been investigated in many cellular and animal 

models [2–7]. Mitochondrial dysfunction plays a key role in the development of PD [8, 9]. 
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Damage of mitochondrial electron transport chain (ETC) affecting complex I, mutation of 

genes involved in mitochondrial function and defects in the regulation of mitochondrial 

dynamics has been widely reported in PD pathogenesis [10–13]. Being the main energy-

producing organelles of the cell, mitochondria oxidize carbons obtained from carbohydrates 

and fat, producing ATP through the oxidative phosphorylation (OXPHOS) [14, 15]. 

Accordingly, any process impairing mitochondria may lead to metabolic switching aimed to 

compensate for their diminished ability to produce ATP. For instance, switching from 

OXPHOS to glycolysis is a well-known phenomenon in cancer –the Warburg effect [16]. 

Here, we address the notion that, similarly to cancer, PD is a metabolic-like disease. 

Actually, many PD-related genes are also altered in cancer, suggesting common mechanisms 

in both pathologies [17]. Thus, several epidemiological studies have reported an association 

between PD and cancer, although this link is yet controversial. Thus, whilst initially it was 

described an inverse correlation between PD and cancer vulnerability, a recent study reports 

a positive relationship, at least for certain cancer types, including skin, breast and brain 

cancer [18]. This odd association provides a new perspective to a well-known opposing cell 

fate of degeneration and death of post-mitotic neurons, and the uncontrolled division and 

enhanced resistance to death of cancer cells. An example of this is the loss of function of 

parkin (one of the genes altered in both PD and cancer). Thereby, parkin mutations results in 

the deficiency of E3 ligase activity leading to unfolded protein system (UPS) dysfunction 

and cyclin E build up. CDK2/cyclin E phosphorylates the tumour suppressor retinoblastoma 

releasing the transcription factor E2F-1 from inhibition. In mitotic cells E2F-1 up-regulates 

proteins that facilitate cell cycle progression, but in post-mitotic neurons E2F-1 triggers 

apoptosis through p53 and Bax [19, 20].

Mitochondrial dysfunction leading to metabolic shift and, eventually, neuronal death, may 

also be a consequence of decreased ability to clear the damaged mitochondria. This can lead 

to a positive loop of mitochondrial damage, as complex I inhibition, observed in PD and 

some PD experimental models, increases mROS formation that in turn can oxidize 

mitochondrial DNA (mtDNA) and other components of the ETC that contribute to oxidative 

stress [21]. Thus, defects in regulation of mitochondrial dynamics leading to mitochondrial 

dysfunction may also be involved in PD and, although the specific role of mitochondrial 

dynamics in PD pathogenesis remains unknown, both toxin and genetic models of PD show 

signs that interrelate them. Thus, toxins such as MPTP cause Drp1-dependent mitochondrial 

fragmentation and increased mitophagy in SH-SY5Y cells and dopaminergic neurons [22]. 

Rotenone, at high concentrations, induce mitochondrial fission and cell death in primary 

neurons, being this ameliorated by increased fusion or inhibited fission after overexpression 

of Mnf1 or inhibition of Drp1 [23]. In the case of genetic models, α-synuclein 

overexpression inhibits mitochondrial fusion by interaction with mitochondrial membranes 

leading to fragmented mitochondria [24, 25]. Loss of Parkin and Pink1 triggers increased 

vulnerability to mitochondrial damage in cells [10, 27, 28]. Under normal conditions, parkin 

protein is recruited in impaired mitochondria via a Pink1-dependent mechanism to induce 

mitophagy [29]. This process involves ubiquitylation of mitochondrial aberrant proteins for 

proteasomal degradation. Accordingly, the lack of function of Pink1 or Parkin leads to the 

accumulation of misfolded proteins, such as α-synuclein, which is accumulated in the PD 

brain. Furthermore, under normal conditions, PINK1 and Parkin promote fission and inhibit 
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fusion processes, hence the loss of either protein alters mitochondrial morphologies, 

producing Drp1-dependent mitochondrial fragmentation and decreasing the mitochondrial 

membrane potential and ATP production [30, 31]. Loss of DJ-1 in cortical neurons reduces 

fission and increase mitophagy, which is reverted by PINK1 and Parkin [26]. DJ-1is also 

involved in the degradation of misfolded proteins, thus protecting from mitochondrial 

fragmentation after damage; it has been observed that Parkin, Pink1 and DJ-1 form a 

complex having E3 ligase activity [32]. However, many reports have shown that DJ-1 acts in 

parallel to, or up-stream of, the Pink1/Parkin pathway [33, 34]. DJ-1, via its Cys106, may 

also act as a redox sensor protein exerting protection against oxidative stress [35]. Finally, 

LRRK2 also affects mitochondrial function and dynamics. Thus, aged transgenic mutant 

LRRK2 mice exhibit increased damaged mitochondria and mitophagy in cerebral cortex and 

cultured neurons. This may be mediated by Drp1 because LRRK2 interact with Drp1 

enhancing its recruitment into mitochondria. However, this is yet controversial as it depends 

on the cell type, thus further studies still need to be done [36].

The endoplasmic reticulum (ER)-mitochondria crosstalk is critically important to preserve 

mitochondrial and cellular integrity. ER-mitochondria contact sites transfer Ca2+ from ER to 

mitochondria to sustain cell metabolism and bioenergetics [28, 37, 38]. Recent studies 

suggest PD to be linked to other metabolic diseases, such as diabetes or metabolic syndrome 

[39]. For instance, epidemiological evidence links type 2 diabetes mellitus (T2DM) with the 

pathogenesis of PD, since mitochondrial dysfunction and ER-stress leads to insulin 

resistance [40]. Interestingly, DJ-1 activity is reduced in both PD patients and patients with 

T2DM [41]. ER-stress alters protein folding leading to accumulation of α-synuclein to form 

the PD typical Lewy bodies cytoplasmic inclusions [42], as well as reduces insulin secretion 

in diabetes [43]. Inflammation, another key factor risk in PD [44, 45] is also observed in 

T2DM [46]. Insulin receptors are present in the substantia nigra [47] and impaired insulin 

signalling affects glucose uptake in this brain area and causes neuronal dysfunction by 

inactivating KATP channels [48]. High fat diets lead to insulin resistance and accelerate PD 

progression in a rodent model [49]. Lipids and ceramides, generated from saturated fatty 

acids, are antagonists of insulin activity, thus likely connecting insulin resistance with 

neurodegeneration [50]. Cytochrome P450, a typical liver enzyme that is regulated by the 

brain dopaminergic system in rodents, has been found damaged in PD patients [51, 52]. 

Finally, there are similarities in DJ-1 signalling pathways found in brain and pancreas [41].

In summary, there is a large body of evidence suggesting the occurrence of important links 

between glucose homeostasis and PD, being mitochondria a critical nexus. Here, we review 

this novel aspect of neurodegeneration with the aim to contribute shedding light on the 

search for future novel therapeutic strategies.

1.1 Dopaminergic neurons are particularly sensitive to metabolic imbalance

The dopaminergic neurons of the substantia nigra pars compacta (SNpc DA neurons) are 

highly energy demanding, a feature that is likely due to the metabolic sustaining of their 

unusually large axonal arborisation [6, 53]. Interestingly, by reducing the arborisation of the 

SNpc DA neurons using semaphorin-7A, OXPHOS activity and survival are decreased when 

exposed to the parkinsonian-like compounds MPP+ and rotenone [53]. mROS production in 
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the SNpc DA neurons is higher than in other neurons due to the dopamine oxidative 

metabolism, and takes place in the axon terminals, where the mitochondrial density is higher 

than in the ventral dopaminergic neurons [53, 54]. Iron content has been reported to be high 

in the SNpc DA neurons, which may be consequence of its enhanced release from ferritin 

caused by O2
•−, from haemoglobin and cytochrome c by peroxides, and/or from iron-sulfur 

proteins by peroxynitrite (ONOO−). Thus, increased of metal ions such as Fe2+ enhance 

H2O2 conversion to •OH via the Fenton reaction, which amplifies oxidative stress [55]. 

Interestingly, iron-mediated oxidative stress can promote α-synuclein aggregation by 

catalysing α-helix conversion into β-sheet, which forms the partially-folded intermediates 

that are susceptible to aggregation [55]. Antioxidants, such as reduced glutathione and 

peroxiredoxin 5, are weakly synthesized in the SNpc DA neurons [55–57]. SNpc DA 

neurons pacemaking is dependent on a particular L-type voltage-dependent Ca2+ channels 

that leads to large Ca2+ influx and subsequent ATP-dependent extrusion, thus increasing 

ATP requirements and oxidative stress [58–61]; in fact, antagonists of this L-type channel 

are neuroprotective [59, 62]. Finally, 1-acetyl-6, 7- dihydroxyl-1, 2, 3, 4-

tetrahydroisoquinoline (ADTIQ), a neurotoxin found in the brain of PD patients, is 

synthesized from a dopamine-derived tetrahydroisoquinoline (TIQ) and methylglyoxal, a 

major side product of glucose metabolism. Thus, glycolytic up-regulation after 

mitochondrial dysfunction, along with increased TIQ synthesis in DA neurons, could 

enhance the synthesis of ADTIQ, thus contributing to DA neuron degeneration [63]. 

Altogether, these observations suggest that the particular metabolism and morphology of 

SNpc DA neurons render them more vulnerable to perturbations of mitochondrial functions 

in response to multiple factors, such as gene mutations, environmental toxins, and aging.

2. Mitochondrial dysfunction, mROS and energetic metabolism in PD

ROS are continuously produced in all tissues, and their production and detoxification are 

tightly balanced. Shifting this balance enables ROS to activate intracellular signalling and/or 

generate oxidative stress, eventually inducing cell death. Oxidative stress is one of the 

hallmarks of PD, being the major sources of ROS the DA neurons [64–66]. Dopamine is an 

unstable molecule able to produce reactive quinones and free radicals by tyrosinase and 

monoamine oxidase (MAO)-catalysed auto-oxidation [67, 68]. Intra-mitochondrial iron 

overloading causes oxidative stress, since ferric and ferrous ions (Fe3+, Fe2+) can react with 

superoxide anion (O2
•−) and hydrogen peroxide (H2O2) to generate hydroxyl radicals 

through the Fenton reaction; these ROS synergize with dopamine oxidation to trigger 

neurotoxicity [69, 70]. Hydroxyl radicals generation and decreased glutathione contributes 

to ROS toxicity and neurodegeneration associated with PD [71]. Maintaining Ca2+ 

homeostasis requires ATP-dependent pumps [72], which increase the energy demand and 

OXPHOS activity, consequently leading to higher ROS generation. As above-mentioned, 

SNpc DA neurons express L-type Ca2+ channels for Ca2+ influx, which causes basal 

mitochondrial oxidative stress likely responsible for cell death acceleration [72].

PD is associated with chronic neuroinflammation, a phenomenon controlled by the brain 

microglial cells. Microglial activation has thus been observed in both sporadic and familial 

PD patients [73]. Microglial activation in turn leads to increased cytokine formation, ROS 

production and decreased secretion of trophic factors, inducing neuronal death [66, 74, 75]. 
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Toxins, such as MPTP and rotenone, as well as mutations of PD-associated proteins like α-

synuclein, Parkin, Pink1, DJ-1 and LRRK2, have been reported to activate glial cells and 

release ROS, inducing astrocyte activation thus amplifying the pro-inflammatory response 

and increasing microglial phagocytosis [76–79]. As already indicated, mitochondrial 

dysfunction triggers ROS formation [80]. Complex I and, to a smaller extent, complex III of 

the ETC are considered to be the main sites of mROS production [21]. Complex I inhibition 

results in enhanced ROS production, and excess ROS inhibit complex I. Inhibition of 

complex I activity is well known to occur in the SNpc of PD patients [81–83]. 

Environmental factors, such as MPTP or rotenone, as well as the loss-of-function of PD-

related proteins such as Parkin, Pink1 or DJ-1, are known factors that inhibit complex I 

directly or indirectly, thus disrupting ATP synthesis and increasing ROS [84–88]. 

Interestingly, the alternative electron carrier methylene blue (MB), which accepts electrons 

from NADH and transfers them to cytochrome c thus bypassing complexes I–III, is able to 

increase cellular oxygen consumption and to reduce glycolysis in cultured cells, attenuating 

the toxicity of complex I inhibition by rotenone [89].

When mROS is produced in excess and OXPHOS is impaired, it is often observed a 

compensative enhanced glycolytic activity, thus suggesting that mROS and glycolysis 

interact during cell energy homeostasis [90]. For instance, in skeletal muscle and cultured 

cells, H2O2 stimulates glucose uptake [91–94]. Interestingly, in L6 myoblast, glucose uptake 

inhibition leads to increased ROS [95] and suggests a possible antioxidant-like role for 

glucose. Out of the 14 glucose transporter (GLUT) isoforms described so far [96], GLUT1 is 

up-regulated by ROS [97]. In fact, GLUT1 transcriptional expression is governed by 

transcription factors including hypoxia-inducible factor-1 (HIF-1) [98]. HIF-1 is composed 

by two subunits, α and β, being its activity mainly regulated through the stabilization of its 

α-subunit. Under normoxic conditions, the α-subunit is degraded by the proteasome, which 

requires hydroxylation on the Pro residues present in the O2-dependent degradation domain. 

During hypoxia, hydroxylation is inhibited hence HIF-1α is stabilized, enabling the 

formation of a complex with HIF1β that is translocated into the nucleus to promote the 

expression of several genes, including those encoding GLUT1 and enzymes of the glycolytic 

pathway [87, 99]. Interestingly, mROS also stabilize HIF1α [87]. In muscle, GLUT1 

activity is increased by 5′-AMP-activated protein kinase (AMPK) [100], a protein kinase 

that is activated by LKB1-mediated phosphorylation during elevated AMP/ATP ratio or 

mROS [101–103]. Both HIF1 and AMPK activation leading to increased glucose uptake has 

been observed in PD models [87, 104]. GLUT1 activity can also be increased by 

translocation to the plasma membrane, which takes place through a ROS-mediated oxidation 

of key sulfhydryls in the Ataxia Telangiectasia Mutated (ATM) protein forming an active 

dimer [105, 106]. ATM is localized close to the mitochondria, suggesting that its 

dimerization is mediated by mROS [107].

Glucose metabolism can play a role in regulating the ROS production and scavenging 

balance. For instance, glucose oxidation through the pentose phosphate pathway (PPP) 

produces reducing equivalents in the form of NADPH, which is necessary to recycle 

antioxidant glutathione from its oxidised status [108]. This is especially important in 

neurons because they are more vulnerable to oxidative stress than other cell types. In 

neurons, the limiting glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-
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bisphosphatase-3 (PFKFB3) is continuously degraded by the proteasome, and this is why 

they preferentially metabolize glucose via the PPP instead glycolysis, in contrast to what 

happens with other cells with more robust antioxidant system [109]. Thus, inhibiting glucose 

flux through the PPP increased levels of oxidative stress and neuronal death [109]. In 

addition, certain stimuli are able to stabilize PFKFB3, switching from PPP to glycolysis 

[110]. This leads to increased oxidative stress and apoptotic neuronal death that counteract 

with overexpression of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the 

PPP. Both increased glycolysis and decreased PPP were shown to be abolished by siPFKFB3 

indicating that both metabolic pathways are fully controlled by this protein [110]. Thus, 

proteasome dysfunction during the loss of Parkin or other PD-related proteins would likely 

stabilize PFKFB3 leading to a switch from PPP to glycolysis and oxidative stress. 

Interestingly, a down-regulation of PPP rate-limiting enzymes has been documented in post-

mortem brain samples of PD patients [111], strongly supporting the hypothesis that PPP 

disruption may be an important factor in the pathogenesis of PD [111, 112] and aging [112].

3. Implications of mitochondrial quality control for metabolism in PD

Failure in the mitochondrial quality control mechanisms impairs the mitochondrial ability to 

generate energy by OXPHOS, which can invoke glycolysis as an attempt to maintain cellular 

ATP (Fig. 1). Mitochondrial quality control mechanisms require communication between 

mitochondria and other organelles, including the ER and lysosomes, as disruption of this 

process has been observed in PD and other neurodegenerative disorders such as Gaucher 

disease (GD) [113].

3.1 Mitochondria-lysosome crosstalk

Mitochondrial dysfunction in neurodegenerative diseases involves alterations in the 

mitochondrial quality control mechanisms [114–116]. Mitochondrial turnover mainly occurs 

by autophagy, a process requiring functional lysosomes. Lysosomes are critical for protein 

and organelles degradation [117], calcium signalling [118, 119], endocytic processes [120], 

and nutrient sensing [121]. During autophagy, lysosomes fuse with autophagosomes to 

promote degradation of engulfed organelles and proteins. The membrane origin of 

autophagosome remains unclear; some studies suggest that they are generated “de novo”, 

whereas other studies suggest that they arise from other organelles such as ER or 

mitochondria [122]. The process is initiated by activation of Vps34 and its interaction with 

Beclin-1. This is produced only if the anti-apoptotic protein Bcl2 is phosphorylated and 

dissociated from Beclin-1, indicating a link between autophagy and apoptosis [122]. After 

maturation, autophagosome fuses with the lysosome to form the autophagolysosome, in 

which organelles and/or misfolded proteins are degraded and recycled. Thus, failure in these 

processes may lead to the accumulation of aberrant mitochondria and misfolded proteins, 

which are hallmarks of PD. In addition, mutations in genes encoding lysosomal proteins 

cause lysosomal storage diseases (LSDs), which are accompanied by the accumulation of 

damaged mitochondria. Actually, failure in lysosomal function seems to be an event 

occurring earlier than mitochondrial damage [123]. Amongst other substrates, α-synuclein is 

aggregated [124]. Mutant α-synuclein tightly binds to the lysosomal membrane to inhibit the 

autophagy-lysosome pathway, resulting in degradation of wild type α-synuclein [116]. 
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Besides PD, α-synuclein aggregates are also observed in GD, the most common of the LSDs 

caused by recessive mutations in glucocerebrosidase (GBA). Thus, GD and PD have similar 

hallmarks including loss of DA neurons of SNpc, α-synuclein accumulation, tremor, 

bradykinesia and rigidity. In addition, mitochondrial membrane potential (Δψm) collapse 

and mitochondrial complex I-derived ROS-mediated ETC damage also occur [113, 122].

3.2 ER-mitochondria tethering

Mitochondria and ER are tightly interconnected, both physically and functionally. ER-

mitochondria contact sites, known as mitochondria-associated membranes (MAMs) [125], 

facilitate Ca2+ and lipid transfer between these organelles, acting as platforms for signals 

regulating cell death and survival mechanisms [126–129]. Mitochondrial Ca2+ levels 

regulate ATP synthesis by activating tricarboxylic acid (TCA) dehydrogenases [130] and 

ATP synthase [131, 132]. However, mitochondrial Ca2+ also triggers apoptotic cell death 

[133, 134] through mechanisms that take place at the ER-mitochondria interface. Disruption 

of normal ER function leads to misfolded and unfolded protein accumulation in the ER, a 

process known as the unfolded protein response (UPR) that is an adaptive cellular response 

to ER stress aimed to restore ER homeostasis [135]. Interestingly, UPR includes changes in 

metabolism focused to provide metabolic support for the cellular adaptation. Thus, the 

increase in ER-mitochondrial contact sites leads to an increase in mitochondrial Ca2+ 

uptake, mitochondrial metabolism and ATP production [136]. On the contrary, disruption of 

ER-mitochondrial contacts, or blockage of Ca2+ transfer, increases cell death in response to 

ER stress [135, 136]. Thus, although ER-mitochondria contacts are beneficial in early stages 

of ER stress, these contacts lead to cell death if stress is maintained for long periods of time 

by Ca2+ overloading.

ER-mitochondrial contact sites are important for cell signalling. Thus, MAM are involved in 

insulin signalling [137], as several components of the insulin cascade, such as Akt and 

mTORC2, have been found at the MAM [137–139]. Inhibition of mitochondrial Ca2+ 

uptake, in skeletal muscle cells and cardiomyocytes, reduces insulin-dependent Akt 

phosphorylation, GLUT4 membrane translocation, and glucose uptake [140, 141]. Obesity 

in mice is accompanied by an increase in MAM and Ca2+ overloading, suggesting a 

pathophysiological role of MAM in insulin resistance and T2DM [142]. MAM disruption 

may also be involved in neurodegeneration, particularly in PD, since Parkin, Pink1, DJ-1 and 

α-synuclein are present in the ER-mitochondrial contact sites to support Ca2+ transfer. For 

instance, α-synuclein mutations decrease the number of ER-mitochondria contact sites, 

causing ER stress and mitochondrial fragmentation [37]. Thus, ER-mitochondria tethering is 

disrupted in both T2DM and PD, further suggesting a link between these disorders.

4. Metabolic disturbances in sporadic models of PD

As above mentioned, mitochondrial complex I damage has been shown in post-mortem 

brains, skeletal muscle, platelets and lymphocytes of PD patients [81, 143–147]. Inhibitors 

of complex I activity, such as methyl-4-phenylpyridinium (MPP+) and rotenone induce 

mitochondrial dysfunction in dopaminergic cells [148]. Likewise, 6-hydroxydopamine (6-

OHDA) is used as a dopamine analogue to induce ROS-associated degeneration of SNpc DA 
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neurons [149]. Since MPP+, rotenone and 6-OHDA are widely used to model the 

dopaminergic neuronal death of PD, both in cultured cells and in experimental animals, we 

revisit the metabolic disturbances found in several chemical models of PD.

4.1 MPP+

MPP+, the bioactive metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 

causes a clinical picture similar to PD syndrome in humans and non-human primates, being 

widely used to investigate therapeutic strategies [150, 151]. Thus, MPTP is metabolized in 

the brain in astrocytes, by monoamine oxidase-B, to MPP+, which is released to the 

extracellular space and taken up by dopaminergic neurons through the dopamine transporter 

(DAT) [152]. MPP+ is accumulated in mitochondria where it inhibits complex I [151, 153, 

154]. Consequently, OXPHOS is blocked and neurons become dependent on glycolysis for 

ATP production. Thus, by increasing the rate of glycolysis, neurons could compensate for 

the mitochondrial deficiency in ATP synthesis and hence to meet the cell energy demands 

[155, 156]. In fact, it has been found that maintaining cell ATP concentrations via glycolysis 

attenuates MPP+-induced toxicity [157]. On the contrary, a glucose-deficient environment 

exacerbates MPP+-induced toxicity [158]. Studies in neuroblastoma cells and in rat brain 

indicate that glucose prevent MPP+ toxicity by attenuating ATP depletion without recovering 

mitochondrial respiration, hence indicating increased glycolysis [159, 160]. Interestingly, at 

MPP+ concentrations below 1 mM, its toxicity depends of glucose depletion; however, at 

MPP+ concentrations between 1 and 10 mM, cells undergo a metabolic collapse with a 

switch from OXPHOS to glycolysis that leads to cell death [159]. Thus, the mechanism of 

MPP+ toxicity is biphasic, namely (i) the DAT-mediated mechanism selective for 

dopaminergic neurons (at low concentrations) and (ii) the oxidative mechanism that occur a 

higher concentrations [160]. In SH-SY5Y and differentiated human neural progenitor 

ReNcell VM cells, microRNA-7 increases the neuronal expression of GLUT3 through 

targeted repression of RelA, which promotes glycolysis as evidenced by increased glucose 

consumption and lactate release, increased ATP and prevention against low dose MPP+-

induced cell death [161].

4.2 Rotenone

Rotenone, initially used as an insecticide and fish poison, increased PD incidence in farming 

communities exposed to this compound [162]. Rotenone crosses the blood brain barrier and 

plasma membranes due to its hydrophobicity. DA neurons are particularly susceptible to 

rotenone-induced degeneration [163]. In vitro and in vivo exposure to rotenone induces both 

soluble and insoluble α-synuclein aggregates, increased caspase activation and apoptosis 

[164–166]. Inhibition of complex I and cellular respiration by rotenone results in the 

compensatory induction of glycolysis, loss of bioenergetics reserve capacity, activation of 

apoptotic pathways, and cell death [167]. Rotenone decreases maximal respiration and 

reserve capacity at doses that MPP+ increases this reserve capacity, indicating that both 

compounds act a different level of the ETC; while rotenone inhibits complex I, MPP+ 

inhibits both complex I and ATP synthase or related [167]. However, rotenone shows a 

mechanism of action other than solely ETC disruption leading to ROS production [168], 

since it induces glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression and 

nuclear and mitochondrial translocation. Accumulated GAPDH promotes intermolecular 
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disulphide bonding resulting in the formation of intracytoplasmic aggregates of GAPDH, 

which may contribute to the formation of inclusion bodies, such as Lewy bodies, and 

neuronal apoptotic death [169].

4.3 6-Hydroxydopamine (6-OHDA)

6-OHDA, the hydroxylated analogue of dopamine, has been found in human brain and urine 

from PD patients treated with L-dopa [170, 171]. 6-OHDA reversibly inhibits the activities 

of complexes I and IV in rat brain mitochondria [172], although it also induces degeneration 

of SNpc neurons by oxidative damage via auto-oxidation, which forms reactive quinones 

that generate hydrogen peroxide and superoxide [173]. 6-OHDA reacts with Fe3+ causing its 

release and subsequent cellular damage [174]. This is particularly relevant for PD 

pathogenesis since SNpc DA neurons contain higher iron levels associated to neuromelanin 

[175, 176]. Differentiated SH-SY5Y treated with 6-OHDA do not show, however, OXPHOS 

inhibition, thus 6-OHDA likely impacts on mitochondrial redox signalling rather than on 

bioenergetics [167]. However, the oxidative stress produced by 6-OHDA indirectly causes 

mitochondrial dysfunction, which leads to glycolysis up-regulation [177].

4.4 Paraquat

The herbicide paraquat (1,1′-dimethyl-4,4′-bipyridinium dichloride) is structurally similar 

to MPTP, and it has been associated with PD [162, 178]. Paraquat causes selective and-dose 

dependent loss of SNpc DA neurons [179, 180]. It is unlikely that paraquat inhibits complex 

I, but it produce ROS [181] both in vitro and in vivo by multiple mechanisms, including 

redox cycling [182, 183] and nitric oxide synthase activity [184]. Thus, the mechanism 

whereby paraquat exerts neurotoxicity is different from those used by MPP+, rotenone or 6-

OHDA [177]. Using a combined metabolomics approach by nuclear magnetic resonance 

(NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS), it has 

been revealed that human dopaminergic neuroblastoma cells exposed to paraquat presented 

deeper alteration in PPP metabolome. Thus, metabolites of PPP such as glucose-6-

phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate have been 

found increased after paraquat treatment, an effect that was accompanied by inhibition of 

glycolysis and TCA cycle activity. In addition, increased expression of glucose-6-phosphate 

dehydrogenase (G6PD), which supplies NADPH, was observed with paraquat. These 

findings have led to the proposal that increased PPP, by enhancing NADPH levels, would be 

necessary for paraquat redox cycling causing oxidative stress [177].

5. Metabolic disturbances in genetic models of PD

During the last two decades, several genetic mutations have been found to be associated with 

familial forms of PD with similar clinical and pathological features of those in idiopathic PD 

[185–187]. The study of the proteins encoded by these genes has revealed the close link with 

mitochondrial function and metabolism, thus providing important insight about the 

molecular pathways and mechanism that may underlie neurodegeneration in PD.
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5.1 α-synuclein

Mutations such as A530T, A30P and E46K, as well as duplication or triplication of the α-

synuclein gene (PARK1, SNCA) have been associated with autosomal dominant PD [188–

191]. α-synuclein is a hydrophobic protein prone form the typical fibrillar aggregations 

observed in Lewy bodies, which links this protein with both sporadic and familial forms of 

PD [42]. α-synuclein aggregation inhibits mitochondrial complex I activity, elevates ROS 

production [192] and increases protein-carbonyl levels [193]. In vitro, the interaction of α-

synuclein with mitochondria leads to cytochrome c release, enhances mitochondrial Ca2+, 

and triggers oxidative modifications of mitochondrial components [194]. These findings 

suggest an interrelation between protein aggregation and mitochondrial dysfunction, 

granting to α-synuclein a role as a modulator of oxidative stress. α-synuclein increases with 

ageing along with a loss of tyrosine hydroxylase-positive neurons [195, 196]. The 

accumulation of unfolded/misfolded α-synuclein leads to ER stress, which activates UPR 

[197] and correlates with markers of the UPR pathways protein kinase RNA-like ER kinase 

(PERK) and activating transcription factor-6 (ATF6), as well as its downstream pro-

apoptotic CCAAT/-enhancer-binding protein homologous protein (CHOP) [197]. 

Overexpression of the ER chaperone, glucose regulated protein 78 (GRP78/BiP), decreases 

α-synuclein toxicity by down-regulating ER stress mediators [197]. Such an ER stress 

response reprograming prevents DA neurons death, reinforcing the key role of ER in PD 

neurodegeneration. In addition, α-synuclein is also present in MAM [37], hence connecting 

ER and mitochondria to regulate Ca2+ homeostasis and cholesterol metabolism [125, 127, 

198]. Mutated α-synuclein reduces its association with MAM concomitantly with a decrease 

in ER-mitochondria juxtaposition and increased mitochondrial fragmentation. 

Overexpression of the mitochondrial fusion protein MFN2 or inhibition of the mitochondrial 

fission protein Drp1 do not revert such phenotype, indicating that α-synuclein acts 

downstream of the mitochondrial fusion/fission machinery [37].

Besides the above-mentioned functions linked to mitochondrial dysfunction, α-synuclein 

directly alters carbohydrate and lipid metabolism. Using a mouse model of PD that express 

the mutant form of human α-synuclein A53T, it has been observed that a high caloric diet 

induces a metabolic phenotype similar to that of the PD patients; this consists of a reduction 

of total and visceral body fat, hypoleptinemia, and increased energy expenditure without 

insulin resistance [199]. α-synuclein, which is present in pancreatic β-cells, down-regulates 

insulin secretion by interacting with KATP channels; however, if over-expressed, or 

expression of the mutant α-synuclein, results in excessive inhibition of insulin secretion 

contributing to diabetes, generating cellular stress and apoptosis resembling PD [200]. In 

contrast, α-synuclein ablation exacerbates insulin resistance in mouse adipose tissue and 

skeletal muscle, as well as in patients with low α-synuclein blood levels and increased 

insulin resistance [201]. In the adipose tissue and skeletal muscle of α-synuclein knockout 

mice, it has also been observed an increase in GLUT4-driven glucose uptake through an 

insulin-independent mechanism [202].

5.2 Parkin

Mutations in Parkin (PARK2) gene produce autosomal-recessive juvenile PD [203, 204]. As 

an E3 ubiquitin ligase involved in the proteasomal degradation of several substrates, loss of 
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Parkin causes accumulation of potentially toxic protein aggregates eventually involved in PD 

pathogenesis [205]. Parkin is confined to mitochondria, where it binds transcription factors 

such as the mitochondrial transcription factor TFAM [206]. Parkin prevents cytochrome c 
release [207] and α-synuclein aggregation, thus protecting mitochondria and attenuating DA 

neuronal loss [208]. In contrast, loss of Parkin impairs complex I and IV activities both in 

humans and mice, leading to mitochondrial respiration impairment and oxidative stress [86, 

209]. Parkin loss also increases toxins sensitivity [210, 211] and disturbs mitochondrial 

dynamics and autophagy [29, 212]. Thus, Parkin participates in mitochondrial fission and 

fusion processes, mitochondrial transport, and removal of damaged mitochondria through 

mitophagy via a mechanism dependent on Drp1 [29, 213–215]. The triggering mechanism 

of Parkin-dependent mitophagy is the loss of mitochondrial membrane potential (Δψm), 

which activates its recruitment to the mitochondria through PINK1 (see section below).

Parkin mRNA and protein levels increase during ER stress via the UPR pathway 

transcription factor ATF4, which binds the CREB/ATF elements in the Parkin promoter to 

increase its expression, thus preventing ER stress-induced mitochondrial damage and cell 

death [216]. In HeLa and neuroblastoma cells, Parkin favours ER-mitochondria contacts and 

the transfer of Ca2+ from ER to mitochondria, thus activating ATP synthesis [217]. Parkin 

has also a role in fat uptake [218]. Parkin knockout mice display lower weight gain 

preceding the mitochondrial and neurological abnormalities, which is more evident under a 

high-fat diet [86, 218]. Thus, a high fat diet to wild type mice induces Parkin levels in 

several tissues favouring fat uptake via mono-ubiquitylation, leading to stabilization, of the 

CD36 fatty acid translocase [218]. These results suggest that diet would be an interesting 

factor to consider for delaying the onset, or reduce the risk, of PD.

Parkin is a target of p53 and a potential tumour suppressor [219]. Thus, p53 induces Parkin 
gene transcription, in humans and mice, to mediate the p53 effects on glucose metabolism 

and antioxidant defence. Accordingly, loss of Parkin increases glucose uptake, glycolysis 

and lactate production, and reduces mitochondrial respiration. In addition, Parkin loss down-

regulates the expression of several mitochondrial proteins, such as pyruvate dehydrogenase 

(PDHA1), which catalyses pyruvate conversion to acetyl-CoA in the mitochondria. This 

triggers a Warburg effect that can be restored by over-expressing Parkin [219]. Such a 

Warburg effect has also been linked with other functions of Parkin, such as mitophagy [220], 

mitochondrial dynamics [221] and genome integrity [222]. It should be mentioned that the 

regulation between Parkin and p53 differs depending on the cell line or tissue [219]. 

Nevertheless, it seems well established that loss of Parkin induces a Warburg effect 

contributing to the development of tumours by facilitating cell proliferation [223–225].

5.3 PINK1

PINK1 (PTEN-induced putative kinase; PARK6) mutations are, after Parkin, the second 

most common cause of early onset autosome recessive PD [226]. PINK1 is a serine/

threonine kinase that is stabilized upon Δψm collapse into the mitochondria [227], where it 

recruits Parkin from the cytosol [10, 29]. PINK1 knockdown in human dopaminergic 

neurons and mouse primary neurons causes morphological changes in mitochondria, 

decreased Δψm, high ROS production and apoptosis [228, 229]. Whilst loss of PINK1 in 
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mice decreases complex I and IV activities and impairs mitochondrial respiration, it can also 

exacerbate mitochondrial respiration when exposed to H2O2 or mild heat shock [230]. 

PINK1 prevents cytochrome c release from mitochondria and apoptotic neuronal death [231, 

232], and protects against MPTP-mediated oxidative stress [233].

PINK1 controls mitochondrial dynamics, hence being essential in energy metabolism 

maintenance, mitochondrial quality control, and cell viability [234, 235]. PINK1 promotes 

mitochondrial fission by inducing Drp1, and inhibits mitochondrial fusion by down-

regulating mitofusins (MFN1 and MFN2) [214, 221, 236]. Parkin recruitment by PINK1 

participates in the mitochondrial quality control process by triggering mitophagy [29, 212, 

220]. A subpopulation of mitochondrial-derived vesicles (MDVs) requires Parkin and 

PINK1 to be formed. MDVs mediate the transport of mitochondria to lysosomes for the 

degradation of oxidized cargo proteins, thus regulate mitochondrial quality control under 

mild stress; however, failure of this protective system causes irreversible mitochondrial 

damage leading to mitophagy [237].

As most PD-related proteins, Parkin and PINK1 are present in MAM. PINK1 is involved in 

the regulation of ER-mitochondria Ca2+ transfer by increasing ER-mitochondrial contact 

sites [238]. As above-mentioned, Ca2+ transfer is essential for mitochondrial respiration and 

normal cell bioenergetics. In PINK1 deficient cells, Ca2+ homeostasis is a controversial 

matter. In neurons, PINK1 regulates Ca2+ efflux from mitochondria through Na+/Ca2+ 

exchanger, and PINK1 loss results in Ca2+ overload, inhibition of glucose transporter, and 

respiration impairment [239]. However, other studies report impaired respiration and 

increased glycolytic activity in myocytes and neurons from PINK1 knockout mice [239]. 

Glucose uptake is impaired in PINK1-deficient pancreatic β-cells, which produce an 

increase in intracellular Ca2+ and insulin secretion under low glucose conditions resulting in 

glucose tolerance in vivo [240]. Myocytes, which have higher ATP producing capacity and 

Δψm, can buffer cytosolic Ca2+ rendering these cells resistant to Ca2+ stress [241]. 

Knockout and knockdown mouse neuroblastoma and embryonic fibroblasts (MEFs) for 

PINK1 showed reduced mitochondrial Ca2+ uptake and impaired mitochondrial ATP 

synthesis, leading to Ca2+ efflux [28]. In other studies performed in MEFs and primary 

cultured neurons from PINK1 knockout mice, mitochondrial deficiency leads to increased 

glycolysis with lactate release, along with increased glucose uptake leading to a Warburg-

like effect through HIF1α stabilization [87, 242].

PINK1 was identified originally because of its tumour suppressor action [243]. However, 

whether loss of PINK1 represses or enhances cell proliferation is yet controversial. Thus, 

PINK1 is induced by the tumour suppressors PTEN and FOXO3a, and it is associated with 

Beclin-1, which is a tumour suppressor [243–245]. In addition, PINK1 acts upstream of 

Parkin, which is a tumour suppressor through interaction with p53 [219]. Furthermore, 

PINK1 gene is located in a region of chromosome 1p36 that contains tumour-suppressive 

activity [246]. In contrast, PINK1 is necessary for optimal activation of the oncogenic 

pathway IGF1/Akt, which indicates pro-oncogenic functions [247]. As indicated above, 

PINK1 is essential for mitochondrial dynamics, Ca2+ homeostasis and mitophagy, which are 

processes related to the cell cycle regulation [248–252]. MEFs isolated from PINK1 

knockout mice show altered cell cycle, with cells multinucleated arrested in G2/M phase and 
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a decreased number of cells in G0/G1 [253]. This leads to a reduction in cell proliferation 

and an increase in mitochondrial fission according to the high levels of Drp1 observed [253]. 

However, in another study using identical PINK1 knockout cells, the opposite result was 

found, i.e., the proportion of cells in G2/M phase increased and the proportion of cells in the 

G0/G1 phase decreased, leading to enhanced cell proliferation rate concomitant with a 

higher glycolytic rate [87]. In this study, the rate of glycolysis was found to be essential for 

cell proliferation, since the inhibitor 2-deoxyglucose abrogated it. Moreover, the increase in 

the glycolytic rate was mediated by HIF1α, as silencing of this transcription factor reverted 

both the increase in glycolysis and in cell proliferation [87]. Interestingly, in this study 

PINK1 knockout mice primary neurons were also used, in which it was observed a shift 

from PPP to glycolysis that led to apoptosis [87]. Thus, PINK1 loss of function may have 

dual consequences, cell proliferation or apoptosis, depending on the cell type and the 

environmental factors. Thus, whilst the cell cycle effects of PINK1 deficiency may be 

responsible for cancer, it may also be involved in neurodegeneration, since the abortive cell 

cycle re-entry is mechanistically linked to the death of post-mitotic neurons [254–257].

5.4 DJ-1

Mutations in DJ-1 (PARK7) gene causes autosomal recessive early onset parkinsonism 

[258]. DJ-1 is a multifunctional protein that under basal conditions is mainly localized in the 

cytosol. However, upon oxidative stress, DJ-1 translocates to the mitochondria and later to 

the nucleus to exert its neuroprotective function [259–261]. Nuclear translocation of DJ-1 

occurs by oxidation of the Cys106 that acts as a redox sensor [259, 262]. Neurons and MEF 

defective in DJ-1 show decreased complex I activity and mitochondrial respiration [88, 263], 

along with increased oxidative stress accompanied by enhanced glycolysis [33]. MEF 

knockout for DJ1 show decreased Δψm and increased mitochondrial permeability transition 

pore [264]. In neurons, DJ-1 knockdown causes ER stress, inhibition of the proteasome, and 

increased cell death [265, 266]. Cell models from human and mouse knockouts for DJ-1 

show altered mitochondrial morphology and accumulation of defective mitochondria [267]. 

In addition, DJ-1-deficient mice show SNpc DA neuronal loss, elevated DA levels and 

enhanced DA re-uptake [268]. In these cells, DJ-1 loss sensitizes them against toxins such as 

MPTP and paraquat, while its overexpression protects them [269, 270]. All these effects can 

be reversed either by over-expressing DJ-1 or by antioxidant treatment, suggesting a key role 

for DJ-1 in antioxidant signalling. On the other hand, DJ-1 fosters the communication 

between RE and mitochondria [238], hence reducing DJ-1 levels causes mitochondrial 

fragmentation and decreased mitochondrial Ca2+ uptake. In HeLa cells, overexpression of 

p53 impairs the transfer of Ca2+ from ER to mitochondria increasing mitochondrial 

fragmentation; this was reversed by DJ-1 overexpression rescuing the ER-mitochondria 

contact sites, but not by Drp1 inhibition, indicating that mitochondrial fragmentation was 

independent of Drp1 activation [38]. Thus, besides its antioxidant role, DJ-1 participates in 

the maintenance of mitochondria integrity by improving ER-mitochondria communication.

DJ-1 is involved in glucose homeostasis. Thus, DJ-1 expression can be regulated under 

hyperglycemic conditions in vitro and in vivo [271, 272]. DJ-1 expression is increased under 

non-diabetic conditions in human and mouse islets during aging to prevent oxidative stress 

and to maintain the mitochondrial integrity that is necessary for glucose-stimulated insulin 
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secretion. Interestingly, decreased DJ-1 expression is observed in PD patients and in patients 

suffering from T2DM, indicating the interrelation between these diseases [41]. In addition, 

DJ-1 has been shown to transcriptionally co-activate PINK1 expression by binding to 

FOXOa3; accordingly, DJ-1 loss causes decreased complex I activity and increased 

glycolysis via regulating PINK1 [33]. Similar effects on glucose metabolism take place in 

DJ-1 knockout mouse skeletal muscle, where a higher energy expenditure, AMPK 

activation, and uncoupled mitochondrial respiration has been observed leading to a Warburg-

like metabolic reprogramming [273]. In good agreement with the view that the Warburg 

effect may favour cell proliferation, loss of DJ-1 increases cell proliferation via regulating 

PINK1 [33].

5.5 LRRK2

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic 

cause of PD and cause both autosomal dominant and sporadic PD [274, 275]. Several 

LRRK2 mutations showing gain-of-function cause apoptotic neuronal death that can be 

attenuated by inhibition of mitochondrial-dependent caspases, suggesting mitochondrial 

dysfunction in LRRK2-mediated pathogenesis [276]. In cortical neurons, LRRK2 mutations 

increase ROS and impair mitochondrial morphology and dynamics [277]. LRRK2 interacts 

with Dynamin like protein 1 (DLP1) in neurons, and expression of LRRK2 leads to 

translocation of DLP1 from the cytosol to the mitochondria, suggesting a functional role of 

LRRK2 in mitochondrial dynamics [277]. Mitochondrial elongation and interconnectivity 

are also altered in patients with LRRK2 G2019S mutation, indicating that LRRK2 is related 

to mitochondrial morphology maintenance. Skin biopsies obtained from this LRRK2 mutant 

PD patients also showed Δψm collapse and ATP depletion [278]. These findings, together 

with the fact that LRRK2 is located in mitochondria [279, 280], suggest that mutant LRRK2 

toxicity is linked to mitochondrial damage. Interestingly, the G2019S LRRK2 knock-in 

mouse shows transcriptional down-regulation of OXPHOS genes and up-regulation of 

glycolytic genes; furthermore, this mutant mouse down-regulates ubiquitylation and 

trafficking of proteins, suggesting that the accumulation of aberrant proteins and ER failure 

may underlie the OXPHOS-glycolysis shift [281].

5.6 Other relevant genetic mutations

Genome-wide association (GWAs) studies have revealed the occurrence of novel PD 

relevant loci [282]. For instance, ATP13A2 encodes a lysosomal transmembrane protein that 

belongs to the 5P-type ATPase subfamily [283], the mutations of which are associated with 

PD. ATP32A2 inhibition impairs the lysosomal ability to degrade certain proteins, including 

α-synuclein, by the autophagosome [284, 285]. Furthermore, mutant ATP13A2 causes Δψm 

collapse, ATP depletion, reduced mitophagy, and increased ROS, which can contribute to 

neurodegeneration [286–288]. Similar biochemical signs have been found with the mutant 

PLAG6, another PD-related protein with calcium-independent phospholipase A2 activity 

[289]. Finally, GIGYF2 loss of function causes neurodegeneration linked to insulin 

signalling impairment [290].
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6. Conclusions and perspectives

PD is a complex pathology with both genetic and environmental components. Regardless its 

specific cause, mitochondrial redox and energetic failure are essential pathogenic 

mechanisms in which an intact mitochondrial communication with ER and lysosomes are 

important. Failure in this communication increases misfolded proteins and impairs Ca2+ 

transfer, which accelerates dopaminergic cell death by defective mitochondria accumulation. 

Increased ROS, a key hallmark of this disorder, is linked to a metabolic OXPHOS-glycolysis 

shift aimed to maintain ATP, minimize mROS production and prevent apoptotic death. 

Mutant genes, such as α-synuclein, Parkin, PINK1 or DJ-1, cause excess mROS that are 

relevant for the SNpc DA neurons, which show a particularly high oxidative metabolism. 

Importantly, prolonged oxidative stress can trigger irreversible damage to mitochondria 

leading to a bioenergetics failure that cannot be compensated by increased glycolysis (Fig. 

1). Since under normal conditions glucose utilization via the PPP is an essential antioxidant 

mechanism for neurons, an increased glycolysis aggravates neuronal oxidative stress in PD. 

In addition, the OXPHOS-glycolytic shift facilitates cell proliferation, which may explain 

the link between PD and some tumour development, but also neurodegeneration due to a 

possible aberrant cell cycle re-entry of post-mitotic neurons. Finally, besides the nervous 

system, other tissues affected in PD, such as the liver and pancreas, show important 

metabolic alterations including those related with insulin secretion and impaired glucose 

uptake, which may link diet habits with T2DM in PD. Thus, loss of the mitochondrial 

control of bioenergetics appears to be behind the causes of this metabolic syndrome-like 

picture in PD. This may provide clues when designing novel future therapeutic strategies 

against PD.
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Abbreviations

6-OHDA 6-hydroxydopamine

ADTIQ 1-acetyl-6, 7- dihydroxyl-1, 2, 3, 4-tetrahydroisoquinoline

AMPK 5′-AMP-activated protein kinase

ATF activating transcription factor 6

ATM ataxia telangiectasia mutated

CHOP CCAAT/-enhancer-binding protein homologous protein

DA dopamine

DAT dopamine transporter

DI-ESI-MS direct-infusion electrospray ionization mass spectrometry
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PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3

G6PD glucose-6-phosphate dehydrogenase

GAPDH glyceraldehyde-3-phosphate dehydrogenase

GBA glucocerebrosidase

GD Gaucher disease

GLUT glucose transporter

GRP78/BiP glucose regulated protein 78

HIF-1 hypoxia inducible factor 1

LSDs lysosomal storage diseases

MAMs mitochondrial-associated membranes

MB methylene blue

MDVs mitochondrial-derived vesicles

MPP+ methyl-4-phenylpyridinium

MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Paraquat 1,1′-dimethyl-4,4′-bipyridinium dichloride

PD Parkinson’s disease

PDHA pyruvate dehydrogenase

PERK protein kinase RNA-like ER kinase

PINK1 PTEN-induced putative kinase 1

PPP pentose phosphate pathway

SN substantia nigra

SNCA α-synuclein gene

T2DM type 2 diabetes mellitus

TIQ tetrahydroisoquinoline

UPR unfolded protein response
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Highlights

• Neuronal management of energetic status in Parkinson’s Disease (PD) 

is reviewed

• Mitochondria, endoplasmic reticulum and lysosomes involvement in 

PD are discussed

• Mitochondrial dysfunction leads to neuronal metabolic re-

programming in PD

• Increased neuronal glycolysis shifts down pentose-phosphate pathway 

(PPP) in PD

• Down-regulation of PPP in neurons may account for PD-associated 

oxidative stress
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Figure 1. Cellular pathways associated with bioenergetics in PD
Genetic mutations in PD-related genes and/or exposure to environmental toxins lead to an 

increased oxidative stress and mitochondrial failure that affect several metabolic pathways. 

Dysfunctional mitochondria induce the aggregation of proteins, such as α-synuclein, due to 

impairment in the ubiquitin/proteasome and autophagy/lysosome pathways. This also leads 

to alterations in the cross-talk between mitochondria and ER, contributing to increased 

mROS. Additional factors, such as dopamine metabolism or glial activation may also 

contribute to increased ROS. Excessive ROS interfere with ATP synthesis and contribute to 

the stabilization of proteins, such as HIF-1, which mediates glycolytic up-regulation in order 

to compensate for the mitochondrial energy impairment. However, increased glycolysis may 

have adverse effects in neurons. Thus, glycolysis facilitates a failed attempt of post-mitotic 

cells to re-enter the cell cycle, a feature that may be important in genetic PD-related 

mutations affecting p53. Also, certain glycolytic intermediates may interact with dopamine 

derivatives generating neurotoxins. Finally, increased glycolysis impairs antioxidant PPP. 

Thus, the compensative increase in glycolysis contributes to the cascade of events leading to 

selective degeneration of dopaminergic neurons.
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Figure 2. Metabolic shift in familial parkinsonism
Mutations in familial PD-linked genes encoding α-synuclein, parkin, DJ-1, PINK1 and 

LRRK2 are associated with PD pathogenesis. These mutations contribute to PD causing 

mitochondrial dysfunction, oxidative damage and abnormal protein aggregation and 

phosphorylation, compromising neuronal function and survival. α-Synuclein undergoes 

aggregation as a consequence of its mutation or indirectly by mutation of other PD-related 

genes, endangering protein degradation pathways and inducing ER stress and mitochondrial 

dysfunction. Mitochondrial dysfunction and oxidative damage lead to deficits in ATP, which 

activates glycolysis. This glycolytic increase can also be consequence of genetic mutations 

in Parkin, PINK1 and DJ-1, which act on specific glycolytic regulatory proteins. In addition, 

Parkin, being an E3 ubiquitin ligase, promotes proteasomal degradation, participates in 

mitochondrial fusion and fission processes, and reverses PINK1-induced mitochondrial 

dysfunction. DJ-1 protects mitochondria against oxidative stress, it functions as a 

transcriptional co-activator of PINK1, amongst others, and blocks α-synuclein aggregation. 

PINK1 protects against mitochondrial dysfunction, preventing mitochondrial ROS 

production and recruiting Parkin into mitochondria, thus controlling mitochondrial 

dynamics. LRRK2 seems to play a role in synaptic vesicles formation. LRRK2 causes 

abnormal protein phosphorylation, which induces mitochondrial-dependent cell death. 

Furthermore, familial PD-linked genes such as Parkin, PINK1, DJ-1 and α-synuclein favour 

ER-mitochondria crosstalk through maintenance of contact sites, thus promoting cell 

survivalGreen arrows indicate activating effects, and red lines with blunt ends inhibitory 

effects).
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