

1	A peptidomic approach for the identification of antioxidant and ACE-
2	inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus
3	subtilis A26 and Bacillus amyloliquefaciens An6
4	
5	Ines Jemil ¹ *, Leticia Mora ² , Rim Nasri ¹ , Ola Abdelhedi ¹ , Maria-Concepción Aristoy ² ,
6	Mohamed Hajji ¹ , Moncef Nasri ¹ , Fidel Toldrá ²
7	
8	
9	
10	
11	
12	1 Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale
13	d'Ingénieurs de Sfax, B.P 1173-3038 Sfax, Tunisie
14	2 Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7,
15	Paterna, 46980 Valencia, Spain
16	
17	
18	
19	
20	
21	
22	
22	
2.5	
24	
25	
26	
27	* Corresponding author. Tel.: +216 74 274 408; Fax: +216 74 275 595.
28	E-mail address: inesjemil1987@gmail.com

29 ABSTRACT

Antioxidant and angiotensin I-converting enzyme (ACE)-inhibitory activities of 30 sardinelle (Sardinella aurita) protein hydrolysates (SPHs) obtained by fermentation with 31 32 Bacillus subtilis A26 (SPH-A26) and Bacillus amyloliquefaciens An6 (SPH-An6) were investigated. Both hydrolysates showed dose-dependent antioxidant activities evaluated using 33 various in vitro antioxidant assays. Further, they were found to exhibit ACE-inhibitory 34 activity. Peptides from SPH-A26 and SPH-An6 were analyzed by nESI-LC-MS/MS and 35 approximately 800 peptides were identified. Identified peptides derived mainly from myosin 36 (43% and 31% in SPH-An6 and SPH-A26, respectively). Several peptides identified in both 37 38 hydrolysates were found to share sequences with previously identified antioxidant and ACEinhibitory peptides based on Biopep database. Some of these peptides were selected for 39 synthesis and their biological activities were evaluated. Among the synthesized peptides, 40 41 NVPVYEGY and ITALAPSTM were found to be the most effective ACE-inhibitors with IC₅₀ values of 0.21 and 0.23 mM, respectively. On the other hand, NVPVYEGY, which 42 43 exhibited the highest ACE-inhibitory activity, showed the highest reducing power and peroxyl radical scavenging activities, followed by SLEAQAEKY and GTEDELDKY. The results of 44 this study suggest that fermented sardinelle protein hydrolysates are a good source of natural 45 antioxidant peptides and could have the potential to act as hypotensive nutraceutical 46 ingredients. 47

- 48
- 49
- 50 Keywords : *Sardinella aurita;* Fermentation; Protein hydrolysates; Antioxidant activity;
 51 ACE-inhibitory activity; Peptidomic analysis.
- 52
- 53

54 **1. Introduction**

Elevated blood pressure is one of the major independent risk factors for cardiovascular 55 disease (Harris, Cook, Kannel, Schatzkin, & Goldman, 1985). Angiotensin I-converting 56 enzyme (ACE, peptidyldipeptide hydrolase) plays an important role in the renin-angiotensin 57 system, which regulates human blood pressure and fluid homeostasis. ACE converts the 58 inactive form of decapeptide angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) into a 59 60 powerful vasoconstrictor, the octapeptide angiotensin II by removing the C-terminal dipeptide His-Leu (Lavoie & Sigmund, 2003). In addition, ACE inactivates the vasodilator bradykinin 61 (Lavoie & Sigmund, 2003). Therefore, the inhibition of ACE is considered to be a useful 62 63 approach in the treatment of hypertension.

Specific inhibitors of ACE, such as captopril, lisinopril and enalapril, have been shown to be useful as antihypertensive drugs (Salvetti, 1990). However, these ACE-inhibitory drugs have some undesirable side effects such as cough, lost of taste, renal impairment and angioneurotic edema (Cooper et al., 2006). Thus, the search for natural safe and more effective ACE-inhibitory agents as alternative to synthetic drugs is necessary for the prevention and treatment of hypertension.

As a result, the interest in identifying foods as potential natural sources of ACEinhibitory peptides has increased (Houston, 2005). In fact, several ACE-inhibitory peptides have been isolated from various food sources such as Spanish dry-cured ham (Escudero et al., 2013), soya milk (Tomatsu, Shimakage, Shinbo, Yamada, & Takahashi, 2013), goby muscle protein (Nasri et al., 2013), jellyfish (Liu et al., 2013), smooth hound viscera (Abdelhedi et al., 2016) and thornback ray muscle (Lassoued et al., 2015).

Organisms are constantly exposed to various forms of reactive oxygen species that lead to the oxidation of proteins, nucleic acids and lipids. In addition, deterioration of many foods occur due to the oxidation of lipids and formation of secondary lipid peroxidation products.

Therefore, a great interest has been developed to identify new antioxidant compounds from different sources to overcome problems related to lipid peroxidation. Different recent studies reported that peptides derived from certain protein hydrolysates, and especially from marine sources, could act as potential antioxidants (Lassoued et al., 2015, Kleekayai et al., 2015, Sudhakar, & Abdul Nazeer, 2015).

According to literature, the most widely used method for the production of protein 84 hydrolysates is the controlled enzymatic digestion. Few studies have been conducted on the 85 generation of biologically active peptides using microbial fermentation. In a previous work, 86 we reported the production of antioxidant and antibacterial protein hydrolysates from fish 87 88 meat fermented by Bacillus subtilis A26 (Jemil et al., 2014) and Bacillus amyloliquefaciens An6 and their potential use in vivo for the treatment of hyperlipidemia in high-fat fed wistar 89 rats (Jemil et al., 2016). Fakhfakh, Ktari, Siala, & Nasri (2013) reported the production of 90 91 protein hydrolysates with high antioxidant potential from wool-waste by fermentation with a new keratinolytic bacterium, Bacillus pumilus A1. In another study, Torino et al. (2013) 92 reported that solid-state fermented lentils by Bacillus subtilis showed ACE-inhibitory activity. 93 More recently, Chakka, Elias, Jini, Sakhare, & Bhaskar (2015) reported the production of 94 chicken liver protein hydrolysates by fermentation using the lactic acid bacteria Pediococcus 95 acidilactici NCIM5368. 96

97 Therefore, the aim of this study was to investigate the antioxidant and ACE-inhibitory 98 activities of fermented sardinelle protein hydrolysates and to identify potent bioactive peptide 99 sequences by LC-MS/MS. A peptidomic analysis based on Biopep database was done to 100 identify potential biopeptides that were synthesized and tested *in vitro*.

101

102 **2. Materials and methods**

103 **2.1. Reagents**

104 1,1-diphenyl-2-picrylhydrazyl (DPPH) and butylated hydroxyanisole (BHA) were
105 purchased from Sigma Chemical Co. (St. Louis, MO, USA). ACE from rabbit lung and ACE
106 synthetic substrate o-aminobenzoylglycyl-p-nitro-L-phenylalanyl-L-proline (Abz-Gly-Phe107 (NO₂)-Pro) were purchased from Sigma Chemical Co. (St. Louis, MO, USA). Acetonitrile,
108 methanol, and ethanol HPLC grade were from Scharlau (Scharlab SL, Barcelona, Spain). All
109 solutions were freshly prepared in bi-distilled water obtained from a Culligan system; the
110 resistivity was approximately 18 MΩ*cm.

111

112 **2.2.Material**

Sardinelle (*Sardinella aurita*) was freshly purchased from the local fish market of Sfax City, Tunisia. The sample was packed in polyethylene bags, placed in ice with a sample/ice ratio of approximately 1:3 (w/w) and transported to the laboratory within 30 min. Muscles were separated and rinsed with cold distilled water to remove salts and other contaminants.

117

118 2.3.Preparation of undigested sardinelle proteins (USP)

Raw muscle from sardinelle (500 g) was cooked for 20 min at 100 °C in 1000 mL bidistilled water. The bones were removed from cooked fish and fillets were collected and dried
at 80 °C for 18 h. The dried fish preparation was minced to obtain USP.

122

123 2.4. Production of fermented sardinelle protein hydrolysates

B. subtilis A26 (CTM 50700) (Agrebi et al., 2009) and *B. amyloliquefaciens* An6 (Agrebi et al., 2010), known to produce several proteolytic enzymes, were employed to obtain protein hydrolysates through fermentation of sardinelle proteins. Inoculums were grown in medium containing only powdered sardinelle meat (30 g/l; pH 8.0) as a unique carbon and nitrogen source (Jemil et al., 2014). Media were autoclaved at 121 °C for 20 min. Cultivations were

conducted in 1000 mL Erlenmeyer flasks, containing 100 mL of culture medium. Incubations 129 were carried out in a shaking incubator (Technico Ltd, Chennai, India) at 200 rpm for 24 h at 130 37 °C. The growth of the microorganisms was estimated by the determination of colony 131 forming units per milliliter. Cultures were then centrifuged at 8500×g for 30 min at 4 °C. 132 Resulted cell-free supernatants containing SPHs were freeze dried (Bioblock Scientific Christ 133 ALPHA 1-2, IllKrich-Cedex, France) and stored at - 20 °C. The freeze dried powders, with a 134 yield of 0.3 and 0.35 g of dried powder g⁻¹ of USP, respectively, were evaluated for antioxidant 135 and anti-ACE activities. All experiments were carried out in triplicate. 136

137

138 **2.5.** Determination of the degree of hydrolysis (DH)

DH was measured using o-phthaldialdehyde (OPA) following the method referred by Nielsen, Petersen, & Dambmann (2001). An aliquot of the sample (400 μ l), at a concentration of 1 mg mL⁻¹, was added to 3 mL of OPA solution and homogenized for 5 seconds. The absorbance of mixtures was measured after 2 min at 340 nm. The same volume of distilled water instead of SPH sample was used as control. A serine standard was also prepared (0.1 mg mL⁻¹).

145 The DH was expressed in percentage and calculated using the following formulas :

- 146 $DH = \frac{h}{h_{tot}} \times 100$
- 147 h_t

$$h = \frac{\text{Serine}-\text{NH}_2 - \beta}{\alpha}$$

150
151
$$Abs_{sample} - Abs_{control} \times 0.9516 \times 0.1 \times 10$$

$$\times M \times P$$

152

where Abs_{sample} is the absorbance of SPH, Abs_{serine} is the absorbance of serine standard, Abs_{control} is the absorbance of control, *W* is the weight in grams of SPH sample in 100 mL and *P* is the protein content (%) of SPH. Constants values of the number of equivalent peptide bonds per gram of protein (h_{tot}), α and β were assumed to be 8.6 meq g⁻¹, 1 and 0.4, respectively, since these are the recommended values for fish by Nielsen, Petersen, & Dambmann (2001). Each experiment was done in triplicate.

159

160 **2.6.** Chemical analysis

Moisture and ash contents were determined according to the AOAC standard methods 161 930.15 and 942.05, respectively (AOAC. 2000). Total nitrogen content of SPHs and 162 undigested protein substrates were determined using the Kjeldahl method according to the 163 AOAC method number 984.13 (AOAC. 2000) and the equipment of BÛCHI Digestion Unit 164 K-424, Switzerland. Protein content was estimated by multiplying total nitrogen content by 165 the factor of 6.25. Fat content was determined gravimetrically after Soxhlet extraction of dried 166 samples with hexane for 2 h using heating mantle. All measurements were performed in 167 168 triplicate.

169

170 **2.7.Determination of ACE-inhibitory activity**

The ACE-inhibitory activity of SPHs and synthesized peptides was measured according 171 to Sentandreu & Toldrá (2006), based on the hydrolysis of the fluorescent substrate o-172 aminobenzoylglycyl-p-nitro-L-phenylalanyl-L-proline (Abz-Gly-Phe-(NO₂)-Pro). A sample 173 solution (50 µL) was mixed with 50 µL of 150 mM Tris-base buffer (pH 8.3) containing 3 Mu 174 mL⁻¹ of ACE, and incubated for 10 min at 37 °C. Then, 200 µL of 150 mM Tris-HCl buffer 175 (pH 8.3) containing 1.125 M NaCl and 10 mM Abz-Gly-Phe-(NO₂)-Pro are added and 176 incubated at 37 °C for 45 min. The released o-aminobenzoylglycine (Abz-Gly) was measured 177 at 355 and 405 nm as excitation and emission wavelengths, respectively. ACE inhibition of 178 SPHs and the most active synthesized peptides was expressed as a percentage and the IC_{50} as 179

the amount of peptide required to inihibit 50% of ACE activity. Captopril was used aspositive control. The test was carried out in triplicate.

182

183 **2.8.Antioxidant activities**

184 **2.8.1. DPPH radical-scavenging assay**

The DPPH radical-scavenging activity of the hydrolysates was determined as described by Bersuder, Hole, & Smith (1998), with minor changes. A 96 well microplate reader (Opsys MRTM, Dynex Technologies, VA, USA) with detection at 490 nm was used to carry out the assay. A volume of 100 μ L of each sample was added to 100 μ L of 99.5% ethanol and 25 μ L of 0.02% DPPH in 99.5%. After 60 min in the dark, the absorption was measured at 490 nm. The control was conducted in the same manner, except that distilled water was used instead of sample.

192 The DPPH radical-scavenging activity was calculated as follows:

193 DPPH radical-scavenging activity (%) =
$$\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \times 100$$

194

where A_{sample} is the absorbance of the solution containing the sample and $A_{control}$ is the absorbance of the control reaction. BHA was used as positive control. The test was carried out in triplicate and the results were mean values.

198

199 **2.8.2. Reducing power assay**

The ability of SPHs and synthesized peptides to reduce Fe^{3+} was determined according to the method of Yildirim, Mavi, & Kara (2001). The sample (1 mL) was mixed with 2.5 mL of 0.2 M phosphate buffer (pH 6.6) and 2.5 mL of 1% (w/v) potassium ferricyanide solution and incubated for 30 min at 50 °C. Thereafter, 2.5 mL of 10% (w/v) trichloroacetic acid was added and the reaction mixture was then centrifuged for 10 min at 10,000×g. The supernatant solution (2.5 mL) was mixed with 2.5 mL of distilled water and 0.5 mL of 1% (w/v) ferric
chloride and the absorbance was measured at 690 nm after 10 min of reaction time.
Alternatively, the assay can be miniaturized and carried out in 96-well plate, where volumes
of reagents were proportionally reduced. The absorbance of each well was read using a
microplate reader (Opsys MR[™] 96-well microplate reader, Dynex Technologies, VA, USA).
Increases in absorbance values indicate higher reducing power capacity (Suryakanth et al.,
2012). BHA was used as positive control. The test was carried out in triplicate.

212

213 **2.8.3.** β-carotene bleaching assay

214 The ability of SPHs and synthesized peptides to prevent β -carotene bleaching was assessed as described by Koleva, Van Beek, Linssen, De Groot, & Evstatieva (2002). A stock 215 solution of β -carotene/linoleic acid mixture was prepared by dissolving 0.5 mg of β -carotene, 216 217 20 µL of linoleic acid and 200 µL of Tween 80 in 1 mL of chloroform. The chloroform was completely evaporated under vacuum in a rotatory evaporator at 40 °C, then 100 mL of 218 219 double-distilled water were added, and the resulting mixture was vigorously stirred. The 220 obtained emulsion obtained was freshly prepared before each experiment. Aliquots (2.5 mL) of the β -carotene/linoleic acid emulsion were transferred to test tubes containing 0.5 mL of 221 SPHs samples. After one hour incubation at 50 °C, the absorbance of each sample was 222 measured at 470 nm. Regarding synthesized peptides, the assay was miniaturized and carried 223 out in 96-well plate, where all volumes were proportionally reduced. The absorbance of each 224 well was read using a 96 well microplate reader (Opsys MR[™] 96-well microplate reader, 225 226 Dynex Technologies, VA, USA) with detection at 450 nm. A total of 200 μ L of the β carotene/linoleic acid mixture were added to each well containing 50 µL of each synthesized 227 peptide. After one hour of incubation at 50 °C, the absorbance of each sample was measured 228 at 470 nm. BHA was used as positive control. The test was carried out in triplicate. 229

230 **2.8.4.** Determination of metal chelating activity (ferrozine assay)

The chelating activity of the SPHs for Fe^{2+} was measured according to the method described by Dinis, Maderia, & Almeida (1994). Thus, a total of 150 µL of distilled water and 25 µL of FeCl₂ (2 mM) were added to 50 µL of hydrolysate, followed by the addition of 100 µL of ferrozine (5 mM) after 5 min. After a-10 min incubation at room temperature, the absorbance of the Fe²⁺-ferrozine complex with red or violet color was measured at 562 nm. The chelating activity of the antioxidant for Fe²⁺ was calculated according to the following formula:

238

Ferrous ion-chelating activity (%) =
$$\frac{(A_{control} + A_{blank} - A_{sample})}{A_{control}} \times 100$$

where $A_{control}$ is the absorbance of the control (without sample), A_{blank} is the absorbance of the blank (without ferrozine) and A_{sample} is the absorbance of SPHs. EDTA was used as positive control. All determinations were performed in triplicate.

242

243 2.8.5. Oxygen radical absorbance capacity (ORAC) assay

ORAC of hydrolysates and synthesized peptides was carried out according to the 244 procedure reported by Dávalos, Gómez-Cordovés, Bartolomé, & (2004) with minor 245 modifications. The ORAC assay was measured using a Fluoroskan Ascent FL 246 (Thermo Electron Corporation, Waltham, MA). Briefly, the microplate equipped with an 247 incubator and wavelength-adjustable fluorescence filters was used to monitor for the reaction. 248 The temperature of the incubator was set at 37 °C, and fluorescence filters with excitation 249 wavelength of 485 nm and emission wavelength of 538 nm were used. AAPH was used as 250 peroxyl generator and Trolox was used as antioxidant standard. The plate reader was 251 programmed to record the fluorescence of fluorescein on every cycle. Kinetic reading was 252 recorded for 100 cycles with 60 s per cycle setting. Trolox standards were prepared with 253 phosphate buffered saline (PBS) (75 mM, pH 7.4), which was used as blank. The samples 254

were diluted with PBS (75 mM, pH 7.4) to the proper concentration range for fitting the 255 256 linearity range of the standard curve. After loading 140 µL of sample, standard and blank, and 70 µL of the fluorescein solution (200 nM) into appointed wells according to the layout, the 257 258 microplate was incubated for 15 min in the plate reader, then 70 µL of peroxyl generator AAPH (80 mM) was added to initiate the oxidation reaction. The final ORAC values were 259 calculated using a linear equation between the Trolox standards or sample concentration and 260 261 net area under the fluorescence decay curve. The ORAC value was expressed as micromolar of Trolox equivalent (µM TE) using the calibration curve of Trolox. All determinations were 262 performed in triplicate. 263

264

265 2.9. Identification of peptides using nESI-LC–MS/MS

Peptide identification was done using a nano-liquid chromatography system (Eksigent
of AB Sciex, CA) coupled to a quadrupole-time-of-flight (Q-ToF) system (TripleTOF®
5600+, AB Sciex Instruments, Framingham, MA) equipped with a nano-electrospray
ionization source (nano-ESI). Systems parameters were adjusted as previously published in
Mora, Escudero, Aristoy, & Toldrá (2015).

Regarding the spectra analysis, peak list generation and database search for the identification of the peptides were done using Mascot Distiller v2.4.2.0 software (Matrix Science, Inc., Boston, MA). NCBInr protein database was used to identify the peptides with a significance threshold p < 0.05 and a FDR (False Discovery Rate) of 1.5%. The tolerance on the mass measurement was 100 ppm in MS mode and 0.3 Da in MS/MS ions. BIOPEP (<u>http://www.uwm.edu.pl/biochemia/index.php/pl/biopep</u>) databases were used to search of similar sequences previously described as ACE-inhibitory or antioxidant.

278

279 **2.10.** Peptide synthesis

The most promising sequences of identified peptides were synthesized by GenScript Corporation (Piscataway, NJ, USA) in order to assess their *in vitro* activities. The synthesized peptides and their purity were certified by analytical LC–MS.

283

284 2.11. Statistical analyses

Statistical analyses were performed with Stratgraphics ver. 5.1, professional edition (Manugistics Corp., USA) using ANOVA analysis. Differences were considered significant at p < 0.05.

288

289 **3. Results and discussion**

3.1. Preparation and characterization of fermented sardinelle protein hydrolysates

In this study, the fermentation of sardinelle muscle proteins was carried out during 24 h. 291 292 The extent of protein hydrolysis during fermentation by B. subtilis (A26) and B. 293 amyloliquefaciens (An6) strains was measured by assessing the degree of hydrolysis and the 294 proteolytic activity. The findings revealed that An6 strain showed a higher hydrolytic activity 295 (DH = 24.3%) in comparison with SPH-A26 that was 21.56%. The proteolytic activity in cultures of A26 and An6, using sardinelle proteins as substrate, were estimated at 400 U mL⁻¹ 296 and 250 U mL⁻¹, respectively. The high DH values obtained were mainly due to the 297 298 production of several proteases by the two strains. The difference in DH values could be mainly due to the difference in the specificity of enzymes produced by the proteolytic bacteria 299 used and may reflect the generation of small sized bioactive peptides in the hydrolysate 300 301 mixtures. It has been reported that high DH values are suitable for the generation of antioxidant and ACE-inhibitory peptides (Nasri et al., 2014). 302

The chemical composition of freeze dried SPHs was determined and compared to that of undigested sardinelle proteins. The proximate composition of dried SMF showed that it had

high protein content (76.43% of dry matter basis). In fermented SPHs, protein content was
about 75%. The lipid level in the hydrolysates was about 0.7%, which is lower than that of
USP (15.65%). SPH-A26 and SPH-An6 had high ash content, 9.8% and 9%, respectively.

308

309 **3.2.ACE-inhibitory activity of SPHs**

The ACE-inhibitory activity of SPH-A26 and SPH-An6 was investigated at different 310 concentrations. As reported in Fig. 1, both fermented hydrolysates exhibited high ACE-311 inhibitory activity in a dose dependent manner reaching 75.7% \pm 0.66 and 79.5% \pm 0.33 at 0.6 312 mg mL⁻¹ for SPH-A26 and SPH-An6, respectively. The concentration of hydrolysates 313 required to inhibit 50% of the ACE activity (IC50 values) was determined and SPH-An6 314 showed an IC₅₀ value of 0.21 \pm 0.001 mg mL⁻¹, whereas SPH-A26 showed an IC₅₀ value of 315 0.26 ± 0.006 mg mL⁻¹. It is interesting to note that SPH-An6, which showed the highest DH 316 317 (DH= 24.3%), exhibited the lowest IC₅₀ value. The IC₅₀ values of the two hydrolysates were lower than those of salmon skin collagen hydrolysate $(1.165 \pm 0.087 \text{ mg mL}^{-1})$ obtained by 318 319 treatment with alcalase and papain (Gu, Li, Liu, Yi, & Cai, 2011) and goby muscle 320 hydrolysates prepared with different proteases (1.36–3.33 mg mL⁻¹) (Nasri et al., 2013). In another study, Alemán et al. (2011) reported IC₅₀ values between 0.34 and 1.6 mg mL⁻¹ for 321 squid gelatine hydrolysates prepared by several commercial proteases. However, both IC₅₀ 322 values were nearly similar to that of liquid state lentils fermented by Lactobacillus plantarum 323 $(IC_{50}=0.20 \text{ mg mL}^{-1})$ (Torino et al., 2013). 324

No ACE-inhibitory activity was detected with USP. Therefore, the results indicated that ACE-inhibitory peptides are encrypted within the sardinelle proteins and could be released through the action of proteolytic enzymes derived from proteolytic bacteria during fermentation.

330 **3.3.** Antioxidant activities

331 **3.3.1. DPPH free radical-scavenging activity**

DPPH is a stable free radical that shows maximum absorbance at 517 nm. When DPPH 332 radicals encounter a hydrogen-donating substrate such as an antioxidant, the radicals would be 333 scavenged and the absorbance is reduced (Shimada, Fujikawa, Yahara, & Nakamura, 1992). 334 The decrease in absorbance is taken as a measure for radical-scavenging activity. Fig. 2a 335 shows the DPPH radical-scavenging activity of SPHs and BHA, used as positive control, at 336 different concentrations. The results clearly indicated that both hydrolysates were able to 337 scavenge DPPH radical with a dose-dependent manner and SPH-An6 exhibited the highest 338 radical-scavenging activity (70 \pm 0.8% at 5 mg mL⁻¹). The obtained results are in line with 339 previous works reported by Morales-Medina, Tamm, Guadix, Guadix, & Drusch (2016) and 340 Bkhairia et al. (2016) who reported that the DPPH scavenging activity increases with 341 342 increasing protein hydrolysate concentrations. However, the two hydrolysates showed lower radical scavenging activity than BHA (2 mM; $92.5 \pm 1.7\%$). The obtained results suggested 343 that some peptides within sardinelle protein hydrolysates would be significantly strong radical 344 scavengers. 345

346

347 **3.3.2. Reducing power**

In this assay, the ability of hydrolysates to reduce Fe^{3+} to Fe^{2+} was determined. The presence of antioxidants in the protein hydrolysate results in reduction of the $Fe^{3+}/$ ferric cyanide complex to the ferrous form. As shown in Fig. 2b, the reducing power activity (as indicated by the absorbance at 690 nm) of both hydrolysates and BHA increased with increasing concentrations. A little difference in the reducing power activities was observed between the two hydrolysates. Nevertheless, both hydrolysates showed lower reducing power than did BHA at the same concentrations.

355 **3.3.3.** Antioxidant activity measured by the β -carotene bleaching method

356 The antioxidant assay using the discoloration of β -carotene is widely employed to measure the antioxidant activity of bioactive compounds, because β -carotene is extremely 357 358 susceptible to free radical-mediated oxidation of linoleic acid (Kumazawa et al., 2002). In this test, β -carotene undergoes a rapid discoloration in the absence of antioxidant, which results in 359 the reduction in absorbance of the test solution with increasing reaction time. The presence of 360 antioxidant hinders the extent of bleaching by neutralizing the linoleic hydroperoxyl radicals 361 formed. The antioxidant activities of SPHs measured by β -carotene bleaching are reported in 362 Fig. 2c. The two hydrolysates inhibited the oxidation of β -carotene at different degrees and in 363 a dose-dependent manner. SPH-An6 showed slightly higher ability to prevent bleaching of β-364 carotene than did SPH-A26. However, the inhibition of β -carotene bleaching of both 365 hydrolysates was lower than that obtained by BHA (92%). These results demonstrated that 366 367 SPHs prevent β -carotene bleaching by potentially donating hydrogen atoms to peroxyl radicals of linoleic acid. 368

369

370 **3.3.4.** Ferrous ion-chelating activity

The chelation of Fe²⁺ was used to determine the ability of protein hydrolysates in metal-371 chelating activity. Ferrozine quantitatively forms complex with Fe²⁺ ions. In the presence of 372 373 chelating agents, the complexe formation is disrupted, resulting in the decrease in colour formation (Thiansilakul, Benjakul, & Shahidi, 2007). Ferrous chelating activity of SPHs and 374 EDTA used as reference chelating agent, at different concentrations, are shown in Fig. 2d. 375 The results indicated that SPHs are able to chelate Fe²⁺ ion. In a dose-dependent manner, 376 SPH-An6 exhibited high activity (86.85% \pm 3.01 at 5 mg mL⁻¹) than did SPH-A26 (47.62% \pm 377 378 2.75 at 5 mg mL⁻¹) (p<0.05). Chelating activity of SPH-An6 was higher than Flavourzyme hydrolyzed silver carp proteins (60% at 5 mg mL⁻¹) (Dong et al., 2008) and lower than 379

enzymatic sardinelle protein hydrolysates (between 54.82 and 78% at 0.25 mg mL⁻¹) (Ben
Khaled et al., 2014).

Transition metals such as Fe^{2+} and Cu^{2+} can catalyse the generation of reactive oxygen species such as hydroxyradical (OH°) and superoxide anion (O²⁻) (Stohs & Bagchi, 1995). In fact, Fe^{2+} generates OH° by the Fenton reaction, when the lipid peroxidation chain reaction is accelerated. The results indicate that protein hydrolysates can exhibit, to a various extent, antioxidant ability by capturing ferrous ion or other ions. Therefore, chelation of metal ions by peptides in hydrolysates would retard the oxidative reaction (Klompong, Benjakul, Kantachote, Hayes, & Shahidi, 2008).

389

390 **3.3.5. ORAC** assay

The ORAC assay has been used to study the antioxidant capacity of many compounds and food samples (Wu et al., 2004; Xu, Yuan, & Chang, 2007). ORAC values of SPHs at different concentrations are presented in Fig. 2e. The results indicated that SPH-An6, with the highest DH value, has a higher oxygen radical antioxidant capacity than SPH-A26 and that this capacity increased with increasing concentration.

396

397 3.4.Identification of peptides in SPH-A26 and SPH-An6

Peptides in SPH-A26 and SPH-An6 were analysed by nESI-LC–MS/MS. A total of approximately 800 peptides were identified. Fig. 3 shows the distribution in percentages of the identified peptides according to their origin proteins. Main identified peptides derived from myosin (31% in SPH-A26 and 43% in SPH-An6), followed by actin (12% and 17% in SPH-A26 and SPH-An6, respectively). Peptide lengths from SPH-A26 and SPH-An6 are between 6 and 26 amino acids.

Amino acid sequences of fifty low molecular weight peptides from each hydrolysate, 404 405 selected based on their easy intestinal absorption, as well as their protein origin, molecular masses and modifications are presented in Tables 1 and 2. The length of these selected 406 407 peptides is between 6 and 10 amino acids. Indeed, it has been reported by Shimizu, Tsunogai, & Arai (1997) the possibility of the passive diffusion of peptides of more than 4 amino acids, 408 especially hydrophobic peptides by trancytose. Other transport mecanisms, such as 409 410 paracellular diffusion, have been demonstrated for the transport of peptides of more than 4 amino acids (Shimizu, Tsunogai, & Arai, 1997). 411

The study of the hydrophobicity of selected peptides showed that they are mainly hydrophobic, which improves their proper effect in the organism. Euston, Finnigan, & Hirst (2001) reported that the wealth of protein hydrolysates with hydrophobic amino acids facilitates their digestion and absorption in the intestine and improves their nutritional properties compared to the intact protein. The most hydrophobic peptides are VIVIIIGA, ALDILDAA and ILLDLLIP in SPH-A26 and DVILPVPAF, IFAGLIQ, DVPGPVGIPF, MILPVGAANF in SPH-An6.

419 By comparing peptides from the two hydrolysates, we found that YELPDGQVI and FDKIEDMAM are present in both hydrolysates. Moreover, the sequences ISEELDHAL and 420 SEELDHALN from SPH-A26 and SPH-An6 share the same sequence SEELDHAL. Aspartic 421 acid (D) and glutamic acid (E) are the main amino acids present in the peptide sequences. 422 Table 3 reported some peptides sharing sequences with previously identified peptides. 423 Extended comparison revealed that LEE tripeptide found in the N-terminal sequences of P8 424 425 and P20 was also found in LEELEEELEGCE, an antioxidant peptide that was previously purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw (Qian, Jung, & Kim, 426 427 2008). These three residues are also present in P7, P23 and P24 and could be implicated in the peptide action. Similarly, the antioxidant peptide (EEEKNRLTKKTKLT) derived from 428

bovine milk α -casein (Srinivas & Prakash, 2008) contain KLT at the C-terminal, which is also 429 430 present at the C-terminal of VIPELDGKLT (P16), and EEE at the N-terminal, which is also localized at the N-terminal of EEELEAER (P27). Thus, these peptides could be probably 431 antioxidant. Furthermore, the three amino acid residues at the N-ter of P22 are also present at 432 the N-terminal of an antioxidant peptide VGPLSPT (Esteve, Marina, & García, 2015) and the 433 last three residues are localized at the C-terminal of MDGAP (Esteve, Marina, & García, 434 2015). These sequences have been reported as antioxidant peptides identified in olive seeds 435 (Olea europaea). Thus, P22 may have antioxidant activity. Previously, Lee, Cheng, Enomoto, 436 & Nakano (2006) identified an antioxidant peptide (TDY) from marine bivalve (Mactra 437 438 veneriformis) (Liu et al., 2015). This sequence is localized at the C-terminal of P5 which may be considered as antioxidant peptide. 439

Potential ACE-inhibitor peptides from SPH-A26 (P4, P13, P18) were also detected, as 440 these peptides share the same first N-terminal residues of ACE inhibitors previously identified 441 (Kohmura et al., 1989; Miyoshi, Ishikawa, Kaneko, Fukui, & Tanaka, 1991; Yano, Suzuki, & 442 Funatsu, 1996; Pihlanto-Leppala, Koskinen, Piilola, Tupasela, & Korhonen, 2000). Further, 443 P32 contains GQF at the C-terminal, which is also found at the C-terminal of 444 YIEAVNKVSPRAGQF, an ACE inhibitor peptide from egg yolk (Zambrowicz et al., 2015). 445 Similarly, the first three residues of P34 (VAP) were previously identified as an ACE 446 inhibitor peptide (Maruyama, Mitachi, Tanaka, Tomizuka, & Suzuki, 1987). Extended 447 comparison revealed that sequences of P23, P24 and P25, from SPH-An6, have homology 448 with LRENNKLMLLELK, a bioactive peptide from bean (Phaseolus vulgaris) (Mojica, 449 Chen, & de Mejia, 2015), which exihibits antioxidant, ACE and DPP IV-inhibitory activities. 450 Indeed, the last three residues of this bioactive peptide are localized at the C-terminal of our 451 peptides and could be implicated in the peptide action. P10 has the same three first residues of 452

a dipeptidyl peptidase IV inhibitor, ILAP (Harnedey, O'Keeffe, & FitzGerald, 2015). Thus,
P10 may be hypoglycemic.

455

456 **3.5.ACE-inhibitory and antioxidant activities of synthesized peptides**

Eight peptides from SPH-A26 and seven peptides from SPH-An6 were selected for chemical synthesis (Table 4). The selection was based on peptides' homologies with previously identified peptides (Biopep data bank) as well as peptides' length. In fact, it is well known, that short peptides can be efficiently absorbed through the intestine in an active form, more readily in comparison to larger peptides (He, Liu, & Ma, 2013). Further, short peptides generally are more resistant to gastrointestinal digestion and serum peptidases than larger peptides.

464

465 **3.5.1.** ACE-inhibitory activity

The ACE-inhibitory activity of synthesized peptides was investigated at a concentration of 0.25 mM (Fig. 4). The results clearly show that all synthesized peptides displayed ACEinhibitory activity and P9 (NVPVYEGY) from SPH-A26 exhibited the highest activity (57.02% \pm 0.54), while in SPH-An6, P21 (ITALAPSTM) displayed the highest activity (52.07% \pm 1.88) followed by P31 (SLEAQAEKY) (33.11% \pm 2.22). The other peptides weakly inhibited ACE-activity *in vitro*.

472 NVPVYEGY showed IC₅₀ value of 0.21 ± 0.003 mM, while ITALAPSTM and 473 SLEAQAEKY showed IC₅₀ values of 0.229 ± 0.01 mM and 0.406 ± 0.02 mM, respectively. 474 The IC₅₀ values of these peptides were higher than that of VIEKYP, an ACE-inhibitor peptide 475 from mushroom *Tricholoma giganteum* (IC₅₀= 0.1 µM) (Murray & FitzGerald, 2007) and 476 KVREGT (IC₅₀= 9.1 µM), a peptide derived from hen ovotransferrin as pro-drug (Lee, 477 Cheng, Enomoto, & Nakano, 2006). Higher values of IC₅₀ were reported by Pihlanto-Leppala, 478 Koskinen, Piilola, Tupasela, & Korhonen (2000) for the fragment of bovine beta-479 lactoglobulin (VFK) (IC₅₀= 1.029 mM) and by Katayama et al. (2008) who identified an ACE 480 inhibitor peptide (EKERERQ) from porcine skeletal muscle troponin with an IC₅₀ of 0.552 481 mM.

The synthesized peptides which exhibited high ACE-inhibitory activity contained a high 482 content of hydrophobic amino acid residues. Among them, SLEAQAEKY possess a Ser 483 residue at the N-terminal and Tyr at the C-terminal positions. Although the structure-activity 484 relation ship of ACE inhibitory peptides has not been fully established, it seems that binding 485 to ACE is strongly influenced by the C-terminal tripeptide sequence. Indeed, peptides 486 containing hydrophobic amino acid residues, such as Pro, Phe and Tyr, at the three C-terminal 487 positions are potent inhibitors (Murray & FitzGerald, 2007). In this respect, the high activity 488 of QIEDFKEAF could be attributed in particular to Phe at the C-terminal position, one of the 489 490 most favourable C-terminal amino acid for binding to the ACE active sites (Gobbetti, Ferranti, Smacchi, Goffredi, & Addeo, 2000). 491

492

493 3.5.2. Antioxidant activities of synthesized peptides

The antioxidant activities of synthesized peptides were also investigated. Fig. 5a shows 494 the DPPH radical-scavenging activity of synthesized peptides at a concentration of 1 mM. All 495 peptides were able to scavenge DPPH. The activities of the most active peptides (P1, P5, P6, 496 P8 and P9 from SPH-A26 and P23 and P33 from SPH-An6) were ranged from 30% to 48%. 497 Their IC₅₀ values were determined and presented in Table 5. The results indicated that 498 GTEDELDKY (P33) exhibited the highest radical-scavenging activity (IC₅₀= 1.32 ± 0.01), 499 followed by NVPVYEGY (P9) (IC_{50}= 1.41 \pm 0.03) and AGRDLTDY (P5) (IC_{50}= 1.54 \pm 500 501 0.01). These IC₅₀ values were lower than that of LEELEEELEGCE (IC₅₀=16.1 mM), an antioxidant peptide from bullfrog skin hydrolysate (Qian, Jung, & Kim, 2008). On the other 502

hand, Liu et al. (2015) identified the peptides TDY and LYEGY with IC_{50} of 0.14 mM and 0.217, respectively, from an enzymatic hydrolysate of *Mactra veneriformis*. P21 (ITALAPSTM), which displayed high ACE-inhibitory activity was found to show low DPPH radical-scavenging activity. The results obtained suggested that some peptides within sardinelle protein hydrolysates were significantly strong radical scavengers.

Fig. 5b shows the reducing power activities of all synthesized peptides at a concentration
of 0.3 mM compared with BHA as standard. P9 (NVPVYEGY) displayed the highest
reducing power activity, followed by P5 (AGRDLTDY) and P31 (SLEAQAEKY).

The antioxidant activities of synthesized peptides measured by β -carotene bleaching at a concentration of 1 mM are reported in Fig. 5c and the IC₅₀ values were determined and presented in Table 5. All synthesized peptides, except P31, showed antioxidant activities. Results indicate that from SPH-A26, P12 (KDIDDLELT) and P14 (ISEELDHAL) showed the highest ability to prevent bleaching of β -carotene (IC₅₀= 0.22 ± 0.01 and 0.34 mM ± 0.01, respectively). From SPH-An6, P19 (EVIEIQ) is the most active peptide (IC₅₀= 0.31 mM ± 0.05).

Moreover, ORAC values of synthesized peptides at a concentration of 0.25 mM are presented in Fig. 5d. The results indicated that P5, P9, and P14 from SPH-A26 and P21, P29, P31, and P33 from SPH-An6 displayed high peroxyl radical scavenging activity. Qian, Jung, & Kim (2008) purified from the hydrolysate of bullfrog skin *Rana catesbeiana* Shaw an antioxidant peptide, LEELEEELEGCE. This peptide exhibits peroxyl radical scavenging activity with an IC₅₀=32.6 mM.

Results showed that P5, P9, and P33, which contain Tyr at their C-terminal displayed high DPPH radical-scavenging, reducing power and peroxyl radical scavenging activities. The antioxidant activities of these peptides may result from the Tyr residue localized at C-terminal position. Furthermore, P14 and P29, which displayed high peroxyl radical scavenging activity

contained His in their sequences, and P21, which has Met at the C-terminal, displayed high β -528 529 caroten bleaching activity. The presence of His and Met in the sequences of these peptides could explain their action. In fact, Dávalos, Miguel, Bartolomé, & López-Fandino (2004) 530 531 reported that among the amino acids, Trp, Tyr and Met showed the highest antioxidant activity, followed by Cys, His and Phe. The antioxidant activity of histidine-containing 532 peptides has been reported and attributed to the chelating and lipid radical-trapping ability of 533 534 the imidazole ring (Murase, Nagao, & Terao, 1993; Park, Jung, Nam, Shahidi, & Kim, 2001; 535 Uchida & Kawakishi, 1992).

536

537 **4.** Conclusion

In the present study, SPHs obtained by fermentation were found to display antioxidant 538 and ACE-inhibitory activities. The hydrolysates were analysed using ESI-LC-MS/MS and 539 540 peptide sequences were determined. Some of the identified peptides share a partial sequence homology with previously identified bioactive peptides. Fifteen selected peptides were 541 542 synthesized and their ACE-inhibitory and antioxidant activities in vitro were studied. 543 NVPVYEGY and ITALAPSTM peptides showed the highest ACE inhibitory activity with IC_{50} values of 0.21 \pm 0.003 and 0.229 \pm 0.01 mM, respectively. Regarding the antioxidant 544 capacity, NVPVYEGY and GTEDELDKY peptides displayed the highest activities. 545

Therefore, this research provided a scientific basis for the preparation by fermentation process of antioxidant and hypotensive peptides from sardinelle protein hydrolysates that could be utilized in food systems as a natural additive possessing antioxidative and preventing hypertension properties. Further studies will be needed to evaluate the *in vivo* activities of the identified peptides.

551

552 Acknowledgements

This work was funded by grant AGL2014-57367-R from MINECO and FEDER funds as well as the Ministry of Higher Education and Scientific Research-Tunisia and the Emerging Research Group Grant from Generalitat Valenciana in Spain (GV/2015/138). JAEDOC-CSIC postdoctoral contract of L.M. cofunded by the European Social Found is also acknowledged. LC-MS/MS analysis was carried out in the SCSIE University of Valencia Proteomics Unit (Spain), a member of ISCIII ProteoRed Proteomics Platform.

559

560 **References**

Abdelhedi, O., Jridi, M., Jemil, I., Mora, L., Toldrá, F., Aristoy, M. C., et al. (2016).
Combined biocatalytic conversion of smooth hound viscera: Protein hydrolysates elaboration
and assessment of their antioxidant, anti-ACE and antibacterial activities. *Food Research International*, 86, 9-23.

Agrebi, R., Haddar, A., Hajji, M., Frikha, F., Manni, L., Jellouli, K., et al. (2009). Fibrinolytic
enzymes from a newly isolated marine bacterium *Bacillus subtilis* A26: characterization and
statistical media optimization. *Canadian Journal of Microbiology*, *55*, 1049-1061.

568

Agrebi, R., Hmidet, N., Hajji, M., Ktari, N., Haddar, A., Fakhfakh-Zouari, N., et al. (2010).
Fibrinolytic serine-protease from *Bacillus amyloliquefaciens* An6 grown on *Mirabilis jalapa*tuber powders: Production, partial purification and biochemical characterization. *Applied Biochemistry and Biotechnology, 162*, 75-88.

Alemán, A., Pérez-Santin, E., Bordenave-Juchereau, S., Arnaudin, I., Gomez-Guillén, M. C.,
& Montero, P. (2011). Squid gelatin hydrolysates with antihypertensive, anticancer and
antioxidant activity. *Food Research International, 44*, 1044-1051.

⁵⁷³

AOAC (2000). Official Methods of Analysis, 17th edn. Association of Official AnalyticalChemists, Washington.

580

Ben Khaled, H., Ktari, N., Ghorbel-Bellaaj, O., Jridi, M., Lassoued, I., & Nasri, M. (2014).
Composition, functional properties and *in vitro* antioxidant activity of protein hydrolysates
prepared from sardinelle (*Sardinella aurita*) muscle. *Journal of Food Science and Technology*, *51*, 622-633.

585

Bersuder, P., Hole, M., & Smith, G. (1998). Antioxidants from a heated histidine–glucose
model system. I. Investigation of the antioxidant role of histidine and isolation of antioxidants
by high performance liquid chromatography. *Journal of the American Oil Chemists' Society*,
75, 181-187.

590

Bkhairia, I., Ben Slama-Ben Salem, R., Nasri, R., Jridi, M., Ghorbel, S., & Nasri, M. (2016). *In vitro* antioxidant and functional properties of protein hydrolysates from golden grey mullet
prepared by commercial, microbial and visceral proteases. *Journal of Food Science and Technology*, DOI 10.1007/s13197-016-2200-5.

595

Chakka, A. K., Elias, M., Jini, R., Sakhare, P. Z., & Bhaskar, N. (2015). *In-vitro* antioxidant
and antibacterial properties of fermentatively and enzymatically prepared chicken liver
protein hydrolysates. *Journal of Food Science and Technology*, *52*, 8059-8067.

599

Chi, C. F., Hu, F. Y., Wang, B., Ren, X. J., Deng, S. G., & Wu, C. W. (2014). Purification
and characterization of three antioxidant peptides from protein hydrolyzate of croceine
croaker (*Pseudosciaena crocea*) muscle. *Food Chemistry*, *168*, 662-667.

- Cooper, W. O., Hernandez-Diaz, S., Arbogast, P. G., Dudley, J. A., Dyer, S., Gideon, P. S., et
 al. (2006). Major congenital malformations after first-trimester exposure to ACE inhibitors. *New England Journal of Medicine, 354*, 2443-2451.
- 607
- Connolly, T. M., Condra, C., Feng, D. M., Cook, J. J., Stranieri, M. T., Reilly, C. F., et al.
 (1994). Species variability in platelet and other cellular responsiveness to thrombin receptorderived peptides. *Thrombosis and Haemostasis*, 72, 627-633.
- 611
- Dávalos, A., Miguel, M., Bartolomé, B., & López-Fandino, R. (2004). Antioxidant activity of
 peptides derived from egg white proteins by enzymatic hydrolysis. *Journal of Food Protection*, 67, 1939-1944.
- 615
- Dávalos, A., Gómez-Cordovés, C., & Bartolomé, B. (2004). Extending applicability of the
 oxygen radical absorbance capacity (ORAC–Fluorescein) assay. *Journal of Agricultural and Food Chemistry*, 52, 48-54.
- 619

Dinis, T. C., Maderia, V. M., & Almeida, L. M. (1994). Action of phenolic derivatives
(acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid
peroxidation and as peroxyl radical scavengers. *Archives Biochemistry Biophysics*, *315*, 161169.

624

Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and
biochemical properties of protein hydrolysates prepared from silver carp
(*Hypophthalmichthys molitrix*). *Food Chemistry*, *107*, 1485-1493.

Escudero, E., Mora, L., Fraser, P. D., Aristoy, M.C., Arihara, K., & Toldra, F. (2013).
Purification and identification of antihypertensive peptides in Spanish dry-cured ham. *Journal of Proteomics*, 78, 499-507.

632

Esteve, C., Marina, M. L., & García, M. C. (2015). Novel strategy for the revalorization of
olive (*Olea europaea*) residues based on the extraction of bioactive peptides. *Food Chemistry*, *167*, 272-280.

636

Euston, S. R., Finnigan, S. R., & Hirst, R. L. (2001). Heat-induced destabilization of oil-inwater emulsions formed from hydrolyzed whey protein. *Journal of Agricultural and Food Chemistry*, 49, 5576-5583.

640

Fakhfakh, N., Ktari, N., Siala, R., & Nasri, M. (2013). Wool-waste valorization: production of
protein hydrolysate with high antioxidative potential by fermentation with a new keratinolytic
bacterium, *Bacillus pumilus* A1. *Journal of Applied Microbiology*, *115*, 424-433.

644

Garber, D. W., Handattu, S. P., Datta, G., Mishra, V. K., Gupta, H., White, R., et al. (2006).
Atherosclerosis and vascular disease: effects of peptide mimetics of apoliproteins. *Current Pharmaceutical Biotechnology*, *7*, 235-240.

648

- Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., & Addeo, F. (2000). Production of
 angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by *Lactobacillus delbrueckii* subsp. *bulgaricus* SS1 and *Lactococcus lactis* subsp. cremoris FT4.
- 652 *Applied and Environmental Microbiology*, 66, 3898-3904.

Gu, R. Z., Li, C. Y., Liu, W. Y., Yi, W. X., & Cai, M. Y. (2011). Angiotensin I-converting
enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (*Salmo salar* L.) skin. *Food Research International, 44*, 1536-1540.

657

Harnedy, P. A., O'Keeffe, M. B., & FitzGerald, R. J. (2015). Purification and identification of
dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga *Palmaria palmata*. *Food Chemistry*, 172, 400-406.

661

Harris, T., Cook, E. F., Kannel, W., Schatzkin, A., & Goldman, L. (1985). Blood pressure
experience and risk of cardiovascular disease in the elderly. *Hypertension*, *7*, 118–124.

664

He, H. L., Liu, D., & Ma, C. B. (2013). Review on the angiotensin-I-converting enzyme
(ACE) inhibitor peptides from marine proteins. *Applied Biochemistry and Biotechnology*, *169*,
738–749.

668

Hernandez-Ledesma, B., Amigo, L., Recio, I., & Bartolome, B. (2007). ACE-inhibitory and
radical scavenging activity of peptides derived from beta-lactoglobulin f(19-25). Interactions
with ascorbic acid. *Journal of Agricultural and Food Chemistry*, *55*, 3392-3397.

672

Houston, M. C. (2005). Nutraceuticals, vitamins, antioxidants, and minerals in the prevention
and treatment of hypertension. *Progress in Cardiovascular Diseases*, 47, 396-449.

- Ishida, A., Shigeri, Y., Tatsu, Y., Uegaki, K., Kameshita, I., Okuno, S., et al. (1998). Critical
 amino acid residues of AIP, a highly specific inhibitory peptide of calmodulin-dependent
 protein kinase II. *FEBS Letters*, 427, 115-118.
- 679
- Jemil, I., Jridi, M., Nasri, R., Ktari, N., Ben Slama-Ben Salem, R., Hajji, M., et al. (2014).
 Functional, antioxidant and antibacterial properties of protein hydrolysates prepared from fish
 meat fermented by *Bacillus subtilis* A26. *Process Biochemistry*, 49, 963–972.
- 683
- Jemil, I., Abdelhedi, O., Nasri, R., Mora, L., Marrekchi, R., Jamoussi, K., et al. (2016).
 Hypolipidemic, antiobesity and cardioprotective effects of fermented protein hydrolysates
 from sardinelle (*Sardinella aurita*) in high-fat and fructose diet fed Wistar rats. *Life Sciences*,
 doi:10.1016/j.lfs.2016.07.012
- 688

Jiménez-Escrig, A., Alaiz, M., Vioque, J., & Rupérez, P. (2010). Health-promoting activities
of ultra-filtered okara protein hydrolysates released by *in vitro* gastrointestinal digestion:
identification of active peptide from soybean lipoxygenase. *European Food Research and Technology*, 230, 655-663.

693

Katayama, K., Anggraeni, H. E., Mori, T., Ahmed, A. M., Kawahara, S., Sugiyama, M., et al.
(2008). Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I
converting enzyme inhibitory activity and antihypertensive effects in spontaneously
hypertensive rats. *Journal of Agricultural and Food Chemistry*, *56*, 355-360.

- Kleekayai, T., Harnedy, P. A., O'Keeffe, M. B., Poyarkov, A. A., CunhaNeves, A. A.,
 Suntornsuk, W. W., et al. (2015). Extraction of antioxidant and ACE inhibitory peptides from
 Thai traditional fermented shrimp pastes. *Food Chemistry*, *176*, 441-447.
- 702
- Klompong, V., Benjakul, S., Kantachote, D., Hayes, K. D., & Shahidi, F. (2008).
 Comparative study on antioxidative activity of yellow stripe trevally protein hydrolysate
 produced from Alcalase and Flavourzyme. *International Journal of Food Science and Technology*, *43*, 1019-1026.
- 707
- Kohmura, M., Nio, N., Kubo, K., Minoshimo, Y., Munekata, E., & Ariyoshi, Y. (1989).
 Inhibition of angiotensin-converting enzyme by synthetic peptides of human beta-casein. *Agricultural and Biological Chemistry*, *53*, 2107-2114.
- 711
- Koleva, I. I., Van Beek, T. A., Linssen, J. P. H., De Groot, A., & Evstatieva, L. N. (2002).
 Screening of plant extracts for antioxidant activity: a comparative study on three testing
 methods. *Phytochemical Analysis*, *13*, 8-17.
- 715
- Kumazawa, S., Taniguchi, M., Suzuki, Y., Shimura, M., Kwon, M. S., & Nakayama, T.
 (2002). Antioxidant activity of polyphenols in carob pods. *Journal of Agricultural and Food Chemistry*, *50*, 373-377.
- 719
- Lassoued, I., Mora, L., Nasri, R., Aydi, M., Toldrá, F., Aristoy, M. C., et al. (2015).
 Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from
 thornback ray (*Raja clavata*) muscle. *Journal of Proteomics*, *128*, 458-468.
- 723

- Lavoie, J. L., & Sigmund, C. D. (2003). Minireview: Overview of the renin-angiotensin
 system; An endocrine and paracrine system. *Endocrinology*, *144*, 2179-2183.
- 726
- Liu, X., Zhang, M., Jia, A., Zhang, Y., Zhu, H., Zhang, C., et al. (2013). Purification and
 characterization of angiotensin I converting enzyme inhibitory peptides from jellyfish *Rhopilema esculentun. Food Research International, 50*, 339-343.
- 730
- Liu, R., Zheng, W., Li, J., Wang, L., Wu, H., Wang, X., et al. (2015). Rapid identification of
 bioactive peptides with antioxidant activity from the enzymatic hydrolysate of *Mactra veneriformis* by UHPLC–Q-TOF mass spectrometry. *Food Chemistry*, *167*, 484-489.
- 734
- Lee, N. Y., Cheng, J. T., Enomoto, T., & Nakano, Y. (2006). One peptide derived from hen
 ovotransferrin as pro-drug to inhibit angiotensin converting enzyme. *Journal of Food and Drug Analysis, 14*, 31-35.
- 738
- Maruyama, S., Mitachi, H., Tanaka, H., Tomizuka, N., & Suzuki, H. (1987). Angiotensin-I
 converting enzyme inhibitory activity of the C-terminal hexapeptide of alpha-casein. *Agricultural and Biological Chemistry*, *51*, 2557-2561.
- 742
- Mito, K., Fujii, M., Kuwahara, M., Matsumura, N., Shimizu, T., Sugano, S., et al. (1996).
 Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides derived from
 hemoglobin. *European Journal of Pharmacology, 304*, 93-98.
- 746

747	Miyoshi, S., Ishikawa, H., Kaneko, T., Fukui, F., & Tanaka, H. (1991). Structure and activity
748	of angiotensin-converting enzyme inhibitors in alpha-zein hydrolysate. Agricultural and
749	Biological Chemistry, 55, 1313-1318.

- 750
- 751 Mojica, L., Chen, K., & de Mejia, E. G. (2015). Impact of commercial precooking of common
- bean (*Phaseolus vulgaris*) on the generation of peptides, after pepsin-pancreatin hydrolysis,

capable to inhibit dipeptidyl peptidase-IV. *Journal of Food Science*, *80*, 188-198.

- Mora, L., Escudero, E., Aristoy, M. C., & Toldrá, F. (2015). A peptidomic approach to study
 the contribution of added casein proteins to the peptide profile in Spanish dry-fermented
 sausages. *International Journal of Food Microbiology*, 212, 41–48.
- 758
- Morales-Medina, R., Tamm, F., Guadix, A. M., Guadix, E. M., & Drusch, S. (2016).
 Functional and antioxidant properties of hydrolysates of sardine (*S. pilchardus*) and horse
 mackerel (*T. mediterraneus*) for the microencapsulation of fish oil by spray-drying, *Food Chemistry*, 194, 1208-1216.
- 763
- Murase, H., Nagao, A., & Terao, J. (1993). Antioxidant and emulsifying activity of N-(longchain-acyl) histidine and N-(long-chain-acyl) carnosine. *Journal of Agricultural and Food Chemistry*, *41*, 1601–1604.
- 767
- Murray, B. A., & FitzGerald, R. J. (2007). Angiotensin converting enzyme inhibitory peptides
 derived from food proteins: biochemistry, bioactivity and production. *Current Pharmaceutical Design*, *13*, 773-791.
- 771

Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Nedjar-Arroume, N., et al. (2013).
ACE inhibitory and antioxidative activities of goby (*Zosterissessor ophiocephalus*) fish
protein hydrolysates : Effect on meat lipid oxidation. *Food Research International*, *54*, 552–
561.

776

- Nasri, R., Jridi, M., Lassoued, I., Jemil, I., Ben Slama-Ben Salem, R., Nasri, M., et al. (2014).
 The influence of the extent of enzymatic hydrolysis on antioxidative properties and ACEinhibitory activities of protein hydrolysates from goby (*Zosterisessor ophiocephalus*) muscle. *Applied Biochemistry and Biotechnology*, *173*, 1121-1134.
- 781
- Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining
 food protein degree of hydrolysis. *Journal of Food Science*, *66*, 642-646.
- 784
- Park, P. J., Jung, W. K., Nam, K. S., Shahidi, F., & Kim, S. K. (2001). Purification and
 characterization of antioxidative peptides from protein hydrolysate of lecithin free egg yolk. *Journal of the American Oil Chemists' Society*, 78, 651-656.

788

Pihlanto-Leppala, A., Koskinen, P., Piilola, K., Tupasela, T., & Korhonen, H. (2000).
Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration
and characterization of active peptides. *Journal of Dairy Research*, 67, 53-64.

- Qian, Z. J., Jung, W. K., & Kim, S. K. (2008). Free radical scavenging activity of a novel
 antioxidative peptide purified from hydrolysate of bullfrog skin, *Rana catesbeiana* Shaw. *Bioresource Technology*, 99, 1690-1698.
- 796

- Ringseis, R., Motthes, B., Lehmann, V., Becker, K., Schöps, R., Ulbrich-Hofmann, R., et al.
 (2005). Peptides and hydrolysates from casein and soy protein modulate the release of
 vasoactive substances from human aortic endothelial cells. *Biochimica et Biophysica Acta- General Subjects, 1721*, 89-97.
- 801
- Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from
 porcine myofibrillar proteins by protease treatment. *Journal of Agricultural and Food Chemistry*, *51*, 3661-3667.
- 805
- Salampessy, J., Reddy, N., Kailasapathy, K., & Phillips, M. (2015). Functional and potential
 therapeutic ACE-inhibitory peptides derived from bromelain hydrolysis of trevally proteins. *Journal of Functional Foods*, *14*, 716-725.
- 809
- 810 Salvetti, A. (1990). Newer ACE inhibitors. A look at the future. *Drugs*, 40, 800-828.
- 811
- 812 Sentandreu, M. A., & Toldrá, F. (2006). A rapid, simple and sensitive fluorescence method

for the assay of angiotensin-I converting enzyme. *Food Chemistry*, 97, 546-554.

- 814
- 815 Silveira, S. T., Martínez-Maqueda, D., Recio, I., & Hernández-Ledesma, B. (2013).
- 816 Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein
- strain concentrate rich in β -lactoglobulin. *Food Chemistry*, 141, 1072-1077.
- 818
- 819 Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of
- 820 xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural
- 821 *and Food Chemistry*, 40, 945-948.

Shimizu, M., Tsunogai, M., & Arai, S. (1997). Transepithelial transport of oligopeptides in
the human intestinal cell, Caco-2. *Peptides*, 18, 681-687.

825

Sudhakar, S., & Abdul Nazeer, R. (2015). Preparation of potent antioxidant peptide from
edible part of shortclub cuttlefish against radical mediated lipid and DNA damage. *LWT* -

828 Food Science and Technology, 64, 593-601.

829

Srinivas, S., & Prakash, V. (2008). Effect of cosolvents on the stabilization of bioactive
peptides from bovine milk α-casein. *Protein and Peptide Letters*, *15*, 371-376.

832

Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. *Free Radical Biology and Medicine*, *18*, 321-336.

835

- 836 Suryakanth, D. A., Rafiq, M., Azeemuddin, M., Vis-wanatha, G. L., Jagadeesh, M., Sandeep
- 837 Rao, K. S., et al. (2012). Free radical scavenging and hepatoprotective activity of HD-03/ES
- in experimental models. *Journal of Experimental and Integrative Medicine*, 2, 161-166.

839

Thiansilakul, Y., Benjakul, S., & Shahidi, F. (2007). Compositions, functional properties and
antioxidative activity of protein hydrolysates prepared from round scad (*Decapterus maruadsi*). *Food Chemistry*, *103*, 1385-1394.

843

Tomatsu, M., Shimakage, A., Shinbo, M., Yamada, S., & Takahashi, S. (2013). Novel
angiotensin I-converting enzyme inhibitory peptides derived from soya milk. *Food Chemistry*, *136*, 612-616.

- Toopcham, T., Roytrakul, S., & Yongsawatdigul, J. (2015). Characterization and
 identification of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from
 tilapia using *Virgibacillus halodenitrificans* SK1-3-7 proteinases. *Journal of Functional Foods*, 14, 435-444.
- 852
- Torino, M. I., Limón, R. I., Martínez-Villaluenga, C., Mäkinen, S., Pihlanto, A., VidalValverde, C., et al. (2013). Antioxidant and antihypertensive properties of liquid and solid
 state fermented lentils. *Food Chemistry*, *136*, 1030-1037.
- 856
- Tsopmo, A., Romanowski, A., Banda, L., Lavoie, J. C., & Jenssen, H. (2011). Novel antioxidative peptides from enzymatic digestion of human milk. *Food Chemistry*, *126*, 11381143.
- 860
- Uchida, K., & Kawakishi, S. (1992). Sequence-dependant reactivity of histidine containing
 peptides with copper(II)/ascorbate. *Journal of Agricultural and Food Chemistry*, 40, 13-16.
- Wu, X. L., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. I.
 (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United
 States. *Journal of Agricultural and Food Chemistry*, *52*, 4026-4037.
- 867
- Xu, B. J., Yuan, S. H., & Chang, S. K. C. (2007). Comparative analyses of phenolic
 composition and antioxidant capacity of cool season legumes with others elected food
 legumes. *Journal of Food Science*, *72*, 167-177.
- 871

- Yano, S., Suzuki, K., & Funatsu, G. (1996). Isolation from alpha-zein of thermolysin peptides
 with angiotensin I-converting enzyme inhibitory activity. *Bioscience, Biotechnology, and Biochemistry, 60*, 661-663.
- Yeh, C. H., Peng, H. C., Yih, J. B., & Huang, T. F. (1995). A new short chain RGDcontaining disintegrin, accutin, inhibits the common pathway of human platelet aggregation. *Biochimica et Biophysi ca Acta, 1425*, 493-504.
- 880 Yildirim, A., Mavi, A., & Kara, A. A. (2001). Determination of antioxidant and antimicrobial
- activities of *Rumex crispus* L. extracts. *Journal of Agricultural and Food Chemistry*, 49,
 4083-4089.

Zambrowicz, A., Pokora, M., Setner, B., Dąbrowska, A., Szołtysik, M., Babij, K., et al.
(2015). Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and
characterization. *Amino Acid*, *47*, 369-380.

Table 1

898 Selection of peptides identified from SPH-A26 using nESI-LC-MS/MS.

Peptide sequence	Protein origin	Calculated	Modifications
		Molecular mass (Da)	
LDDFKL	Calcium uniporter protein	749,39	
VIVIIIGA	Uncharacterized permease C1683.05	796,54	
ALDILDAA	Tegument protein UL47	800,43	
IDFGFDL	DNA polymerase	825,39	
ISNIEDF	REVERSED Uncharacterized metallohydrolase MJ0457	836,39	
EAPGPINF	Myosin regulatory light chain 2	843,41	
LNPTNASH GDEGGFAPN	Glycerol-3-phosphate dehydrogenase [NAD(+)] Beta-enolase	853,39 862,34	Deamidated(N)@2
FTIVVAIT	REVERSED CASP-like protein F16	862,51	
GFNPPDLD	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	873,39	
AGYDDIQAG	Galactose-1-phosphate uridylyltransferase	908,39	
ILLDLLIP	ATP-dependent protease ATPase subunit HslU	908,59	
AGRDLTDY	Actin, alpha skeletal muscle	909,42	
LIENDEAL	Acetylglutamate kinase	915,45	Oxidation(M)@12
TALEEAEGT	Myosin heavy chain, fast skeletal muscle	919,41	
IEEELGDK	Enolase	931,45	
IKEAPGPIN	Myosin regulatory light chain 2	937,52	
NVPVYEGY	Actin, alpha skeletal muscle	939,43	
EAPGPINFT	Myosin regulatory light chain 2	944,46	
LEEEVGAAK	REVERSED Dihydroxy-acid dehydratase	944,52	
IEEEVKAK	Myosin heavy chain, fast skeletal muscle	944,52	
IAAPELEPL	Titin	951,53	
NVPIYEGY	Actin, alpha skeletal muscle	953,45	
ILAADESTGS	Fructose-bisphosphate aldolase A	962,45	
IEFNLVLQ	REVERSED Exportin-5	975,53	Deamidated(N)@4
VFKDLFDP	Creatine kinase M-type	979,50	
YETDAIQR	Myosin heavy chain, fast skeletal muscle	994,47	
NHDPVVGDR	Glycogen phosphorylase, brain form	1007,48	
ADYEDYIK	Glycogen phosphorylase, muscle form	1015,45	
GEVEDLMID	Myosin heavy chain, fast skeletal muscle	1019,45	
ISEELDHAL	Tropomyosin alpha-1 chain	1025,50	
GFEDYVEGL	Myosin light chain 1, skeletal muscle isoform	1027,45	

YELPDGQVI	Actin, alpha skeletal muscle	1032,51	
RVAPEEHPT	Actin, alpha skeletal muscle	1034,51	
GTNDETERQ	RWD domain-containing protein 2B	1048,44	
KDIDDLELT	Myosin heavy chain, fast skeletal muscle	1060,53	
IVDVPVGEEL	ATP synthase subunit alpha, mitochondrial	1068,57	
TYDDYVEGL	Myosin light chain 3, skeletal muscle isoform	1073,45	
ATEDELDKY	Tropomyosin alpha-1 chain	1082,48	
VIPELDGKLT	Glyceraldehyde-3-phosphate dehydrogenase	1083,62	
GYPDKIIIGM	Beta-enolase	1105,58	
FDKIEDMAM	Myosin heavy chain, fast skeletal muscle	1114,47	Oxidation(M)@9
TIIHLGPRQS	Collagen alpha-1(XXVII) chain	1120,63	
ILPDGDHDLK	Fructose-bisphosphate aldolase A	1121,57	
GTYDDYVEGL	Myosin light chain 3, skeletal muscle isoform	1130,48	
AINDPFIDLD	Glyceraldehyde-3-phosphate dehydrogenase, cytosolic	1131,54	
ILENNEALEL	Beta-enolase	1157,58	Deamidated(N)@4
FGYSNRVVDL	Glyceraldehyde-3-phosphate dehydrogenase	1169,57166	Deamidated(N)@5
IDFDEFLKM	Troponin C, skeletal muscle	1172,54	Oxidation(M)@9
TWYDNEFGY	Glyceraldehyde-3-phosphate dehydrogenase	1193,47	

Table 2

916 Selection of peptides identified from SPH-An6 using LC-MS/MS.

Peptide sequence	Protein origin	Calculated Modifications
		Molecular mass (Da)
EVIEIQ	Citron Rho-interacting kinase	729,39
IFAGLIQ	REVERSED Probable serine/threonine-protein kinase gdt9	760,45
DELKLF	Parvalbumin alpha	763,41
ELAKTADE	REVERSED Serine/arginine-rich splicing factor RS31	875,42
LEEAGGATAA	Myosin heavy chain, fast skeletal muscle	888.42
ITALAPSTM	Actin, alpha skeletal muscle	903,47
LTALAPSTM	Actin-1	903,47
VGPLGRSGAP	REVERSED Collagen alpha-1(VII) chain	909,50
NASVIPEGQ	Myosin heavy chain, fast skeletal muscle	913,45
DEAGPSIVH	Actin, alpha skeletal muscle	923,43
FIGMESAGI	Actin, alpha skeletal muscle	923,44
FLGMESAGI	Actin-2	923,44
VNDAFGTAH	Phosphoglycerate kinase	930,42
LEEAGGATSV	Myosin-7	932,44
GVDNPGHPF	Creatine kinase M-type	938,42
IIEGDLER	Tropomyosin alpha-1 chain	943,50
LGAHAIHAGL	REVERSED Chlorophyll a/b light-harvesting protein PcbC	958,53
NIIHGSDTL	Nucleoside diphosphate kinase B (Fragments)	968,49
DVILPVPAF	Alpha-enolase	969,55
SELEEELK	Tropomyosin alpha-1 chain	975,47
AGFAGDDAPR	Actin, alpha skeletal muscle	975,44
VLDAGDGVTH	Actin, alpha skeletal muscle	982,47
TQQLEELK	Myosin-13	987,52
DVPGPVGIPF	Titin	996,53
EEELEAER	Myosin heavy chain, cardiac muscle isoform (Fragment)	1003,44
APEEHPTLL	Actin, alpha skeletal muscle	1005,51
SYELPDGQV	Actin, alpha skeletal muscle	1006,46
ASISAFGSNY	Lipase	1015,46
NLTEEMASQ	Myosin heavy chain, fast skeletal muscle	1021,44
SEELDHALN	Tropomyosin alpha-1 chain	1026,46
MILPVGAANF	Alpha-enolase	1031,55

YELPDGQVI	Actin, alpha skeletal muscle	1032,51	
AGLLGTLEEM	Myosin-4	1032,52	
SLEAQAEKY	Tropomyosin alpha-1 chain	1037,50	
NASVIPEGQF	Myosin heavy chain, fast skeletal muscle	1060,52	
TKYETDAIQ	Myosin heavy chain, fast skeletal muscle	1067,51	
GTEDELDKY	Tropomyosin alpha-1 chain	1068,46	
DLEESTLQH	Myosin heavy chain, fast skeletal muscle	1070,49	
ADIAESQVNK	Myosin-4	1073,53	
LDKENALDR	Tropomyosin alpha-1 chain	1073,53	
AVIDQDKSGF	Parvalbumin alpha	1078,53	
DEQSLGAQLQ	Myosin heavy chain, fast skeletal muscle	1087,51	
FDKIEDMAM	Myosin heavy chain, fast skeletal muscle	1098,47	
VAPEEHPTLL	Actin, alpha skeletal muscle	1104,58	
QIEDFKEAF	Myosin light chain 3, skeletal muscle isoform	1108,51	Gln->pyro-Glu@N-term
KEYEPEMGK	Sarcoplasmic/endoplasmic reticulum calcium ATPase 1	1109,50	
SYELPDGQVI	Actin, alpha skeletal muscle	1119,54	
NFDKVLAEW	Myosin heavy chain, fast skeletal muscle	1120,55	
SGFIEEDELK	Parvalbumin alpha	1165,55	
SGGTTMYPGIA	Actin, alpha skeletal muscle	1053,48	

931 **Table 3**

- 932 Comparison of some identified peptides with previously identified bioactive peptides basing
- 933 on Biopep data bases.

Hydrolysate		Peptide sequence		Previously identified bioactive peptides	
			Sequence	Activity	Reference
SPH-A26	P1	LDDFKL	GAQCTAGPCCWPCEGTICRR ARGDDLDDYCNGISADCPRN	Antithrombotic	Yeh, Peng, Yih & Huang, 1995
	P2	ALDIL DAA	KKALRRQEAV DAA	Kinases inhibitor	Ishida et al. 1998
	P3	IDFG FDL	MFDL	ACE inhibitor	Murray & FitzGerald, 2007
	P4	LNP TNASH	LNPPHQIYP LNP LNPA	ACE inhibitor ACE inhibitor ACE inhibitor	Kohmura et al. 1989 Miyoshi, Ishikawa, Kaneko, Fukui & Tanaka, 1991 Yano, Suzuki & Funatsu, 1996
	P5	AGRDL TDY	TDY	Antioxidant	Liu et al. 2015
	P6	LIENDEAL	KKALRRQ EAL DAL TPEVDD EAL EK	Kinase inhibitor DPP IV inhibitor	Ishida et al. 1998 Silveira, Martínez-Maqueda, Recio & Hernández- Ledema 2013
	P7	TALEEAEGT	KVREGT	ACE inhibitor	Lee, Cheng, Enomoto & Nakano, 2006
	P8	LEEEVGAAK	LEELEELEGCE	Antioxidative	Qian, Jung & Kim, 2008
	Р9	NVPVY EGY	LY EGY LVVDG EGY	Antioxidative ACE inhibitor	Liu et al. 2015 Esteve, Marina & Garcia, 2015
	P10	ILAADESTGS	ILAP	DPP IV inhibitor	Harnedy, O'Keeffe & FitzGerald, 2015
	P11	IEFNL VLQ	GKK VLQ	ACE inhibitor	Mito et al. 1996
	P12	KDIDD LEL T	LRENNKLML LEL K	Antioxidant, ACE inhibitor and	Mojica, Chen & de Majia, 2015
	P13	VFK DLFDP	VFK	ACE inhibitor	Pihlanto-Leppala, Koskinen, Piilola, Tupasela & Korbonen 2000
	P14	ISEELDHAL	ISELGW	Antioxidative	Tsopmo, Romanowski, Banda, Lavoie & Jenssen, 2011
	P15	GTNDET ERQ	EKER ERQ	ACE inhibitor	Katayama et al. 2008
	P16	VIPELDG KLT	EEEKNRLTKKT KLT	Antioxidant	Srinivas & Prakash, 2008
	P17	TIIHLGPRQS	TIIPLPV	Antioxidative	Jiménez-Escrig, Alaiz, Vioque & Rupérez, 2010
	P18	ILPDGDHDLK	ILP	ACE inhibitor	Kohmura et al. 1989
SPH-An6	P19	EVI EIQ	LR EIQ ILLRF	Kinase inhibitor	Ishida et al. 1998
	P20	LEE AGGATAA	LEELEEELEGCE	Antioxidative	Qian, Jung & Kim, 2008
	P21	ITALAPSTM	SALAM	Antioxidative	Hernandez-Ledesma, Amigo, Recio & Bartolome, 2007
			ALAV	DPP IV inhibitor	Harnedy, O'Keeffe & FitzGerald, 2015
	P22	VGPLGRS GAP	MDGAP; VGPLSPT	Antioxidant	Esteve, Marina & García, 2015
	P23	SELEE ELK	LRENNKLMLL ELK	Antioxidant.	Mojica, Chen & de Mejia, 2015
	P24	TQQLEELK		ACE inhibitor and DPP IV inhibitor	

P25	SGFIEEDELK

P26	VLD AGDGVTH	VLD TDYK	ACE inhibitor	Pihlanto-Leppala, Koskinen, Piilola, Tupasela & Korhonen, 2000
		VLDTGLAGA	Antioxidant	Esteve, Marina & García, 2015
P27	EEELEAER	EEE	Stimulating	Ringseis et al. 2005
		EEEKNRLTKKTKLT	vasoactive	Srinivas & Prakash, 2008
			Antioxidant	
P28	APEEHPTLL	APER	ACE inhibitor	Salampessy, Reddy, Kailasapathy & Phillips, 2015
P29	SEELDHALN	EELDNALN	Antioxidant	Saiga, Tanabe & Nishimura, 2003
P30	MILPVGAANF	MILMR	Antioxidant	Chi et al. 2014
		MILLLFR	ACE inhibitor	Toopcham, Roytrakul & Yongsawatdigul, 2015
P31	SLEAQA EKY	VI EKY P	ACE inhibitor	Murray & FitzGerald, 2007
P32	NASVIPE GQF	YIEAVNKVSPRA GQF	ACE inhibitor	Zambrowicz et al. 2015
P33	GTEDEL DKY	SFLLRNPN DKY EPF	Antithrombotic	Connolly et al. 1994
P34	VAPEEHPTLL	VAP	ACE inhibitor	Maruyama, Mitachi, Tanaka, Tomizuka & Suzuki, 1987
P35	QIEDF KEAF	DWLKAFYDKVAEKL KEAF	Lipids binding	Garber et al. 2006

934

Table 4

952 List of synthesized peptides, molecular weight and purity.

	Synthesized peptide	MW (g moL ⁻¹)	Purity (%)
	sequences	_	
P1	LDDFKL	749.86	99
P5	AGRDLTDY	909.94	98.1
P6	LIENDEAL	915.39	99.3
P8	LEEEVGAAK	945.03	94.6
P9	NVPVYEGY	940.01	98.7
P12	KDIDDLELT	1061.15	99.1
P14	ISEELDHAL	1026.1	98.4
P15	GTNDETERQ	1049.01	96.5
P19	EVIEIQ	729.82	98.9
P21	ITALAPSTM	904.09	97.9
P23	SELEEELK	976.04	97.7
P29	SEELDHALN	1027.05	87.6
P31	SLEAQAEKY	1038.11	99.4
P33	GTEDELDKY	1069.08	95.5
P35	QIEDFKEAF	1126.22	86

....

Table 5

973 IC₅₀ values of ACE-inhibitory, DPPH free radical scavenging and β -carotene inhibition

- bleaching activities of synthesized peptides identified in SPH-A26 and SPH-An6.

Peptide			ACE-inhibitory	Scavenging effect	ß-carotene
-			activity IC ₅₀	on DPPH free	bleaching
			(mM)	radical IC ₅₀ (mM)	activity IC ₅₀
					(mM)
	P1	LDDFKL	nd	$1.98\pm0.02^{\mathrm{b}}$	$0.63\pm0.06^{\rm c}$
	P5	AGRDLTDY	nd	$1.54\pm0.01^{\rm d}$	$0.48\pm0.01^{\text{d}}$
	P6	LIENDEAL	nd	3.38 ± 0.11^{a}	nd
	P8	LEEEVGAAK	nd	$1.64 \pm 0.03^{\circ}$	1.03 ± 0.05^a
	P9	NVPVYEGY	$0.21\pm0.003^{\rm c}$	$1.41 \pm 0.03^{d, e}$	1.11 ± 0.02^{a}
	P12	KDIDDLELT	nd	nd	0.34 ± 0.01^{e}
	P14	ISEELDHAL	nd	nd	$0.22\pm0.01^{\rm f}$
	P19	EVIEIQ	nd	nd	0.31 ± 0.05^{e}
	P21	ITALAPSTM	$0.229\pm0.01^{\rm c}$	nd	0.64 ± 0.001^{c}
	P23	SELEEELK	nd	$1.67 \pm 0.02^{\circ}$	0.99 ± 0.05^{a}
	P31	SLEAQAEKY	$0.406\pm0.02^{\text{b}}$	nd	nd
	P33	GTEDELDKY	nd	$1.32 \pm 0.01^{\text{e}}$	$0.82\pm0.05^{\rm b}$
	P35	QIEDFKEAF	0.735 ± 0.02^{a}	nd	$0.97\pm0.01^{\rm a}$

977 nd: not determined

994 Figure captions

995

Fig. 1. ACE-inhibitory activity of sardinelle muscle proteins fermented by *B. subtilis* A26
(SPH-A26) and *B. amyloliquefaciens* An6 (SPH-An6) at different concentrations. Values are
means of three independent experiments.

999

Fig. 2. Antioxidant activities of sardinelle protein hydrolysates (SPH-A26 and SPH-An6) at various concentrations. Scavenging effect on DPPH free radical (a), reducing power (b), β carotene bleaching activity (c), chelating effect (d), oxygen radical absorbance capacity (ORAC) (e). Values are means \pm SD (n = 3).

1004

Fig. 3. Distribution of peptides identified in SPH-A26 (a) and SPH-An6 (b) by nESI-LCMS/MS according to their protein of origin.

1007

Fig. 4. ACE-inhibitory activity of synthesized peptides in SPH-A26 and SPH-An6 at a concentration equal to 0.25 mM. The values represent means of three independent experiments \pm SD.

1011

Fig. 5. Antioxidant activities of synthesized peptides in SPH-A26 and SPH-An6: Scavenging effect on DPPH free radical at a concentration equal to 1 mM (a), reducing power at a concentration equal to 0.3 mM (b), β -carotene bleaching activity at a concentration equal to 1 mM (c), oxygen radical absorbance capacity (ORAC) at a concentration equal to 0.25 mM (d). The values represent means of three independent experiments ± SD.

- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023

1024

1025

1026

1027

Fig. 1.

