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Regulation of Bcl-xL-ATP Synthase Interaction by
Mitochondrial Cyclin B1-Cyclin-Dependent Kinase-1
Determines Neuronal Survival

Miguel Veas-Pérez de Tudela,>* Maria Delgado-Esteban,* Carolina Maestre,' Verénica Bobo-Jiménez,'2
Daniel Jiménez-Blasco,"> Rebeca Vecino,"? Juan P. Bolaiios,"> and ““Angeles Almeida'-?

'Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, and ?Institute of Functional Biology and Genomics, University of
Salamanca-Spanish National Research Council, E-37007 Salamanca, Spain

The survival of postmitotic neurons needs continuous degradation of cyclin B1, a mitotic protein accumulated aberrantly in the damaged
brain areas of Alzheimer’s disease and stroked patients. Degradation of cyclin B1 takes place in the proteasome after ubiquitylation by the
anaphase-promoting complex/cyclosome (APC/C)- cadherin 1 (Cdhl), an E3 ubiquitin ligase that is highly active in neurons. However,
during excitotoxic damage—a hallmark of neurological disorders—APC/C-Cdh1 is inactivated, causing cyclin B1 stabilization and
neuronal death through an unknown mechanism. Here, we show that an excitotoxic stimulus in rat cortical neurons in primary culture
promotes cyclin Bl accumulation in the mitochondria, in which it binds to, and activates, cyclin-dependent kinase-1 (Cdk1). The cyclin
B1-Cdk1 complex in the mitochondria phosphorylates the anti-apoptotic protein B-cell lymphoma extra-large (Bcl-xL), leading to its
dissociation from the 3 subunit of F,F —ATP synthase. The subsequent inhibition of ATP synthase activity causes complex I oxidative
damage, mitochondrial inner membrane depolarization, and apoptotic neuronal death. These results unveil a previously unrecognized

role for mitochondrial cyclin B in the oxidative damage associated with neurological disorders.
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Introduction

An increasing body of evidence indicates that the progressive
neuronal death associated with neurodegenerative diseases is a
consequence of a failed attempt of postmitotic neurons to aber-
rantly reenter the cell cycle (Herrup, 2013). Thus, in patients
suffering from Alzheimer’s disease (Vincent et al., 1997; Yang et
al., 2003) and stroke (Love, 2003), as well as in experimental
models of cerebral ischemia (Erdo et al., 2004; Wen et al., 2004;
Rashidian et al., 2007), the affected brain areas aberrantly accu-
mulate cyclin B1. This is compatible with the notion that cyclin
B1 may be involved in the neuronal death associated with those
pathologies. In healthy neurons, cyclin Bl is degraded persis-
tently after ubiquitylation by the E3 ubiquitin ligase anaphase-
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promoting complex/cyclosome (APC/C)-cadherin 1 (Cdhl;
Almeida et al., 2005). However, during excitotoxic damage—a
hallmark of neurological disorders (Bolafios et al., 2009; Wang
and Qin, 2010)—APC/C-Cdhl is inactivated, causing aberrant
stabilization of cyclin B1 (Maestre et al., 2008), which mediates
neuronal death (Almeida et al.,, 2005; Maestre et al., 2008)
through a yet elusive molecular mechanism.

Excitotoxicity is one of the most common phenomena that
underlie the pathophysiology of neurological disorders (Wang
and Qin, 2010) and involves overactivation of glutamatergic re-
ceptors triggering massive Ca®" entry into the postsynaptic
neuron. After an excitotoxic insult, mitochondria are thus over-
loaded of Ca**, resulting in inner membrane potential (Ays,)
disruption, which precedes neuronal apoptotic death (Bolafios et
al., 2009). Accordingly, keeping Ay, intact represents an inter-
esting therapeutic strategy against neurodegeneration (Smith et
al., 2008). However, besides mitochondrial Ca®* (Duchen,
2012), there are other yet unknown factor(s) responsible for the
Ay, loss and neuronal death. Here, we show that, during an
excitotoxic stimulus, cyclin Bl is accumulated in the mitochon-
dria, accounting for the Ay, loss and neuronal death. Further-
more, we found that this effect occurred through cyclin
Bl-mediated activation of cyclin-dependent kinase-1 (Cdk1),
which phosphorylated B-cell lymphoma extra-large (Bcl-xL), re-
sulting in its dissociation from the 8 subunit of F,F —ATP syn-
thase. The subsequent inhibition in ATP synthase activity caused
increased mitochondrial superoxide anion (O ) that damaged
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complex I, leading to the Ais,,, loss and bioenergetic crisis respon-
sible for apoptotic neuronal death.

Materials and Methods

Ethical statement regarding the use of animals. All animals (pregnant
Wistar female rats) used in this work were obtained from the Animal
Experimentation Service of the University of Salamanca, in accordance
with Spanish legislation (RD 1201/2005) under license from the Spanish
government. Protocols were approved by the Bioethics Committee of the
University of Salamanca.

Cell cultures. Primary cultures of rat cortical neurons were prepared
from fetal Wistar rats (of either sex) of 16 d of gestation (Maestre et al.,
2008), seeded at 2.5 X 107 cells/cm? in different-sized plastic plates
coated with poly-p-lysine (15 ug/ml) and incubated in DMEM (Sigma-
Aldrich) supplemented with 10% fetal calf serum (FCS; Roche Diagnos-
tics). Cells were incubated at 37°C in a humidified 5% CO,-containing
atmosphere. At 48 h after plating, the medium was replaced with DMEM
supplemented with 5% horse serum (Sigma-Aldrich), 20 mm p-glucose,
and, on day 4, cytosine arabinoside (10 um) to prevent non-neuronal
proliferation. Cells were used for the experiments on day 67 in vitro.
Human embryonic kidney-293T (HEK293T) cells were maintained in
DMEM supplemented with 10% (v/v) FCS. Twenty-four hours before
the experiment, cells were reseeded at 1.8 X 10° cells/cm? in plates
coated previously with poly-p-lysine (15 ug/ml).

Plasmid constructions and site-directed mutagenesis. The following
plasmid constructions were used: (1) pIRES2-EGFP (Invitrogen), either
empty [control; expressing green fluorescent protein (GFP)] or contain-
ing the full-length cDNA of human Cyclin Bl (Cyclin B1; expressing
both cyclin B1 and GFP; Maestre et al., 2008); (2) pcDNA3-GFP (ex-
pressing GFP) or pcDNA3-cyclin B1-GFP, encoding human cyclin Bl
fused to GFP (from J. Pines, Gurdon Institute, University of Cambridge,
Cambridge, UK; Almeida et al., 2005); (3) pSuper—neo.gfp (Oligoen-
gine), including the small hairpin sequences for luciferase (control;
5'-CTGACGCGGAATACTTCGA-3") or cyclin Bl (shCyclin B1; 5'-
GATGGAGCTGATCCAAACC-3’; nucleotides 478 —496, GenBank ac-
cession number AY338491; Almeida et al., 2005; Maestre et al., 2008); (4)
pMitoDsRed2 plasmid vector (MitoRed; Clontech), expressing red fluo-
rescent protein in mitocondria; and (5) p8—Bcl-xL (from F. Pimentel,
Cancer Research Institute, University of Salamanca, Spanish National
Research Council, Salamanca, Spain) was subjected to site-directed mu-
tagenesis on Ser42, which was replaced by Ala or Asp residues to obtain the
phosphodefective [Bcl-xL(A); to block Cdkl phosphorylation] and phos-
phomimetic [Bcl-xL(D)] forms of Bcl-xL (GenBank accession number
NM_138578.1), respectively, using the QuikChange XL kit (Stratagene), fol-
lowed by Dpnl digestion. The forward and reverse oligonucleotides designed
were as follows, respectively: 5'-TGGCACCTGGCAGACGCCCCCGCG-
GTGAATGGA-3" and 5'-TCCATTCACCGCGGGGGCGTCTGCCAG-
GTGCCA-3' for Ser42Ala; and 5'-TGGCACCTGGCAGACGACCCC-
GCGGTGAATGGA-3" and 5'-TCCATTCACCGCGGGGTCGTCTGC-
CAGGTGCCA-3' for Ser42Asp.

Small interfering RNA. Specific depletion of Cdk5 was achieved by
using small (21 bp) interfering double-stranded ribonucleotides (siRNA)
designed specifically to target the coding sequence of the rat Cdk5 mRNA
(Maestre et al., 2008). We used the following siRNA (only the forward
strand shown): 5-AAGCCGUACCCGAUGUAUC-3" (nucleotides
859-877, GenBank accession number NM_080885). An siRNA against
luciferase (5'-CUGACGCGGAAUACUUCGAUU-3") was used as con-
trol siRNA (siControl; Maestre et al., 2008). Annealed siRNAs were pur-
chased from Dharmacon (Abgene, Thermo Fisher Scientific).

Cell transfections and treatments. All transfections with plasmid con-
structions were performed using Lipofectamine 2000 (Invitrogen; Mae-
stre et al., 2008), following the instructions of the manufacturer. After
transfections, cells were incubated further for 4-24 h until the experi-
ments and cell collection were performed. Transfections of neurons with
siRNAs were performed using Lipofectamine RNAIMAX (Invitrogen)
following the instructions of the manufacturer and used after 72 h.

To promote an excitotoxic insult, neurons were incubated with 100
uM glutamate plus 10 um glycine in HBSS (in mm: 134.2 NaCl, 5.26 KCl,
0.43 KH,PO,, 4.09 NaHCOj, 0.33 Na,HPO,, 5.44 glucose, 20 HEPES,
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and 4 CaCl,, pH 7.4) for 5 min and incubated further in culture medium
for the indicated time period (Almeida and Bolanos, 2001). When indi-
cated, incubations were performed in the presence of 100 ng/ml actino-
mycin D (ActD; Sigma), 1 pg/ml cycloheximide (CHX; Sigma), 10 pum
ProTAME (Boston Biochem, R&D Systems), and 1 mum glutathione ethyl
ester (GSH-EE; Sigma) or with 10 uMm roscovitine (Rosc; Sigma).

Subcellular fractionation. Cells were washed with cold PBS containing
1 mm MgCl,, harvested with cytosolic buffer (10 mm HEPES, 1.5 mMm
MgCl,, 10 mm KCl, 1 mm EDTA, 0.1% NP-40, v/v, 1.5 M sucrose, and
protease and phosphatase inhibitors mixture, pH 7.9), triturated with a
micropipette to promote cell lysis, left on ice for 30 min, and vortexed for
10 s. After checking cell lysis under a light microscope, extracts were
centrifuged at 830 X g for 10 min. Lysis of the nuclei was performed by
resuspending the nuclear pellet in nuclear buffer (50 mm HEPES, 1.5 mm
MgCl,, 10 mm KCl my, 0.5 mm NaCl, 1 mm EDTA, 1% NP-40, v/v, and
protease and phosphatase inhibitor mixture, pH 7.9), triturated with a
micropipette, left on ice for 2 h, vortexed (10 s), boiled (5 min), and
sonicated (5 min). The supernatant (mitochondrial and cytosolic frac-
tions) was then centrifuged at 17,000 X g for 12 min (4°C), and the
cytosolic fraction (supernatant) was lysed in 2X RIPA buffer (2% so-
dium dodecylsulphate, 2 mm EDTA, 2 mm EGTA, and 50 mm Tris, pH
7.5), supplemented with phosphatase inhibitors (1 mM Na;VO, and 50
mM NaF) and protease inhibitors [100 um phenylmethylsulfonyl fluoride
(PMSF), 50 pg/ml anti-papain, 50 pg/ml pepstatin, 50 ug/ml amastatin,
50 wg/ml leupeptin, 50 wg/ml bestatin, and 50 ug/ml soybean trypsin
inhibitor], and boiled for 5 min (Maestre et al., 2008). The mitochondrial
fraction (pellet) was resuspended in isolation medium (in mm: 320 su-
crose, 1 potassium EDTA, and 10 Tris-HCI, pH 7.4) and was homoge-
nized in a tight-fitting glass—Teflon homogenizer (20 strokes; Almeida
and Medina, 1998). Mitochondrial fraction was either lysed with 2X
RIPA buffer for protein analysis by immunoblotting or used for the
identification of intramitochondrial localization of cyclin Bl, as de-
scribed below.

Mitochondrial fraction was incubated in buffer (in mm: 1 EDTA
and 10 MOPS-KOH, pH 7.2) containing 320 or 70 mM sucrose on ice
for 30 min and was centrifuged at 16,000 X gat 4°C for 10 min. Pellets
were resuspended in RIPA buffer, and all fractions were analyzed by
immunoblotting.

The protease protection assay (Wang et al., 2014 1) was performed
by incubating mitochondrial fraction in buffer (in mm: 1 EDTA, 10
MOPS-KOH, and 320 sucrose, pH 7.2) on ice for 30 min with or
without 25 or 50 pg/ml trypsin. Proteolysis was stopped by addition
of 1 mm PMSF, and samples were centrifuged 16,000 X gat 4°C for 10
min. Pellet were resuspended in RIPA buffer, and proteins were ana-
lyzed by immunoblotting.

Western blot. Cells were lysed in 2% sodium dodecylsulphate, 2 mm
EDTA, 2 mMm EGTA, and 50 mm Tris, pH 7.5, supplemented with phos-
phatase inhibitors (1 mm Na;VO,, 50 mm NaF) and protease inhibitors
(100 um phenylmethylsulfonyl fluoride, 50 ug/ml anti-papain, 50 pg/ml
pepstatin, 50 pg/ml amastatin, 50 pg/ml leupeptin, 50 ug/ml bestatin,
and 50 ug/ml soybean trypsin inhibitor), stored on ice for 30 min, and
boiled for 10 min. Aliquots of cell extracts were subjected to SDS poly-
acrylamide gel (MiniProtean; Bio-Rad) and blotted with primary anti-
bodies at dilutions ranging from 1:200 to 1:1000 overnight at 4°C.
Antibodies used were anti-cyclin B1 (BD Biosciences Pharmingen), anti-
Cdkl1 (Santa Cruz Biotechnology) anti-voltage-dependent anion chan-
nel (VDAC; Merck Millipore), anti-proliferating cell nuclear antigen
(BD Biosciences Pharmingen), anti-GAPDH (Ambion), anti-Bcl-xL (BD
Biosciences), anti-phosphoserine (Zymed, Invitrogen), anti-3-ATPase
(Abcam), anti-Hsp60 (Abcam), anti-translocase of the outer mitochon-
drial membrane 20 (TOM20; Abcam), and anti-Ndusfl [NADH dehy-
drogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q
reductase); Santa Cruz Biotechnology]. After incubation with horse-
radish peroxidase-conjugated goat anti-rabbit IgG (Santa Cruz Bio-
technology) or goat anti-mouse IgG (1:10,000 dilution; Santa Cruz
Biotechnology), membranes were incubated immediately with the en-
hanced chemiluminescence kit SuperSignal West Dura (Pierce, Thermo
Fisher Scientific) for 5 min or Immobilon Western Chemiluminiscent
HRP Substrate (Merck Millipore) for 1 min, before exposure to Kodak
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XAR-5 film for 1-5 min, and the autoradiograms were scanned. Biolog-
ically independent replicates (three to four different independent cell
cultures) were always performed, and a representative Western blot is
shown. The protein abundances were measured by densitometry of the
bands on the films using NIH Image] version 1.48u4 software and were
normalized against the corresponding loading control.

RT-PCR. Total RNA was purified from neurons using a commercially
available kit (Sigma). Cyclin B1 and GAPDH mRNA expression was analyzed by
3% agarose electrophoresis after RT-PCR using the following forward and
reverse oligonucleotides, respectively: 5'-CAACTGGAGGAAGAGCAGTCA-
3'and 5'-CATCTGAACCTGTATTAGCCA-3' for Cyclin Bl; and 5'- GGGT-
GTGAACCACGAGAAAT-3" and 5'- GACTGTGGTCATGAGCCCTT-3' for
GAPDH. RT was performed at 48°C for 50 min, and PCR conditions were 10
min at 95°C, 35 cycles of 30 s at 95°C, 30 s at 52°C, and 1 min at 72°C. Final
extension was performed for 10 min at 72°C. In no case was a band detected by
PCR without RT.

Cdk1 kinase assay. Cells were lysed in ice-cold buffer containing 50 mm
Tris, pH 7.5, 150 mm NaCl, 2 mm EDTA, and 1% NP-40, supplemented
with the phosphatase and protease inhibitors cited above. After clearing
debris by centrifugation, extracts (200 ug protein) were incubated with
anti-Cdk1 (2 pg) for 4 h at 4°C, followed by the addition of 30 ul of
protein A-Sepharose (GE Healthcare) for 2 h at 4°C. Immunoprecipi-
tates were washed four times in lysis buffer and resuspended in kinase
buffer (in mm: 50 HEPES, pH 7.5, 10 MgCl,, 1 EDTA, and 0.1 dithiothre-
itol) containing 20 um ATP, 2 uCi of [y-?*P]ATP, and histone H1 (1
mg/ml; Sigma-Aldrich). Samples were subjected to SDS-PAGE (12%),
and transferred proteins were visualized by autoradiography or blotted
with anti-CdkI.

Coimmunoprecipitation assay. Cells were lysed in ice-cold buffer con-
taining 50 mm Tris-HCI, pH 7.5, 150 mm NaCl, 2 mm EDTA, and 1%
NP-40, supplemented with the phosphatase and protease inhibitors cited
in Western blot analysis. Cell extracts were clarified by centrifugation,
and supernatants (500 ug of protein) were incubated with 2 ug of anti-
Bcl-xL for 4 h at 4°C, followed by the addition of 30 ul of protein
A-Sepharose (GE Healthcare) for 2 h at 4°C. Immunoprecipitates were
washed extensively with lysis buffer and detected by Western blot analysis
(Gomez-Sanchez et al., 2011).

Isolation of mitochondria. Mitochondrial fractions were isolated as de-
scribed by Almeida and Medina (1998), which provides a rapid method
for isolation of intact functional mitochondria from cultured cells. In
brief, cells were washed twice with cold PBS and collected in isolation
medium (in mm: 320 sucrose, 1 potassium EDTA, and 10 Tris-HCl, pH
7.4), centrifuged at 600 X g for 5 min (4°C), and resuspended in isolation
medium. Cells were homogenized in a tight-fitting glass—Teflon homog-
enizer (20 strokes), and the nuclei and lysed membranes were removed
by centrifugation at 1500 X g for 10 min (4°C). We then centrifuged the
supernatant at 17,000 X g for 11 min (4°C), and pellet (mitochondrial
fraction) was suspended in isolation buffer. The supernatant contained
the cytosolic fraction.

Blue native PAGE and immunoblotting for oxidized protein detection.
Isolated mitochondria (0.5 mg of protein) were treated with 50 mm
N-ethylmaleimide (NEM) for 10 min at 37°C, pelleted, and washed with
isolation medium (in mm: 320 sucrose, 1 potassium EDTA, and 10 Tris-HCl,
pH 7.4). Then, mitochondria were treated with 2 mum dithiothreitol for 10
min and washed with isolation medium. After treating mitochondria with 25
mM iodoacetyl-LC-biotin for 10 min in the dark, mitochondria were incu-
bated in ice-cold digitonin buffer [1% (w/v) digitonin, 1 M 6-aminohexanoic
acid, and 50 mM Bis-Tris HCL, pH 7.0] for 5 min in ice. After centrifuga-
tion for 30 min at 13,000 X g, the supernatant was collected, and 5% (v/v)
Coomassie Brilliant Blue G-250 in 1 M 6-aminohexanoic acid was added
to the supernatant. Samples were resolved on a 1-mm-thick 3-12% poly-
acrylamide gradient gel. Gel was dyed with a nitroblue tetrazolium test to
remark the situation of complex I, and the band was excised with a razor
blade and incubated for 5 min at room temperature in 125 mm Tris-HCI,
pH 7.0, containing 1% SDS and 50 mm NEM before insertion over the
1.5-mm-thick SDS—polyacrylamide gel. Stacking gel was polymerized
around the excised bands, and proteins were separated by electrophoresis
in a MiniProtean system (Bio-Rad). Oxidized proteins were detected
after blotting onto nitrocellulose membranes with streptavidin—horse-
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radish peroxidase conjugate (1:1000; Thermo Fisher Scientific) to visu-
alize biotinylated reagents. Signal detection was performed with an
enhanced chemiluminescence kit (Hurd et al., 2008).

Determination of mitochondrial enzyme activities. Cells were collected
by trypsinization, centrifuged, and resuspended in 300 ul of 0.1 M potas-
sium phosphate buffer, pH 7.0. Samples were freeze-thawed three times
to ensure cellular disruption. Enzyme activities were measured in cell
lysates (80—100 ug of protein) at 30°C using a Kontron spectrophotom-
eter (Uvikon XL; NorthStar Scientific). Nicotinamide adenine dinucle-
otide (NADH)-CoQ1 reductase (complex I) activity was measured as the
rotenone-sensitive rate of NADH oxidation (at 340 nm; Ragan et al.,
1987). Cell lysates was incubated in 25 mm potassium phosphate, pH 7.2,
containing 0.2 mm NADH, 10 mm MgCl,, 1 mm KCN, and 2.5 mg of
fat-free bovine serum albumin (BSA), and the reaction was initiated with
50 wM ubiquinone-1. For measurement of the rotenone-insensitive
NADH oxidation activity, the assay was also performed in the presence of
10 um rotenone.

Succinate—cytochrome ¢ reductase (complex II-III) activity was mea-
sured as the antimycin A-sensitive rate of cytochrome ¢ reduction (at 550
nm; King, 1967). The reaction mixture contained 100 mm potassium
phosphate, pH 7.4, 0.3 mm EDTA, 1 mm KCN, and 0.1 mM cytochrome ¢
and was initiated with 20 mwm succinate. The assay was also performed in
the presence of 20 ug/ml antimycin A to determine the actimycin
A-insensitive complex II-III activity.

Cytochome c oxidase (complex IV) was measured as the rate of cyto-
chrome ¢ oxidation (at 550 nm; Wharton and Tzagoloff, 1967). The test
cuvette contained 10 mM potassium phosphate, pH 7.0, and 50 uMm re-
duced cytochrome c. The reference cuvette also contained 1 mm
K;Fe(CN)g. The reaction was initiated by adding cell lysate to the test
cuvette, and the first-order velocity constant (k) was calculated.

The ATPase activity was measured in a linked enzyme system as the
oligomycin-sensitive rate of NADH oxidation (at 340 nm), using the
method of Soper and Pedersen (1979). The oxidation of NADH to
NAD * results from a coupled reaction catalyzed by pyruvate kinase and
lactate dehydrogenase in the presence of phosphoenolpyruvate, depen-
dent on ADP production by the ATPase in the presence of ATP. The
reaction mixture contained 50 mm Tris-HCI, pH 8.0, 5 mm phosphoe-
nolpyruvate, 2 mm KCN, 0.3 mm NADH, 100 mm HC, 6 mm MgCl,, 10
uM rotenone, 25 U/ml lactate dehydrogenase, 25 U/ml pyruvate kinase,
and 6 mm ATP. The rate inhibited by the addition of 5 ug/ml olygomycin
was taken to be the ATPase activity.

Citrate synthase activity was measured as in the study by Shepherd and
Garland (1966) (at 412 nm) . Cell lysates were incubated in 100 mm
Tris-HCI, pH 8.0, 0.1 mMm acetyl-CoA, 0.2 mm 5,5'-dithiobis(2-
nitrobenzoic acid), 0.1% (v/v) Triton X-100, and 200 um oxaloacetate.

All enzyme activities were expressed as nanomoles per minute per
milligram of protein, except for cytochrome ¢ oxidase, which was ex-
pressed as the first-order rate constant (k) per minute per milligram of
protein.

Oxygen consumption assay. Cells were removed from the flasks by mild
trypsinization. The rate of oxygen consumption was measured in 10°
cells suspended in HBSS (containing 5.5 mM glucose) at 30°C, using a
Clark-type dissolved oxygen electrode (Digital model 20; Rank Broth-
ers). Results are expressed as nanomoles of O, consumed per minute per
10° cells (Almeida et al., 2001).

Immunocytochemistry. Neurons grown on glass coverslips were fixed
with 4% (v/v, in PBS) paraformaldehyde for 30 min and immunostained
with mouse anti-Cyclin B1 (1:100) and rabbit anti-Bcl-xL (1:100; BD
Biosciences) antibodies (Gomez-Sanchez et al., 2011). Immunolabeling
was detected using anti-mouse IgG—Cy3 (1:500) or anti-rabbit IgG—Cy5
(1:500; Jackson ImmunoResearch). Coverslips were washed, mounted in
SlowFade light antifade reagent (Invitrogen) on glass slides, and exam-
ined using a scanning laser confocal microscope (TSC SL; Leica) with
three lasers [multiline argon (458, 488 nm), green helium-neon (543
nm), and red helium-neon (633 nm)] and equipped with 40X, 63X (1.4
numerical aperture) HCX PL Apo oil-immersion objectives for high-
resolution imaging.

Flow cytometric detection of apoptotic cell death. Neurons were detached
carefully from the plates using 1 mm EDTA (tetrasodium salt) in PBS, pH
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7.4, and were stained with annexin V—adenomatous polyposis coli (APC)
and 7-aminoactinomycin D (7-AAD) in binding buffer (in mm: 100
HEPES, 140 NaCl, and 2.5 CaCl,) to determine quantitatively the per-
centage of apoptotic neurons by flow cytometry. Cells were stained with
annexin V-APC and 7-AAD in binding buffer (in mm: 100 HEPES, 140
NaCl, and 2.5 CaCl,), according to the instructions of the manufacturer,
and 3 X 107 cells were analyzed, in four replicates per condition, on a
FACScalibur flow cytometer (15 mW argon ion laser tuned at 488 nm;
CellQuest software; BD Biosciences). Transfected (identified by GFP flu-
orescence) cell populations were analyzed, and the annexin V-APC-
stained cells that were 7-AAD-negative were considered to be apoptotic
(Gomez-Sanchez et al., 2011).

Flow cytometric detection of active caspase-3. Active caspase-3 was de-
tected in the GFP-expressing (GFP ) neurons using the ApoActive3 kit
(Bachem). After detaching cells with 1 mm EDTA (tetrasodium salt) and
centrifuging, cell pellets were fixed during 20 min, resuspended in PBS
plus 2% BSA, and incubated for 1 h with 1X rabbit anti-caspase 3. Cells
were then incubated with 1:500 anti-rabbit Cy3 (Jackson ImmunoRe-
search) for 1 h. Between each step, cells were washed with either PBS
(until labeling of samples) or PBS plus 1% BSA and resuspended in PBS
plus 1% BSA before analysis by flow cytometry (tuned at 488 nm; Cell-
Quest software; BD Biosciences).

Flow cytometric detection of Ays,,, and mitochondrial superoxide genera-
tion. Ay, was assessed using the MitoProbe DilC1(5) Assay Kit for Flow
Cytometry (Invitrogen), and stained cells were analyzed on the FL1 and
FL4 channels of a FACScalibur flow cytometer (15 mW argon ion laser
tuned at 488 nm; CellQuest software; BD Biosciences). Ais,,, values were
expressed as percentages, using carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (10 um) to define the 0% Ay, values. Mitochondrial
superoxide production was assessed using the fluorescent MitoSox probe
(Invitrogen) by flow cytometry, as described previously (Quintana-
Cabrera et al., 2012).

Protein determinations. Protein concentrations were determined in the
cell suspensions, lysates, or in parallel cell culture incubations after sol-
ubilization with 0.1 M NaOH. Protein concentrations were determined as
described previously (Lowry et al., 1951), using BSA as standard.

Statistical analysis. All measurements in cell culture were performed, at
least, in triplicate, and the results are expressed as the mean = SEM values
from at least three different culture preparations. For the comparisons
between two groups of values, the statistical analysis of the results was
performed by the Student’s ¢ test. For multiple values comparisons, we
used one-way ANOVA, followed by Bonferroni’s test. The statistical
analysis was performed using the SPSS 16.0 software for Macintosh. In all
cases, p < 0.05 was considered significant.

Results

Cyclin B1-Cdk1 activity mediates neuronal apoptotic death
via the mitochondrial pathway on an excitotoxic stimulus

To investigate the molecular mechanism responsible for cyclin
Bl-mediated neurodegeneration, neurons were incubated with
100 uM glutamate for 5 min, followed by harvesting at different
time points, a previously validated excitotoxic stimulus known to
cause cyclin B1 stabilization (Maestre et al., 2008). As shown in
Figure 1A, glutamate triggered a time-dependent accumulation
of endogenous cyclin Bl in whole-cell extracts, confirming our
previous findings (Maestre et al., 2008).

Cyclin B mRNA was unaltered (Fig. 1B), and its protein ac-
cumulation was not prevented by the transcription inhibitor
ActD and the protein synthesis inhibitor CHX (Fig. 1C), indicat-
ing that glutamate induced cyclin B1 protein stabilization by a
posttranslational mechanism. We reported that APC/C-Cdhl
activity destabilizes cyclin B1 protein as an essential survival
mechanism for neurons (Almeida et al., 2005). Moreover, exci-
totoxic stimulus inactivates APC/C—Cdhl, causing aberrant cy-
clin Bl stabilization that leads to apoptotic neuronal death
(Maestre et al., 2008). Here, we show that the APC/C inhibitor
ProTAME mimicked glutamate-induced cyclin B1 accumulation
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(Fig. 1D). In accordance with the finding that the inactivation of
APC/C~Cdh1 during excitotoxicity requires Cdk5 (Maestre et al.,
2008), this protein was knocked down by RNA interference using
a previously validated siRNA against Cdk5 (siCdk5; Maestre et
al., 2008), which resulted in the abolishment of glutamate-
induced cyclin B1 accumulation (Fig. 1E). Altogether, these re-
sults confirm our previous findings (Maestre et al., 2008) that an
excitotoxic stimulus activates Cdk5, which inhibits APC/C, lead-
ing to aberrant cyclin B1 accumulation.

During the excitotoxic insult, the increase in cyclin B1 protein
paralleled that of Cdk1 activity, as assessed by its ability to phos-
phorylate histone H1 (Fig. 1F), suggesting functional activation
of the cyclin B1-Cdk1 complex. Furthermore, such Cdk1 activa-
tion was abolished by siRNA-mediated knockdown of Cdk5 (Fig.
1F), confirming the involvement of Cdk5 in this process. To
assess whether the cyclin BI-Cdk1 complex was responsible for
neuronal death after the excitotoxic stimulus, we next knocked
down cyclin B1 using a previously validated shRNA (shCyclin B1;
Almeida et al., 2005) or inhibited Cdk(s) with Rosc. As shown in
Figure 1G, both treatments mostly attenuated the time-
dependent neuronal apoptotic death triggered by glutamate.
Conversely, ectopic expression of cyclin Bl triggered a time-
dependent increase in apoptotic neuronal death (Fig. 2A) and
loss of cyclin Bl-containing (GFP™) neurons (Fig. 2B) that
reached the statistical significance after 18 h of transfection. Ax-
onal disruption, characteristic of apoptotic death, was also ob-
served by epifluorescence after 24 h of the ectopic expression of a
cyclin B1 (Fig. 2B). Moreover, active caspase-3 was increased in
cyclin B1-expressing neurons as assessed by flow cytometry (Fig.
2C), confirming apoptotic death. Cyclin B1-mediated apoptotic
death was abolished by the caspase inhibitors zVAD-fmk and
zDEVD-fmk, as well as by the caspase-3-specific inhibitor
zDQMD-fmk (Fig. 2D). However, inhibiting caspase-8 with
zIETD-fmk or caspase-2 with zZVDVAD-fmk failed to prevent
cyclin Bl-mediated apoptotic death (Fig. 2D), ruling out the
non-mitochondrial apoptotic pathway in the process. In con-
trast, inhibition of mitochondrial-dependent caspase-9 with
zLEHD-fmk fully prevented cyclin Bl1-mediated apoptotic death
(Fig. 2D). Thus, cyclin Bl induces neuronal apoptotic death
via the intrinsic mitochondrial pathway through caspase-3/
caspase-9 activation.

Cyclin B1-Cdk1 accumulates in mitochondria on the
excitotoxic stimulus, leading to oxidative stress and energy
deficiency

In view of the evidence for a mitochondrial involvement in cyclin
Bl-mediated neuronal apoptotic death, we next sought to inves-
tigate whether cyclin B1, and its catalytic partner Cdk1, occurred
in this organelle. Interestingly, glutamate treatment promoted
the accumulation of endogenous cyclin Bl and Cdk1 in mito-
chondria purified from neurons, as revealed by Western blotting
(Fig. 3A). This was confirmed in HEK293T cells transfected with
the full-length cDNA encoding cyclin B1 (Fig. 3B).

To further corroborate the occurrence of cyclin Bl in
mitochondria, neurons were cotransfected with MitoRed—
which delivers the red fluorescent protein specifically into mito-
chondria—and cyclin BI-GFP (or GFP alone as control) cDNA
constructs. Confocal images showed that MitoRed fluorescence
colocalized with that of GFP in neurons transfected with the cy-
clin B1I-GFP fusion cDNA (cyclin B1 neurons) but not with those
transfected with GFP alone (control neurons; Fig. 3C). Thus, the
accumulation of cyclin B1 protein during either glutamate treat-
ment or exogenous cyclin B1 expression occurs primarily in mi-
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Figure 1.  Cydin B1-Cdk1 activity mediates neuronal apoptotic death on an excitotoxic stimulus. Rat cortical neurons were treated with glutamate (100 ru, 5 min) and were further incubated in culture
medium for 1-20 h. A, Western blots of neuronal extracts were probed sequentially with antibodies to cyclin B1and Cdk1, followed by GAPDH as loading control. B, CyclinB1 and GAPDH mRNA expression was
analyzed by 3% agarose electrophoresis after RT-PCR. GAPDH is a housekeeping gene and used as loading control in PCR. One representative gel is shown of three. Shown is the relative cyclin B1 mRNA levels, as
normalized with GAPDH, averaged from three independent neuronal cultures (n = 3). After glutamate stimulation (100 ruw, 5 min), neurons were incubated in culture medium containing the transcriptional
inhibitor ActD (100 ng/ml), the protein synthesis inhibitor CHX (1 wug/ml), or the APC/C inhibitor ProTAME (10 wum) for 20 h. €, Treatment with ActD or CHX did not prevent glutamate-induced cyclin B1
accumulation in neurons. D, ProTAME promoted neuronal cyclin B1 stabilization. E, Neurons on day 4 in vitro were transfected with an siRNA against luciferase (siControl; 100 nw) or with siRNA against Cdk5
(siCdk5; 100 nw) for 3 d. Knockdown of Cdk5 (siCdk5-treated neurons) prevented cyclin B1accumulation in glutamate-treated neurons. In4, €, D, and E, arepresentative Western blot is shown of three. Bar graphs
represent the relative cyclin B1 protein abundance, as normalized with GAPDH, averaged from at least three independent neuronal cultures. In all cases, the represented values are means = SEM (n = 3-4
independent neuronal cultures). *p << 0.05 versus untreated (—Glu) neurons. F, Glutamate triggered a time-dependent stimulation of Cdk1 activity, as assessed by the ability of the protein extracts to
phosphorylate, in vitro, histone H1. Transfection with siCdk5 abrogated glutamate-caused Cdk1 activation. Each bar represents the mean = SEM of three independent neuronal cultures. *p << 0.05 versus
siControl 0 h. G, Neurons on day 4 n vitro were transfected with an shRNA against luciferase (Control) or with an shRNA against cyclin B1 (shCyclin B1) for 2 d. Then, neurons were incubated (or not in the Control
condition) with glutamate (100 ruv, 5 min; Glutamate condition) after incubation with culture medium for the indicated time points. When indicated, Rosc (10 wum) was added to the culture medium. Both
shCyclin B1and Rosc abrogated neuronal apoptotic death caused by glutamate but did not modify apoptosisin control (untreated) neurons (20 h: shCyclin B1, 13.52 == 0.89%; Rosc, 12.77 == 0.79%), as assessed
by annexin V */7-AAD ~ quantification by flow cytometry. Representative flow cytometric dot plots are shown of four independent experiments. Data are the mean == SEM from four independent neuronal
cultures (n = 4). *p << 0.05 versus control; “p << 0.05 versus glutamate. AD, Actinomycin D; MW, molecular weight.

tochondria. Because glutamate-mediated excitotoxicity is known
to increase mitochondrial superoxide (O, ) production and in-
ner membrane depolarization, we next investigated the possible
involvement of mitochondrial cyclin B1 in these phenomena. As

shown in Figure 3D, mitochondrial O, time dependently in-
creased from 4 h after the excitotoxic stimulus, an effect that was
mostly attenuated but not abolished, by knocking down cyclin B1
with shCyclin B1, or by inhibiting Cdkl with Rosc. Moreover,
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Figure 2. Cyclin B1 induces neuronal apoptotic death via the intrinsic mitochondrial pathway activation. 4, Rat cortical neurons were transfected with 0.8 /10 cells pIRES2-EGFP, either
empty (Control; expressing GFP) or containing the full-length cDNA of human cyclin B (Cyclin B1; expressing both cyclin B1 and GFP) for 6 —24 h. cyclin B1 expression time dependently induced
neuronal apoptotic death, as assessed by annexin V */7-AAD ~ quantification by flow cytometry. *p << 0.05 versus control. B, Epifluorescence microphotographs revealed the typical axonal
disruption of apoptosis in cyclin B1-transfected neurons (24 h). Scale bar, 50 um. Transfection rate (percentage of GFP * neurons) was determined by flow cytometry. *p << 0.05 versus control. ,
Cyclin B1induced caspase 3 cleavage and activation by 24 h after transfection of neurons, as showed by quantitative analyses of GFP ™ (transfected) neurons by flow cytometry. *p < 0.05 versus
control. D, Rosc (10 wm) or caspase inhibitors (zVAD-fmk and zDEVD-fmk; 100 wum) prevented cyclin B1-mediated neuronal death at 24 h of transfection. Inhibition of caspases-8 (zIETD-fmk; 100 M)
or caspase-2 (zVDVAD-fmk, 100 ) was ineffective. Caspase-3 (zDQMD-fmk; 100 wum) or caspase-9 inhibition (zLEHD-fmk; 50 ) abrogated cyclin B1-mediated neuronal death. *p << 0.05 versus

control. In all cases, data are the mean = SEM of four independent neuronal cultures (n = 4).

glutamate time dependently decreased Ay, which was pre-
vented partially by shCyclin B1 or Rosc (Fig. 3E), mirroring the
effects on mitochondrial O, (Fig. 3D). Interestingly, incubation
of neurons with the free radical scavenger GSH-EE nearly abol-
ished glutamate-induced Ay, collapse (Fig. 3E), suggesting that
increased O, preceded Ay, loss. Likewise, the ectopic expres-
sion of cyclin Bl mimicked glutamate treatment, because neu-
rons displayed a time-dependent increase in O, (Fig. 3F) and
A, loss (Fig. 3G). Furthermore, these effects were rescued com-
pletely by either Rosc (Fig. 3F) or GSH-EE (Fig. 3G). Thus, our
time course study shows that Ay, loss precedes apoptotic death
on the excitotoxic stimulus, indicating that mitochondrial dys-
function is a cause, not a consequence, of the neuronal apoptotic
process, thus confirming the importance for Ay, maintenance in
neuronal survival (White and Reynolds, 1996; Almeida and Bo-
lafios, 2001). Because Ays,,, loss on excitotoxic damage is often

associated with energy depletion, we determined the concentra-
tion of neuronal ATP, which was decreased (Fig. 3H ); this effect
was prevented partially by Rosc, indicating the contribution of
Cdk activity in energy depletion. Thus, glutamate-mediated cy-
clin B1-Cdkl activation in mitochondria induces oxidative
stress, leading to mitochondrial dysfunction and energy
deficiency.

Cyclin B1-Cdk1 activation inhibits ATP synthase, leading to
oxidative damage to complex I

Next, we aimed to understand the molecular mechanism responsi-
ble for mitochondrial dysfunction by cyclin B1-Cdk1 activity. To do
so, we first analyzed the mitochondrial respiratory chain in
HEK293T cells transfected with the full-length cDNA encoding cy-
clin B1. As expected, cyclin Bl protein levels time dependently in-
creased in the transfected cells (Fig. 4A). As shown in Figure 4B,
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Figure3. cyclin B1-Cdk1 accumulates in mitochondria on the excitotoxic stimulus, leading to oxidative stress and energy deficiency. A, Neurons were treated with 100 . glutamate for 5 min
and were further incubated in culture medium for 20 h. Western blots of nuclear (Nuclei), mitochondrial (Mito), and cytosolic (Cyto) extracts were probed sequentially with antibodies to cyclin B1
and Cdk1, followed by VDACas mitochondrial marker, Lamin B as nuclear marker, and GAPDH as cytosolic marker. A representative Western blot is shown of three. Bar graphs represent the relative
cyclin B1 protein abundance compared with the cytosolic fraction from untreated (—Glu) cells. Each bar represents the mean == SEM of three independent neuronal cultures (n = 3). *p << 0.05
versus untreated neurons. B, HEK293T cells were transfected with 0.8 1g/10° cells pIRES2—EGFP, either empty (expressing GFP) or containing the full-length cDNA of human Cyclin B1 (expressing
both cyclin BTand GFP) for 24 h. Western blot were performed as in A. Bar graphs represent the relative cyclin B1 protein abundance compared with cytosolic fraction from control (— Cyclin BT) cells.
Fach bar represents the mean = SEM of three independent cell cultures (n = 3). *p << 0.05 versus control cells. €, Neurons were cotransfected with plasmid encoding either GFP (0.8 .m/10° cells
pcDNA3-GFP; control) or cyclin B1 fused with GFP (0.8 um/10° cells pcDNA3— cyclin B1-GFP; cyclin B1-GFP) and the mitochondrial marker MitoRed (0.8 um/10° cells pMitoDsRed2) for 12-14 h.
Microphotograph reveals colocalization of cyclin B1-GFP, but not GFP (control), with MitoRed in neurons. Neurons were immunostained with the neuronal marker Map2 (violet). Scale bar, 50 m.
D, Neurons on day 4 in vitro were transfected with an shRNA against luciferase (Control) or with an shRNA against cyclin B1 (shCyclin B1) for 2 d. Then, neurons were treated with 100 um glutamate
for 5 min and were further incubated in culture medium for 4-20 h. When indicated, Rosc (10 wum) was added to the culture medium. Glutamate time dependently induced mitochondrial 0

generation in neurons. Both shCyclin B1 and Rosc partially abrogated glutamate-caused mitochondrial 05 generation in neurons but did not modify values in control (untreated) neurons (20 h:
shCyclin B1,10.39 = 0.67%; Rosc, 9.33 = 0.54%). *p << 0.05 versus control; *p < 0.05 versus glutamate. E, Neurons were transfected and treated as in D. Glutamate time dependently induced
mitochondrial depolarization in neurons. Treatment with shCyclin B1, Rosc (10 gum), and GSH-EE (1 mwm) prevented glutamate-caused Ay, collapse in neurons. However, these treatments did not
modify values in control (untreated) neurons (20 h: shCyclin B1, 105.4 = 8.79%; Rosc, 109.3 = 9.25%; GSH-EE, 112.7 == 7.74). *p << 0.05 versus control; *p << 0.05 versus glutamate. F, Neurons
were transfected with 0.8 1g/10 cells pIRES2—EGFP, either empty (Control; expressing GFP) or containing the full-length cDNA of human cyclin B1 (Cyclin B1; expressing (Figure legend continues)



9294 - J. Neurosci., June 24, 2015 - 35(25):9287-9301

cyclin BI induced a time-dependent inhibition in mitochondrial
complex I activity; however, complexes II-III and IV were unaf-
fected (complex II-1II: control, 2.73 * 0.11 nmol * min ~" - mg ™"
protein; cyclin B1, 2.60 + 0.13 nmol - min ~' - mg ™' protein; com-
plex IV: 0.33 + 0.03, 0.27 = 0.03 k- min ~' - mg ! protein; citrate
synthase: control, 135 =* 10.3; cyclin B1, 141 = 11.9). Interestingly,
we also found that ATP synthase activity was decreased on cyclin
B1 expression (Fig. 3C). Notably, inhibition of ATP synthase
activity by cyclin Bl preceded (12 h; Fig. 3C) that of complex 1 (18
h; Fig. 3B). In view of the inhibitory effect of cyclin B1 on complex
I, we sought to investigate whether the mitochondrial respiration
was impaired. As shown in Figure 4D, the rate of O, consumption
showed a biphasic effect on cyclin B1 expression, being increased
at 12 h and decreased at 24 h. It is noteworthy that the increase in
O, respiration (12 h; Fig. 4D) occurs at a time point in which
complex I was unaffected (Fig. 4B) and ATP synthase was inhib-
ited (Fig. 4C). In view of this intriguing phenomenon, we were
prompted to investigate the mechanism responsible for this
effect.

Because ATP synthase inhibition is known to induce transient
mitochondrial inner membrane hyperpolarization (Brand et al.,
2004; Sanchez-Cenizo et al., 2010; Formentini et al., 2014), we
next assessed Ay, in cells expressing cyclin Bl. As shown in
Figure 4E, Ay, increased at 12 h, and it was followed by a de-
crease at 24 h of transfection, thus mimicking the same time-
dependent changes of cell O, consumption (Fig. 4D). Thus, it is
tempting to suggest that cyclin Bl primarily inhibited ATP syn-
thase, leading to increased mitochondrial O, consumption, Ay,
and O, which secondarily will lead to damage to complex I. In
fact, increased Ay, enhances mitochondrial O, generation
(Brand et al., 2004; Sanchez-Cenizo et al., 2010; Formentini et al.,
2014), and, in neurons, cyclin Bl increased Ay, (although it did
not reach statistical significance; Fig. 3G) and mitochondrial O;"
(Fig. 3F). Moreover, because mitochondrial O, causes primarily
complex I oxidative damage (Bolafos et al., 2009), we then as-
sessed whether cyclin BI-Cdk1 activity causes oxidative damage
to complex. As shown in Figure 4F, cyclin Bl induced complex I
oxidation, as judged by the increase in oxidized proteins detected
by immunoblotting from isolated biotin-NEM-labeled mito-
chondrial complex I subunits. Complex I oxidation was pre-
vented by GSH-EE (Fig. 4F) and Rosc (Fig. 4F). Furthermore,
complex I inhibition caused by cyclin B1 expression in HEK293T
cells was rescued by Rosc and GSH-EE (Fig. 4G). These results
strongly suggest complex I oxidative damage by cyclin B1-Cdk1
activity. Moreover, ATP synthase inhibition caused by cyclin B1
expression in HEK293T cells was rescued by Rosc but not by
GSH-EE, suggesting that cyclin B1-Cdk1-mediated inhibition of
ATP synthase was not oxidative (Fig. 4H ). Thus, we propose that

<«

(Figure legend continued.) ~ both cyclin BTand GFP) for4—24h. When indicated, neurons were
treated with Rosc (10 ) and GSH-EE (1 mm). Cyclin BT expression time dependently induced
mitochondrial 05 generation in neurons, as assessed by flow cytometry. Both Rosc and GSH-EE
fully prevented cyclin B1-mediated mitochondrial 0, generation in neurons but did not mod-
ify values in control neurons (24 h: Rosc, 11.3 == 0.87%; GSH-EE, 7.8 == 0.64). G, Neurons were
transfected and treated as in F. Expression of cyclin B1 time dependently induced mitochondrial
depolarization in neurons. Treatments with Rosc (10 um) and GSH-EE (1 mm) abrogated
glutamate-caused Ay, collapse in neurons. However, these treatments did not modify values
in control neurons (24 h: Rosc, 102.3 == 8.49%; GSH-EE, 109.7 % 9.21). *p << 0.05 versus
control. H, Neurons were transfected and treated as in D. Rosc (10 pum) partially prevented ATP
depletion caused by glutamate. *p < 0.05 versus control; *p << 0.05 versus glutamate. In D—H,
data are the mean == SEM from four independent neuronal cultures (n = 4). MW, Molecular
weight.
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the sequence of events occurring by cyclin B1-Cdk1 activation
first starts by inhibiting ATP synthase, which leads to enhanced
O, consumption and Ad,,, which stimulates O, . Such an in-
crease in O, causes complex I oxidative damage, leading to the
delayed impairment of cell O, consumption.

Cyclin B1-Cdk1 phosphorylates Bcl-xL, leading to its
dissociation from B3-F,F —ATP synthase and causing ATP
synthase and complex I inhibition on the excitotoxic stimulus
We next sought to investigate the molecular mechanism whereby
cyclin B1-Cdk1 inhibited ATP synthase. According to a recent
study, the enzymatic activity of ATP synthase can be activated by
direct interaction of its B-subunit with Bcl-xL in neurons (Ala-
vian et al., 2011). Conversely, in tumor cells, cyclin B1-Cdk1
phosphorylates and inactivates some members of the Bcl-2 pro-
tein family (Harley et al., 2010; Terrano et al., 2010; Sakurikar et
al., 2012). Thus, we hypothesized whether the inhibition of ATP
synthase activity on glutamate excitotoxicity was the conse-
quence of a putative interference of cyclin B1-Cdkl with the
interaction between Bcl-xL and B-F,F,—ATP synthase. In fact,
confocal imaging revealed that endogenous cyclin B1 and Bcl-xL
colocalized in neurons after the excitotoxic stimulus (Fig. 5A). In
good agreement with our Western blot analyses (Fig. 1A4), cyclin
B1 was absent in untreated neurons as assessed by confocal mi-
croscopy (Fig. 5A). To further confirm cyclin Bl and Bcl-xL co-
localization, neurons were cotransfected with cDNA constructs
encoding either GFP (control) or cyclin BI-GFP, with Bcl-xL.
The results show that, whereas GFP showed a spread subcellular
localization, cyclin B1I-GFP colocalized with Bcl-xL (Fig. 5B).
Furthermore, Bcl-xL coimmunoprecipitated with both expressed
cyclin B1 (Fig. 5C) or endogenously accumulated cyclin B1 dur-
ing glutamate treatment (Fig. 5D). Rosc, which binds to the ATP
binding site of Cdk1 catalytic domain (De Azevedo et al., 1997),
abolished such interactions (Fig. 5C, D), suggesting Bcl-xL phos-
phorylation by cyclin B1-Cdk1. To test this possibility directly,
protein extracts obtained from either HEK293T cells expressing
cyclin Bl or glutamate-treated neurons were immunoprecipi-
tated with anti-Bcl-xL, followed by anti-phospho-Ser Western
blotting. The results showed that either exogenously expressed
(Fig. 6A) or endogenously accumulated (Fig. 6B) cyclin Bl phos-
phorylated Bcl-xL, an effect that was abrogated by Rosc (Fig.
6A,B). Next, we determined whether mitochondrial cyclin B1-
Cdk1-mediated phosphorylation of Bcl-xL accounts for ATP
synthase inhibition. Bcl-xL may occur at the outer mitochondrial
membrane (Vander Heiden et al., 1997; Billen et al., 2008; Ding et
al., 2014); however, other authors have described its localization
at either the inner membrane or matrix, in which it would inter-
act with the B-F,F_—ATP synthase to regulate neuronal bioener-
getic efficiency of neurons (Alavian etal., 2011; Chenetal., 2011).
Here, we aimed to determine the submitochondrial fraction in
which cyclin B1, Bcl-xL, and B-F,F,—ATP synthase colocalized in
neurons on the excitotoxic stimulus. To do this, mitoplasts were
prepared by incubating mitochondria in hypotonic buffer (70
mM sucrose), and then proteins were analyzed by Western blot.
In good agreement with the rupture of the outer mitochondrial
membrane occurring at 70 mM sucrose, Tom20, an outer mito-
chondrial membrane protein marker, was lost (Fig. 6C). How-
ever, cyclin B1, Bcl-xL, and B-F,F —ATP synthase proteins were
still present in these mitoplast extracts, similar to the mitochon-
drial matrix protein Hsp60 and the inner membrane protein
Ndusfl, a complex I subunit (Fig. 6C). To further corroborate the
submitochondrial localization of cyclin B1, a protease-protection
assay was performed in mitochondria isolated from glutamate-
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Figure4.  Cyclin B1-Cdk1 activation inhibits ATP synthase, leading to oxidative damage to complex I. HEK293T cells were transfected with 0.8 /10 cells pIRES2-EGFP, either empty (Control;
expressing GFP) or containing the full-length cDNA of human cyclin B1 (Cyclin B1; expressing both cyclin BT and GFP). A, Western blots of cell extracts were probed sequentially with antibodies to
cyclin B1, followed by GAPDH as loading control. A representative Western blot is shown of three. Bar graphs represent the relative cyclin B1 protein abundance compared with 0 h (immediately after
transfection). Each bar represents the mean == SEM of three independent cell cultures (n = 3). *p << 0.05 versus 0 h. B, Mitochondrial complex | activity was measured by spectrometry at different
times after transfections. *p << 0.05 versus control. C, ATP synthase activity was measured by spectrometry at different times after transfections. *p << 0.05 versus control. D, HEK293T cells were
suspended in HBSS, and the rate of oxygen consumption was measured at different times after transfections by using with a Clark-type dissolved oxygen electrode. *p << 0.05 versus control. E, A,
was assessed by flow cytometry in HEK293T at different times after transfections. *p << 0.05 versus control. F, HEK293T cells were transfected with 0.8 1ug/10° cells pIRES2—EGFP (control) or
pIRES2— cyclin B1—EGFP (cyclin B1) eitherin the absence of presence of Rosc (10 ) and GSH-EE (1 mu) for 24 h. Cyclin B1induced complex | oxidation, as judged by the increase in oxidized proteins
detected by immunoblotting from isolated biotin—NEM-labeled mitochondrial complex | subunits, which was abrogated by Rosc and GSH-EE. A representative Western blot is shown of three. Bar
graphs represent the relative band intensity compared with control. Fach bar represents the mean + SEM of three independent Western blots (n = 3). *p << 0.05 versus control; *p << 0.05 versus
cyclinB1. G, H,HEK293T cells were transfected and treated as in F. Mitochondrial complex | activity (G) and ATP synthase activity (H) were measured by spectrometry at 24 h after transfections. *p <
0.05 versus control; “p <C0.05 versus cyclin B1. In BE, G, and H, data are expressed as the mean == SEM, from three or four independent cell cultures (n = 3—4). MW, Molecular weight.
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were cotransfected with plasmids encoding either GFP (0.8 um/10° cells pcDNA3—GFP; control) or cyclin B1 fused with GFP (0.8 1.m/10 ® cells pcDNA3~ cyclin B1-GFP; cyclin B1-GFP) and Bcl-xL
0.8 me/106 cells p8 —Bcl-xL) for 12—14 h. Microphotograph reveals that cyclin B1-GFP, but not GFP (control), colocalizes with Bcl-xL. Neurons were immunostained with the neuronal marker
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B1), in either the absence or presence of Rosc (10 wum). At 24 h after transfections, cellular extracts were obtained and immunoprecipitated with anti-Bcl-xL antibody and analyzed by Western blot
for cyclin BT and Bcl-xL. Of the whole cellular extracts used for immunoprecipitation, 10% were loaded on SDS-PAGE as an input control. Coimmunoprecipitation assays revealed that cyclin B1
coprecipitated with Bcl-xL. A representative Western blot is shown of three. Bar graphs represent the relative band intensity compared with control. Each bar represents the mean = SEM of three
independent cell cultures (n = 3). *p << 0.05 versus control (— Cyclin B1). D, Neurons were treated or not (— Glu) with 100 wum glutamate for 5 min and were further incubated in culture medium
for 20 h, in either the absence or presence of Rosc (10 ). Coimmunoprecipitation assay was performed as indicated in €. Cyclin B1 coprecipitated with Bcl-xL in neurons on excitotoxic stimulus. A

representative Western blot is shown of three. Bar graphs represent the relative band intensity compared with control. Each bar represents the mean == SEM of three independent neuronal cultures
(n = 3).*p << 0.05 versus untreated (— Glu) neurons. MW, Molecular weight.
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Figure 6.  cyclin B1-Cdk1 phosphorylates Bcl-xL, leading to its dissociation from 3-F,F,—ATP synthase on the excitotoxic stimulus. A, HEK293T cells were transfected with 0.8 1g/10° cells
pIRES2—EGFP, either empty or containing the full-length cDNA of human cyclin B1, in either the absence of presence of Rosc (10 wum). At 24 h after transfections, cellular extracts were obtained and
immunoprecipitated with anti-Bcl-xL antibody and analyzed by Western blot for phospho-Serine (PSer) and Bcl-xL. Expression levels of cyclin B1 (Input) is shown in Figure 5C. B, Neurons were
treated or not with 100 wum glutamate for 5 min and were further incubated in culture medium for 20 h. When indicated, Rosc (10 M) was added to the culture medium. Neuronal extracts were
immunoprecipitated with anti-Bcl-xL antibody and analyzed by Western blot for phospho-Serine (PSer) and Bcl-xL. , D, Neurons were exposed to glutamate as in B, and submitochondrial
localization of cyclin B1, Bcl-xL, and 3-F,F,—ATP synthase was detected by mitoplasting (C) and protease protection assay (D). €, Mitochondriaisolated from untreated (— Glu) or glutamate-treated
(+Glu) neurons were incubated in isosmotic (320 mm) or hypotonic (70 mm) sucrose buffer, and extracts were subjected to Western blot analysis with cyclin B1, Bl-xL, 3-ATPase, Hsp60 (a matrix
protein), Ndusf1 (and inner membrane protein), and Tom20 (an outer membrane protein). D, Mitochondria isolated from glutamate-treated neurons were incubated in mitochondrial buffer with
or without 25 or 50 wg/ml soybean trypsin. Extracts were analyzed by immunoblotting with indicated antibodies. E, HEK293T cells were transfected as described in A. Cellular extracts were
immunoprecipitated with anti-Bcl-xL antibody and analyzed by Western blot for 3-F,F,—ATP synthase (3ATPase) and Bcl-xL. Of the whole cellular extracts used forimmunoprecipitation, 10% were
loaded on SDS-PAGE as an input control. Coimmunoprecipitation assays revealed that 3-F;F —ATP synthase failed to coprecipitate with Bcl-xL in cyclin B1-transfected cells, which was prevented by
Rosc. F, Neurons were exposed to glutamate as in B, and neuronal extracts were immunoprecipitated as in E. Coimmunoprecipitation assays revealed that glutamate avoided 3-F,F —ATP synthase
and Bcl-xL interaction in neurons, which was prevented by Rosc. In 4, B, E, and F, a representative Western blot is shown of three. Bar graphs represent the relative band intensity compared with
—CyclinB1 (A, E) or —Glu (B, F). Each bar represents the mean == SEM of three independent cell (4, E) or neuronal (B, F) cultures (n = 3).*p << 0.05 versus — Cyclin B1 (4, E) or — Glu (B, F). MW,
Molecular weight.

treated neurons using trypsin to digest exposed proteins. As
showed in Figure 6D, similarly to Hsp60 and Ndusf1, but unlike
Tom?20, cyclin B1, Bcl-xL, and B-F,F —ATP synthase were pro-
tected from the trypsin digestion. These data demonstrate that
cyclin B1, Bcl-xL, and B-F,F,—ATP synthase colocalize in the
mitochondrial compartment, either inner membrane or matrix,
on a neuronal excitotoxic stimulus.

Next, the interaction between Bcl-xL and B-F,F —ATP syn-
thase (BATPase) was analyzed in neurons during an excitotoxic
stress. The interaction of Bcl-xL with BATPase was disrupted by
either exogenously expressed cyclin B1 in HEK293T cells (Fig.
6E) or by endogenous cyclin B1, accumulated during excitotoxic
stress (Fig. 6F). Rosc rescued the cyclin B1-Cdk1-mediated Bcl-
xL-BATPase interaction (Fig. 6E,F). These data indicate that
glutamate-mediated cyclin B1-Cdk1 activation promotes Bcl-xL
phosphorylation, resulting in its dissociation from -F F —ATP
synthase. To elucidate whether such a mechanism elicits any
functional consequence on ATP synthase activity, we performed
site-directed mutagenesis to generate Bcl-xL(D) and Bcl-xL(A)
(Abbott et al., 1986). Because Ser-62 in Bcl-xL is a high score

putative phosphorylation target of Cdkl (Terrano et al., 2010),
we decided to mutate this residue. HEK293T cells were cotrans-
fected with cyclin Bl together with either Bcl-xL(A) or Bcl-
xL(D). We first confirmed that the phosphodefective Bcl-xL
mutant Bcl-xL(A) was not phosphorylated by cyclin B1-Cdkl
(Fig. 7A). As revealed by the coimmunoprecipitation assay,
BATPase interacted with the phosphodefective, but not with the
phosphomimetic, Bcl-xL mutant (Fig. 7B). Furthermore, the ex-
pression of the phosphodefective, but not the phosphomimetic,
Bcl-xL mutant in neurons restored the interaction of Bcl-xL with
the B-F,F,—ATP synthase on the excitotoxic stimulus (Fig. 7C).
These results demonstrate that glutamate-induced Bcl-xL phos-
phorylation at Ser42 disrupts the Bcl-xL—-subunit interaction,
hence explaining the mechanism of the previously reported inhi-
bition of ATP synthase activity (Alavian et al., 2011). In fact,
expression of the phosphodefective Bcl-xL (Fig. 7D) mutant form
exerted a dominant-negative effect, because it was unable to in-
hibit ATP synthase activity during cyclin B1 expression (Fig. 7E).
However, expression of the phosphomimetic form (Fig. 7D) im-
itated the effect of endogenous Bcl-xL at inhibiting ATP synthase
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Figure 7. Cyclin B1-Cdk1-induced Bcl-xL phosphorylation leading to its dissociation from 3-F,F,—ATP synthase causes ATP synthase and complex I inhibition on the excitotoxic stimulus. 4,
HEK293T cells were cotransfected with 0.8 g/10 ® cells pIRES2—EGFP, either empty (Control) or containing the full-length cDNA of human cyclin B1, together with 0.8 1.g/10 cells P8, either empty
(Control) or containing the full-length cDNA of human Bcl-xL, the phosphodefective Bcl-xL(A) or the phosphomimetic Bcl-xL(D) Ser62—Bcl-xL mutants. Cell extracts were immunoprecipitated with
anti-Bcl-xL antibody and analyzed by Western blot for phospho-Serine (PSer) and Bcl-xL. B, HEK293T cells were cotransfected as in B. Coimmunoprecipitation assay revealed that 3ATPase
coprecipitated with Bcl-xL(A) but not with Bcl-xL(D). €, Neurons were transfected with 0.8 ug/10° cells P8, either empty or containing the full-length cDNA of human phosphodefective Bcl-xL(A)
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cell cultures (n = 3). MW, Molecular weight.

activity (Fig. 7E). These results indicate that cyclin B1-Cdk1 me-
diated phosphorylation of Bcl-xL at Ser62, triggering its dissoci-
ation from BATPase, is sufficient to inhibit ATP synthase activity.
Finally, we aimed to elucidate whether inhibition of ATP syn-
thase activity in this manner accounted for complex I inactiva-
tion. As shown in Figure 7F, the inhibition of complex I activity
caused by cyclin B1 was abolished by coexpressing the phospho-
defective, but not the phosphomimetic, form of Bcl-xL. Thus,
ATP synthase inhibition by cyclin B1-Cdk1 is sufficient to pro-
mote complex I impairment.

Cyclin B1-Cdk1-induced Bcl-xL phosphorylation accounts
for oxidative stress and mitochondrial dysfunction on
excitotoxic stimulus

We finally sought to ascertain whether Bcl-xL phosphorylation is
essential in the signaling cascade leading to oxidative stress, Ay,
collapse, and neuronal apoptotic death during glutamate excito-
toxicity. To do so, we used either exogenously expressed cyclin B1
or endogenously accumulated cyclin Bl during glutamate treat-
ment, both in neurons. We found that expression of the phos-
phodefective mutant form of Bcl-xL fully prevented the increase
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Figure8.

CyclinB1-Cdk1-induced Bcl-xL phosphorylation accounts for oxidative stress and mitochondrial dysfunction on the excitotoxic stimulus. A-C, Neurons cells were cotransfected with 0.8

1£9/10° cells pIRES2—EGFP, either empty (Control) or containing the full-length cDNA of human cyclin B1, together with 0.8 1g/10° cells P8, either empty (Control) or containing the full-length
¢DNA of human phosphodefective Bcl-xL(A) or phosphomimetic, Bcl-xL(D) Ser62-Bcl-xL mutants. Mitochondrial 05~ generation (A), mitochondrial membrane potential (A4, (B), and neuronal
apoptotic death (annexin V */7-AAD ~ neurons) (€) were assayed by flow cytometry in transfected (GFP ™) neurons. The expression of Bcl-xL(A), but not Bcl-xL(D), prevented cyclin B1-induced
oxidative stress (4), Aym loss (B), and apoptosis (C) in neurons. *p << 0.05 versus — Cyclin B1 (control). D—F, Neurons were transfected with 0.8 1g/10° cells P8, either empty (control) or
containing human phosphodefective Bcl-xL(A) or phosphomimetic Bcl-xL(D) Ser62—Bcl-xL mutants. Neurons were then treated or not (— Glu) with 100 m glutamate for 5 min and were further
incubated in culture medium for 20 h. The expression of Bcl-xL(A), but not Bl-xL(D), prevented glutamate-induced oxidative stress (D), Aym loss (), and apoptosis (F) in neurons. *p << 0.05 versus
—Glu (control); *p << 0.05 versus glutamate. G, Neurons were transfected as in D and then were exposed to etoposide (10 wm) for 24 h. The expression of Bcl-xL(A), but not Bcl-xL(D), prevented
glutamate-induced neuronal apoptosis. *p << 0.05 versus — Etoposide (control). In all cases, data are expressed as the mean == SEM of three or four independent neuronal cultures (n = 3—4).

in mitochondrial O, (Fig. 8A4), Ays,, collapse (Fig. 8B), and ap-
optotic death (Fig. 8C) triggered by cyclin Bl. However, these
phenomena were unaffected by expression of the phosphomi-
metic form of Bcl-xL (Fig. 8A—C). Furthermore, glutamate-
mediated increase in mitochondrial O}, (Fig. 8D), Ay, collapse
(Fig. 8E), and apoptotic death (Fig. 8F) were prevented by ex-
pressing the phosphodefective Bcl-xL mutant but not by its phos-
phomimetic form (Fig. 8D-F). These results indicate that Ser62
phosphorylation of Bcl-xL accounts for oxidative stress, mito-
chondrial dysfunction, and the proapoptotic effect of cyclin B1-
Cdkl in excitotoxicity. To further confirm this, we assessed
whether Ser62 mutants affected the anti-apoptotic function of
Bcl-xL. To do so, we expressed its phosphodefective (A) mutant,
which fully prevented etoposide-induced neuronal apoptosis
(Fig. 8G). Conversely, expression of its phosphomimetic (D)
form failed to protect neurons from etoposide-mediated neuro-
toxicity. These data are in good agreement with previous findings
showing that Bcl-xL is phosphorylated at residue Ser62, hence
abolishing its anti-apoptotic function, in response to anti-mitotic
drugs in cancer cells (Schmitt et al., 2007; Upreti et al., 2008;
Antony et al., 2010).

Discussion

We have shown previously that an excitotoxic challenge by over-
activation of NMDA receptors triggers the stabilization of cyclin
B1 because of a cascade of events involving Ca*" -mediated acti-
vation of calpain to breakdown p35 into p25, which strongly
activated CdkS5 activity in the nucleus (Maestre et al., 2008). Ac-
tive Cdk5 hyperphosphorylated Cdhl, leading to its dissociation
from APC/C, which causes the inhibition of Cdh1 ability to co-
activate APC/C (Jaquenoud et al., 2002; Maestre et al., 2008).
Here, we now demonstrate that the stabilization of cyclin B1 after
this excitotoxic challenge occurs selectively in mitochondria. In a
previous work, forced expression of a mutant form of cyclin Bl
harboring a mitochondrial leading sequence in dividing cells ex-
erted the coordination of the mitochondrial respiration with cell-
cycle progression, especially the G,/M transition (Wang et al,,
2014). However, recruitment of endogenous cyclin Bl, as we
herein show, has not been reported so far. This result is intrigu-
ing, because naive cyclin B1 apparently lacks a mitochondrial
leading sequence. In addition, postmitotic neurons do not need
to exert this coordination (Wang et al., 2014), which is an exclu-
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sive function of proliferating cells. Thus, the mechanism whereby
cyclin Bl specifically recruits to mitochondria and the conse-
quence(s) of such a subcellular localization remain unknown.

We show that Cdk1 is responsible for the recruitment of cyclin
B1 to mitochondria, because both proteins colocalize in the or-
ganelle. Furthermore, because we found that Bcl-xL phosphory-
lated at Ser62, i.e., its Cdkl-cognate phosphorylating residue
(Terrano et al., 2010), the formation of a cyclin B1-Cdkl com-
plex in mitochondria is highly likely. In good agreement with
previous studies performed in cancer cells (Schmitt et al., 2007;
Upreti et al., 2008; Antony et al., 2010), phosphorylation at Ser62
lost the anti-apoptotic activity of Bcl-xL in neurons, suggesting its
involvement in mitochondrial dysfunction during glutamate
treatment. However, because its phosphomimetic form failed to
affect mitochondrial membrane potential and oxidative stress,
additional mechanisms cannot be disregarded. Bcl-xL is known
to interact with the 8 subunit of the F,F . —ATP synthase to form a
stable complex and maximize the efficiency of production of ATP
(Alavian et al., 2011). Here, we show that phosphorylation of
Ser62 in Bcl-xL is sufficient to promote its dissociation from the 3
subunit of the F,F —ATP synthase, leading to inhibition of ATP
synthase enzymatic activity. Inhibition of ATP synthase activity is
known to affect the Ay, (Brand et al., 2004; Sanchez-Cenizo et
al., 2010; Formentini et al., 2014). In fact, in our hands, glutamate
exerted a cyclin Bl-mediated biphasic effect on Ais,,, namely a
transient increase followed by a delayed collapse. During the in-
creased Ay, phase, the mitochondrial respiratory chain is known
to stimulate O, (Sdnchez-Cenizo et al., 2010; Formentini et al.,
2014), which we found in neurons on the excitotoxic stimulus.
Mitochondrial complex I contains O; -sensitive Fe-S clusters
(Sazanov, 2014) and specific cysteine residues (Chouchani et al.,
2013) that are essential for optimal electron transfer toward
ubiquinone. Accordingly, an increased production of O, , by
either complex I or complex IIT (Murphy, 2009), caused both
delayed oxidative damage to complex I and impairment in the
electron transfer likely responsible for the inhibition of its activ-
ity. This effect had functional consequences for the intact cell,
because both Ay, was lost in a delayed manner, and the rate of
O, consumption was impaired dramatically.

The delayed collapse in Ay, observed under our conditions is
likely attributable to the inefficacy of complex I at pumping pro-
tons into the intermembrane space, a trigger of the mitochondrial
transition pore. It has been shown recently that this pore is
formed by dimerization of F,F —ATP synthase 3 subunits (Car-
raro et al., 2014). Thus, dissociation of phosphorylated Bcl-xL
from the F,F —ATP synthase 8 subunits that we herein describe
might be an important step in this process by allowing free F,F —
ATP synthase 3 subunits to dimerize. Subsequent opening of the
mitochondrial transition pore will initiate mitochondrial outer
membrane permeabilization to promote the release of proapop-
totic factors (Galluzzi et al., 2009; Bernardi, 2013), shown previ-
ously to be sensitive to Bcl-xL binding to the F,F ,—ATP synthase
B subunit (Chen et al., 2011; Alavian et al., 2014).

In conclusion, here we decipher a cascade of events triggered
by the overactivation of glutamate receptors in neurons, an un-
derlying feature of several neurological diseases. This transduc-
tion pathway requires mitochondrial cyclin B1 to activate Cdk1
to promote phosphorylation of anti-apoptotic Bcl-xL. Phosphor-
ylated Bcl-xL releases the 8 subunit of F,F —ATP synthase, likely
forming the transition pore that promotes apoptosis. This mech-
anism can account for the known deleterious effects of cyclin B1
accumulation in the degenerating brain areas of neurological dis-
eases (Vincent etal., 1997; Love, 2003; Yang et al., 2003). Further-
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more, the negative regulation of mitochondrial function by
cyclin B1-Cdk1 activity that we describe here may have implica-
tions beyond the neural tissue. For instance, it is known that
cancer cells upregulate aerobic glycolytic metabolism to support
aberrant cell proliferation (Vander Heiden et al., 2009), which is
coupled with decreased APC/C—Cdhl1 activity (Almeida et al,,
2010; Moncada et al., 2012). The aberrantly accumulated cyclin
B1 in mitochondria causing inhibition of complex I impairs the
energetic efficiency of mitochondria, and this would likely stim-
ulate glycolysis in proliferating cells. The combination of such a
metabolic switch with the abnormal ability of cancer cells to form
the transition pore (Brenner and Grimm, 2006; Javadov et al.,
2011) would represent a previously unrecognized mechanism
whereby cyclin B1-Cdk1 promotes cancer cell progression.
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