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Neurobiology of Disease

FGF-2 and Anosmin-1 Are Selectively Expressed in Different
Types of Multiple Sclerosis Lesions

Diego Clemente,' Maria Cristina Ortega,' Francisco Javier Arenzana,' and Fernando de Castro'-
1Grupo de Neurobiologfa del Desarrollo-GNDe, Hospital Nacional de Parapléjicos-Servicio de Salud de Castilla-La Mancha, Finca “La Peraleda” s/n,
E-45071 Toledo, Spain, and 2Instituto Cajal-Consejo Superior de Investigaciones Cientificas, E-28002 Madrid, Spain

Multiple sclerosis is a demyelinating disease that affects ~2,000,000 people worldwide. In the advanced stages of the disease, endogenous
oligodendrocyte precursors cannot colonize the lesions or differentiate into myelinating oligodendrocytes. During development, both
FGF-2 and Anosmin-1 participate in oligodendrocyte precursor cell migration, acting via the FGF receptor 1 (FGFR1). Hence, we per-
formed a histopathological and molecular analysis of these developmental modulators in postmortem tissue blocks from multiple
sclerosis patients. Accordingly, we demonstrate that the distribution of FGF-2 and Anosmin-1 varies between the different types of
multiple sclerosis lesions: FGF-2 is expressed only within active lesions and in the periplaque of chronic lesions, whereas Anosmin-1 is
upregulated within chronic lesions and is totally absent in active lesions. We show that the endogenous oligodendrocyte precursor cells
recruited toward chronic-active lesions express FGFR1, possibly in response to the FGF-2 produced by microglial cells in the periplaque.
Also in human tissue, FGF-2 is upregulated in perivascular astrocytes in regions of the normal-appearing gray matter, where the integrity
of the blood-brain barrier is compromised. In culture, FGF-2 and Anosmin-1 influence adult mouse oligodendrocyte precursor cell
migration in the same manner as at embryonic stages, providing an explanation for the histopathological observations: FGF-2 attracts/
enhances its migration, which is hindered by Anosmin-1. We propose that FGF-2 and Anosmin-1 are markers for the histopathological
type and the level of inflammation of multiple sclerosis lesions, and that they may serve as novel pharmacogenetic targets to design future

therapies that favor effective remyelination and protect the blood- brain barrier.

Introduction

Multiple sclerosis (MS) is a demyelinating disease of the CNS and
a major cause of neurological disability among young adults. The
symptoms of this disease are the consequence of newly formed
CNS lesions and the expansion of older ones. Neuropathology of
MS includes blood cell infiltration within the white matter, for-
mation of demyelinating areas due to oligodendrocyte loss, and
axonal degeneration (Noseworthy et al., 2000; Compston and
Coles, 2008; Henderson et al., 2009). Currently available treat-
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ments for MS rely on immunomodulators but do not favor the
issue of lesion remyelination (Steinman, 2005; Compston and
Coles, 2008; Martinez-Forero et al., 2008).

Once generated, oligodendrocyte precursor cells (OPCs) mi-
grate and give rise to mature oligodendrocytes on receiving the
appropriate developmental signals (de Castro and Bribién, 2005).
One of the main mitogens for OPCs is FGF-2, which also acts as a
motogenic or chemokinetic and chemotropic factor, in both
cases acting via FGF receptor 1 (FGFR1) (Bogler et al., 1990;
McKinnon et al., 1990; Goddard et al., 1999, 2001; Bribian et al.,
2006). Thus, FGF-2 could be involved in oligodendrocyte re-
sponses during demyelination and remyelination, although the
effects exerted by this growth factor have proven to be controver-
sial (Ruffini et al., 2001; Butt and Dinsdale, 2005). Indeed, the
most recent study suggests that FGF-2 has a neuroprotective/
regenerative effect on oligodendroglia (Rottlaender et al., 2011).

Anosmin-1 is an extracellular matrix protein that influences
the migration of gonadotropin-releasing hormone-producing
neurons (Cariboni et al., 2004), neuronal precursors (Garcia-
Gonziélez et al., 2010), and OPCs (Bribian et al., 2006, 2008). In
the latter, Anosmin-1 inhibits the motogenic effect of FGF-2, via
FGFR1 (Bribian et al., 2006), and promotes the adhesion of these
cells by an FGF-2-independent mechanism (Bribidn et al., 2006,
2008). Anosmin-1 interacts with FGFR1, and different compo-
nents of the extracellular matrix, including Anosmin-1 itself
(Murcia-Belmonte et al., 2010). During optic nerve develop-
ment, Anosmin-1 is expressed by OPCs and optic axons, and
inactivation of this protein reduces their adhesiveness to different
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Table 1. Summary of the samples analyzed for this study

Clemente et al. @ FGF2/FGFR1/Anosmin-1in Multiple Sclerosis

Disease duration Number of MS Lesion activity
Patient Age (years)/sex Diagnostic TP (h) (years) lesions Active Shadow plaques Chronic active Chronic inactive
MS40 58/F PP 6 21 8 4 1 3
MS46 40/M SP 18 23 10 6 1 2 1
MS47 66/F Sp 17 34 13 3 5 5
MS60 55/M SP 16 43 8 3 3 1 1
MS94 KJF PP " 6 9 4 3 2
MS100 46/M Sp 7 8 12 1 3 5 3
MS106 39/F SP 18 21 8 2 1 5
MS125 76/F Sp 13 30 5 1 1 3
MS149 82/F SP 15 45 7 2 1 3 1
MS342 35/F Sp 9 5 8 6 2
€002 85/M Normal 12
€008 93/F Normal 9
(025 35/M Normal 22
€030 75/M Normal 17
o4 54/M Normal 20

(t, Control; F, female; M, male; MS, multiple sclerosis; PP, primary progressive; SP, secondary progressive; TP, time postmortem.

“(lassification criteria described in Results. No gray matter lesions were detected.

substrates, including Anosmin-1 (Bribian et al., 2008). Indeed,
Anosmin-1 is misexpressed in the X-linked Kallmann syndrome,
wherein some alterations in myelinated commissures and tracts
containing numerous Anosmin-1" oligodendrocytes have been
described (Krams et al., 1997; Mayston et al., 1997; Farmer et al.,
2004; Clemente et al., 2008). Thus, these data point to Anosmin-1
as a potentially important factor in oligodendroglial biology dur-
ing the onset of MS.

The present study fills the histopathological gap regarding
identity of FGF-2"/FGFR1*/Anosmin-1" cells in MS tissue.
Moreover, we establish a direct correlation between the ex-
pression pattern of these molecules in MS patients with the
histopathological characteristics of the demyelinated plaques
and the blood-brain barrier (BBB) integrity within the
normal-appearing gray matter (NAGM). We corroborate that
FGF-2/Anosmin-1 exert similar effects on adult OPCs as during
development. In agreement with that, the recruited OPC popu-
lation within areas of remyelination mainly expressed FGFRI.
Our data suggest that FGF-2/Anosmin-1 would be important
actors in the pathogenesis of MS and putative objectives for fu-
ture therapeutic approaches (including remyelination).

Materials and Methods

Human samples. Postmortem cortical and periventricular brain tissue
blocks (ranging from 8.55 t0 21.94 cm ) from 10 human MS patients and
5 human controls, of either sex and with no history of neuropsychiatric
disease, were analyzed (Table 1). To obtain the blocks, the UK Multiple
Sclerosis Tissue Bank proceeds as follows: alternate coronal slices or ce-
rebral hemispheres are placed in 4% paraformaldehyde fixative for ~2
weeks and then blocked. Individual blocks were cryoprotected in 30%
sucrose for ~1 week and frozen by immersing in isopentane precooled
on a bed of dry ice. All the cortical blocks contained both gray and white
matter. The UK Multiple Sclerosis Tissue Bank randomly provided us
with at least four different blocks from the cerebral cortex with white
matter lesions, and two with normal-appearing white matter (NAWM)
for each MS patient, and two cortical blocks from each selected control
patient. No demyelinated lesions were detected within the gray matter in
any of the blocks analyzed. Brain samples were cut into microtome sec-
tions (50 wm; Microm) for immunohistochemical analysis.

Western blots. Total proteins were extracted from the sum of two (for
controls) or four (for MS patients) different fixed frozen postmortem
cortical sections (one from each block; with checked white matter lesions
in the case of MS patients) using Qproteome FFPE tissue kit (Qiagen),
following manufacturer’s instructions. Protein concentrations were de-
termined by the BCA method (ThermoScientific). Samples equivalent to

100 pg of total protein were resuspended in sample buffer (Sigma) for
protein gel electrophoresis and subsequently transferred to nylon mem-
branes. After 1 h of blocking, membranes were allowed to react overnight
at 4°C with primary goat anti-FGF-2 polyclonal antibody (1:200; SCBT)
or anti-c-tubulin monoclonal antibody (1:30,000; Sigma). Blots were
incubated with either biotinylated (for FGF-2; 1:5000; Vector Laborato-
ries) or HRP-conjugated (for a-tubulin; 1:10,000; Sigma) secondary an-
tibodies, as appropriate. The standard ABC method was followed for
amplification of FGF-2 signal, which was then visualized using Pierce
ECL Western blotting substrate (ThermoScientific).

For quantitative analysis, densitometry was performed on scanned
images of the immunostained blots using ImageJ software. The mean
gray value and the area for each band were measured. After subtraction of
the background values, mean gray values were multiplied by band area to
obtain an estimate of the total stained area. Band values were normalized
to a-tubulin and the initial tissue amount (grams of wet weight).

Immunohistochemistry. After several rinses with PB, sections were
mounted in gelatin-coated slides and air dried at 37°C overnight.
Immunohistochemical procedures were performed as previously de-
scribed (Clemente et al., 2008) with the following modifications: a
prior antigen retrieval (0.1 M acetate buffer, pH 6.0, for 10 min at
95°C) and a final treatment to avoid autofluorescence (Schnell et al.,
1999) were included. After 1 h of preincubation, tissues were incubated
for immunohistochemistry (IHC) or immunohistofluorescence (IHF)
with the following primary antibodies: mouse anti-B-III-Tubulin (1:500;
Millipore); mouse anti-CD3 (1:50 for IHC; Dako); mouse anti-CD68
(1:100 for IHF; Dako); goat anti-FGF-2 (1:200 for IHC and IHF; Santa
Cruz Biotechnology); rabbit anti-FGF-2 (1:250 for IHC and IHF;
Santa Cruz Biotechnology); goat anti-FGFR1 (1:250 for IHC and IHF;
Santa Cruz Biotechnology); rabbit anti-FGFR1 (1:1000 for IHC, 1:500
for IHF; Abcam); mouse anti-GFAP (1:500 for IHF; Millipore Bioscience
Research Reagents); mouse anti-human leukocyte antigen (HLA)-DR
(1:200 for THC, 1:100 for IHF; Dako); rabbit anti-KALI (1:500 for IHC,
1:250 for IHF; Orbigen); rabbit anti-PDGF receptor a (PDGFRa) (1:200
for IHF; Santa Cruz Biotechnology); and rabbit anti-zonula occludens-1
(ZO-1) (1:100 for IHF; Invitrogen). Appropriate fluorescent-tagged (1:
1000, Invitrogen; 1:200, The Jackson Laboratories) or biotinylated (1:
200; Vector Laboratories) secondary antibodies were used. The reaction
was detected using Vectastain Elite ABC reagent (Vector Laboratories).
Renaissance TSA Biotin System Kit (PerkinElmer) together with Texas
Red-conjugated Streptavidine (1:200; The Jackson Laboratories) were
used for FGF-2, FGFR1, and Anosmin-1 detection. The fluorescent
Hoechst stain (Sigma) was used to label the cell nucleus. Eriochrome
cyanine (Sigma) was usedto stain myelin. To measure ZO-1 staining
intensity, fluorescence photomicrographs of the gray matter of controls
and the NAGM of MS patients were captured with a confocal microscope
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Figure1.

FGF-2is overexpressedin the tissue of MS patients but notin all types of MS lesions. 4, Western blot analysis was performed using an FGF-2 polyclonal antibody on cerebral cortex protein

extracts (100 g of total protein each) from control (Ct) and MS patients. ce-Tubulin was used as aloading control. B, C, Panoramic views of a pre-phagocyticarea (PA) labeled with HLA-DR (B, brown
staining), which presented a group of activated microglial cells with no signs of cell infiltration, and FGF-2 (C, brown staining) and the myelin staining eriochrome cyanine (B, €, blue staining). D,
General view of a portion of one shadow plaque (SP). The density of FGF-2™* cells (brown staining) is similar in the shadow plaque to that in the adjacent NAWM. E, F, Examples of FGF-2* cells (with
the morphology of resting microglia) from a pre-phagocytic area (E) or within a shadow plaque (F). G-I, FGF-2™ cells within the shadow plaque are also positive for the macrophage/microglial
marker (D68. Scale bars: B—D, 200 wm; E, F, 10 wm; 61, 12 m. B, €, and E are from case MS125; D and F—/ are from case MS60.

(SP5; Leica), and fluorescence intensity of the blood vessel was quantified
using Image] software.

The total number of cells of interest was obtained by manually count-
ing the PDGFRa ™ cells under a confocal microscope, both alone or in
combination with cells expressing FGFR1 in the chronic-active lesions
(n = 9) of the following patients: MS40, MS46, MS106, and MS125. The
cells counted were those in the plaque (the demyelinated part of the
lesion with a low density of cell bodies), the periplaque (the area sur-
rounding the plaque where remyelination occurs and with a much higher
cell density than in either the plaque or the NAWM), and the adjacent
NAWM (a portion of white matter close to the periplaque with no signs
of demyelination/remyelination and with a cell density similar to the rest
of the white matter). Several pictures were taken at different levels of each
region to avoid repetitive cell counts. The total number of cells was
considered in relation to the area of the picture measured using Image]
software. The percentage of Anosmin-1" axons with respect to the total
number of B-ITI-tubulin ™ axons was quantified by counting them in
different levels of several pictures of the plaques of chronic-active lesions.

Cell culture. To isolate adult OPCs, the cerebral cortex of P60 CD1
female mice was dissected out and enzymatically dissociated in a
solution containing papain (0.9 mg/ml; Worthington Biochemical),
L-cysteine (0.2 mg/ml; Sigma), and EDTA (0.2 mg/ml; Sigma) diluted
in HBSS (Invitrogen) during 5 min, at 37°C. Digested tissue was
filtered through a 100 pum cell nylon strainer (BD Biosciences) and

seeded on polyornithine-treated flasks in DMEM medium comple-
mented with 10% fetal bovine serum (FBS; BioWhittaker) and 1%
penicillin-streptomycin (Invitrogen). The culture medium was changed
the next day, and 10 ng/ml human PDGFa (Millipore) was added. When
cultures reached confluence, cells were shaken overnight at 300 rpm at
37°C. Medium was filtered through 40 um filters and centrifuged at 900
rpm. Then, cells were seeded twice (45 min each) in uncoated Petri dishes
to eliminate microglial cells. After a new centrifugation at 900 rpm, the
number of cells was calculated and seeded. After OPC isolation, the
average cell yield was 108,642 * 8,669 cells/mg fresh tissue. To check
their OPC nature, immunocytochemistry against A2B5/olig2 (mouse
anti-A2B5; 1:10, ATCC; CRL-1520, Hybridoma Bank; rabbit anti-olig2,
1:250, Millipore) and PDGFRa/NG2 (goat anti-PDGFRa;, 1:100, R&D
Systems; rabbit anti-NG2, 1:100, a generous gift from Dr. W. Stallcup,
Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla,
CA) were performed. Only those cultures with at least 95% purity of
PDGFRa “/NG2 * or A2B5 */olig2 ™ OPCs were used for the migratory
analysis.

Astrocyte cultures were prepared from P1-P3 CD1 mice of either sex
using an adapted protocol (Docagne et al., 2007). Before the cell dissoci-
ation, the deepest part of the cerebral cortex was dissected out and dis-
carded to avoid the presence of white matter astrocytes. Dissociated
cortical cells were cultured in multiwell dishes coated with poly-L-lysine
using a media stock (DMEM, containing 25 mm glucose, Invitrogen)
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Expression pattern of FGF-2 in active and chronic-active lesions. A, Panoramic view of an active lesion with many FGF-2* infiltrates. B, High-magnification image showing several

FGF-2 cells with macrophage morphology from the core of an active lesion. C, In the border of the same lesion, FGF-2* cells showed intermediate shapes between macrophage and activated
microglia. D-1, Double labeling with the inflammatory marker HLA-DR and the microglia/macrophage marker CD68 of both cell types, within the core (D—F) and at the border (G-I) of an active

lesion. J, General view of a chronic-active lesion where a higher density of FGF-2

* cells was detected within the demyelinating area (periplaque) than in the adjacent NAWM. In contrast, no FGF-2

immunoreactivity was detected within the demyelinated plaque itself. K~L, High-magnification images of two of the FGF-2" cells observed in the periplaque of a chronic-active lesion showing a

well vacuolated cytoplasm and several processes. M—R, Examples of FGF-2

* cells (M, P) double labeled with HLA-DR (N, 0) or the microglia/macrophage marker (D68 (Q, R). Scale bars: 4,120 pum;

B,(,M-0,7 pm; D—F, 6 um; 61,8 wm; J, 100 wm; K—L, P-R, 10 um. A1 are from case MS249; J—R are from case MS106.

supplemented with 5% horse serum, 5% FBS, and 2 mm glutamine. After
the astrocyte cultures reached confluence, they were maintained for 24 h
in serum-free DMEM containing murine IL-18 (20 ng/ml), TNF-a (5
ng/ml), or both (Peprotech).

Chemotaxis assay. Two CHO lines, CHO wild-type control cells
(CHO-CT) and CHO cells expressing the C-terminal myc-tagged,
full-length Anosmin-1 (CHO-A1), were used to prepare extracellular
matrix protein extracts following a modified protocol that has been
described previously (Soussi-Yanicostas et al., 1996). Briefly, the cells
were washed once with calcium/magnesium-free HBSS and then incu-
bated with gentle rocking for 30 min at 4°C in 1 ml per culture dish (10
cm in diameter) of 20 mm phosphate buffer, pH 7.4, containing 350 mm
NaCl and complete EDTA free protease inhibitor (Roche). The extracel-
lular matrix proteins released into the buffer were concentrated 10 times
with Amicon Ultra-4 Ultracel-30k (Millipore) and used in the che-
motaxis experiments.

The migration of adult OPCs was studied in chemotaxis chambers
with polycarbonate membranes (pore size: 8 um, Costar, Corning). The
membranes were coated as described previously (Merchan et al., 2007;
Murcia-Belmonte et al., 2010) and 4 X 10* adult OPCs were seeded in
the upper chamber in BS medium and different experimental conditions
in the lower chamber as follows: (1) CHO-CT extract; (2) CHO-CT
extract with FGF-2 (20 ng/ml; R&D Systems); (3) CHO-AL1 extract; or (4)
CHO-AL extract with FGF-2 (20 ng/ml; R&D Systems). To block FGFRs,
the adult OPCs were treated during the experiment with the FGFR
blocker SU5402 (10 wm; Calbiochem) as indicated, and the rest of the
cultures were exposed to an equal volume of the vehicle dimethylsulfox-
ide (Sigma). After 20 h at 37°C, nonmigratory cells on the upper mem-
brane surface were removed with a cotton swab and the migratory cells
on the lower membrane surface were fixed for 15 min with 4% PFA at

room temperature. For quantitative analysis, the number of A2B5*/
Olig-2 ™ migrating cells (see above) was scored under an epifluorescence
microscope (DM5000B, Leica) using a 20X objective, and 10 random
fields/well were analyzed in three independent experiments, each involv-
ing three transwells per experimental condition.

Quantitative reverse transcription-PCR analysis. Total RNA from con-
trol or treated astrocytes was retrotranscribed into cDNA using the High
Capacity cDNA Reverse Transcription kit (Applied Biosystems). Taq-
man gene expression assays used for fgf-2 and fgfrl expression were
Mmo00433287_m1 and Mm01215488_m1, respectively, using mouse
GAPDH gene transcript as endogenous control. Relative mRNA levels
for both were determined using the comparative threshold cycle method
and were normalized to mRNA levels of GAPDH. Results are expressed
as the fold increase in the relative level of gene expression for the replicate
group associated with the test sample.

Statistics. The data were expressed as the mean = SEM. and were
analyzed with SigmaStat (SPSS). Student’s ¢ test, ANOVA, or their cor-
responding on-rank tests was used for comparative analyses. The Pear-
son’s product moment test was used for correlation analysis. Minimal
statistical significance was fixed at p < 0.05, and the results were repre-
sented as follows: *p < 0.05; **p < 0.01; ***p < 0.001.

Results

Classification of MS plaques

In the cerebral cortex tissue blocks, all lesions were circumscribed
to the white matter, and there were no signs of demyelination in
the gray matter. Plaques present in brain tissue samples from 10
human MS patients were classified (Table 1) according to previ-
ously described methods (Trapp et al., 1999; Chang et al., 2002,
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GFAP

Figure 3.

2008; Benito et al., 2007; Koning et al., 2007; Breij et al., 2008;
Young et al., 2008). Active plaques exhibited, among other char-
acteristics, abundant and evenly distributed HLA-DR™ cells
(mostly large, round, and lipid-laden macrophages), clear signs
of remyelination (faint eriochrome cyanine staining and the pres-
ence of OPCs), parenchymal and perivascular lymphocytic cells,
and swollen astrocytes. If phagocytes contained myelin protein
debris, the plaques were considered even more recent. Moreover,
pre-phagocytic areas presented a high density of HLA-DR* ram-
ified microglial cells intermingled with a few (if any) irregularly
distributed macrophages. Shadow plaques presented a low den-
sity of HLA-DR™ cells with resting microglia, well defined edges,
and an incomplete remyelination (a low intensity of eriochrome
cyanine staining compared with the surrounding NAWM). Con-
versely, chronic-active plaques were clearly characterized by a lower
cellular density in the core of the lesion but an enrichment of HLA-
DR lipid-laden macrophages, perivascular and/or parenchymal
lymphocytic cells, and an accumulation of OPCs at the border
(where remyelination is evident). Chronic-inactive (also referred
to as chronic-silent) lesions contained very few HLA-DR™ cells,
had a clear sharp edge, and showed no signs of remyelination in
both the core and the border. Following these criteria, 30 plaques

IGFAP/

Perivascular astrocytes overexpress FGF-2 in the cerebral cortex of MS patients. A, B, Parallel sections of the same
region of a block from one MS patient where a general upregulation of FGF-2 in perivascular astrocytes (4, arrows) was restricted
to the NAGM area with no signs of demyelination in the contiguous NAWM (B). C, Detailed view of two FGF-2 cells, one in contact
with a blood vessel (black arrow). D—F, Double labeling (white arrows) of FGF-2 (D) and GFAP, a marker for astrocytes (E), which
confirms their coexpression (F). G-I, In gray matter of controls, where FGF-2-immunoreactive astrocytes were absent (G), a
continuous linear Z0-1immunoreactivity could be seen (H-1).J, L, Association of FGF-2* perivascular astrocytes within the NAGM
of a MS patient with a blood vessel contacting process (J, L, arrow). K, L, Z0-1immunoreactivity displayed a continuous but more
diffuse expression pattern in the NAGM of MS patients. EC, Eriochrome cyanine. Scale bars: 4, B, 800 um; C, 25 wm; D—F, 10 wum;
G—L,15 um. A, B, and J-L are from case MS125; C—F are from case MS106; G-/ are from case C041.
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were identified as active, 15 as shadow, 23 as
chronic-active, and 18 as chronic-inactive
(Table 1). In addition, in white matter from
controls and in the NAWM from MS pa-
tients, none of the aforementioned features
were observed (data not shown).

FGF-2 is differentially upregulated in
MS patients

Differences in the protein levels of FGF-2
have been reported in the CSF of MS pa-
tients (Su et al., 2006; Sarchielli et al.,
2008). However, the distribution of this
factor in MS tissue has not yet been stud-
ied, either in the different types of MS
plaques or in the cells that might secrete it.
In Western blots of cerebral cortex tissue
sections from both groups, containing both
gray and white matter (with lesions only
present in the latter), there was significantly
more FGF-2 in MS patients than in controls
(7.10 = 2.02-fold increase vs control; p <
0.05) (Fig. 1.A). However, there was no cor-
relation between the signal intensity in the
Western blots and the following parameters:
age (r = 0,474; p = 0.166); postmortem
delay (r = 0.210; p = 0.561); disease du-
ration (r = 0.308; p = 0.387); total num-
ber of MS lesions (r = —0.288; p = 0.420);
number of active lesions (r = —0.229; p =
0.525); number of chronic-active lesions
(r = 0.406; p = 0.244); number of

chronic-inactive lesions (r = —0.294; p =
0.410); number of chronic-active plus
chronic-inactive lesions (r = —0.206; p =

0.568); or the percentage of each type of
MS lesions with respect to the total num-
ber of MS lesions (percentage of active le-
sions: r = —0,213; p = 0.554; percentage
of chronic-active lesions: r = 0.523; p =
0.121; percentage of chronic-inactive lesions:
r = —0318; p = 0.371; and percentage of chronic-active plus
chronic-inactive lesions: r = 0.170; p = 0.638). We performed the
histopathological analysis of both the gray and white matters of the
cerebral cortex sections from the same controls and MS patients to
assign this FGF-2 expression to specific cell types.

In the white matter, whereas in controls FGF-2 was immuno-
detected in the rare microglial cells (data not shown), in very early
lesions (pre-phagocytic areas) FGF-2 was observed in a few acti-
vated microglial cells (Fig. 1 B, C,E). In contrast, shadow plaques
presented a much lower density of FGF-2" resting microglial cells
(Fig. 1 D,F-I). In active lesions, FGF-2" macrophages at a high
density were found to be evenly distributed within the lesion (Fig.
2A,B,D-F). The FGF-2" cells observed in the lesion border pre-
sented intermediate characteristics between macrophages and
microglial cells: hypertrophied well vacuolated cell bodies with a
few processes of different lengths and thicknesses (Fig. 2C,G-I).
In chronic-active and chronic-inactive plaques of the white mat-
ter, FGF-2" cells were exclusively detected in the periplaque,
most of them showing macrophagic and/or activated microglial
morphologies (Fig. 2J-R). Together, these data showed that
FGF-2 is mainly observed in activated microglial/macrophages in
those areas where remyelination is possible. At the end of the
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remyelinating process (shadow plaques),
FGF-2" cells are less abundant.

The gray matter of the same sections
from the cerebral cortex of controls was de-
void of FGF-2 staining, except for a few mi-
croglial cells (data not shown). Although no
demyelinated areas were observed within
the gray matter, a subpopulation of perivas-
cular astrocytes contacting blood vessels ex-
pressed FGF-2 in MS patients (Fig. 3A-F),
in addition to the sparsely distributed mi-
croglial cells (data not shown). These cells
were observed in the gray matter of all the
cortical blocks analyzed, either those with
demyelinated plaques within the white mat-
ter (data not shown) or those without them
(Fig. 3A, B). The gray matter of blocks from
the cerebral cortex of controls, where
FGF-2" astrocytes were absent, showed an
unaltered ZO-1 profile (Fig. 3G-I), an indi-
cator of BBB-associated tight junction in-
tegrity in MS (Kirk etal., 2003; Padden etal.,
2007). In contrast, FGF-2 " perivascular as-
trocytes were invariably associated with a
slightly discontinuous tight junction profile
(Fig. 3J-L). The quantification of ZO-1
staining showed that MS patients presented
a3.52 = 0.647-fold decrease (p < 0.001) in
ZO-1 labeling than controls. Therefore,
tight junction integrity in the gray matter,
and consequently that in the BBB, was dis-
turbed in MS patients.

HLA-DR

Anosmin-1

Figure4.

Anosmin-1is selectively expressed within chronic-active and chronic-inactive demyelinating plaques of MS patients.
A-F, Images of parallel sections with one active (Acin A, D), one chronic-active (C-Ain B, E), and one chronic-inactive (C-lin C, F)
plaques stained with HLA-DR followed by the myelin-specific eriochrome cyanine staining (A-C) and immunostained for

Anosmin-1 (D-F). G, Anosmin-T-immunoreactive perivascular infiltrates (asterisk) from an MS patient in close proximity to an
Anosmin-1-containing lesion. H, High-magnification image of one group of Anosmin-17"perivascular blood cells within a chronic
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Anosmin-1 is upregulated in chronic-
active and chronic-inactive plaques
Anosmin-1 was not detectable in the brain
of control cases either in the gray or in the
white matter (data not shown). While Anosmin-1 immunolabel-
ing was also absent from active and shadow plaques in the white
matter of MS patients (Fig. 4A,D), it was clearly observed as a
typical extracellular matrix protein in both chronic-active and
chronic-inactive demyelinating lesions (Fig. 4B,C,E,F), with
more intense staining in the former (Fig. 4 E, F). Anosmin-1 im-
munolabeling was found within the entire extension of both
types of plaques, but was scrupulously confined to the demyeli-
nated area, without showing well defined Anosmin-1" neural cell
bodies inside it (Fig. 4 E, F). Anosmin-1 was also detected in some
perivascular infiltrates in the periplaque of chronic lesions, al-
ways in close proximity to the Anosmin-1" core of the lesions or
rarely inside them (Fig. 4G,H). In addition to the diffuse extra-
cellular matrix labeling, Anosmin-1 immunoreactivity was ob-
served in some axons, selectively in their nude segment within the
demyelinated lesion (Fig. 41-L). The percentage of axons that
presented Anosmin-1 immunoreactivity was 13.57 = 2.89%. In
contrast, Anosmin-1" axons were not detected in the NAWM
(Fig. 4M-0) or in active and shadow plaques from the same
patients (data not shown).

FGFR1 is upregulated in OPCs and in NAGM perivascular
astrocytes of MS patients

The distribution of FGFRI, the receptor shared by FGF-2 and
Anosmin-1 during OPC migration, varied in MS patients when
compared with controls. In all the blocks from controls, FGFR1 was

lesions, some of the B-III-Tubulin* axons showed Anosmin-1immunoreactivity (arrows). M0, In the NAWM of the same
patient, no Anosmin-17 axons were detected. Scale bars: A~F, 400 wm; G, 100 wm; H, 1, 25 um; J-L, 20 wm; M-0, 17
um. A, D, and J-0 are from case MS342; B and E are from case MS125; C, and F—/ are from case MS149.

exclusively observed in a subpopulation of astrocytes in the white
matter (Fig. 5A-D). In MS patients (Fig. 5E-H ), FGFR1 was upregu-
lated also in an OPC subpopulation within active lesions and sur-
rounding chronic-active and chronic-inactive lesions (Fig. 5E-P). In
the case of chronic-active lesions (Fig. 5Q), although the density of
OPCs was similar in the periplaque and the adjacent NAWM
(36.89 = 6.48 and 27.74 = 5.49 cells/mm?, respectively; p = 0.395),
the density of FGFR1 " OPCs (Fig. 5R) was significantly higher in the
periplaque of demyelinated lesions than in the adjacent NAWM
(2.89 = 0.73-fold increase; p < 0.05). In the same cortical blocks, no
demyelinated areas were present. However, new FGFR1 ™ periven-
tricular astrocytes were observed in the gray matter of MS patients
(Fig. 55-V). These FGFR1™ perivascular astrocytes of the NAGM
were always found in close association with a slightly discontinuous
Z0-1 immunolabeling (data not shown).

A number of FGFR1™ neurons were detected in the gray mat-
ter of controls and in the NAGM of MS patients of the same
blocks from cerebral cortices (data not shown), although no dif-
ferences in their number or staining intensity was detected be-
tween the different types of patients.

FGF-2 and Anosmin-1 influence adult OPC migration in the
same manner as during development

To determine whether the FGF-2/FGFR1/Anosmin-1 system had
the same biological implications on adult OPC migration as it has
in embryos (Bribidn et al., 2006), we analyzed the effects of FGF-2



Clemente et al. ® FGF2/FGFR1/Anosmin-1 in Multiple Sclerosis

PDGFRa

J

PDGFRa

N

PDGFRa

g 40 I
£

8 30

o

[e}

&g 20

w

o

g 10

(7]
plaque  periplaque NAWM

J. Neurosci., October 19,2011 - 31(42):14899 —14909 * 14905

"‘E 30
E
~ 25
13
8 E
o 20 . FGFR1"
i 0 FGFR1
3
& 15
)
a 10
[

5

%]
0
plaque periplaqgue NAWM

Figure5.

FGFR1 distribution in controls and MS patients. 4, A detailed view of one FGFR1™ cell from the white matter of a control patient. B-D, Confocal images showing one astrocyte positively

immunostained for FGFR1 (red) and GFAP (green). E~H, Panoramic view of a chronic-active lesion where FGFR1™/PDGFRa™* OPCs within the periplague and in the NAWM (arrowheads) and a
FGFR1™/PDGFRa:™ OPCin the periplaque (arrows) were observed. I-L, A FGFR1™ OPCwithin the periplaque of a chronic-active lesion of a MS patient. M—P, A detailed image of a FGFR1 ™ /GFAP™
astrocyte (arrowheads) and a PDGFRa ™ /FGFR1™ OPC (arrows) within the NAWM of a MS patient. @, R, Quantification of the density of OPCs (@) or OPCs double labeled for FGFR1 (R) in the plaque,
periplaque, and its adjacent NAWM from nine chronic-active lesions belonging to MS40, MS46, MS106, and MS125. There were no OPCs detected in the plaque, while the periplague and NAWM
showed statistically similar numbers of OPCs (Q). In contrast, the number of FGFR1™ OPCs was significantly higher in the periplaque than in its adjacent NAWM. Within the periplaque, the number
of FGFR1™ OPCs was significantly higher than that of FGFR1~ OPCs. One-way ANOVA followed by Student’s t test (represented): *p < 0.05. S, A group of FGFR1™ perivascular glial cells from the
gray matter of a MS patient. -V, Confocal images of an astrocyte double immunostained for FGFR1 (red) and GFAP (green) with a blood vessel contacting process from the gray matter of an MS
patient. Scale bars: 4, 10 um; B=D, 22 um; E-H, 45 um; I-P, 15 pum; S, 50 m; T-V, 8 um. A-D are from case 025; E—P are from case MS106; S—V are from case MS149.

and Anosmin-1 on the migration of OPCs isolated from cerebral
cortices of adult mice (Fig. 6 A—J). While FGF-2 significantly mo-
bilized and/or attracted the OPCs (3.34 * 0.20-fold increase vs
control; p < 0.001), the opposite effect was observed in the pres-
ence of Anosmin-1 (1.84 £ 0.09-fold decrease vs control; p <
0.001). When cells were exposed to both molecules simultane-
ously, the number of transmigrating OPCs was slightly higher
than in untreated control cultures (1.58 = 0.12-fold increase vs
control; p = 0.482), but significantly lower than in cells treated
with FGF-2 alone (2.11 = 0.14-fold decrease vs FGF-2 alone; p <
0.001). The effects of these cues were all abolished when FGFRs

were blocked by adding SU5402 agent (FGF-2+SU5402 =
1.26 £ 0.09-fold increase vs control, p = 0.102; Al+
SU5402 = 0.96 £ 0.06-fold increase vs control, p = 0.796;
FGF-2+A1+SU5402 = 1.09 £ 0.09-fold increase vs control,
p = 0.482). Therefore, we concluded that FGF-2 and Anosmin-1
act in adult OPCs as they do during development.

Pro-inflammatory cytokines upregulate FGF-2 expression in
gray matter astrocytes

Alterations in endothelial cells, which are the morphological base
of the BBB, are induced by different inflammatory stimuli (Di-
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etrich, 2002). In the NAGM of MS pa-
tients, an alteration in the expression of
different genes related to inflammation
and the energetic metabolism of astro-
cytes are altered (Kinter et al., 2009). To
determine whether the upregulation of
FGF-2 and/or FGFRI in astrocytes was in-
duced by an inflammatory environment,
astrocytes were isolated from the gray
matter of cerebral cortices dissected from
PO mice, and the cells were cultured in the
presence of IL-13, TNF-a, or both cyto-
kines. Our results showed a drastic up-
regulation of fgf-2 expression in the
presence of IL-1B alone (7.18 = 1.48-fold
increase vs control, p < 0.01), or com-
bined with TNF-«a (9.22 * 2.0-fold in-
crease vs control, p < 0.01), but not with
TNF-w alone (2.12 = 0.87-fold increase vs
control, p = 0.132). In contrast, no alter-
ations in fgfr] mRNA expression were
detected in any of the samples analyzed
(IL-1B: 1.45 * 0.42-fold increase vs

control, p = 0.435; TNF-a: 2.19 * 1.03- 0
fold increase vs control, p = 0.324; IL- ®
1B/TNF-a: 1.69 = 0.56-fold increase vs _‘:” % 800
control, p = 0.328). S8

O 8 200
Discussion %
In this work, we describe a complementary 5 § 100
spatial distribution pattern of FGF-2 and =
Anosmin-1 associated with chronic-active
and chronic-inactive MS lesions, where re- cHoct

myelination rarely exists (Frohman et al.,
2006). In contrast, in active plaques, where
remyelination normally occurs (Frohman
et al., 2006), FGF-2 is upregulated in infil-
trating macrophages, and in microglia-
derived macrophages also, and Anosmin-1
is absent. Our data on the effects of FGF-2
and Anosmin-1 in the motility and migra-
tion of adult OPCs resemble those observed
during development (Bribidn et al., 2006).
As shown schematically in Figure 7, these
histopathological observations in the CNS
support the following interpretation: (1) FGF-2 expression within
active lesions and in the periplaque of chronic-active and chronic-
inactive lesions leads to recruitment of FGFR1™ OPCs; and (2) in
contrast, Anosmin-1 may impede OPCs from invading the lesions,
since it is present within the plaques in which no remyelination is
observed.

The plaque type-specific upregulation of Anosmin-1 is prob-
ably due to a change in the cytokine balance as known in another
relapsing inflammatory disease (Tengara et al., 2010), and is sim-
ilar to that previously demonstrated for other molecules involved
in OPC migration (Back et al., 2005; Omari et al., 2005; Williams
etal., 2007; Wang et al., 2008). The cellular source identification
of this staining is difficult. Indeed, this is the first description of
Anosmin-1 immunostaining in adult human CNS. The only data
about Anosmin-1 expression in humans were provided by in situ
hybridization analysis in fetuses in which different regions, with-
out defining any specific cell source, were reported (Lutz et al.,
1994; Duke et al., 1995). In other mammals, this kind of
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In vitro studies on FGF-2/Anosmin-1-mediated activity in adult OPCs. A—C, Characterization of OPCs isolated from
mouse adult cerebral cortex double immunostained for NG2/PDGFRcx. D-1, Representative images of the A2B5 ™ /olig2 * migra-
tory cells under different experimental conditions. J, Histogram showing the percentage of migrating OPCs from adult mice
quantified after culturing under standard conditions (CHO-CT) or in the presence of various modulators as indicated, including the
FGFR blocker SU5402. Treatment with FGF-2 alone (white bars) led to a significant increase in the number of migrating OPCs, while
that with Anosmin-1alone (CHO-A1, light gray bars) had the opposite effect when compared withcontrol conditions (black bars).
Combined treatment with FGF-2 and Anosmin-1 (dark gray bars) gave rise to an intermediate number of migrating OPCs. The
effects of FGF-2 and Anosmin-1 were blocked in the presence of SU5402. Student’s  test results are represented as follows: **p <<
0.01; ***p << 0.001 with respect to control conditions (

###5 <0001, also vs control conditions). Scale bar: A1, 25 wm.

Anosmin-1 diffuse staining has been described previously in dif-
ferent regions during CNS development (Soussi-Yanicostas et al.,
2002; Dellovade et al., 2003), but, again, it lacks data in adult-
hood. The presence of Anosmin-1 in the segment of nude axons
crossing chronic-active and chronic-inactive lesions is a striking
functional histopathological observation and confirms that, in
adult MS patients, axons acquire developmental features (Soussi-
Yanicostas et al., 2002; Bribidn et al., 2008), as previously shown
for polysialylated-NCAM (Charles et al., 2002; Jakovcevski et al.,
2007). This axonal immunoreactivity was clearly stronger than
the diffuse extracellular staining, which seems to be the result of
the upregulation of Anosmin-1 rather than a passive deposition
of the protein on axonal membranes. The following two putative
roles for Anosmin-1 in axonal upregulation could be considered:
(1) Anosmin-1 may interfere with the FGF-2 effects (see above);
or (2) Anosmin-1 may facilitate OPC recognition/adhesion
(Bribian et al., 2008) and thereby facilitate remyelination. We
suggested earlier that homophilic Anosmin-1/Anosmin-1 inter-
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Figure 7. Schematic representation of the putative functional implications of the FGF-2/
FGFR1/Anosmin-1system in MS. 4, In active lesions (where remyelination is possible), there is
an increment in the density of FGF-2 expressing macrophages and FGFR1™ OPCs, whereas
Anosmin-1is absent. B, In contrast, in chronic-active lesions (where remyelination rarely exists
and is mainly restricted to the periplaque), the molecular environment is drastically different:
FGF-2 expression is limited to the macrophages/microglia in the periplaque, probably attracting
FGFR1™ OPCs toward the lesion; on the contrary, the expression of Anosmin-1 is widespread
throughout the core of the lesion and may be preventing remyelination.

actions are important for axon-OPC recognition during develop-
ment (Bribian et al., 2008). In MS chronic lesions, the absence of
Anosmin-1 in OPCs could affect their recognition of the nude
Anosmin-17 axons and thus compromise their ability to repair
the damage. Indeed, to mimic developmental conditions and in-
duce effective remyelination, not only axons, but adult OPCs,
may also acquire embryonic features, as it has been previously
shown in MS for other OPC-specific genes (Capello et al., 1997;
Arnett et al.,, 2004). Attending to our in vitro data, we consider
more plausible the first interpretation about the presence of
Anosmin-1 in axons and in the extracellular matrix as an obstacle
for OPC migration toward the interior of the plaque.

To our knowledge, these are the first data that identify different
functional OPC subpopulations (FGFR1"/FGFR17) in human
adults, populations that probably influence OPC recruitment to de-
myelinating lesions. In fact, the significant difference in the density
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of FGFR1* OPCs between the periplaque and its adjacent NAWM
suggest that FGFR1" OPCs primarily respond to FGF-2 upregula-
tion, reflecting the presence of a gradient of FGF-2 around both types
of lesions. A second possibility that we cannot rule out is that FGF-2
in the periplaque might upregulate FGFR1 in OPCs, as observed
previously in vitro (Bansal et al., 1996). It has been postulated that
myelination may be facilitated in active lesions by inflammation
and infiltrating (or microglial-derived) macrophages, which pro-
vide the tissue with growth factors (Diemel et al., 1998; Kotter et
al., 2001) and/or cues, such as secreted semaphorins (Williams et
al.,, 2007). Indeed, macrophages/microglia produce growth fac-
tors in vitro (Araujo and Cotman, 1992; Nakajima et al., 2007; Yin
et al., 2009). However, considering the data from mouse models
of demyelination, an elevated amount of FGF-2 within active
lesions not only appears to favor the recruitment of FGFR1™
OPCs but also to inhibit their differentiation toward myelinating
oligodendrocytes (Armstrong et al., 2002, 2006). Moreover, the
absence of this growth factor was recently shown to be detrimen-
tal rather than beneficial for remyelination during experimental
autoimmune encephalomyelitis (EAE) (Rottlaender et al., 2011).
The latter study emphasizes that the role of FGF-2 is not related to
changes in antigen epitope recognition or inflammatory mole-
cules itself but, rather, to the prevention of axonal damage and to
favoring the process of remyelination. In view of the present
results, we suggest that during the remyelination process the
level of FGF-2 should fluctuate to a level that allows OPC
differentiation and the subsequent partial remyelination of
the affected axons (shadow plaques). A similar FGF-2 upregu-
lation in macrophages/microglia within spinal cord lesions was
previously described in EAE (Liu et al., 1998). Indeed, it has been
demonstrated by gene therapy that FGF-2 significantly increases
the number of OPCs and myelin-forming oligodendrocytes in
areas of demyelination in the aforementioned MS model (Ruffini
et al., 2001). Therefore, FGF-2 might be one of the factors that
favor the proper remyelination in MS.

In contrast to the white matter, the gray matter of the same
cortical blocks from MS patients did not present any sign of
demyelination. Nevertheless, FGF-2 upregulation in perivascular
astrocytes was observed selectively within the NAGM of MS pa-
tients in close association with a slightly disrupted tight junction
profile, probably mediated by an inflammatory environment
(Kinter et al., 2009). Although the tight junction profile within
the white matter is disrupted in all types of lesions (Claudio et al.,
1995; Kirk et al., 2003; Padden et al., 2007), it remains unclear
why tight junctions within the gray matter are not altered to the
same degree. While it is accepted as a regulator of the vascular
tone (Zhou et al., 1998), the relevance of FGF-2 in inducing and
maintaining BBB integrity has been shown by different in vitro
approaches. Thus, FGF-2 is one of the astrocytic factors to induce
the BBB properties of immortalized bovine brain endothelial cells
(Sobue et al., 1999) and plays a significant role in maintaining the
integrity of the BBB during the progress of HIV-associated cere-
bral endothelial cell damage (Langford et al., 2005). In fgf-2 =/~
mice, a functional deficit of the BBB was related to reduced levels
of ZO-1 protein (Reuss et al., 2003). In addition, FGF-2 deficit
paralleled alterations in the content of intermediate filaments
within the endfeet of perivascular astrocytes of the gray matter,
but not in those within the white matter (Reuss et al., 2003). In
this scenario, our data suggest that FGF-2 could be upregulated
and secreted by perivascular astrocytes to improve cell fitness and
the integrity of the BBB within the gray matter of MS patients,
which is modified by changes in the inflammatory environment
in the milieu around blood vessels.
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In conclusion, the upregulation of FGF-2 in different areas
(MS lesions and NAGM) by different cell types (microglial/mac-
rophages and perivascular astrocytes, respectively) suggests a
general role of this growth factor in MS patient neurorepair (mi-
croglial/macrophages in areas of remyelination attracting OPCs)
and neuroprotection (perivascular astrocytes maintaining gray
matter BBB integrity). This, together with the demonstration that
the FGF-2/FGFR1/Anosmin-1 system is conserved among fore-
brain regions and throughout the lifespan (Bribidn et al., 2006;
Bribidn et al., 2008; present results) in parallel with its histo-
pathological implications in MS patients, points to it being con-
sidered as a future therapeutic target (pharmacogenetics, cell
therapy) to induce effective colonization of MS lesions by endog-
enous and/or exogenous OPCs and to give rise effective remyeli-
nation of lesions.
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