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1.  INTRODUCTION

Forested areas are increasing in many developed
countries due to the combined effects of more inten-

sive agriculture, abandonment of less productive
areas and increasing awareness regarding the envi-
ronmental importance of forests (Müller et al. 2009,
Kozak 2010, Lambin & Meyfroidt 2010, Baumann et
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ABSTRACT: Over the past decades, the altitudinal and latitudinal advance of forest lines has
increased due to global warming and the abandonment of less productive areas previously subject
to agricultural activities. The intensity and speed of the forest line advance also depend on numer-
ous physical, biological and human factors that are region-specific. It is important to fully under-
stand the mechanisms behind forest line behaviour, as existing studies do not report global fig-
ures. We selected 4 study areas in which to analyse the temporal and spatial behaviour of the
forest line and of forest cover based on selection criteria such as minimal human interference and
maximal representativeness at the European level. The sites were located in national parks that
were evenly spread across some of the dominant European mountain ranges such as the Pyrenees,
Alps and Carpathians, at comparable altitudes and latitudes, and with similar land cover propor-
tions in the year 1970. Methodologically, we used cloud-free Landsat satellite images that were
acquired in the same month during the growing season. A post-classification comparison tech-
nique, using all bands but the thermal one, was implemented to evaluate forest line behaviour,
while the accuracy of image classification was evaluated by random sampling. Four time frames
were used to evaluate forest cover behaviour in relation to the non-forested areas: 1971−1980,
1981−1990, 1991−2000 and 2001−2014. Also, climate and topography data were included in this
study, which enabled comparison and computation of dependence relations. Our results indicate
significant differences between the analysed areas. For instance, for the same reference period
(1981−1990), the greatest differences in terms of forest cover change were specific to the Austrian
Alps (28%), whereas the lowest differences were those from the Spanish Pyrenees (1%). Similar
forest line shifts were found in the Austrian Alps and in the Romanian Carpathians, whereas the
lowest altitudinal advancement was specific to the Spanish Pyrenees. According to this study, the
temperature trend could have significantly influenced tree line behaviour.
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al. 2011). In mountainous afforested areas, the dy -
namics in the montane−alpine belts, namely in the
tree and forest lines (limit of uppermost >2 m tall
trees, and limit of continuous forest [canopy cover of
>10%], respectively), are particularly relevant. Here,
climate influences ecological processes governing
dynamics in forest stands, but human land use has
also been a control factor for centuries (Gehrig-Fasel
et al. 2007). Owing to the climatic influence on the
tree and forest lines, they are regarded as environ-
mental change descriptors. In Europe, changes in
these boundaries have been observed (Gehrig-Fasel
et al. 2007) and the discussion on whether these
changes are related to human land use or climate is
ongoing. Therefore, it is in the public interest to mon-
itor forest changes within the montane−alpine belts,
and evaluate their relationship with altered climatic
features, particularly if multiple sites are considered,
allowing comparisons on a continental scale.

In general, information on changes in mountain
forest cover is not always publicly accessible. There
is still a lack of comprehensive knowledge of spa-
tially and temporally explicit forest cover dynamics,
especially across large areas and at sufficient spatial
detail to resolve the full range of forest change pro-
cesses (Griffiths et al. 2014). However, the technol-
ogy that enables full global monitoring and better
comprehension of the various properties of forest
resources is evolving, for instance the increasing
availability of remote sensing data. Satellite remote
sensing is frequently used to assess land ecosystem
dynamics, as it provides consistent measurements of
bio-geophysical processes, including natural and
anthropogenic disturbances (Jin & Sader 2005, Lin -
der man et al. 2005). The synoptic and regular cover-
age at short intervals of consistent remote sensing
data provides a valuable source for updated land
cover information necessary to monitor the type and
extent of environmental changes (Mas 1999). The
Landsat archive is among the most used data sources
for studying land cover changes, including deforesta-
tion, agricultural expansion and intensification,
urban growth, and wetland loss (Coppin & Bauer
1996, Woodcock et al. 2001, Seto et al. 2002, Galford
et al. 2008, Gartzia et al. 2014), due to its long record
of continuous measurement, spatial resolution and
near-nadir observations (Pflugmacher et al. 2012,
Wulder et al. 2012). For forests, these data have been
providing spatial and spectral details, allowing the
capture of forest attributes at adequate scales for
analysis since the 1970s (Griffiths et al. 2014). More
recently, continental or even global data analyses
with Landsat are feasible, due to advances in auto-

mated imagery pre-processing and processing meth-
ods, and data storage capabilities (Townshend et al.
2012). For instance, Hansen et al. (2008) produced 2
regional Landsat composites that aimed to detect for-
est changes in the Congo Basin, also integrating the
MODIS Vegetation Continuous Field product (Han -
sen et al. 2003) for classified training purposes. Pota -
pov et al. (2011) focused on boreal forest changes
between 2000 and 2005 in European Russia, using
composited Landsat data, and independently ob -
tained indicators of forest change. For mountain tree
line and forest line monitoring, Wang et al. (2006)
proposed a Landsat satellite-based monitoring that
considers the temporal response of continuous vege-
tation indices (e.g. normalised difference vegetation
index), while Klinge et al. (2015) combined Landsat
image classification and spatial modelling to under-
stand the distribution patterns. Both studies used
multi-temporal image analysis. Dynamics of moun-
tain tree lines and forest lines vary across the globe.
Previous studies reveal an average northward
advance of 156 and 71 m for birch and pine forest
lines in Norway during the 20th century, respectively
(Hofgaard et al. 2013). Shifts in tree lines were more
pronounced in birch (340 m yr−1), whereas pine
advance was very limited (10 m yr−1). In Russia’s
Khibiny Mountains, the mean tree line advance of
birch and pine was 29 and 27 m in altitude (0.6 and
0.5 m yr−1), respectively, between 1958 and 2008
(Mathisen et al. 2014). In the Italian Alps, tree lines
shifted upwards by 115 m between 1901 and 2000
(Leonelli et al. 2011). Overall, analysis of historical
and recent forest delineation data shows a very
restricted advance rate compared to the predictions
of dynamic global vegetation models (ACIA 2005,
Kaplan & New 2006).

Complex interactions between factors affects the
patterns of mountain tree lines (e.g. exposure to
wind, snow depth, animals, mass outbreak of insects)
and forest lines. Tree line responses to climate
change are dependent on a multitude of interacting
abiotic and biotic drivers in a site-specific manner
(Holtmeier & Broll 2005, Holtmeier 2009, Hofgaard et
al. 2012), with characteristics determined by multiple
variables (Holtmeier & Broll 2007, Hofgaard et al.
2012), dominated by temperature, precipitation,
wind and herbivory (Sveinbjörnsson et al. 2002,
Cairns & Moen 2004, Holtmeier & Broll 2005). A
change in the re generation capacity in the tree line
ecotone has caused its main features, forest line, tree
line and species line (limit of tree saplings and
seedlings) to move back and forth over time in accor-
dance with long- and short-term climate changes
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(Dalen & Hofgaard 2005, Payette 2007, Shiyatov et al.
2007, Holtmeier & Broll 2010, Chhetri & Cairns 2015).

Ameztegui et al. (2015) parameterised and used an
individual based, spatially explicit model of forest
dynamics (SORTIE-ND) to investigate the role of
 species-specific differences in juvenile performance
induced by climate change (juvenile growth and
recruitment ability) in the dynamics of mixed forests
located in the montane−subalpine ecotone of the
Pyrenees. Batllori & Gutiérrez (2008) found that past
and recent synchronous recruitment trends (mid-
19th century, second half of the 20th century) were
apparent at the tree line over the studied area of the
Pyrenean range. Altitudinal treeline ecotone, growth
and establishment has been occurring since the
1950s in the context of climatic warming and sub-
stantial land-use abandonment; both gradual and
step-like transition patterns in tree age and size
along the ecotone have been observed. Gehring-
Fasel et al. (2007) found a significant in crease in for-
est cover between altitudes of 1650 and 2450 m in the
Swiss Alps. Above 1650 m, 10% of the new forest
areas were identified as true upward shifts, whereas
90% represented in-growth, and both land use and
climate change were identified as likely drivers.
Most upward shift activities occurred within a band
of 300 m below the potential regional tree line, indi-
cating land use as the most likely driver. Only 4% of
the upward shifts were identified to rise above the
potential regional tree line, thus indicating climate
change. In this context, the present study aimed to (1)
quantify forest dynamics in the montane−alpine belts
over the past 40 yr, using 4 protected European rep-
resentatives of mountain forest ecosystems; (2) inves-
tigate whether there were significant changes in for-
est line and forest cover; and (3) understand the
relationship between these forest changes and cli-
mate modification over the past 40 to 50 yr. For this
purpose, multi-temporal analysis with Landsat satel-
lite data was performed. Regression models between
forest line and cover, using baseline climate data
from 1901 to 1970, were established.

2.  MATERIALS AND METHODS

2.1.  Study areas

The boundaries between the montane and alpine
belts in 4 European mountain areas (Fig. 1) were con-
sidered for analysis. The areas shared homogeneous
minimum human influence and protected status (in
the core areas of national parks), and were located in

the Austrian Alps, Slovak and Romanian Carpathi-
ans, and Spanish Pyrenees at similar altitudes and
comparable un-forested surfaces in 1970 (pastures,
alpine hollows, etc.): 19.945 ha (Ordesa, Spain),
18.945 ha (Nockberge, Austria), 10.436 ha (Tatra,
Slovakia) and 15.175 ha (Retezat, Romania). The lat-
itudinal range of the selected areas was 4° (between
43 and 47° N), while the general aspect (orientation)
was eastern−western.

The Ordesa and Monte Perdido National Park,
located in the central Pyrenees (Spain), covers 15 608
ha and was established in 1918. Altitude ranges
between 700 and 3355 m above sea level, and Monte
Perdido is Europe’s highest calcareous peak. Aver-
age annual rainfall is 1688 mm, and average maxi-
mum and minimum temperatures are 8.7 and 1.5°C,
respectively (Góriz Refuge Meteorological Station at
2200 m between 1992 and 2012, both included). Nat-
ural vegetation is dominated by coniferous forest
Pinus sylvestris, beech Fagus sylvatica and several
oak species at lower altitudes. At higher altitudes, P.
uncinata forests have been replaced by Buxus sem-
pervirens, Echinospartum horridum and Juniperus
communis shrublands, followed by alpine grass-
lands. At altitudes below 2100 m, grasslands were
created by humans to obtain pastures for livestock
during summer. Since the Middle Ages, the Pyrenees
forest line has been artificially lowered to increase
grassland availability for livestock summer pastures
(Monserrat-Martí 1992). But since 1930, a marked
reduction in agro-pastoral activities in mountain
areas has taken place (Alados et al. 2014, Gartzia et
al. 2016b), which has also affected the Ordesa and
Monte  Perdido National Park, where the grazing
activity was maintained as part of the conservation
programme (Gartzia et al. 2016a). Consequently, we
are facing important changes in the land cover in the
national park, mainly below the 2100 m, where
approximately 30% of shrubland has turned to forest
and 12% of grasslands have become shrubland.
Above 2100 m, the woody encroachment of grass-
lands is low (Gartzia et al. 2014).

The Nockberge Biosphere Park (Austria) was
established initially as national park in 1987. It covers
18 300 ha and is among the oldest and most interest-
ing upland formations in Europe. Altitude ranges
between 600 and 2441 m, with the highest peak at
Mt. Eisenhut in Styria (2441 m). The climate is conti-
nental dry, due to its central location in the European
land mass. Average annual rainfall and temperature
are 1100 mm and 7°C, respectively. The region boasts
the Eastern Alps’ largest pine P. syl ves tris, larch Larix
decidua and spruce Picea abies forests. Wind throw is

3



Clim Res · Special 34 · Advance View

the main factor that influences tree lines and their
advance.

The Low Tatra National Park (Slovakia) was cre-
ated in 1978 and covers 72 842 ha. The first attempt to
create this national park was between 1918 and
1921. Altitude ranges between 700 and 2043 m, with
the highest peak at Dumbier (2043 m). The moun-
tains are characterised by continental mountain cli-
mate on the slopes and a slightly cold climate at the

foothills. Average annual temperature is 4°C and
average annual precipitation 1200 mm. Dwarfed
pines P. mugo, mountain ashes Sorbus aucuparia and
small pines P. sylvestris occupy the park’s highest
areas. The constant interaction between natural
forces and human effects (mainly destructive activi-
ties) has significantly influenced the tree line of the
Tatra Mountains, (as well as of other important
mountains regions of Slovakia). As a general rule,

4

Fig. 1. Location of the mountain study sites considered in this study: Ordesa and Monte Perdido, Spanish Pyrenees; Retezat and 
Low Tatra in the Slovak and Romanian Carpathians; and Nockberge, Austrian Alps
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tree lines in Slovakian mountains are not situated at
their natural elevation. For example, nowadays, the
tree line is situated on average at altitudes of 1185 to
1430 m. Furthermore, strong winds affected the for-
est stands near the tree line from the Tatra Moun-
tains in 2004, which was followed by a damaging fire.

The Retezat National Park (Romania) was created
in 1935. With an area of 38 138 ha, it shelters one of
Europe’s last remaining intact old-growth forests and
the continent’s largest single area of pristine mixed
forest. Altitude ranges between 600 and 2509 m, with
the highest peak at Peleaga (2509 m). Average
annual temperature is 6°C and average annual pre-
cipitation is 1400 mm. The main tree line species are
Norway spruce P. abies, mountain pine P. mugo and
alpine stone pine Pinus cembra. Wind throw is the
main factor that influences tree lines and their
advance.

2.2.  Forest line and forest cover quantification
using satellite imagery data

The tree line was defined in this study as the pixels
classified as forest (according to the FAO definition)
near the non-forest pixels located in the upper area
of the massif. Assessing the expansion of forest line
over time is a typical problem of change detection,
and many approaches can be found in the literature
(Singh 1989, Almutairi & Warner 2010, Canty 2010,
Hecheltjen et al. 2014), each with specific advan-
tages and disadvantages.

Change detection methods can be grouped into 6
categories (Lu et al. 2004): algebra (which includes
image differencing, vegetation indexes, change vector
analysis); transformation (e.g. principal component
analysis); classification; advanced models (where im-
age reflectance values are often converted to physi-
cally based parameters); GIS approaches; and visual
analysis. Generally, it is not possible to establish a pri-
ori which method of change detection is the most con-
venient, so the choice is often made on a pragmatic
and application-driven basis (Coppin et al. 2004).

2.2.1.  Imagery pre-processing

The Landsat Data Continuity Mission (LDCM) and
the launch of the Landsat 8 platform in 2013 offer a
unique opportunity to perform monitoring by remote
sensing on a regional scale (Mandanici & Bitelli
2015). Owing to the large temporal extent (1972−
2014), remote sensing data were obtained from dif-

ferent Landsat sensors: Landsat Multispectral Scan-
ner (MSS) sensor for 1972 and 1980; Landsat Thema -
tic Mapper (TM) sensor for 1990; Landsat Enhanced
Thematic Mapper Plus (ETM+) for 2000; and Opera-
tional Land Imager (OLI) for 2014.

Sixteen Landsat scenes acquired during the vege-
tation season (May to September between 1973 and
2014) were used to evaluate temporal dynamics in
forest lines and forest covers across the study sites.
The scenes were obtained from the United States
Geological Survey (USGS) repository (http://earth-
explorer. usgs.gov/). In order to reduce noise caused
by different acquisition angles, seasons and re -
flectance features, scenes captured in different years,
but within the same vegetation season, were chosen
for each study area. In this study, we used L1T prod-
ucts which, according to producer, provide a high
radiometric and geodetic accuracy by incorporating
ground control points while employing a digital ele-
vation model for topographic displacement (Table 1).
The spectral coverage of band images is 0.42−
2.29 µm for OLI, 0.45−2.35 µm for ETM, 0.45−2.35 µm
for TM and 0.5−1.1 µm for MSS.

As reference cartographic material we used the
Soviet Topographic Map, a declassified map that was
created based on intelligence information gathered
in the Cold War period (Oberman & Mazhitova 2003).
The map was georeferenced based on the original
Gauss-Kruger grid reprojected in Universal Trans-
verse Mercator (UTM), World Geodetic System 1984
(WGS84) projection, with an average root mean
square error of 5 m.

2.2.2.  Image processing

Atmospheric correction. Images acquired on differ-
ent dates are affected to some extent by the presence
of haze and dust in the atmosphere, a fact that could
mask real changes in a given territory. In order to
reduce this effect, images were corrected atmospher-
ically using the European Cooperation in Science
and Technology (COST) model developed by Chavez
(1996), which employs the cosine of the solar zenith
angle, representing a good approximation of atmos-
pheric transmittance.

Topographic correction. To remove the relief ef -
fects, images were normalised using the Shuttle
Radar Topographic Mission (SRTM) digital terrain
model downloaded from http://earthexplorer. usgs.
gov/. SRTM is a key breakthrough in digital mapping
and provides a major advance in the accessibility of
high-quality elevation data worldwide.
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The sun-canopy-sensor (SCS) topographic correc-
tion method was used to remove topographic effects.
SCS correction (Gu & Gillespie 1998) is based on SCS
geometry and it can be expressed as:

(1)

where Lm is the normalised radiance, L is the uncor-
rected radiance, θ is the solar zenith angle, i is the
incident angle and α is the slope of the surface.

All images have been thus co-registered to UTM,
WGS84, and the accuracy of image registration was
assessed using topographic plans and local carto-
graphic products based on terrestrial measurements
and aerial surveys, according to the acquisition
period (Fig. 2).

Owing to the different characteristics of spectral
sensors (i.e. TM and ETM+) in the Landsat image se-
ries, we also corrected the spectral reflectance be-
tween images acquired by different sensors (MSS,
TM, ETM+ and OLI8). The empirical line approach for
reflectance factor retrieval from Landsat-5 TM and
Landsat-7 ETM+ was used for this purpose (Moran et
al. 2001). All operations were performed in ENVI 5.0.

2.2.3.  Mapping and change detection in forest line
and cover

Temporal and spatial dynamics in forest covers
and lines within the montane−alpine elevation belts

(>900 m) were measured using post-classification
comparison (PCC) change detection with independ-
ently classified images. This method compares,
pixel by pixel, 2 independent classified images
acquired on different dates, using a change detec-
tion matrix (Jensen 2004). PCC minimises the influ-
ence of sensor variation in the detection of change.
Results depend on the accuracy of initial classifica-
tions (Coppin & Bauer 1996). The method locates
changes and provides ‘from−to’ change information.
Here, the source for PCC change detection was land
cover data created for each Landsat scene. Land
cover classification was performed using a super-
vised classification with maximum likelihood algo-
rithm supported by forest management data that
provided information on the spatial distribution of
forest and other additional variables (e.g. stand age,
height or diameter). Two land cover classes were
considered (forest and pasture), and all bands were
used for classification, except the thermal band. The
approach included the 3 steps: training site selec-
tion, classification and assessment of results (Lille-
sand et al. 2008).

Reference data for training and validation were
collected based on high-resolution satellite images or
air photos available in Google Earth that cover the
complete study area (Knorn et al. 2009, Baudron et
al. 2011). We sampled 200 random training areas and
classified those as either forest or non-forest, based
on visual interpretation. Areas were considered
forested if tree cover exceeded 60% and forest

cos cos
cos

L L
i

m = ⋅ θ ⋅ α⎛
⎝

⎞
⎠
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Year                                              Ordesa            Nockberge         Low Tatra             Retezat Metadata
                                                                                                                                                              Band-to-band         Geometric 
                                                                                                                                                                registration         accuracy and 
                                                                                                                                                                  accuracy     registration successa

1970                                         Soviet Topo-      Soviet Topo-      Soviet Topo-      Soviet Topo-                –                          5 m
                                                 graphic Map      graphic Map      graphic Map      graphic Map

1980                                           1975-07-26         1979-05-22         1979-09-03         1980-09-21           0.2 pixel                 <40 m 
                                                   GLS 1975           Landsat 2           Landsat 2           Landsat 3              (90%)           (average 30.6 m)

1990                                           1989-07-17         1988-08-07         1990-07-16         1988-08-29           0.2 pixel                 <30 m 
                                                   GLS 1990           Landsat 5           Landsat 5           Landsat 5              (90%)            (average 22 m)

2000                                            2001-08-1          2003-06-30         2001-05-26         2000-08-22           0.2 pixel                 <30 m 
                                                   Landsat 7           Landsat 7           Landsat 7           Landsat 7              (90%)            (average 4.6 m)

2014                                           2014-07-22         2014-09-18         2014-08-03         2014-07-04           0.2 pixel                 <30 m 
                                                   Landsat 8           Landsat 8           Landsat 8           Landsat 8              (90%)            (average 8.3 m)

Spatial resolution (m)                      30                        30                        30                        30

Spectral resolution (µm)          Visible and       Visible, NIR,      Visible, NIR,      Visible, NIR, 
                                                        NIR                   SWIR                  SWIR                  SWIR

aAccording to Landsat metadata files

Table 1. Summary of satellite data used for multi-temporal mapping of forest dynamics in the mountain study sites. NIR: near-infrared 
band; SWIR: shortwave infrared band
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patches were larger than 1 Landsat pixel (900 m2)
(Kuemmerle et al. 2009).

Classification accuracy was evaluated through a
confusion matrix based on a minimum of 100 ground
truth sites for each image, other than the training
sites, established through a random sampling strat-

egy based on field recommendations (Congalton &
Green 2009, Vorovencii 2014). In order to emphasise
the changes in land cover classes over the 1970−2014
period, the classified images were compared by
cross-tabulation, which resulted in the change matrix
that estimates quantitative change (Fig. 3). Using

7

Fig. 2. Illustration of topographic maps (1970) and Landsat imagery used in the supervised mapping of forest with false colour
composites: 1980 (Landsat MSS 4-3-2), 1990 (Landsat TM 5-4-3), 2000 (Landsat ETM+ 7-4-3) and 2014 (Landsat OLI 7-5-4)
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these data, forest line and forest cover dynamics
were quantified (Fig. 4).

2.3.  Historical climate data

Climate data retrieved from Climate Explorer Util-
ity (http://climexp.knmi.nl) were used to pattern cli-
mate conditions across each study area from 1900 to
2014 (we took monthly station data, introducing the
coordinates of the national parks, from the 10 nearest
meteorological stations to that point). To reconstruct
climate condition trends during the analysed tree
line period (1970−2014), climate data between 1901
and 1970 were taken as a baseline. Climate conditions
were represented by average temperature, precipita-
tion and de Martonne aridity index (de Martonne
1926). However, preliminary correlation ana  lysis
showed an insignificant statistical relationship be -
tween growth in forest area and the last 2 variables,
which led to their exclusion from the analysis. This
was expected, as precipitation in forest line ecosys-
tems is not a limiting factor (Leal et al. 2007, Grytnes et
al. 2014)

2.4.  Statistical analysis

Temperature evolution was analysed using simple
graphical trends for the studied regions. The reference

mean temperature values calculated as simple arith-
metic means of periods covering 10 to 15 yr each were
used to plot the trends. A clear growth trend was ob-
served, so further analyses were carried out to esti-
mate the relationship between temperature in crease
and both forest cover growth and altitudinal forest
line migration. The percentage of forested cover
growth and the forest line altitudinal migration were
plotted versus the relative temperature increment
during the studied period. Furthermore, the depend-
ence between the percentage of forest cover growth
and forest line altitude migration, with respect to tem-
perature variation in the studied period, were mod-
elled using least-squares simple regression.

3.  RESULTS

3.1.  Forest line and forest cover dynamics across
the montane−alpine boundary

The error matrix obtained for each land cover clas-
sification is presented in Table 2. Overall accuracy
values reached the minimum average standard of
85% recommended by the USGS classification
scheme (Anderson et al. 1976), which indicates a
strong link between map classification and ground
reference data.

The accuracy values can be grouped (Congalton &
Green 1999) into (1) strong link (>0.80; >80%); (2)

8

Fig. 3. Analytical framework used for multi-temporal land cover analysis across the study sites with Landsat satellite scenes
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moderate link (0.40−0.80; 40−80%); and (3) weak
link (<0.40; <40%).

All study sites showed changes in forest line and
forest cover. Highest and lowest change in elevation
of the upper forest limit (altitude growing) occurred
in the Alps (Nockberge) and Pyrenees (Ordesa), re -
spectively. Surface forest growth indicated differ-

ences between sites. The largest forest expansion
was registered in the Alps (28%; Nockberge) and the
lowest in the Pyrenees (1%; Ordesa) for the period
1981− 1990. The largest forest line advance was
recorded in the Alps (Nockberge) and the Carpathi-
ans (Rete zat), while the lowest was found in the Pyre-
nees (Ordesa) (Table 3).

9

                             Ordesa (ES) Nockberge (AU) Low Tatra (SK)  Retezat (RO)
                                               PA             UA                   PA             UA                   PA              UA                  PA          UA 

1980                                        90            85.60                86.64          82.10                86.00           81.30               92.40       88.30
1990                                        85            78.40                84.70          79.40                89.50           83.40               90.30       84.20
2000                                        94            89.40                97.50          94.30                98.20           97.10               96.30       95.30
2014                                        95            91.50                88.12          98.70                96.30           95.20               96.40       96.20
Mean                          86.23                88.63                 89.25                  91.00
Kappa statistics          0.84                  0.87                   0.88                    0.90

Table 2. Summary of forest class accuracies (%) of land cover maps (see Fig. 4) obtained with maximum likelihood supervised
classification of Landsat satellite data (years 1980, 1990, 2000 and 2014), along with Kappa statistics. PA: producers’ accuracy; 

UA: users’ accuracy

Fig. 4. Spatial and temporal dynamics of forest line and cover in 4 European mountain sites obtained from supervised land
cover classification of Landsat satellite data between 1970 and 2015. Dynamics are represented using a 10 yr time-step interval
for (a) Ordesa and Monte Perdido National Park, Spain; (b) Nockberge Biopshere Park, Austria; (c) Low Tatra Park, Slovakia; 

and (d) Retezat National Park, Romania
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Forest expansion also varied across exposure
classes and study sites. In the Austrian Alps (Nock-
berge) and the Romanian Carpathians (Retezat), ex -
pansion was strongly skewed to northerly slopes,
while in the Slovakian Carpathians (Low Tatra), it
occurred mostly on southerly slopes (Table 4).

3.2.  Relationship between average annual
 temperature and forest line and cover dynamics

Historical climate data evidence an in crease in av-
erage annual temperature be tween 1950 and 2014
across all sites. Overall, the average increase was
1.1°C, with the Carpathian sites showing both the
highest (Low Tatra; +1.4°C) and the lowest (Retezat;

+0.89°C) increases (Fig. 5). In 3 of the
studied areas, mean temperatures of the
past 50 yr showed a continuously growing
trend (Table 3, Fig. 5). Regression models
showed strong linear relationships between
forest cover increment and altitudinal migra-
tion of forest line across all sites with respect
to mean an nual temperature rise (Fig. 5).
The increment of de pendent variables had a
lower magnitude in the Ro manian Car pa -
thians (Retezat), significantly contrasting
with the magnitude in the Alps (Nockberge),
which was the highest. Fig. 5 illustrates the
magnitude of the dependencies between de-
pendent and independent variables.

4.  DISCUSSION

In this study, we combined multi-tempo-
ral satellite image analysis and observed
the im pacts of climate on forest cover and
forest line dynamics in the  montane− alpine

Fig. 5. Estimation equations indicating trends, relationships and intensity
of dependence between the studied parameters for the 3 areas (N: Nock-
berge; LT: Low Tatra; R: Retezat). IP: increment percentage of forest; 

A: altitude; T: temperature

          Forest expansion       Altitude     Temp- 
                              (ha)         (%)               gain       erature 
                                                                  (m)           (°C)

Ordesa                                                                           
1901−1970               0              0                   0             4.45
1971−1980             243          1.22                 5             4.63
1981−1990             195          0.99                 4             5.25
1991−2000             874          0.48                18            5.79
2001−2014            3034         1.28                 5                6
                                                                                        
Nockberge                                                                    
1901−1970               0              0                   0              4.1
1971−1980            3204        16.91               90            4.29
1981−1990            4430        28.14               44            4.73
1991−2000            1601        14.15               34            5.29
2001−2014            1539        10.03                2             5.51
                                                                                        
Low Tatra                                                                      
1901−1970               0              0                   0             2.22
1971−1980             181          12.6                43            2.41
1981−1990               5             0.4                 10            2.81
1991−2000             271         21.68               40            2.91
2001−2014             183         18.69                1             3.62
                                                                                        
Retezat                                                                           
1901−1970               0              0                   0             4.36
1971−1980            1997        13.16               61            4.08
1981−1990             737          5.67                13            4.24
1991−2000             414          3.38                 5             4.54
2001−2014             962          8.12                17            5.25

Table 3. Summary of changes in forest line and forest cover
across the study areas between 1970 and 2014, and average 

annual temperatures registered during this period

Exposition                          Forest area growth (%)
                             Nockberge         Retezat        Low Tatra

N                                  18                     14                   15
NE                               18                     12                   12
E                                  11                     10                    7
SE                                 6                      11                   20
S                                    5                       9                    22
SW                                8                      11                   10
W                                 16                     14                    3
NW                              19                     20                    9

Table 4. Spatial distribution of the expansion in forest cover
(%) across topographic exposure classes in the study areas
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boundary across European mountains be tween 1970
and 2014. Four protected areas, distributed along a
west−east longitudinal gradient and enclosed in 3
emblematic European mountain ranges (Pyrenees,
Alps and Carpathians), were considered. These
areas were located in national parks that were cre-
ated before the oldest satellite images considered for
analysis. Therefore, human influence (cattle grazing,
tree cutting, etc.) in the period of analysis was min-
imised, and changes in forest cover and line were
mostly driven by natural processes. The influence of
natural disruptive factors (windfalls, fires, insect
attacks, etc.) was not ac counted for in this study. The
accuracy values of imagery classification were pre-
dominantly above the average standard (85%) sug-
gested by the USGS classification scheme (Anderson
et al. 1976) and in line with previous studies using
Landsat data in mountain regions (Kharuk et al.
2010, Hagedorn et. al 2014). Lower accuracy values
in some scenes, which can slightly influence the esti-
mations, are related to common factors influencing
multi-temporal satellite studies in mountain areas
(e.g. spatial resolution, atmospheric anomalies and
cloud cover), including in tree line studies (Wang et
al. 2006).

Forest change analysis revealed a considerable ex-
pansion in forest cover and altitudinal migration of
forest lines in the montane−alpine boundary across
all sites, particularly in the central eastern mountains.
The expansion of forest cover and increase in altitude
of the upper forest line are 2 common patterns in
Northern Hemisphere mountains in the past decades
(Bolli et al. 2006, Gehring-Fasel et al. 2007, Harsch et
al. 2009, Schickhoff et al. 2015). Both forest cover and
forest line were below their potential ranges
(Gehring-Fasel et al. 2007), especially in mountains
where humans have social and economic interests
(Motta et al. 2006), as in the case of our study sites.
The combination of atmospheric warming and de-
creased human activities at high altitudes promoted
forest cover expansion and forest line shifts (Motta et
al. 2006, Gehring-Fasel et al. 2007, Leonelli et al.
2011). Our patterns of upward shifts of the forest line
were not uniform and varied across sites (Harsch et
al. 2009). Registered upward shifts of forest lines
were below (Low Tatra), in line with (Retezat) or
above (Nockberge) the 70 to 100 m belt previously
proposed (Moiseev et al. 2010). Forest cover expan-
sion also differed among sites and topographic expo-
sure. While the western forest (Pyrenees) was slightly
altered, central and eastern sites showed a consider-
able forest cover expansion of up to 28%. Dynamics
in the forests of central and eastern Europe have been

widely discussed in the past few years (e.g. Gherig-
Fasel et al. 2007, Hartl-Meier et al. 2014, Pretzsch et
al. 2014, Munteanu et al. 2016).

The anthropogenic effect on forest expansion is
reinforced by asymmetric historical distributions of
the largest expansion periods across the study areas.
While in the Romanian Carpathians (Retezat), large
expansion occurred until the 1980s, in the Austrian
Alps (Nockberg) and the Slovak Carpathians (Low
Tatra), the high expansion periods were registered in
and after the 1990s. Moreover, large tree line upward
shifts occurred in the early 1980s. This asymmetry
within study sites under the same trend (increasing
average temperatures during the last century) sug-
gests that average temperature is not the only factor
impacting forest and forest line expansion. Indeed,
anthropogenic activity determines European moun-
tain tree lines (Dirnböck et al. 2003, Kuemmerle et al.
2008).

Several alpine tree line studies document altitudi-
nal shifts and tree density increase during the 20th
century (Kullman 1979, MacDonald et al. 1998), al -
though only 51% out of 166 sites reviewed by Harsch
et al. (2009) showed tree line advance. The main fac-
tors responsible for those changes were climate
warming and land-use modification. In the Pyrenees,
increases in temperatures between 1882 and 1970
were observed at the Pic du Midi meteorological sta-
tion (Bücher & Dessens 1991). In parallel, grazing
pressure has been declining drastically since the
1950s (Alados et al. 2014). In spite of these changes,
we did not observe the expected tree line upward
shift. Previous studies (Camarero & Gutiérrez 2004,
Camarero et al. 2015) also show that the tree line
remained static in the central Pyrenees, while tree
density increased within the ecotone.

A careful reading of the overall effects of mean
temperature increase on forest expansion (1.31°C;
1970−  2014) is therefore required (Körner 1998), as
alpine vegetation can tolerate temperature in creases
only between 1 and 2°C without major changes
(Theurillat & Guisan 2001), and the re sponse of the
tree line to observed climate warming is still glob-
ally inconsistent (Harsch et al. 2009, Schickhoff et
al. 2015). Nonetheless, a strong statistical relation-
ship between tree line expansion and annual
increased average temperatures was found, with
sites experiencing increased temperatures showing
a large advance in tree line. The temperature trend
is consistent with the general constant increasing
trend in average temperatures across European
mountain ranges (Kullman 2007, Leonelli et al.
2011, González de  Andrés et al. 2015). The impacts

11



Clim Res · Special 34 · Advance View

of temperature on tree lines are well known (Körner
1998), but the significant responses are mostly
related to early or late growing seasons (Rammig et
al. 2010, González de Andrés et al. 2015) or even
winter temperatures (Kullman 2007). Our findings
suggest that increasing annual average tempera-
tures favour the expansion of tree cover and line in
the Austrian Alps, Low Tatra and the Roma nian
Car pathians. Annual average temperatures may
influence tree cover and line due (to a lesser effect)
to factors affecting plant growth (e.g. wind, snow
cover), improvement of microsite conditions (Leo -
nelli et al. 2011, Pardo et al. 2013) and the favouring
of seed viability and seedling emergence at higher
temperatures (Kullman 2007).

In conclusion, rising mean annual temperatures in
mountainous European areas have influenced tree
line advance, especially in areas with reduced
human intervention (national parks). This mecha-
nism was stronger in the mountainous areas located
in central Europe (Alps, Carpathians) and weaker in
the warmer European areas (Pyrenees). However,
uncertainty in the definition of line position suggests
that interpretations should be carried out carefully.
The accuracy with which the location of forest lines
can be measured in historical data is influenced by
the georeferencing accuracy of the data sources and
the accuracy of the mapping technique in the defini-
tion of line position (Hofgaard et al. 2013). Our data
include estimated uncertainties of 0.2 pixels band-to-
band, which indicate a relative misregistration of less
than 1/3 pixel in the position of forest lines due to
misresgistration of Landsat imagery. In addition,
uncertainty due to misclassification of forest class has
also occurred. Mean uncertainty due to misclassifica-
tion amounted to 11.2%, with the Pyrenees (Ordesa)
presenting the higher values. Interpretation in sites
with limited change in forest line (e.g. Ordesa) and
high uncertainty therefore requires caution.

Overall, open access to historical forest maps and
multispectral satellite imagery archives combined
with accurate pre-processing and classification is
well suited to multi-site comparative analysis on for-
est line and forest cover dynamics. Comparative ana -
lysis of forest lines in protected areas can be a good
strategy to better understand the response of natural
systems to changes in climate conditions. The consid-
eration of novel variables can further enhance the
benefits of understanding mountain forest lines.
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