
ABT with Clause Learning for Distributed SAT ?

Jesús Giráldez-Cru, Pedro Meseguer

IIIA - CSIC, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
{jgiraldez,pedro}@iiia.csic.es

Abstract. Transforming a planning instance into a propositional formula φ to be
solved by a SAT solver is a common approach in AI planning. In the context of
multiagent planning, this approach causes the distributed SAT problem: given φ
distributed among agents –each agent knows a part of φ but no agent knows the
whole φ–, check if φ is SAT or UNSAT by message passing. On the other hand,
Asynchronous Backtracking (ABT) is a complete distributed constraint satisfac-
tion algorithm, so it can be directly used to solve distributed SAT. Clause learning
is a technique, commonly used in centralized SAT solvers, that can be applied to
enhance ABT efficiency when used for distributed SAT. We prove that ABT with
clause learning remains correct and complete. Experiments on several planning
benchmarks show very substantial benefits for ABT with clause learning.

1 Introduction

Problem solving is often assumed as a centralized activity: the instance to solve is
contained into a single agent, that has direct access to every detail of the instance to
perform the solving process. However, in distributed problem solving the instance is
distributed among several agents; each agent knows a part of the instance but no agent
knows the whole instance. Privacy is a main motivation for distributed problem solving.
When several agents collaborate for solving a problem, it may occur that some could see
others as potential competitors. In this case, it is of the greatest importance to assure
that the solving process is done without revealing more information than the strictly
needed. This is essential for real-world applications, where companies by no means
want to disclose sensitive information, of great interest for their business purposes.1

In the planning context, a common approach for classical planners when solving an
instance is (i) translating the instance into a propositional formula which is SAT (satis-
fiable) iff the instance has a solution, (ii) solving the formula by an ”off-the-shelf” SAT
solver, and (iii) retranslating the solution into planning terms. In multiagent planning
(MAP) [14, 3, 11], where privacy matters, this approach generates the distributed SAT
problem: a propositional formula is distributed among several agents, each contains a
part of the formula but none knows the whole formula.2 Intense communication allows
to synthesize a solution. This problem has been considered before [12, 15].
? Partially funded by TIN2013-45732-C4-4-P and TIN2015-71799-C2-1-P.
1 Privacy is not required in all distributed scenarios. But when present, it causes a major concern.
2 This approach differs from an existing meaning in the SAT community, where ”distributed”

usually means ”parallel”, and the main goal is finding efficiency gains with respect to central-
ized SAT.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/132610395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Jesús Giráldez-Cru, Pedro Meseguer

ABT [18] –that stands for asynchronous backtracking– is a distributed algorithm
that originally was presented for distributed CSP. Since SAT is a special case of CSP,
the ABT algorithm can be used to solve distributed SAT. It is a correct and complete
algorithm and offers a reasonable level of privacy, so ABT appears as a suitable can-
didate to solve MAP instances. We acknowledge the combination of distributed CSP
algorithms with other solving techniques [14, 8, 19] in the MAP context. Using exclu-
sively distributed constraint satisfaction algorithms has been explored [7]. In this paper,
we use ABT as the only algorithm for MAP, assuming that each agent handles a single
variable. The generalization to multiple variables per agent is later discussed.

The main contribution of this paper is to import clause learning –a very successful
technique to solve industrial SAT instances in the centralized case– into ABT to solve
distributed SAT. This is not trivial: one has to decide which clause to learn and who is
the learning agent, for each learning episode. Our approach considers that each time an
agent receives a backtracking it learns a new clause. This does not cause new messages
with respect to the original algorithm. We prove that this new version of ABT remains
correct and complete. In practice, it shows a much better performance than original
ABT on several planning benchmarks. An instance with more than eight hundred vari-
ables have been solved, which is a novelty in the performance of distributed algorithms,
often solving instances of more modest size (original ABT could not solve that instance
in a timeout of 10 hours).

2 Background

2.1 Definitions and Notation

A centralized CSP is defined by a tuple (X,D,C), where X = {x1, x2, ..., xn} is a
set of n variables taking values in a collection of finite and discrete domains D =
{D1, D2, ..., Dn}, such that xi takes value in Di, under a set of constraints C. A con-
straint indicates the combinations of permitted values in a subset of variables. A solution
is an assignment of values to variables that satisfies all constraints. The goal is to find a
solution or to prove that it does not exist. On the SAT problem, we recall the following
concepts from propositional logic: a literal l is a variable x or its negation ¬x; a clause
is a disjunction of literals; a formula φ in conjunctive normal form (CNF) 3 is a con-
juntion of clauses. A centralized SAT instance is defined by a formula φ in CNF, where
variables may take the values true or false. The goal is determining if there exists an as-
signment that evaluates φ as true. Notice that to satisfy φ, each clause must be satisfied,
so at least one literal in each clause must be true. The resolution between clauses A∨x
and B ∨ ¬x results into the clause A ∨B, where A and B are disjunctions of literals.

A distributed CSP is defined by (X,D,C,A, α) where (X,D,C) are as in the
centralized case, A is a set of agents and α is a mapping that associates each variable
with an agent. For simplicity, we assume that no agent controls more than one variable.
Each agent knows all constraints in which its variable is involved. It is not possible to
join all the information into a single agent. The solution is found by message passing.
A distributed SAT instance is defined by a tuple (φ,A, α), where φ is as in centralized

3 Any propositional formula can be translated into CNF in linear time.



ABT with Clause Learning for Distributed SAT 3

SAT, andA and α as in distributed CSP. Each agent knows the clauses where its variable
appears.

Defined in a centralized context, a nogood is an assignment (a conjunction of variable-
value pairs) that cannot be extended consistently into a solution [13]. A nogood ng is
a justification to remove the value of the deepest variable in the search tree mentioned
in ng. When all the values of such variable are removed by nogoods, one can perform
resolution among them to produce a new nogood [2, 13]. For example, let us assume
that Dy = {a, b} and both values are removed by the following nogoods,

(x1 = v1) ∧ (x2 = v2) ∧ (y = a)

(x2 = v2) ∧ (x3 = v3) ∧ (y = b)

If y is deeper in the search tree than x1, x2 and x3, one can resolve them to obtain the
new nogood,

(x1 = v1) ∧ (x2 = v2) ∧ (x3 = v3)

2.2 Centralized SAT Solving

Most of the modern (complete) SAT solvers are based on the DPLL procedure [10]. It
is a depth-first search algorithm; its core idea is branching in each variable (decisions),
assigning them a value, until all clauses are satisfied (then the formula is SAT), or until
a conflict is found and it backtracks to a new assignment. A formula is UNSAT if a
conflict is found for all assignments. It also includes the Unit Propagation (UP) rule.
This rule is triggered when a certain clause has all its literals but one assigned and the
clause is not satisfied. It forces this unassigned literal the value that satisfies such clause.
This may occur after every assignment (by decisions or by other propagations).

The Conflict-Driven Clause-Learning (CDCL) SAT solvers are inspired in the DPLL
algorithm, but they also include a wide variety of techniques [4]. One of them are the
clause learning mechanisms [16], that summarize in new clauses the conflicts that were
found in the past, in order to avoid them in the future. Empirically, it has been shown as
a key technique to solve real-world SAT instances.

A conflict occurs when all literals of a clause are assigned but the clause is still un-
satisfied. Hence, that (partial) assignment cannot satisfy the formula, and a new clause
can be learnt to avoid the same conflict in the future. The new clause is found by ana-
lyzing the implication graph, i.e., the graph that represents the decisions and propaga-
tions that provoked the conflict. See an example in Figure 1. A cut in the implication
graph can be seen as a conjunction of the links it cuts. Any cut in the implication graph
leaving the conflict in one side and all the decisions in the other side is an inconsis-
tent assignment; its negation produces the new clause to learn. From a conflict, many
clauses can be learnt. Experimentally, good performance has been found learning the
1-UIP clause [4] (see Section 3.2).

As a toy example, let us consider this formula with 3 clauses (ci stands for the i-
th clause): φ = (¬x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x3). Starting with the value false ,
x2 = false (by UP); decision x1 = false causes propagations x3 = true (by c2), and
x3 = false (by c3). So there is a conflict; the implication graph finds that x1 = false is
inconsistent, the clause to learn is simply (x1). At this point, x1 = true and x2 = false
(both by UP) satisfy the set of clauses, for any value of x3. This is a solution for φ.



4 Jesús Giráldez-Cru, Pedro Meseguer

2.3 ABT

Asynchronous Backtracking (ABT) [18] was the pioneer asynchronous algorithm to
solve distributed CSP. ABT is a distributed algorithm that is executed autonomously in
each agent, which takes its own decisions and informs of them to other agents; no agent
has to wait for decisions of others. When solving a problem instance, there are as many
ABT executions as agents. A telegraphic description follows (for details, consult [18]).

ABT computes a global consistent solution or detects that no solution exists in finite
time; it is correct and complete. ABT requires agents to be totally ordered. A binary
constraint is translated into a directed link, from the higher to the lower agent that
it connects.4 An ABT agent keeps its agent view and nogood store. The agent view
is the set of values it believes are assigned to higher agents connected with it. The
nogood store keeps the nogoods received as justifications of inconsistent values. Agents
exchange individual assignments and nogoods. When an agent cannot find any value
consistent with its agent view, because of the original constraints or because of the
received nogoods, a new nogood is generated from its agent view, and it is sent to the
closest agent in the new nogood, causing backtracking. If an agent receives a nogood
including another agent not connected with it, the receiver requires to add a link from
that agent to itself. From this point on, a link from the other agent to itself will exist,
receiving the values taken by that agent. ABT uses these messages:

1. OK ?(agent , value). It informs agent that the sender has taken value as value.
2. NGD(agent ,ng). It informs agent that the sender considers ng as a nogood.
3. ADL(agent). It asks agent to set a direct link to the sender.

3 ABT Enhanced with Clause Learning

ABT can solve distributed SAT. Clause learning, developed for centralized SAT, can
also be applied to ABT for solving distributed SAT, causing very substantial gains.

3.1 Clause Learning

When ABT solves a distributed SAT instance, let us consider a Boolean variable x of
φ with a conflict, as depicted in Figure 1. A conflict appears when both possible values
of x are forbidden, as effect of the assignments of previous variables in the total order:
false is forbidden by assig1, true is forbidden by assig2. We say that,

assig1 ∧ (x = false)

assig2 ∧ (x = true)

are nogoods removing the values of x. In SAT terms assig1 corresponds to the links
pointing to x = true in the implication graph, while assig2 corresponds to the links
pointing to x = false . Both assignments cause the conflict; their conjunction assig1 ∧
assig2 is the new nogood found by x. It corresponds to the cut that has in its right

4 ABT can also deal with non-binary constraints; it is described in [5].



ABT with Clause Learning for Distributed SAT 5

x=true 

x=false conflict 

assig1 

assig2 

Fig. 1. The dotted line does the cut in the conflict graph.

side the conflict variable only. It is easy to see that the negation of this conjunction
¬(assig1 ∧ assig2) is a logical consequence of the original formula5, so we can add
the negation of this conjunction –that from now on we call new learnt clause– to the
formula φ without altering its satisfiability.

Which agent has to learn this new clause? Let y be the agent to which x backtracks
to, after discovering the conflict. We know that y is the closest agent to x in the new
clause. In addition, y is connected (or it will be connected, after the reception of the
NGD message by the use of ADL messages) with all the other agents in the new clause.
So y is the right agent to store and evaluate the new clause: it is the last in the ordering
among the new clause agents and it has direct connections with all of them. It is enough
to store the new clause in a single agent: the ABT termination condition [18] cannot be
achieved if there is at least one unsatisfied clause in an agent.

There is a drawback: if a new clause is added after each backtracking, memory may
grow exponentially. This drawback also exists in centralized SAT solving. To avoid the
extra overhead caused by keeping an increasing number of clauses in large formulas,
some clauses deletion policies have been proposed [4, 16, 1]. However, in our exper-
imentation we detected no memory overhead (each SAT instance was solved using a
maximum of 4GB of RAM). For this reason, we did not implement any clause dele-
tion policy in our algorithm. The applicability of these policies to the proposed solution
remains for future work.

In CDCL SAT solvers, clause learning is usually used jointly with non-chronological
backtracking (the backjump destination and the learnt clause are related). In the dis-
tributed case, things are different because the agent that finds the conflict does not see
the whole formula, only a subset of clauses. Then, it cannot do a complete conflict
analysis to determine where to backjump. Since ABT agents have a limited view of

5 If the original formula is satisfiable, variable x in the satisfying assignment will take some
value, either true or false. But that assignment necessarily has to satisfy ¬assig1 ∨ ¬assig2,
otherwise x will have no value. So ¬assig1 ∨ ¬assig2 = ¬(assig1 ∧ assig2) can be legally
added to the formula without changing its satisfiability. If the original formula is unsatisfiable,
any other clause can be added to it, because the resulting formula will remain unsatisfiable.



6 Jesús Giráldez-Cru, Pedro Meseguer

the whole problem, the agent that finds a conflict backtracks to the closest agent in the
nogood obtained from that conflict, following the backtracking policy of original ABT.6

Adding clause learning to ABT maintains its correctness and completeness, as we
prove in the following theorem.

Theorem 1. ABT enhanced with clause learning remains correct and complete.

Proof. ABT is correct and complete [18]. ABT with clause learning on φ finds:

1. A satisfying assignment, which is a correct solution for φ′ (the set of clauses in
memory when the solution was found). This is also a solution for φ since φ ⊆ φ′;

2. There is no satisfying assignment (the two values of a variable have been uncondi-
tionally removed). Since all added clauses are logical consequences of φ, ABT on
φ′ would not remove any value that would not been removed by ABT on φ.

On completeness, the same argument (2) applies: the added clauses are logical con-
sequences of φ, so they will never remove any value that would not have been finally
removed by φ. So ABT with clause learning is correct and complete. �

In summary, we propose a new version of ABT that performs clause learning. Each
time a NGD message reaches an agent, it learns the clause that is the negation of the
nogood contained in that message. These learnt clauses can be seen as new constraints
that summarize the conflicts found during the search. Each conflict is found after seve-
ral wrong decisions, resulting in an inconsistency. Therefore, learning the reasons of a
conflict allows us to detect it in the future in earlier stages, i.e., reducing the number
of wrong decisions that lead to the same conflict. It is worth noting that this does not
increase the number of messages used by normal ABT. To the best of our knowledge, it
is first time that clause learning occurs in the distributed context. This novel approach
keeps correctness and completeness of original ABT.

3.2 Learning 1-UIP Clause

Which is the right clause to learn? In centralized SAT solving, a 1-UIP clause seems to
be the best practical choice. This clause is related to the decision level of each variable
involved in the implication graph. A decision level contains a decision variable and all
variables propagated by it (forced by UP), and it is increased in each new decision.
Formally, a 1-UIP clause is the first cut in the implication graph (from the conflict to
the decision variables) that only contains one literal of the last decision level (i.e., the
decision level of the conflict). Notice that the implication graph may contain several
1-UIP clauses. In ABT, the first learnt clause is not necessarily the 1-UIP. However, we
show that in each conflict a 1-UIP clause is learnt by some agent.

Theorem 2. For a single conflict, ABT with clause learning for distributed SAT learns
exactly all possible clauses that can be derived from the implication graph of that con-
flict, if the total order of the variables in ABT is the same as in the implication graph.

6 In the toy example of 2.2 with lexicographic variable ordering, ABT executed on x3 detects
the conflict but it knows c2 and c3 only (the clauses where x3 appears). It finds the nogood
¬x1 ∧ ¬x2. Then, x3 backtracks to the deepest variable in the nogood, that is x2.



ABT with Clause Learning for Distributed SAT 7

Proof. Each time a CDCL SAT solver finds a conflict, there exists in the last decision
level at least one variable whose value was forced by UP, and (at least) an unsatisfied
clause with no unassigned literals. This is the conflict clause. Notice that the implication
graph of this conflict defines a total order among the variables involved. Applying reso-
lution between this conflict clause and the clause that forced (by UP) the last variable in
the ordering, we obtain a new clause (which is a logical consequence from the formula,
and thus it can be added to the formula without altering its satisfiability). Using this
resulting clause, this step can be repeated as many times as variables were assigned by
UP, obtaining a new learnt clause at each step. The last possible learnt clause contains
the decision variable of the last decision level.

Let us assume now an ABT algorithm whose agents order is the same as the one
in the implication graph of a certain conflict. When an agent (variable) finds a con-
flict, there exists a pair of clauses that cannot be satisfied under its current agent view.
The generated nogood ng is the resolvent between these two clauses, which is exactly
the first possible learnt clause in the implication graph, and it is learnt by the highest
priority agent in ng. If this agent has one of its values forbidden by another clause ω
(it corresponds to a variable assigned by UP in a CDCL), it will apply resolution be-
tween ng and ω, and will send the resolvent to another agent, which will learnt this new
clause. Hence, these clauses are exactly the cuts in the implication graph. This process
will be repeated till the agent which receives the nogood has no forbidden values (it
corresponds to the decision variable of the last decision level in a CDCL), and this is
exactly the last clause that can be learnt by a CDCL. �

Assuming that the total order used by ABT is the same the the total order in the
implication graph is a strong assumption, and reduces the effect of UP in ABT with
respect to CDCL SAT solvers. However, this restriction is imposed in the original ABT.

Corollary 1. ABT for distributed SAT with clause learning learns a 1-UIP clause.

Proof. One of the derived clauses from a conflict is a 1-UIP clause. As ABT learns all
possible clauses from a conflict (Th.2), one of them is precisely a 1-UIP clause. �

Therefore, after a conflict this approach assures that some agent has learnt a 1-UIP
clause, although we do not know which agent has done it.

3.3 Example

Let us consider the following SAT formula φ:

(x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ (x2 ∨ ¬x4) ∧ (x3 ∨ x4 ∨ x5) ∧ (x3 ∨ x4 ∨ ¬x5)

Let us summarize the performance of ABT with clause learning in φ, considering an
initial lexicographical ordering of its variables; ci stands for the i-th clause of φ. We also
consider that it first assigns the value false to a variable if there is no nogood forbiding
that value. We can deduce the following facts: 7

7 For simplicity, we do not give the trace of ABT, which is quite long.



8 Jesús Giráldez-Cru, Pedro Meseguer

1. Decision x1 = false causes the propagations x2 = false (by c1), which in turn
causes the propagations x3 = false (by c2) and x4 = false (by c3). There is a
conflict in x5, which triggers a cascade of backtrackings (from x5 to x4, from x4 to
x3, from x3 to x2, from x2 to x1). In these backtrackings, the algorithm learns the
following clauses: cl1 = (x3 ∨ x4), cl2 = (x2 ∨ x3), cl3 = (x2), cl4 = (x1).

2. Clause cl4 is unit so x1 = true (by UP); the same occurs with x2 = true . Decision
x3 = false causes the propagation x4 = true (by cl1 ). This satisfies clauses c4 and
c5, with the decision x5 = false . The original clauses are satisfied, this assignment
is a solution for the formula.

Observe that learnt clauses help to prune the search tree, avoiding traversing zones
that do not contain any solution. Clause cl3 = (x2) avoids exploring x2 = false which
does not drive to any solution. After the propagation x2 = true and the decision x3 =
false , clause cl1 = (x3 ∨ x4) forces x4 = true , avoiding x4 = false which does not
drive to any solution. Clauses cl1 and cl3 have been learnt under x1 = false , and they are
used when exploring x1 = true . Without clause learning, ABT would have to traverse
a larger search tree. In addition to visiting more nodes, more messages were exchanged
among the agents, messages that do not lead to any solution. It is worth noting that
the nogood (¬x3 ∧ ¬x4) (that corresponds to the learnt clause cl1 ) was recorded as a
justification of the removal of value false for x4. Original ABT would have removed
that nogood after backtracking to x3.

4 Experimental Results

We evaluate the performance of ABT with clause learning (=ABTCL) against plain
ABT, in terms of communication cost (total number of messages exchanged among
agents) and computation effort (equivalent non-concurrent constraint checks, ENC-
CCs). Upon receipt of a message msg from another agent, the receiving agent ag up-
dates itsENCCC counter as: ENCCCag = max{ENCCCag ,ENCCCmsg +1000}.8
In a distributed scenario, exchanging messages among agents has a much higher cost
than any other operation performed by an agent without communication.

We have used some planning benchmarks from the SAT Competition 2005 and from
the SATLIB repository.9 Moreover, we have generated a set of benchmark composed
of 100 classical random 3-CNF formulas with 50 variables and 200 clauses. In Table 1,
we present the results, on average, for each benchmark with lexicographic variable or-
dering. Each version of ABT was run in our simulator with a timeout of 10 hours (to
allow plenty of time for the execution of original ABT) with a limit of 4GB of RAM
memory per instance. Remark that we are only reporting the results for the instances
that were solved by both ABT versions (original ABT and ABT with clause learning)
discarding those that could not be solved by any of them in the established timeout
of 10 hours.10 On all the planning instances, the benefits of ABT with clause learning

8 Exchanging a message has a cost of 1000 ENCCC. We choose such arbitrary value to empha-
size that sending a message is much more costly than performing internal CPU operations.

9 http://www.satcompetition.org/ and http://www.satlib.org/.
10 Except in the Ferry benchmark, where we report one instance unsolved by ABT in the timeout.



ABT with Clause Learning for Distributed SAT 9

#solved #messages ENCCC
Benchmark #inst ABT ABTCL ABT ABTCL ABT ABTCL

Depots 8 5 5 120101314.60 12953075.60 98746867.40 1578372.60
DriverLog 20 11 11 56698280.45 19969830.64 49797937.36 3761396.55
Ferry 18 0 1 - 625177269.00 - 110158150.00
Rovers 11 9 9 21674815.78 4720008.11 33090165.44 1724779.33
Satellite 10 5 5 329448853.20 103446296.00 580921823.00 10399030.00
Blocksworld 7 5 5 24245647.40 16771146.20 16041447.80 2328836.80
Logistic 4 1 2 236392659.00 7370661.00 670032346.00 5043248.00
random 100 100 100 487734.01 335262.44 3692305.51 1022613.69

Table 1. Results as the number solved instances, number of messages exchanged and ENCCCs,
on average per each benchmark, solved by both algorithms in the timeout.

are clear, in both #messages and ENCCCs (arriving to savings of orders of magnitude
in some cases). It is worth mentioning that ABT with clause learning has solved an
instance with more than one eight hundred variables (843 variables and 7301 clauses,
found as logistics/logistics.b.cnf), while original ABT could not solve it
in the timeout (because of that, it is not recorded in Table 1). To the best of our knowl-
edge, it is first time that a distributed algorithm solves an instance of such size. Since
all planning instances reported in Table 1 are satisfiable, we also experimented with
unsatisfiable formulas, using classical random 3-SAT instances. We experimented with
100 random instances (51 satisfiable, 49 unsatisfiable) of 50 variables and 200 clauses.
Results for this class also indicate that ABT enhanced with clause learning performs
clearly better than original ABT.

5 Discussion and Conclusions

We have focused on ABT, while other efficient algorithms exist for distributed con-
straint solving. Why? We consider that clause learning is rather independent to the
techniques used by existing algorithms, so it is expectable that, in the case that these al-
gorithms were combined with clause learning, they would also increase their efficiency.
Here we are using ABT as baseline, in order to show the benefits that clause learning
may cause when included in a distributed constraint algorithm, although we believe that
results of the same kind could be observed when clause learning is combined with other
algorithms. A similar reasoning applies to heuristics.

We assumed the simplifying assumption of one variable per agent. Under this as-
sumption we have shown how clause learning produces an important improvement in
the communication cost among ABT agents. We are aware that the natural translation
of a multiagent planning instance into a distributed propositional formula may assign
several Boolean variables to the same agent. There are two classical reformulations,
compilation and decomposition, that allows to comply with this assumption. We skip
details because space limitations, the interested reader is addressed to [17, 6, 9]. How-
ever, these reformulations imply some drawbacks. As future work, we plan to extend
this approach for agents with several variables without using any reformulation.



10 Jesús Giráldez-Cru, Pedro Meseguer

To conclude, we have presented ABT enhanced with clause learning, a new version
of ABT for solving distributed SAT. We stress the inclusion of the powerful technique of
clause learning. To the best of our knowledge, it is first time that clause learning is com-
bined with a distributed algorithm. Interestingly, ABT with clause learning maintains
the correctness and completeness of the original ABT. We have proved that a 1-UIP
clause, the one most preferred in the centralized SAT, is learnt by some agent after a
conflict. Experimentally, we observe that clause learning causes a substantial improve-
ment in performance, with respect to the original algorithm when tested on planning
benchmarks. ABT with clause learning can be useful for multiagent planning, and for
other domains (as scheduling) where problems have to be solved distributedly.

References

1. G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT solvers. In
Proc. IJCAI’09, pages 399–404, 2009.

2. A. Baker. The hazards of fancy backtracking. Proc. AAAI’94. 288–293, 1994.
3. M. Benedetti and L. C. Aiello. SAT-based cooperative planning: a proposal. In Mechanizing

Mathematical Reasoning. 2005.
4. A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability. IOS Press,

2009.
5. I. Brito and P. Meseguer. Asynchronous backtracking for non-binary disCSP. In ECAI-06

Workshop on Distributed Constraint Satisfaction, 2006.
6. D. A. Burke and K. N. Brown. Efficient handling of complex local problems in distributed

constraint optimization. Proc. ECAI’06. 701–702, 2006.
7. P. Castejon, P. Meseguer, and E. Onaindia. Multi-agent planning by distributed constraint

satisfaction. Proc. CAEPIA’15. 41–50, 2015.
8. K. Dakota and A. Komenda. Deterministic multi agent planning techniques: experimental

comparison. Proc DMAP (ICAPS workshop). 43–47, 2013.
9. J. Davin and P. J. Modi. Hierarchical variable ordering for multiagent agreement problems.

Proc. AAMAS’06. 1433–1435, 2006.
10. M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-proving.

Commun. ACM, 5(7):394–397, 1962.
11. Y. Dimopoulos, M. A. Hashmi, and P. Moraitis. µ-SATPLAN: Multi-agent planning as

satisfiability. Knowledge-Based Systems, 29:54–62, 2012.
12. K. Hirayama and M. Yokoo. Local search for distributed SAT with complex local problems.

Proc. AAMAS’02. 1199–1206, 2002.
13. G. Katsirelos and F. Bacchus. Unrestricted nogood recording in CSP search. Proc. CP’03.

873–877, 2003.
14. R. Nissim, R. Brafman, and C. Domshlak. A general, fully distributed multi-agent planning

algorithm. Proc. AAMAS’10. 1323–1330, 2010.
15. E. Ruiz. Distributed SAT. Artificial Intelligence Review, 35:265–285, 2011.
16. J. M. Silva and K. Sakallah. GRASP - a new satisfiability algorithm. Proc. ICCAD. 220-227,

1996.
17. M. Yokoo. Distributed constraint satisfaction. Springer–Verlag, 2001.
18. M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction

problem: Formalization and algorithms. IEEE Trans. Know. and Data Engin., pages 673–
685, 1998.

19. Y. Zhang and S. Kambhampati. A formal analysis of required cooperation in multi-agent
planning. Proc. DMAP’14 (ICAPS workshop). 30–37, 2014.


