PERICLES - Promoting and Enhancing Reuse of Information
throughout the Content Lifecycle taking account of Evolving
Semantics

[Digital Preservation]

DELIVERABLE 5.3

Complete Tool Suite for Ecosystem Management and Appraisal
Processes

cPericles

FP7 Digital Preservation

GRANT AGREEMENT: 601138
SCHEME FP7 ICT 2011.4.3
Start date of project: 1 February 2013

Duration: 48 months

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Dissemination level

PU | PUBLIC X

PP | Restricted to other PROGRAMME PARTICIPANTS
(including the Commission Services)

RE | RESTRICTED

to a group specified by the consortium (including the Commission Services)

CO | CONFIDENTIAL

only for members of the consortium (including the Commission Services)

© PERICLES Consortium Page 2 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Revision History

‘ Date Description / Reason of change
V0.1 28.09.16 | Initial version of final draft, as compiled AC
from Google Doc contributions.
V0.2 28.09.16 | Further content added AC
V0.3 28.09.16 | Further content added AC
V0.4 29.09.16 | Finalising the document AC, JB
V1.0 30.09.16 | Document to KCL for submission JB
V1.1 04.10.16 | Small changes in response to internal FC, AC
review.

Authors and Contributors

Authors
Partner ‘ Name
KCL Simon Waddington
KCL Alastair Gill
UEDIN Adam Carter
UGOE Johannes Biermann
UGOE Anna Eggers
ULIV Fabio Corubolo
ULIV Jéréme Fuselier
uLIv Paul Watry
Contributors
Partner ‘ Name
UEDIN Rob Baxter
CERTH Efstratios Kontopoulos
uLIv Maureen Watry

© PERICLES Consortium Page 3 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

© PERICLES Consortium Page 4 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Table of Contents

L. EXECULIVE SUMIMIAIY .. ittt ettt e e e ettt e e e e e e tab s e e e e e aba e s e eesaabaeeeaeetasannseeeseessnnnss 12
2. Introduction & RAtIONAIEcc.veiiiiiieiiiee ettt ettt et e e s sare e e saree e 14
2.1. The PERICLES Functional Archit@CtUrec.eioiiiiiiiii ettt e 14
2.2. PERICLES COMPONENTS ..ciiiiitiiieiiieiiiiie ettt e et e e e e et s e e e e e e e s e e e e aabaa e e e e eeaabaeeeeseeanannns 15
2.3. Context of this Deliverable Productioncocueiiiiiiiiieiiiiie e 18
2.3.1. What to expect from this dOCUMENT........ccviiiiiiiiicieeeee e 18
2.3.2. Relation to other work packages and OUTPULccuvviiieiiieei e 19

2.4, DOCUMENT SEIUCTUIE L..euiiiiiiiiiiiiii e et e e e e s e 19

3. The Entity Registry Model REPOSITONYuuiiiiiiiiieii ittt e e e e e e e e et arrraeeeaaeeeeean 21
3.1. Background & MoOTiVatioNeeeiiiiiii ittt e e e e e e e e e et r e e e e e e e e e e e e annrrraaaaees 21
0 I UL =T o To I ¥ T o Yot o1 0 T=1 L1 YU UUUUR 21
3,21, TRE ERMR API ettt et ettt e st e s mbe e e sabe e e sateeesabeeesanes 23
3.2.2. EXQMPIE USE CaSES.....uiiiiiiiiiiiieeeeeeeeeittttteeee e e e e e e e e eeaatbaaeeeeaaaeeeeessastssssaaeeaaeessesssnsssrsasaees 23

3.3, Design & IMPIemMENTATIONuuiiiiiiii et e e e e e e e e st r e e e e e e e e e e e e e eanarsraaeaees 24
e T R 0 01 o [=T 0 g =T a1 €= 4 (o) o TP UUUR 24

3.4, Obtaining the ERMR........eeiiiiieiiieee ettt e e e e e e e e e e bbb e e e e aaeeeeeeeansrsraaeaeens 30
TR T @o 1 Tol [V o s D O TP P TSV PP UPPOTOPPPPPRIN 30
N o] 1oV =X [oY S UUT 31
4.1. Background & MOtiVatioNuuieiiiiiiiiicccciiiie et e e e e e e et rre e e e e e e e e e e e aararaaeaees 31
oy B U LY Y=Y o o I SV o T o) o F=1 L AU UUURR 31
4.2.1. Templates & PoliCY MOUEuuuiiieiieeiieecetee e e e e e e e e e e e e e e e e e e annens 33
4.2.2. Integration with the Ecosystem and Process EXeCULIONceeeeeeeeveciiiiiniiieeeeeeeeeeeeeinnns 34

4.3. Design & IMpPlementationcueeeiiii it e e e e e e e e e e e e e e et rraaaae s 35

T T I Vol 1 4 Y01 U] o T TSP TPUUUPPPPPRR 35

4.4, Obtaining the POliCY EQITOruuuiiiiiiii ittt e e e e e et rrr e e e e e e e e e e e sanraraaeaees 36
Y o] [ol [V1Y [o O TP PP PSP PP P PP PR PPPPPRIN 36
5. Technical APPraisal TOOI ... e e e e e e r e e e e e e e e e e e eaabtrbaeaeeaaaeeaeeas 37
5.1. Background and MOTIVatioNcccceiii ittt e e e e r e e e e e e e e e et raaaae s 37
I B UL =11 o Vo B ¥ T Yot d o1 0 T=1 L1 oYU SRR 38
5.3. Design and IMplementation. ... e e e et e e e e e e e e e et rraaaaees 38
LTS 70 B Ko To] BT o o 11 £ Tot { U o DO O PO U TSP PP 38
5.3.2. User Interface: FUNCLIONAl DESIZNuuiiiiiiiieeeee ettt e e e e e e e e e e e e sararraaee s 40

© PERICLES Consortium 5/152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

5.3.3. User Interface: Visual DESIZNcccoveeiiiiiiiiieeee et e e e e e e
5.3.4. User Interface Implementationccccoviieeeeeeiii e
5.4. Obtaining the Technical Appraisal TOO!cevviiiiiiiiiciiiiiiieee e
5.5, CONCIUSION ettt ettt e st e st e e sbeeesbbeesbeeesneeanans
6. ECOBUIET TOOI .ottt ettt et e et e s sbee e e sab e sbaeesnbeeeaes
6.1. Background and Motivationcoccciiiiiiiiiie e e
6.2. Use and FUNCLIONAIITY ...uuviriiiiiiiii ettt e e e crrrrrae e e e e e e e e e
6.3. Design and Implementation........ccocciiiiiiiii e
(e T T U £ 1 =38 o o =3 1 U 1 SRR
6.3.2. USING ThE JAVA APl ...ttt e e e e e e aaa e e e e as
6.3.3. Example use in the PERICLES Projectcccccceeeeeeeeeeicciiiiiiieeee e
6.4. Obtaining the ECOBUIIAETcviiiiii ittt e e e e e
6.5. Conclusion and fUtUre Plans ... e e

7. Approaches for Policy, QA, Model Driven Preservation and Change Management

7.1. Final Policy Model and GUIdElNESuvvvieeiieiiiiiicciiieeee e e e e
7.1.1. Modelling Ecosystems for Policy Compliance and QAcccccceeevvcnvrinieennnn.
7.1.2. Top Down Policy Implementation Methodologyccccceveeeeeeeiiiccciriiieeenen.
7.1.3. Final version of the Policy model..........cccoveieeeiiiiic e,
7.1.4. Quality Assurance Criterion Model........ccccueeeeeeiiieieiiiciiiiieeee e
7.1.5. Integration of the Policy Model into the Digital Ecosystem Model...............

7.2. Rule-Based Change Management for Ecosystem and Policy..........cccovveveeeeeennnnnn.
7.2.1. Requirements and Functional Description........cccccoccciiiiiiieeieee e,
7.2.2. Detailed methodology descriptionccccceeeeeeieeieiiiiiiiiieeee e,
7.2.3. Methodology description for policies dependant on two entities
7.2.4. Methodology Descriptions for Policies Dependent on a Single Entity...........
7.2.5. Conclusions for Rule-Based Change Managementccccceeeeeeeeeecnvvnneeennnnn.

7.3. Quality Assurance for Semantics and User Communities...........occccvvivieeeeeeeeeennn.
7.3.1. Drift Threshold for semantic and UC quality assurance.........cccccoeecvvvvvveeennnn.
7.3.2. Monitoring change in SEManticscccoviiiieiie i
7.3.3. Monitoring change in User CommuUNIty.....cccccceeeeeiiiiiiiiiiiieeeeee e eceivvveeeeeean.

7.4. Prototypes for supporting change in technology, semantics and user communities

728 TR e ol U T o HO PRSP
8. APProach 10 APPraisalcccccuiiiiiiiiiee e e a e e e e e e
8.1. Objectives and definitionscccieiei i

© PERICLES Consortium

6/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

8.2, NAITATIVES ..t e e
8.2.1. Digital art and MeEdia......cccuviiiiieee e aa e e
A Y o 1= Yol = I of 1= o [of < S O PUPPPTPPN

e TR 241 0/ o 113U U PRSRURR

8.4. Risk assessment WOrKfIOWccueeiiuiiiiiiiiiiiiieie e

8.5, RelAteO WOIK ..eiieiiieiiie et e e

8.6. DAta MOUEIING . .ueiiiieii e e e e e e e e e e e e raraaeaaaaaeeeas
8.6.1. Modelling apProach ... e a e
8.6.2. EXternal data SOUICES.....ccoiiiiiiiiee ittt ettt ettt e s e e sbee e

8.7. ECOSYStEM MOUEIS .ooiiiiiiiiieeee e e e e e e e e e e e e e e e aabrara e e e e aaaaaeaaas
8.7.1. Compatibility MOdEl.........uuiiiiiiiiee e
8.7.2. RISK MOTEI..eeiieiiiiiee et s e e s
8.7.3. COSEMOUEI .ot e e e e e

8.8, RiSK @SSESSMENT ...eiiuiiieiiiie ettt st e s e sb e e s e e sabe e e saree e sabeeeas

e TR 01 Y Vol [V 1] [Y KRR

I 0] o 1ol [V] o] o FAR P T TSP U U PUPTPPPR
10, REFEIENCES...ueiiiitieeieee ettt ettt ettt e s bt e e hb e e e st e e e sabeessabeeesabeeeanreeesabeeanas
1. Appendix: ERMR GUI SCre@NSNOTS ...uviiiiiiieeeccccciiitteeee e ettt e e e e e rrae e e e e e e e e
D X o] o T=T o Lo [Rl =1 XAV, 1 Y U UUUR
3. Appendix: Rule Execution Metadata in the ERMR........cccccuviieiiiieiii e,
4. Appendix: Deployment Options for the Policy Editor.........ccccovviiiieeieei e,
5. Appendix: Policy TEMPIate Filesccooiiiiiiieeeeee ettt e e e e
6. Appendix: Other type of ChaNGE ..ccccc i e e e
7. Appendix: Rule based change management Proof of Concepts.......ccccovuiiivieeeeeeieecicnnns
8. Appendix: Semantic and User Community drift QA POCcceeveeiiiiiiiiiiiiiieeeeee e,
9. Appendix: Investigations of Community Changeccccooiiieiiiieiie e,

10. Appendix: Policy driven Digital Ecosystem inspired by CERN LHC data management

11. Appendix: Related work to technical appraisal and risk management...........ccccceeeeennn.

© PERICLES Consortium

7/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

List of Tables

Table 1: A full list of PERICLES COMPONENTS ...cccceiiiiiiiiieieee e e e e ecccitate e e e e e e e e e eeeararareeeesaeeeeeeensnnsaseseeas 18
Table 2: Narrative for identifying digital video artworks at risk........cccccceeiiiiiiiiiiii e, 74
Table 3: Narrative for risk-impact analysis of an individual artwork...........cccoeeceiiiiiiee e, 75
Table 4: Narrative for identifying experiment instances at FisKccccceeeeeiiieeiciiiiiieieeeee e, 76
Table 5: Narrative for risk-impact analysis of an individual science experiment instance.................... 76
Table 6: Entity catalogue excerpt relating to risk estimation and data sourcescccccceeeeeeccvvvvvennenn. 78

Table 7: Mapping between the EUMETSAT example notions and notions used for the generic

L3 L1411 [T U U PRPUUN 129
Table 8: Five topic model of TUMbBIF data.......cocei oo e e e e 138
Table 9: Fifteen topic model of TUMbBIr data ... 139

List of Figures

Figure 1: A high-level overview of the PERICLES functional architecture (in blue) and related PERICLES

COMPONENTS (IN BIEY) werieiiieiiiiiiiiitite et e e e e ettt e e e e e e e e e e e e st tbtaaeeeeaaeaesessassstsaassasaaaeeesaaanstssassaeaaasanaans 15
Figure 2: ERMR Technical IMplementation ..ot e e e e e et e e 25
Figure 3: The Listener Architecture DIagramcccccuiiiiieiieee ettt e e e e e e eeecrr e e e e e e e e e e e e e eaaearaeeeeeas 30
Figure 4: A typical use scenario for the policy ditOr......uiiii i 32
T U g R T oo [oV ALY oY [U UUUR 33
Figure 6: Example template file ... 34
Figure 7: Policy EitOr @arChit@CTUIEuviiiiieiie ettt e e e et e e e e e e e e e e e aearaaaeeeas 36
Figure 8: High-level architecture of the technical appraisal toOolcccceeeieiiiiiiiiiiiieee e, 39
Figure 9: Functional view of the technical appraisal tool user interfaceccccoovveeeeeeiiieeccccciiinee, 40
Figure 10 The Collection View page in the technical appraisal tool.......cccccceeveeciiiiiiiieeee e, 42
Figure 11: Component view in the technical appraisal tool..........cccoviieiiiiiiiiiicee e, 43
Figure 12: Screenshot of the ECOBUIIAENciiii ittt e e e e e ee e 46
Figure 13: Screenshot of the EcoBuilder's ERMR CONNECLIONc.ccvvviiiiieeieiiiiciiiiieieee e 47
Figure 14: Using the EcoBuilder's Java APl to create entities........cccvvveeeeeeeeeeecccciiiiieieee e 48

Figure 15: (1) Scenario specific template inheriting EcoBuilder templates. (2) Enrichment of entities
with extracted information during initialisation.cccceeiii i 49

Figure 16: Extract of the resulting model showing (1) the template entity of the Researcher System,
and (2) a Local Machine which is an instance of this template......ccccccoiiiiiiiiiiiieiieeee e, 49

Figure 17: change management architecture: event propagation and componentsccccuvvveeeeen. 59

© PERICLES Consortium 8 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Figure 18: Digital Video Art ecosystem: rule-based change management for 2 entities...................... 61
Figure 19: Step Al - one player is delete.. ... e e e e e e 62
Figure 21: Step A3: new canPlay dependency is created.........cccoccuiiiiiiiie e 63
Figure 22: External digital ecosystem change and propagation.........ccccceeeeeeeeeccciiiiieieee e 64
Figure 23: EUMETSAT data dissemination policy ecosystem for one resourcecccccceeeeeeeeccvvvvvennenn. 66
Figure 24: Workflow for risk-impact analysis of ecosystem model instances.........cccccceeeeeeeeeccivvnnnnnnn. 79
Figure 25: Standardised lifecycle model for a technologycccccvviiiiiiiiii i, 80
Figure 26: The object store (SCrEENSNOL) ...cciiiii i e e e e e e e e ee e 91
Figure 27: The triple store (SCre@NSNOL)uceei i it e e e e e e e e e e e e e brabaeaeeeas 92
Figure 28: Policy Editor Deployment: database policy store and ecosystem..........ccccveeeeeeeeeeeieccinnns 125
Figure 29: Policy Editor Deployment: database policy store, digital ecosystem and process execution
=T 0141 o [PPSO UPPPPPTRPPNE 126
Figure 30: Policy Editor Deployment: only a file-based policy Storagecccccoeevecivivieeeeeeee e 126
Figure 31: Policy Editor integration within PERICLES infrastruCtureccccccceeeveicciiviviieeeeee e e e e 126
Figure 32: A change is described within the ontology, as an instance of delta.........cccccceveeeeeiiiennn. 130
Figure 33: Dependency and delta graph for a change in value of stored time of a digital object 131

Figure 34: Dependency and delta graph for a change in drift value of a specific concept in a model133

Figure 35: TUMbIr NetWOrK OVEI TIMEuuiiiiiieii et e e e e e e e e e e e e sareees 135
Figure 36: TUMbIr NetWOrk StatistiCS......uuiiiiiiiiiie i e e e brrre e e e e e e e e e e e e eanreees 136
Figure 37: Tumblr network ClUSTEr COUNTScciiiiiiiieeeee e eccrrree e e e e e e e aneees 136
Figure 38: Tumblr topic frequency over time (2009-2015)(5 topic model)ccccccviiiieeieeeeeieieciine 141
Figure 39: Tumblr topic frequency over time (2009-2015) (15 topic model)........ccccovvvveeeeeeeeieiiicinnnne 141

Figure 40: CERN LHC inspired example DEM using the implementation of the Policy and QA model143
Figure 41: Extract of the CERN example implementation using the EcoBuilder API, showing the policy

LY T 0 T TP TOPT 144
Figure 42: Portion of a DEM diagram created by policy derivation and mappingcccccceeeeeeeeeccnnnne 145
Figure 43: Derivation of the policies and QA relations.......ccccceceeeeeiiiiiiiiiieeec e 146
Figure 44: Processing of the experimental data........ccccvviiiiiiii e 147
Figure 45: Implementation of the calibration process P4.cooooiiiiiiiiii it 148

Figure 46: The preservation scenario provides a view on the subset of preservation related entities

Figure 47: Scenario 2 provides the preservation view on the CERN example modelcc....u.. 149

© PERICLES Consortium 9/152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Glossary

Abbreviation / Acronym ‘ Meaning
API Application Programming Interface
BPMN Business Process Model and Notation. A graphical language for

describing processes.

Cassandra A distributed database system which is part of the Apache
foundation.!

chbMli Cloud Data Management Interface is a protocol for accessing cloud
storage.
Digital Ecosystem (DE) Network of technical systems, communities, digital objects, processes,

policies, and the relations and interactions between them. This is the
object of interest that is modelled with the Digital Ecosystem Model

ontology.
Digital ecosystem Control layer to provide support and manage change in the digital
management ecosystem and its entities. In the scope of this task, the QA methods

are supporting the validation of changes in the digital ecosystem with
respect to policies and high value digital media.

Digital Ecosystem Model | Ontology developed by the PERICLES project that allows to model
(DEM) Digital Ecosystems: technical systems, processes, digital objects,
policies and users to answer and simulate change related questions.

Digital Object (DO) "Digital objects (or digital materials) refer to any item that is available
digitally." (JISC, “Definition of Digital Object”)

ERMR Entity Repository Model Repository this refers to the T5.1 component.
FA Functional Architecture

GUI Graphical User Interface

Content-based (or Acquisition and retention decisions or assignment of value based on
intellectual) appraisal the content of the digital entities themselves.

iRODS The Integrated Rule-Oriented Data System (iRODS) is an open source

data management software that virtualizes data storage resources.
The application can be used for data management infrastructure
building.

LDAP Lightweight Directory Access Protocol - standard protocol for
distributed directories

! http://cassandra.apache.org/

© PERICLES Consortium 10 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

MICE Model Impact Change Explorer. Software component from PERICLES
for analysing change.

MQTT Message Queue Telemetry Transport is a protocol for machine to
machine communication.

PE Policy Editor component from PERICLES.

PET PERICLES Extraction tool (PET) for extracting significant environment
information.

PoC Proof of Concept

Policy Used in very diverse situations both in English, and in IT. A policy is a

plan that defines the desired state inside an ecosystem. A policy
describes the 'what' (guidelines) and not the 'how' (implementation).
Policies can be described in varying degrees in natural language orin a
formal language. Policies can also be used to represent the legal
requirements and aspects of an ecosystem.

PC Process Compiler. Transform a set of single processes into a combined
process.
Quality Assurance (QA) “Program for the systematic monitoring and evaluation of the various

aspects of a project, service, or facility to ensure that standards of
quality are being met” (Webster)

RDBMS Relational database management system.

RDF Resource Description Framework. A versatile data model in which
assertions are expressed as subject-predicate-object triples.

ReAlL The Resource action language describes transformative actions on
RDF based models. Enables rule functionality on ontology.

REST Representational State Transfer. A design style for networked
applications, usually implemented with HTTP.

SPARQL SPARQL Protocol and RDF Query Language. An RDF query language

Technical appraisal Decisions based on the feasibility of preserving the digital objects.
This involves determining whether digital objects can be maintained
in a reusable form and in particular takes into account obsolescence
of software, formats and policies.

Unit Test Technique that originates from software engineering for modular
testing of source code

© PERICLES Consortium 11 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

1. Executive Summary

This document provides a summary of all tools and approaches developed in PERICLES by September
2016, and describes the context in which these results can be used. It focuses primarily on tools and
approaches developed in support of digital ecosystem management (WP5), but links these to tools,
models and approaches developed elsewhere in the project, and the project’s functional architecture
described in the deliverable D3.5 Full Report on Digital Ecosystem Management.

This present deliverable covers 4 models, 15 software tools and 5 approaches classifying them
according to the relevant phase of the functional architecture such as Model Development,
Registration and Operation.

The first part of this document describes the set of tools developed in WP5, including the Entity
Registry Model Repository, the EcoBuilder, the Policy Editor and the Technical Appraisal Tool, while
the second part summarises key approaches and models such as the policy and QA models or the
approach behind the model-driven change management and appraisal.

The Entity Registry and Model Repository (ERMR) is a piece of software for storing and querying
models and digital objects and a central component of the PERICLES WP6 test-bed for registering
models and metadata. Policies which operate on the data store help to manage the stored data and
those policies can invoke external programs. The notification system issues events onto a message
gueue, so connections to third party components and workflows are possible. The whole tool is
designed to be flexible and scalable.

The Policy Editor makes it easier to create policies using templates. The policy level and integration
level of the Policy Editor is flexible. It can be used as a stand-alone tool or integrated with other
tools, i.e. the templates can be kept within other systems (such as models in the ERMR) or use simple
text files. The output can also be text files or integrated into other systems, e.g. by sending policies
or associated processes directly to an execution engine. This is possible by providing custom
adapters.

The Appraisal Tool is a web-based tool for appraisal of technical risks. It implements a theoretical
approach described in section 8. The tool uses ecosystem models as input, and makes use of data
harvested from external sources such as Google, software repositories and Wikipedia. The tool
features a user interface that presents the complex risk-impact-proximity information in various
different views to assist the user in both determining risks in their collections and analysing risks to
specific digital objects.

The EcoBuilder tool can be used to help scenario experts create Digital Ecosystem Models (DEMs). It
can output the model as file or offers a direct connection to ERMR to store the models there. Using
the tool ensures that a valid model is created by providing templates for the ontology constructs.
Details and domain specific extensions can be added afterwards, if required. It provides a GUIl and an
APl. The APl enables the possibility to integrate the tool, e.g. for connecting it to a notification
system to populate change into the DEM model.

Approaches for Policy, Quality Assurance (QA), and Change Management are described. The final
model for policy and QA representation has been implemented in the DEM, together with new
guidelines for policy derivation, QA and compliance. Rule-based change management for Digital
Ecosystems (DE) is illustrated with wuse-case examples representing policies and their
implementation, supporting automated change management. Experiments with semantic and user
community change observation and QA have been presented. Finally, we have done a Proof of
Concept rule implementation of the above-mentioned approaches. This contribution has shown how

© PERICLES Consortium 12 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

policy, QA and change management can be automated for the different entities of the PERICLES
ecosystem.

We have conducted both a study and classification of appraisal criteria in the context of evolving
digital ecosystems, as well as developing methods and practical tools for specific criteria. We build on
the catalogue of appraisal criteria from D5.2 Basic Tools for Digital Ecosystem Management, and
describe an approach based on the principle of evaluating specific criteria and providing this
information in an easily digestible form to a curator. In the technical appraisal work, we have
adopted a data-driven predictive approach to evaluating sustainability of complex digital objects. The
approach is supported by the Appraisal Tool mentioned above.

These approaches support the idea that the various tools developed in this project can be used
together to provide novel solutions to digital preservation problems. This remains a challenging area,
but the idea behind the PERICLES tools and approaches is that they can be re-used and built upon to
complement existing and future preservation processes and infrastructure.

© PERICLES Consortium 13 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

2. Introduction & Rationale

PERICLES is ultimately about promoting and enhancing reuse of digital information. This is a
challenging issue and it cannot be solved through one piece of software or a single approach. The
project has therefore been about exploring various approaches to this challenge, and building
software tools to help address particular aspects of it.

A key risk in being able to keep digital information re-usable over time is the occurrence and impact
of change. This is also reflected in the project’s title, which emphasises content lifecycle and evolving
semantics. Change includes both unmanaged and managed change; that is, both external change
that we need to respond to, and the controlled changes that can be made in response.

This high-level approach has been labelled as model-driven preservation, and this is a common theme
which relates the various tools and approaches that the project has created and investigated.
Another important concept is that of a digital ecosystem analogous to a biological ecosystem with its
many interacting systems. The idea here is that in order to preserve digital content for reuse, it must
be possible to describe the content itself, the systems being used to preserve it and the wider
external environment to which the content relates, including both the environment in which the
content was created and that in which it could be reused in future. This combination of digital
objects, systems, preservation processes and the wider environment constitute the digital
ecosystem.

Relating the ideas of change and digital ecosystem we note that the ecosystem itself is in a state of
constant change, and this is one of the main rationales for adopting a model-driven approach.
Describing in concrete models the many relationships between different types of entities allows
understanding the impact of change on all related entities. Moreover, we note that with a changing
ecosystem, static models will not suffice, and several of the tools and approaches described here are
designed to help modify and create models.

PERICLES never sought to build a self-contained preservation system, or propose a monolithic
approach that would require the use of all of the tools developed in the project. Instead we have
aspired to develop the various tools to be interoperable, both with each other, and with other
existing or future preservation infrastructures. The project test-bed (developed in WP6) provides
both a platform for demonstrating the interoperability of the tools and the validity of the
approaches, and a runtime platform which can be used as an execution layer for automated
processes involving multiple components. The interoperability is also supported by the ERMR, a
component which can act as a central registry and model repository.

Rather than developing a full system, we have created a Functional Architecture that describes how
we envisage that the project outputs could be used together.

In this document, we summarise all of the tools and approaches that have been developed in the
project and describe the context in which they can be used. The inter-related nature of the project
means that many of these tools and approaches have already been described elsewhere, so the
primary focus in this document is on tools and approaches that have been developed in WP5.

2.1. The PERICLES Functional Architecture

The PERICLES Functional Architecture (FA) is described in full in the deliverable D3.5 Full Report on
Digital Ecosystem Management. The FA is an idealised model on how the different PERICLES
components can work together in a model-driven way. The FA is a high-level view on the

© PERICLES Consortium 14 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

components, but not a technical architecture. The FA starts from the concepts of Model and Digital
Ecosystem as depicted in Figure 1. This figure also shows many of the outputs from the PERICLES
project in the grey boxes.

PeriCoDe, Ncpol2spda,
Reasoning Tool, Somociu,
appraisal tool, PERICLES

semantic drift, LRM ReAL, LRM
Service, Somoclu, QA Prototype,
Space Science Portal

; Change and
EcoBuilder, ERMR, model analysis
LRM Service, PeriCAT,
PET, PET2LRM, Art&Media ontologies, Space
PROPheT, Policy ontologles, DEM Instances,
Editor, Science Models oo LRM based instances, Policy
Ontology Populator Model, QA Model, Technical
........) Appralsal Tool
Registration Preservation

process
. Model update :

Process Compiler

MICE, LRM ReAL,
LRM Service,
ERMR,

Digital
ecosystem

QA Prototype, LRM
Validation - { Service, LRM
ReAL

Figure 1: A high-level overview of the PERICLES functional architecture (in blue) and related PERICLES components (in
grey)

D3.5 goes into more detail in explaining this cycle and the static view it represents, the registration of
digital ecosystems, change and model analysis and preservation process and validation. In the
present report, we use these descriptions to map them to the components developed in the project.

2.2. PERICLES Components

In this section we provide an overview of the many PERICLES components. We classify them
according to the phase in the Functional Architecture in which they are likely to be used and label
them as a model, an approach, or as software. In the case of software, we describe whether the
interface is graphical or programmatic.

We can identify three main phases from the FA:

¢ Model development (phase M): In the FA it is part of the static view and registration of
ecosystems; here the ecosystem in question is analysed, the entities are identified and
information is extracted. This is mostly done with Ul-based tools.

© PERICLES Consortium 15 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Registration and configuration phase (phase R): This means that models and entities get
instantiated and filled with concrete values. Ul-based and process or APl based tools are
involved. On the FA this is the registration of digital ecosystems

Operation (phase O): Here the models are being actively used for ecosystem management in
particular for model analysis and change management. Mostly APl based tools are involved
here. On the FA this corresponds to the change and model analysis and preservation process
and validation views.

Each tools in this tool suite is either:

a software tool, which has a GUI and/or an API (programming interface),

a model, which is a structured description of a “thing” or “type of thing”, or

an approach, which is a product of experiments, and evaluations of topics and ideas.
Approaches often involve software tools, some of which could have more general use, but
others are primarily created to experiment with the approach.

Table 1, below, summarises all developments within PERICLES and gives a reference to the

corresponding description. The items which are described in this deliverable are highlighted in bold.

PERICLES Short description Phase What Reference
component
Art & Media Models for the WP2 Art & M Model WP2/T2.3.3
Domain Media case studies D2.3.2
Ontologies
Digital Ecosystem | Model for describing digital M, R, O Model WP3 T3.5.1,
Model ecosystems T3.5.2,D5.1.1,
D5.2 and D3.5
EcoBuilder Tool for creating DEM M, R GUI + API This document
instances chapter 6
Entity Registry Used for storing and R, O API + GUI This document
Model registering entities and chapter 3
Repository models
(ERMR)
Linked Resource Model for describing M, R, O Model WP3 T3.2 D3.2,
Model dependencies D3.3,D3.4
LRM ReAL Language for change R, O API WP3 D3.3,D3.4
management plus
interpreter
LRM Service Service for working with LRM | R, O API WP3 D3.4

© PERICLES Consortium

16

152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

based models

ontologies (here art &
media)

Model Impact Component responsible for o GUI WP6/T6.3.3 D6.4,
Change Explorer | visualising the changes D6.6
(MICE) applied to an entity
Ncpol2spda Theoretical research on R, O API WP4/T4.5
guantum-like behaviour D4.5
patterns in evolving data.
PeriCAT A framework for Information | R, O GUI + API WP4 D4.2
Encapsulation techniques
PERICLES A set of software metricsand | R, O Approach WP4/T4.3,T4.4,
Semantic Drift associated tools for T4.5
detecting, measuring and D4.4,D4.5
evaluating semantic drifts in
ontology sets.
PeriCoDe Algorithms for detecting R,0O Approach/A | WP4/T4.3, D4.3
high-level visual concepts in Pl
images
PET Tool for extraction of R, O GUI WP4/T4.1 D4.1
significant information from
the environment
PET2LRM Transforms PET output into M, R, O API WP4/T4.3-4-5
LRM compatible descriptions
Policy Editor Edit pre-defined policy R, O GUI This document
templates chapter 4
Policy Model Policy model and policy R, O Approach This document
derivation section 7.1
Process Compiler | Takes a representation of a o API WP6/T6.2
(PC) process model and D6.4, D6.6
transforms it into another
form that can be executed by
the workflow engine.
PROPheT Tool for populating domain M, R, O GUI WP4 D4.3

© PERICLES Consortium

17 /152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Appraisal Tool

on statistical analysis of
external datasets as well as
ecosystem models

QA Model Approach for verification of | R, O Approach This document
the correct policy chapter 7
application

QA Prototype for | Methodology for change R, O Approach This document

Change and conflict management, chapter 7

Management semantic change of
communities

Reasoning Tool Semantic reasoning for 0] Approach WP4/T4.5
contextual content
interpretation

Science Ontology | Tool for populating parts of M, R, O AP| WP6/T6.1, D6.6

Populator the WP2 space ontology

Somoclu a generic tool to study R,O API WP4/T4.3, T4.5
semantic fields, concept D4.1, D4.4, D4.5
drifts, evolving semantics,
and contextual data.

Space Science A model from the WP2 space | M Model WP2/T2.3.3

Domain Ontology | case studies D2.3.2

Space Science A web portal which allows o GUI WP6 D6.6

Portal visualising, exploring,
guerying and augmenting
the semantic model in use
and is greatly influenced by
the Topic Maps related
standards.

Technical Performs risk analysis based | R, O GUI This document

chapter 5

Table 1: A full list of PERICLES components

2.3. Context of this Deliverable Production

2.3.1.

As the title of the deliverable suggests, this document aims at describing the suite of tools developed

© PERICLES Consortium

What to expect from this document

18 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

in WP5 in support of the digital ecosystem management described in D3.5, how they work, how they
can be implemented and where to source them. In addition, the document provides a full description
of the different approaches used, their theoretical background and the developed methodology
including results from experiments, where applicable.

2.3.2. Relation to other work packages and output

This deliverable is the final deliverable of WP5. It completes the initial report done in deliverable
D5.2 and in part D5.1, and updates some of the work described there. It also relates closely to D3.5
which contains the full description of Functional Architecture and the Digital Ecosystem Model. The
other relations are listed in table <ref>. Work in WP5 continues to support the wider objectives of
the project, and further work related to several of the tools listed above will be reported in
deliverables D3.4 and D6.6.

2.4. Document Structure

The document is structured into two main parts. The first part covers all the WP5 tools, which are
ERMR, Policy Editor, Technical Appraisal Tool, EcoBuilder. The second part covers all WP5
approaches, namely the final Policy Model and Guidelines, Rule-Based Change Management for
Ecosystem and Policy, Quality Assurance for Semantics and User Communities, Prototypes for
supporting change in technology, semantics and user communities and the theoretical background of
the Technical Appraisal Tool. Appendices can be found at the end of the document, which include
APl documentation, examples, and other information to complement the main part of the report.

© PERICLES Consortium 19 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

PART ONE
SOFTWARE TOOLS

© PERICLES Consortium Page 20/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

3. The Entity Registry Model Repository

In this chapter we describe the design and implementation of the Entity Registry Model Repository
(ERMR), illustrate how it can be used, and describe where it can be obtained. This work was

undertaken as part of Task 5.1.1.

3.1. Background & Motivation

The PERICLES project requires a controlled environment where data integrity, reproducibility, and
quality can be secured. In support of this, we have developed and implemented a middleware
component responsible for storing models and registering entities called the Entity Registry Model
Repository (ERMR). This component provides distributed, robust, and extensible storage capabilities,
coupling object stores and triple stores to an easy to use rule system. Such a combination allows for
scalable systems that can self-manage, and are not reliant on complex workflow systems or external
management frameworks. Relatively simple configurations allow for the distributed ingest,
transformation and curation, without the need to have complex scheduling frameworks.

The objective of the ERMR is to build a data management infrastructure to support policy-driven
data management and rule-based change management (described in chapter 7), that contributes
both the data life cycle and sustainability of data collections and repositories in support of the
PERICLES project objectives. Our approach uses modern web foundational technologies to
implement a repository that can support data management policies by reporting changes and events
to an external rule engine based on, for example, SPIN® rules (see D4.4 Modelling Contextualised
Semantics) or the LRM service. In this respect, the approach has similarities to the integrated Rule
Oriented Data System (iRODS), but with changes in design and implementation to support ontology
reasoning on a triple store, and a standardised interface (CDMI) for cloud storage. These are
described in greater detail below.

3.2. Use and Functionality

The ERMR provides multiple related pieces of functionality. Its primary role in PERICLES is as a
registry and repository for models, but it also offers the functionality of a general repository system
designed for the long-term sharing, curation, and preservation of data. It provides secure, distributed
object storage that is standards-based, and has been built to support other PERICLES tools and
approaches. This software, developed specifically in response to the project’s objectives, leverages
widely used, web-scale technologies to provide high availability, resilient access to data over
geographical distances.

From a user’s perspective, the ERMR provides access to both managed (internal) and unmanaged
(external) data using a common HTTP standard (Cloud Data Management Interface: “CDMI”), with

the ability to organise data into containers (folders or directories), with user specified annotation and

? http://spinrdf.org/

© PERICLES Consortium 21 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

labelling of data, whether internal or external.

A user can also use rules, which are executed when anything happens to a piece of data or metadata
(such as creating, modifying, deleting), and the rule can be written in any computer language that
can access the messaging system. When activated, a rule can trigger any action, such as taking a
copy, adding metadata, sending an email alert, etc.

The current implementation is based on the Apache Cassandra database system, with a web-GUI and
the CDMI access protocol being provided by Python scripting code in the NGINX framework, which
provides web server software. The repository data, metadata, and all control data is contained within
the Apache Cassandra database, and is designed to be intrinsically consistent and resilient. In
addition to the object store, it is possible to store and retrieve RDF data. RDF data can be

manipulated with the SPARQL query language.

It is possible to register external resources and connect them via a URL, providing a way of organising
diverse data sources from other services (such as ftp) into containers accessible via a single protocol
or the GUI, and enhancing these external resource with user specified metadata.

Access control is provided within the ERMR framework using ACLs. Authentication is provided using
either a local username table or via LDAP, and is used to establish a “role”. The access control entries
authorise roles (not users), so when a user leaves no change is needed to the data: only to the role
table.

A list of essential ERMR capabilities is as follows:

1. Hierarchical object storage

Triple store for RDF data

Arbitrary user defined attributes on objects and containers (“metadata”)
Fine-grained access control

Replication across multiple nodes

Rule engine

No s wN

Federation

In a PERICLES context, the main uses of this software are as (i) an Entity Registry, that is, a place to
register the existence of entities in the digital ecosystem that the PERICLES components can work
with, and (ii) a Model Repository, a place to store models (which can act as descriptions of entity
classes or describe how entities are related to one another).

In both of these cases (where the models and entity descriptions are based on RDF) the ERMR can
store these using its triple store component. This offers the potential for these to be queried using
SPARQL (Standard Protocol and RDF Query Language). The ERMR can also be used as a repository for
models stored in other formats, such as processes described in BPMN. In this case, the object-store
functionality of the ERMR can be used to store and access these models.

In addition to storage and querying functionality, the ERMR supports preservation processes through
two important mechanisms: a notification system (which can, for example, provide messages to
other components when an entity or model is modified) and a listener daemon that can observe the
notification queue and execute scripts in response to events.

The ERMR software actually goes beyond what is required for an Entity Registry or Model Repository

© PERICLES Consortium 22 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

and can be used in practice as a digital object repository in its own right, but as mentioned above, we
stress that different sets of the PERICLES tools can be used in different contexts to support existing
preservation systems.

The ERMR provides both an Application Programming Interface (APl) and a Graphical User Interface
(GUI). The former has been more widely used in the PERICLES project as it offers a straightforward
mechanism for integration with other tools. The existence of the GUI, however, is considered
important in terms of usability, particularly in contexts with the use of the ERMR is being explored
prior to its integration into a wider preservation system or in contexts where the ERMR will be used
as a more general, user-facing repository. Screenshots of the GUI are included in Appendix 1; the rest
of this section describes how the ERMR is used through the API.

3.2.1. The ERMR API

From the user perspective, the ERMR exposes two RESTful APIs:

e A data store with nested containers and user object metadata implemented as key-value
stores. The APl is CDMI®, a standard protocol for self-provisioning, administering and
accessing cloud storage

e A triple store that allows assertion of properties and relationships and integrates with the
table and object stores. The triple store exposes a SPARQL interface.

The ERMR issues notifications on significant events via the MQTT Protocol®, which allows the system
to instigate additional processing, curation, insertion of additional metadata, queue tasks into a
workflow or any other action. The processing elements can be in any language, and Python is
explicitly supported via a built-in listener.

Detailed APl documentation is provided in Appendix 2.

3.2.2. Example Use Cases

In this section we briefly describe with two example use cases how the ERMR is used with the
Process Compiler and workflow engine from the WP6 test-bed. The PERICLES Process Compiler
allows to transform and combine RDF-based descriptions of preservation processes into executable
workflows which can be executed by the workflow engine.

3.2.2.1. Process Compiler

The process compiler (Grant et al, 2015) can be used to compile aggregate processes from processes
stored in the ERMR. This is done, for example, with the process compiler building an executable
process (described using BPMN) which is made up from multiple processes.

The Process Compiler queries ERMR to retrieve process entities using the REST API. This APl is used
to send a SPARQL query. A typical query might look something like the following:

3 http://www.snia.org/cdmi
* The Message Queue Telemetry Transport protocol. See https://mosquitto.org/ and http://mqtt.org/

© PERICLES Consortium 23 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

prefix ecosystem:<http://www.pericles-project.eu/ns/ecosystem#>
select ?predicate ?object where {
ecosystem:agpIngestAWSW ?predicate ?object

3.2.2.2. Workflow Engine

The following example describes a process that uses the test-bed from WP6. When the user adds a
new media file, the Workflow Engine extracts significant information from the file, and queries the
ERMR to check that the necessary items are already included in the model, so that they can be
referenced (e.g. a codec is already modelled, and then the RDF describing the codec can be
referenced to the file). After sending the proposed change to MICE for the user to check that they're
happy with the change, MICE returns the SPARQL describing the update, to the workflow engine. The
workflow engine then makes an insert call to the ERMR to update it. So, the two types of call that the
WE makes to the ERMR are to query to check that expected triples exist, and to send new triples to
be added to the model.

3.3. Design & Implementation

The ERMR’s architecture provides a compact REST interface for interoperating with the various
heterogeneous tools developed as part of the project, as well as with other compatible third-party
software tools. These tools, can be tracked and managed with the ERMR, which itself is extensible,
allowing new tools to be added and deployed as trivially as is possible. A typical workflow might
involve calling the metadata extraction workflows to extract metadata for indexing, while scheduling
a format converter to convert the files to a format that can be processed. Notifications can be also
forwarded to a rule engine, as illustrated in Chapter 7, in support of rule based change management,
so that appropriate rules can execute the appropriate action, connecting to the DEM model and
model driven preservation approach.

For production deployments, the ERMR offers authentication options for LDAP as well as local user
authentication.

3.3.1. Implementation

The repository functions of the ERMR are created using a minimal schema on top of a decentralised,
distributed hash table (DHT), providing a lookup service in which key value pairs are stored and any
participating node can efficiently retrieve the value associated with a given key. The ERMR is
implemented using Apache Cassandra distributed database management system, which is a widely
used and hardened framework designed to handle large amounts of data across many commodity
services, providing high availability with no single point of failure.

© PERICLES Consortium 24 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

| PERICLES Components |

I | T

CDMI CDMI COMI REST REST
(http) (http) (http) - (http) (http) =
Replication Bus Listener
Notification erice
| . P watch
Cassandra | Tiiple
(distributed metadata catalog) [oot
_ Objectstore - i TrpleStore MQTT

Figure 2: ERMR Technical Implementation

Internally, there is a directory of resources that describe the managed objects, and a block store for
internally stored objects. Access to the ERMR objects is via the standard SNIA Cloud Data
Management Interface (CDMI), which defines the functional interface used to create, retrieve,
update, and delete data elements from the Cloud. The CDMI interface provides a hierarchical object
store with metadata at the object and collection levels. This approach is illustrated in Figure 2.

The ERMR responds to internal events by firing a notification to a “listener” that executes scripts in
Python or other scripting languages. These scripts access the repository or other actions, such as
notifications, emails, logging, metadata updates, etc.

The implementation uses the Python scripting language under the Django web framework, which
uses of the modularity and services already provided by the framework. This incorporates an access
library that can be used by other programmes, such as scripting or command-line utilities.

Whenever possible, existing and well-supported standards are used to leverage the internet
developer community’s efforts to provide on-going support and reliability, as follows:

e Cassandra distributed database is an Apache top-level product

* Django and Nginx is a widely used and de-facto standard

e CDMI has been widely adopted by cloud service providers and is core to OpenStack. It
requires no special libraries.

¢ AllegroGraph is a persistent graph database. It provides a triple store with a SPARQL
interface for performing queries. It’s loosely integrated with ERMR through its REST API.

3.3.1.1. Design of the Data Tables

ERMR reflects the data model of CDMI, i.e. a hierarchical organization of objects and containers, with
every object and container also having a unique ID that allows direct access without traversing a
directory tree. As such the two primary tables are the resource table and the collection table,
describing, respectively, objects and their containers.

e Collection Table: The collection table is simple: containers, or collections, are a logical
organising mechanism for objects akin to directories in a file system. Collections can be

© PERICLES Consortium 25 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

considered to be a label or part of the name of the object but they have some attributes such
as timestamps and permissions that are shared across all the other objects in the
collection.

e Resource Table: The resource table holds descriptions of the actual objects: the object’s
name, user annotations (metadata), and a reference to the place where it is stored,
represented as a URL. Currently two URL schemes are supported: one for local files on the
file system of a node in the cluster, and the other for files held in Cassandra as blocks. The
URLs are of the form file://<node_address>/<path_to_file> and cassandra://<id_of blob>
respectively. It is straightforward for a developer to add other URL schemes and hence
support other storage schemes, such as ftp, http, and other object stores.

3.3.1.2. Identifiers

The CDMI scheme requires that all objects and containers are also accessible directly using a CDMI ID
string — a 256 bit unique identifier. The IdIndex table holds these IDs and refers to the primary
records in the resource or container tables.

3.3.1.3. Users, Groups and Roles

Authentication and authorisation in the system is built around users, groups and roles. As they
operate within the repository authenticated users have a role (or, equivalently, are members of a
group), and it is that group membership that gives them authorisation to do certain things. When a
user logs in, the system assigns them access rights based on their group membership. This is
enforced using a system of access control lists (ACLs), with each ACL having a number of entries, each
of which specifies whether particular rights are allowed or prohibited to particular groups of users.
The user and group tables are used to specify (a) whether the ERMR system itself defines a user (i.e.
local users), and (b) which groups the user belongs to. Users may also be authenticated using the
LDAP system, in which case permissions are allocated based on an equivalent name, or are assigned

to a generic group.

3.3.1.4. Ingest

Ingesting large collections takes a lot of time, and is prone to failures. The problem is that when
failures occur, for whatever reason — disk full, network down, machine crashes — they occur on a
large scale, in the middle of a lengthy process, and recovery is going to be painful. This reality implies
that an ingest ‘tool’ is not enough. What is needed is an ingest workflow — one that remembers
where it was, what it had done, and can restart, and preferably one that has multiple agents capable
of working in parallel without treading on each other’s toes.

The approach that we have taken is to use an RDBMS, in this case PostgreSQL to tabulate the objects
to be ingested, along with their state, and so rather than having, for instance, a script that walks a
file-system tree and injects into ERMR, we have scripts that walk a file-system tree and add any files
that are found to a work queue in PostgreSQL. We then have a number of processes working in
parallel reading records from the work=queue which are in a ‘READY’ state, moving them to ‘IN-
PROGRESS’, with a timestamp, and then injecting them into ERMR, before moving them to a ‘DONE’

© PERICLES Consortium 26 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

state.

3.3.1.5. Notification, triggers, and actions

One aim of the project is to develop automated policies and services that can be used across
federated infrastructures. The science and arts datasets examined in the project rely heavily on an
extensive set of metadata that allows for the discovery, analysis, and preservation of experimental
results. Both space science and arts communities have developed common metadata standards and,
as a primary objective for the ERMR is to allow these datasets to be managed using rules that react
to change in repositories.

Every create-read-use-delete action on the ERMR generates an activity entry in the Cassandra
database. The activities are published as topics to a messaging queue. Any client can subscribe to a
relevant set of topics and execute workflows accordingly. The payload of the message can be used to
identify the entity being impacted by the action.

The iRODS system has a vast range of triggers that can cause associated rules to be executed when
certain events occur. Although very rich and general, the approach has not received widespread
use. We determined in the design of the ERMR that we needed a mechanism whereby the rules
could be written in any scripting language, that, for security reasons operated outside the core
repository — so that it had to re-authorize. This essentially requires event queues distinguishable by
originating node, type of event, affected object/container and timestamp. Unfortunately, the
architecture of Cassandra means that it is not well suited to this, in particular, because it hashes the
partition key and orders by the clustering key, it cannot efficiently handle wildcard matching, making
Cassandra tables a poor candidate for generic event listeners. In practice we have implemented a
hybrid system, whereby every notification gets written directly to a Cassandra table. A daemon is
used to pull elements off the table in timestamp order and inject them into the notification system.

3.3.1.6. Management Policies

The PERICLES project assumes the existence of management policies that will control the properties
of data collections as required for long-term digital curation. The research into policy requirements
for any given collection involves specific investigation as to the purpose, the legal requirements, and
the conditions for re-use of a collection (or sets of federated collections); it may also involve broader
issues of consensus across different communities. There is already an international standard for
managing Trusted Digital Repositories (ISO 16363) which, for the Space Science data use case, has
informed recommendations and guidelines published as long-term digital preservation (LTDP) for
observational data. The PERICLES project has taken this as a starting point for establishing the most
appropriate methodology given use of the ERMR, to track and maintain an audit trail for the
procedures supporting any management policy in state.

The PERICLES project has defined the set of procedures to ensure compliance as a policy pack. A
policy pack is used to define when a policy should apply, whether it is met, and what should be done
to bring it into compliance. The ERMR supports five flags signalling whether a case is 1) conforming;
2) non-conforming; 3) not-known; 4) not-applicable; and 5) exempted (a specific case of not-
applicable). Formally, the system also supports graded levels of actions (“will”, “must”, “should”,

© PERICLES Consortium 27 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

“may”, and “should not”), which are more or less precisely defined depending on the source of the
policy.

Unfortunately, most “policy” documents are a mixture of policy and procedures, mainly in natural
language text, with little or no structure. Taking such “policies” and turning them into actionable
policy packs in is not a trivial process; and can requires rigorous interpretation. In practice, this
means defining an explicit statement for each written policy, the obligations the policy imposes (both
positive and negative), and what is permitted or not permitted for each circumstance. For any case, it
must be possible to ascertain an exact policy “state” (not-applicable, not-conforming, not-known,
confirming, or in progress), and the appropriate “action” to be taken. For any state change, the
ERMR system will log what has happened, when and by whom, the policy version, and its
justification. Furthermore, the ERMR also has implemented a mechanism for testing that all active
policies are complied with before committing changes.

For example, the text of the ISO 16363 standard refers mainly to organisational and administrative
requirements, with specific policy requirements that certain documents exist. The assessment
criteria are based on the verifiable existence of such documents within the system. Additional criteria
(mainly in Section 4 of ISO 16363) relate to the operation of the repository system itself: so it would
be necessary for a person to certify that a repository maintains audit trails, applies access controls,
etc. Operationally, an ISO 16363 “policy pack” would minimally verify the existence of documents
and log that they have been changed and reviewed. The LTDP Observational Science guidelines
suggest additions (in Sections 6 and 7) to the ISO 16363 standard, requiring an augmented policy
pack.

Different policy requirements, such as those for medical records used in research, demonstrate great
differences, which may be combined with the ISO 16363 policies. For example, the management of
medical records may require that no personally identifiable information should be revealed, and that
consent for the use of the data should have been obtained. In this case the procedures enforcing the
policy might be: “No record will be ingested unless an accompanying consent record is present and is
retained” and “No record will be shared unless the destination is known”.

For the PERICLES project, we reviewed all of the elements of ISO 16363 standard in light of the LTDP
Observational Data guidelines (and amended to fit the space science use case), as a first step in
identifying the fundamental concepts required for implementing an appropriate data management
infrastructure. This consisted of analysing 109 metrics and sub-metrics. The lessons learned in this
exercise were used to evaluate and inform the architecture of the ERMR as a means of implementing
preservation at scale in a distributed environment. An open question remains about how to interpret
non-binary (and non-structured) “policies” such that they can be computer actionable; and to what
extent can such policies (where they are computer actionable) be made generic and reapplied across
different domains and communities. The experience we have obtained to date is that data
management policies must be extensively tuned, but there are some core values that appear to be
common to almost all use cases. Recent developments in game theory may open up a promising way
to approach to the problem of policy management, to determine an equilibrium between generic
and specific requirements, which will set the agenda for our future research.

The following example shows how a procedure that can be executed when allowed by the 1ISO 16363

© PERICLES Consortium 28 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Trusted Digital Repository Standard and the OAIS Standard (which provides the context for ISO
16363). Such requirements permit “deletion” operations when they are already identified as part of
an approved strategy (i.e. there should be no ad hoc deletions). The execution of the script below
will be informed by a broader administrative context: for example, if an organization has a policy for
“group deletion” after six months of inactivity, the script will be invoked, referencing appropriate
authentication credentials (where appropriate). The larger “organisational” or “strategic” contexts
come from an analysis of the use cases, which is separate from this task.

The following is a sample script written in python used “to delete groups of users”. To enable the
script to work, an administrator would upload the script in the /scripts directory, adding metadata to
define the hook (‘topic’ : ‘/delete/group/#’):

import sys
import json
from indigo import DataObject

Name of the script that got executed
script name = sys.argv[0]

Payload of the message

payload = json.loads(sys.argv[2])

name of the deleted group:
group name = payload["post"]["name"]

for data obj in DataObject.find(user=group name):
data_ obj.update(user="ProjectManager")

3.3.1.7. The Listener

The ERMR issues notifications whenever a significant event occurs, which can be caught by a
“listener” and an action script invoked.

The listener is a daemon process which is hooked to the MQTT broker. It subscribes to all topics
generated by the notification system. Each time a new event is sent to the queue the listener checks
in the scripts it is managing and executes the one whose topic is matching. It manages a set of scripts
stored in a special collection of the repository. Each script is linked individually to a specific action
and executed by listener when the condition is met. Every script is executed in an isolated Docker
image, it has only access to a limited environment. By reading the payload of the message it can
obtain information on the objects to consider and act accordingly. It may for instance use an external
web service call to extract additional metadata. The scripts are executed in a Docker image to
provide isolation, for security. The scripts are currently written in Python in the PERICLES
implementation, but any other languages can be added. Figure 3 illustrates the procedural steps of
the listener.

© PERICLES Consortium 29 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

1. Event

5. Action
[does what the action does...]

Sandbox

4. Load action to sandbox

. Reaction 3. Evaluate
notification) Condition

Notes:

-- actions reside in repository

--events can be Create, Read, Update ,Delete
--actions could be invoked from ‘the outside’ as well.

-- actions will be available across the entire cluster ‘quickly’
-- execution takes place on the node where the event
happens.

Figure 3: The Listener Architecture Diagram

The scripts managed by the Listener are stored in a special collection in the object store. Specific
metadata can be added to the script to define the rule execution condition for this script. Details are
included in Appendix 3.

3.4. Obtaining the ERMR

ERMR is an Open Source (Apache v2) tool and will be published on GitHub by the end of January
2017 under the URL https://github.com/pericles-project/ERMR.

3.5. Conclusion

The ERMR is a software for storing and querying models and digital objects and constitutes a central
component of the PERICLES WP6 test-bed for registering models and metadata. Policies which
operate on the data store help to manage the stored data and those policies can invoke external
programmes. The notification system issues events onto a message queue, so connection with third
party components and workflows is possible. The whole tool is designed to be flexible and scalable, it
also provides an authorisation and authentication mechanism for secure access. It uses standard
protocols for storing and querying the data, which eases the integration with other systems.

It is planned to continue the development of ERMR after the project end. There have been already
contacts with academic and research organisations. The main strand for further development is a
central metadata catalogue with cluster functionality. There have been contacts with the Science and
Technology Facilities Council, the Culham Centre for Fusion Technology (CCFE) and Edinburgh Parallel
Computing Centre (EPCC). As a result of the project dissemination activities, the technology is
already adopted at the University of Maryland Digital Curation Innovation Center.

© PERICLES Consortium 30/152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

4. Policy Editor

4.1. Background & Motivation

Policies are important to preservation. Preservation policies typically define the desired state of part
of the preservation ecosystem, for example, what should be preserved, what formats should be used
to store data, how many copies should be stored, etc. They do not typically define how things should
be done (this is defined in a process) but in practice, this boundary is often blurred; it could be that
the policy dictates that a certain process be used under certain conditions, and it can be that
machine-readable policies include processes that, if followed, can guarantee that a policy is
enforced. The policy editor described here uses a model of policies that is described below in section
4.2.1.

Creation of sound policies is considered to be a difficult problem. As part of T5.2.1 we have created a
Policy Editor. The primary goal of the Policy Editor (PE) is to enable and assist in the manual creation
of a consistent set of policies (see D3.2 Linked Resource Model, page 31). We set out to create a
policy editor that allows:

e creating natural language policies;

e creating policies that adhere to a particular policy model;

e using a structure of policies that can contain sub-policies that can optionally contain
(executable) process data;

e creating/maintaining a set of policies using a predefined set of policy templates;

e creating policies that use domain specific terms and concepts from the digital ecosystem
wherein the policies apply;

e ensuring that the set of policies is fully specified to the level of detail that is required for a
particular application;

e exporting to both (printable) human-friendly and computer-friendly formats.

The main secondary objective is to allow policy validation and process execution. This optional
capability is available when the used policy model supports executable/validatable policies/
processes and a policy execution/validation component is connected to the PE.

4.2. Use and Functionality

A typical use scenario for the PE is depicted in Figure 4. Here a policy creator defines a set of policies
from scratch. In this case the policy creator is an individual that belongs to an organisation or team
that is responsible for selecting, defining and tailoring, but not necessarily approving, the set of
policies applicable for his domain of interest. As an example, in projects that require a formal Data
Management Plan, which is a document that describes how a project will manage, describe, preserve
and use generated data in the project, the Policy Editor can be used by a data curator (who then
fulfils the role as policy creator) to define the contents of the Data Management Plan. Typically,
policies are created at the start of an activity by a manager of these activities. Instead of starting

© PERICLES Consortium 31/152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

from scratch, it is also possible to load an existing set of policies (also created with the Policy Editor)
and build on that.

Concrete
policies

o O
ecosystem User input

emplates

Load Gty R ey Populate
Reorganize concrete)
template(s) L variables
policies

A A A

|
|

Process
execution
engine

Figure 4: A typical use scenario for the policy editor

The PE can be used as follows:

* The policy creator selects one or more existing policy template files that contain policy
templates; these can be thought of as incomplete policies that are to be completed by the
policy creator. Policy template files are created by experts and can be, for example, domain-
specific, organisation-specific, provided by the authorities, etc.

* From these policy template files, the policy creator makes an initial selection of those top-
level policy templates that are applicable to a particular scenario, system, infrastructure or
organizational structure. The policy creator can go back and add additional (top-level) policy
templates at any time.

¢ In the next phase the policy creator updates the policy structure of the selected policy
templates by adding or removing lower-level policy templates (selected from the template
files). This allows the policy creator to fine-tune the policy structure to the specific needs of
the application.

¢ Depending on the complexity of the policy model used, the policy creator has to create
concrete policies from the templates by filling in the missing parts. As an example, a policy
model dictating that each policy must have a version, will result in the policy creator having
to fill in a version for each imported policy template. To improve consistency among policies,
variables are introduced that can be shared between policies. Changing the value of a
variable in one policy will automatically update all other policies where that variable is used.
The variables values are either free text, typed by the policy creator, or selected from a
limited list defined either in the policy model, the policy template or the digital ecosystem.

e After creating the set of relevant policies, the policy creator can export the policies to a
PDF/text format or a computer-friendly JSON version. If configured with a process execution
engine, the PE can also trigger a policy validation and visualise the results.

© PERICLES Consortium 32 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

4.2.1. Templates & Policy Model

For the purposes of the policy editor, policies are modelled as shown in Figure 5°. Policies
(“instances” of this policy model) can be created from policy templates as described above.

“PolicyModel": { Property name

*Properties” {
*Ide H
“Version™; "<polic
“Level™: *<policylevel>",
Typa™: "<policyType>",

\ Property variable, used in the PE
';.’anables'. {
“poli -
"palicyVersion™: "String”,
*policyLevel": "Polc

policy Type™: "PolicyType
. Property type
}
|3
"VariableTypes™
‘Polic:
QUi Possible property values
f;?:z”]'e : Note: if no property values are defined for a
*Policy Type": | ' type, the values are relrieved from the digital
‘mandatory” ecosystem
‘legal requirement”,
“aspirational”,

‘business driven”]

}
}

Figure 5: Policy Model

Policy templates are described as shown in the example in Figure 6. Templates contain properties
with content (which may contain variables), specification of variables and an optional list of lower-
level policies. Variables are typed and these types can have a predefined set of values from which the
policy creator can choose. These predefined values can originate from either the template, the
model or, if an ecosystem adapter is used (as described below), from the digital ecosystem. Further
information about the contents of policy files can be found in Appendix 5.

> The policy here is described using JSON, but it could equally well be described in RDF using the LRM.

© PERICLES Consortium 33 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

“TopPolcies™ { The template gives specific values to policy model properties, not

“TopPolicy1_Templale®: { necessamy all
Proparies®: |

“Statement®: *The <companyLayer> manager is ultimately responsible for all delverables.”

)
“Vanables®: {
“companylLayer”: "glabal*

ts.mPr.u:;m' [SubPaicy!_Tempigeimm————— TOpPolicies (can) refer to Subpolicies
)

:Sutpoltes" {
“SubPolicy1_Template®:
"Properties™ {
Name®: *Deliverable signatures”
“Statement”: "All <deliverable_7> are signed of by the <companyLayer> manager”
)
"Variables™ {
“delivarabie_?": "glabal”
“companylayer “globalr
X
"Processas”. [Process]_Temghibie Subpolicies (can) refer to process data

1
i

*Processes”: (
"Process1_Template™ {
“Propares®: (
“Statement™: Yargach delverable in getDelverablesOfTypel<delverable_7>)
assert(delverable isSignecOMy(<compal

“Varabies®: {
“dalverable_7" "global®,
“compa

Variable

Indication that this vanable can be shared amongst all policies.

b The specification of the variable is found in the Variables section

“Vanables®:
“compa@tiyer: "CompanyLayer Multiple instantiations of a policy will trigger multiple identical
“"“‘“"’““‘M representations of the same variable, except if a *_?" suffix is
} added, This will create a unique variable name for each policy
)

Figure 6: Example template file

4.2.2. Integration with the Ecosystem and Process Execution

As well as operating as a stand-alone tool, the policy editor can be made aware of the wider
preservation ecosystem in which it is being used, by connecting to an external data provider. The
interface to the data provider is defined in such a way that there is no ‘vendor lock-in’ to any
particular digital ecosystem infrastructure. This is achieved by using adapter components to form an
intermediate layer between the PE and the ecosystem. As an example, an ERMR-specific adapter
would translate the PE query getValues(aType) to ERMR-specific queries to retrieve all
values/entities that are registered in the ERMR that would correspond to the given type. In a more
lightweight setting, the digital ecosystem role could be fulfilled by a simple text file containing the
possible values for the supported types. In this case the role of the adapter would be to read from
this file and return the requested values. As it is not unlikely that policy templates and the digital
ecosystem infrastructures originate from different sources and that therefore concepts have
different names, the adapters can be configured with a translation mapping between types coming
from the PE and types as they are defined in the digital ecosystem.

Although the primary goal of the PE is to allow a policy creator to define policies that adhere to a
policy model, the PE optionally allows the policy creator to use and fully define the lowest level
policies using “executable” process data. This can be done by having a Policy Statement property
that is of Format formal and of Language SPIN (for example) and that contains a concrete SPIN rule.

© PERICLES Consortium 34 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

The PE can then be connected to a process execution engine.

When using SPIN rules as the Policy Statement, the PEE role is fulfilled by a respective rule engine.
Again, similarly to allowing the PE to connect to a digital ecosystem infrastructure, the PE tries to be
generic enough to support multiple types of PEEs. To this end, to be able to use this optional feature,
a PEE-specific adapter must be developed that is able to communicate with both the PE and the PEE.
When executing a Policy that contains process data, this policy «calls the
execute(Policy ID,Process_data) function of the adapter that is responsible for
translation into a PEE-specific query. Optionally the result is returned to the PE, again through the
adapter, so that this result can be visualised in the PE. Note that the PE makes no assumptions
whatsoever with regards to the content of the process data. This process data can be queries, a
config file, an executable script, or something else. The only offering by the PE in this regard is that in
the template the content of this process data can contain variables and that the same rules apply for
process data as for other policy data with regards to variable propagation etc.

4.3. Design & Implementation

4.3.1. Architecture

The Policy Editor follows a client-server architecture. The core application is deployed on an
application server, and the (GWT-based) GUI is offered through a standard web browser. The PE
relies on other (albeit optional) components to offer some of its functionalities. This is illustrated in
Figure 7.

More specifically, it offers interfaces to integrate with:

e apolicy store (for persistence of policies, processes):

¢ the Model Repository of the ERMR could be used for storing policies,

e an ecosystem infrastructure (to refer to digital entities from a repository),

e within PERICLES, the ERMR would fulfil this function,

e aProcess Execution Engine (to run processes and validate policies).

e within PERICLES, the Process Compiler working together with the Workflow Engine could
perform this role.

© PERICLES Consortium 35 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Client :
Application Server
Policy Editor -
GUI
Policy Editor -
serverside
Policy Store « « IR | olicy Store
Adapter ' = '
[Ecosystem N, l.iiss, cosyste
Adapter ' : - '
Intemet /
LAN / '
L Process Execution | . . [RIR / Process Execution
Engine Adapter Y Engine
p //"
/"

Figure 7: Policy Editor architecture

Where there are existing components, the Policy Editor can be integrated by using adapters.
Moreover, thanks to its modular nature, the essential editing functionality can be guaranteed also
without the availability of an ecosystem or a Process Execution Engine. A policy store, however, is
always required to persist policy and process information. It is treated as a distinct module so as to
easily adapt to different integration scenarios. Currently, the policy store is implemented as a JSON
export and import component.

The policy editor can be configured in multiple ways, depending on how it must integrate with other
components. Various different configurations are described in Appendix 4.

4.4. Obtaining the Policy Editor

The (proprietary) Policy Editor tool is, at the time of writing this present deliverable, not available
online. Further information can be obtained by contacting david.deweerdt@spaceapplications.com
or rani.pinchuk@spaceapplications.com.

4.5. Conclusion

The Policy Editor assists on creating policies via templates, which means that the policies are
predefined and the PE helps in compiling them and fill-in concrete values. The policy level and
integration level of the Policy Editor is flexible. The PE can be used as a stand-alone tool or integrated
with other tools, so the templates can be kept within other systems or be basic text files. The same
applies to the output, it can be plain text files or integrated into other systems, e.g. sending them
directly to a policy execution engine. This is possible by providing custom adapters.

© PERICLES Consortium 36 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

5. Technical Appraisal Tool

Sections 5 and 8 constitute the final report on the work carried out on task T5.4 Support functionality
for appraisal processes. Section 5 focuses on T5.4.2 Appraisal tools, which describes the
implementation of our proposed methods in a software application called the Technical Appraisal
Tool. Section 8 describes the work on T5.4.1 Modelling of Appraisal Processes, which defines our
overall approach and methodology.

Essentially, this report is an update on the material presented D5.2. There we introduced our
methodology, outlined a technical approach and conducted some initial investigations and
experiments. The primary focus since then has been on implementing and evaluating the methods
and on development of a practical appraisal tool.

5.1. Background and Motivation

In D5.2, we partitioned appraisal criteria into two distinct categories:

e Technical appraisal — decisions based on the (on-going) feasibility of preserving the digital
objects. This involves determining whether digital objects can be maintained in a reusable
form and in particular takes into account obsolescence of software, formats and policies.

* Content-based (or intellectual) appraisal — acquisition and retention decisions or assignment
of value based on the content of the digital objects themselves.

Roughly speaking, technical appraisal addresses the question “can we preserve?”. Technical appraisal
can be extended to cover any aspect of change in digital ecosystem entities and any type of entity,
including user communities, policies and processes. Content-based appraisal addresses the question
“what to preserve?”. Our main focus in the final development phase of the project has been on
technical appraisal.

The main problem being addressed by the technical appraisal tool is to assess the long term
sustainability of complex digital objects, which can include science experiments and digital video and
software based artworks.

For the purpose of analysing risks to digital ecosystems, we define two types of risks:

e A primary risk is a potential change to an entity arising through a stimulus that is external to
the ecosystem.

* A secondary (or higher-order) risk is a risk to an entity as a result of a potential change to
another entity on which it has a dependency.

We use data-driven methods to first determine analytically the primary external risks to the digital
ecosystem. We then apply probabilistic methods and the underlying digital ecosystem models to
determine the secondary risks, as well as their impact and proximity.

© PERICLES Consortium 37 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

5.2. Use and Functionality

The technical appraisal tool is aimed at conservators of time-based media collections and science
data managers who are responsible for maintaining the long-term reusability of complex digital
objects. We aimed as far as possible to keep with design of the tool as consistent across the two case
studies in order to demonstrate that it could potentially be applied across multiple application
domains. The main requirement to extend to other domains is to provide the required ontologies
and sources for environment data harvesting. The model instances for each domain are stored in
separate folders. The application domain can be selected from the start page of the tool (i.e. digital
art or science). See the narratives in section 8.2.

The ecosystem model needs to be provided for each application. PERICLES provides the EcoBuilder
tool (see section 6) for constructing ecosystem models. This in turn will import external ontologies or
custom domain ontologies built with existing tools such as Protégé. The appraisal tool assumes that
the ontologies have been built and are stored in the ERMR.

The appraisal tool was conceived as a web-based application. This provides the most flexibility in
running the tool on multiple platforms. For real world deployments in archives and repositories
working with large volumes of content, the appraisal tool processing components would be likely to
require higher performance servers than an individual PC such as cloud infrastructure.

Further details about our approach to technical appraisal and more detailed description of the
functionality of the various components is provided in section 8.

5.3. Design and Implementation

5.3.1. Tool architecture

The technical architecture of the tool is shown in Figure 8. It is based on a web service framework,
with individual tools implemented as web services.

© PERICLES Consortium 38 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

[User Interface
[Web Server

Service Layer

1
1
Metadata Data Statistical Risk-impact 1
extraction Harvester Analysis Analysis I
1

Instance

Store Base

1
1
1
Knowledge |
1
1
1

: External Data Sources 1

1
I 1
1 Google — |
| [Trends] [SourceForge] [Wikipedia] l
: 1
I 1
1 [GitHub] [StackExchange] |
: 1

Lo e e e e e e e e e e e e e ———— 1

Figure 8: High-level architecture of the technical appraisal tool

The architecture is formed of a number of interacting layers as follows:

* The user interface layer contains the components for user interaction with the tool including
registration of digital objects, risk-impact analysis and general content management
functions.

e The web server deals with user requests and serves up pages to the user.

* The service layer comprises the main technical functions of the tool. We have a adopted this
approach as the various components needed to be written in a number of different
languages namely Java, Python and R, to make use of specialised built in libraries.

e The storage layer contains both the domain and ecosystem model ontologies in the form of
the knowledge base, and the ecosystem model instances in the instance store. In practice
these are stored in the same RDF store.

e External data sources are external applications that typically web service interfaces. Custom
adaptors for each application are provided in the service layer.

The service layer comprises four main components:

e The Data Harvester gathers data from predetermined external data sources for analysis and
writes the raw results into the model repository. Harvesting can be configured to run

© PERICLES Consortium 39 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

periodically at a frequency set by the user. Currently there exist adaptors for Google Trends,
Wikipedia, GitHub, SourceForge and Wikipedia.

e Statistical Analysis contains the libraries for modelling the raw data and computing risks and
proximities.

e Risk-impact Analysis is a component that builds Bayesian models from the ontologies and
primary risks to compute the risk impact and proximity on the complex digital object under
consideration.

e Metadata extraction is a component to analyse digital components and extract relevant
metadata fields that can be used to populate an ecosystem model instance.

External data sources are linked to adaptors in the service layer. In general, the more independent
sources of data that can be harvested, the more reliable the predictions. We were, however,
restricted to data sources freely available on the Internet.

The narratives and workflow for technical appraisal implemented by the tool are described in
sections 8.2 and 8.4 respectively.

5.3.2. User Interface: Functional Design

The functional design of the user interface for the technical appraisal tool is described in Figure 9.
Each block represents a particular view of the interface with an associated set of functionalities. The
arrows represent allowed transitions between the functional areas.

Domain

selection Upload view

Search view Collection view Componentview

_

Filtered

Instance view collection view

Preservation

actionsview

Figure 9: Functional view of the technical appraisal tool user interface

© PERICLES Consortium 40/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

The purposes of the various functional components are as follows:

e Domain selection is a single page that enables the tool to be switched between different
application domains that use different background ontologies. In the case of the PERICLES
demonstrator, this enables us to switch between the digital art and space science domains.

e Collection view is the main entry point which displays risk information about ecosystem
instances (e.g. digital video artworks or individual instances of science experiments). The
collection view also features grouping of ecosystem instances into folders or sub-collections.

e The component view provides a view of all the entity types within all collections or specified
a specified collection. A component is defined as an ecosystem entity such as a software
application (e.g. Windows Media Player). It can also potentially include hardware, user
communities or policies. Information is provided on the frequency of occurrence and
associated risks.

* The filtered collection view provides a view of all ecosystem instances containing a specific
component selected in the component view (e.g. all digital video artworks using the H.264
codec).

e The instance view provides risk information on all entities or components within a given
ecosystem instance (e.g. a digital video artwork). For a given component, the user can select
to perform preservation actions that aim to replace that component in order to mitigate the
risk. Executing those actions involves the PERICLES test-bed described in Deliverable D6.6
Final Version of Test Bed Implementation.

e The preservation action view describes the recoverability options for addressing a risk in a
particular component within a given ecosystem instance. It is only possible to perform
preservation actions on individual ecosystem instances and not in bulk. Hence the
preservation action view is only accessible via the instance view.

e The upload view enables a new ecosystem instance to be added to a specified collection,
including both manual and automated metadata creation.

e The search view enables ecosystem instances to be retrieved by keyword search.

© PERICLES Consortium 41 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

5.3.3. User Interface: Visual Design
Figure 10 shows a view of the user interface for the Collection View.

per|C|eS A Home iZ Collection View i Component View O FAQ &~
Gata

evolving

iZ All Artwork Collections v

df @ All artwork collections Update risk-impact analysis for all artworks >>
° as

Collection View: Risk-Impact Analysis

o fwe i]
Show 10 v entries Search
o qwer]
Risk Delete
Artwork Accession Level(1-10) Primary Date for Confidence Impact Selected
Name 4 Date = = Risk = Action % $ s Artwork(s)
dfsdfg 01/09/16 IEE obsolescence 13/05/2017 3 years High
edfsf 02/09/16 1] Obsolescence = 13/02/2021 +1 years Medium
ertfdsg 01/09/16 Obsolescence = 10/03/2017 £2 years High
ewgdf 07/09/16 Obsolescence = 15/05/2020 £3 years Medium
fwefe 05/09/16 Obsolescence = 22/12/2020 +4 years High
fwwf 02/09/16 Obsolescence 16/10/2021 +4 years Medium
ghfgh 07/09/16 C6l Obsolescence = 13/08/2021 £2 years Medium

grgqqer 05/09/16 “ Obsolescence 13/05/2019 12 years High

qwerewr 21/09/16 Obsolescence = 20/07/2021 +5 years Low
test 05/09/16 Obsolescence = 25/08/2022 +5 years Low
Showing 1 to 10 of 11 entries Previous n 2 | Next

Figure 10 The Collection View page in the technical appraisal tool

The main entry pages, namely collection view and component view are accessible via the top
navigation bar. The side pane enables navigation by folder. New folders and ecosystem instances can
be added via the new button in the left side pane. The view on the objects (i.e. digital artworks or
science experiment instances) themselves contains information about the main preservation risks.
Sorting by column is possible, so the user can rank the items according to different criteria.

Since a conservator or data manager is likely to have a large volume of content to manage, we have
created a simpler Risk Level measure, which provides a single risk-impact measure to highlight items
that require urgent attention.

Since large archive collections may comprise many thousands of items, it may be difficult to gain an
overall impression of the state of a collection from viewing items in tables, where the is a limitation
of 10-20 items that can be viewed on a single screen. Therefore, we also provide additional graphical
views of collections that can be used to highlight the main risk factors.

Figure 11 shows a screenshot of the Component View, which provides an aggregated view of all
entities in a collection or sub-collection together with associated risk information.

© PERICLES Consortium 42 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

perIC|eS ftHome iE Collection View i ComponentView @ FAQ &~
evolving dats

iZ All Artwork Collections <

Component View: Risk-Impact Analysis

All components

Show 10 v entries Search
Used in % of Risk Type Date for Confidence
Name - Type $ Artworks < < Action = =
ALLPlayer Video Player E Obsolescence 01/01/2019 ©2 years
Android Operating Obsolescence 01/01/2019 ©2 years
System
Apprentice Video Video Player E Obsolescence 01/01/2019 ©2 years
ASF Container E Obsolescence 01/01/2019 @2 years
Format
AVI Container | 55 | Obsolescence 01/01/2019 &2 years
Format
Banshee Video Player E Obsolescence 01/01/2019 ©2 years
BeOS, Haiku, ZETA Operating B Obsolescence 01/01/2019 ©2 years
System
BSD Unix Operating E Obsolescence 01/01/2019 ©2 years
System
CorePlayer Video Player B Obsolescence 01/01/2019 ©2 years
CrystalPlayer Video Player u Obsolescence 01/01/2019 ©2 years
Showing 1 to 10 of 66 entries Previous - 2 3 4 5 6 7 Next

Figure 11: Component view in the technical appraisal tool

5.3.4. User Interface Implementation

The user interface is a web-based user interface which utilises HTML5, JavaScript and CSS3
technologies. SB Admin 2, a Bootstrap 3 based dashboard template is utilised to achieve this goal.
Besides this, many JavaScript libraries are used to simplify the client-side scripting of HTML. For
example, jQuery is used to handle AJAX calls to exchange data with the backend and update
elements of the web pages. DataTables is used to provide advanced interaction controls to HTML
tables. Other JavaScript libraries (MetisMenu, Flot, Bootbox, jQuery Validation, File Input, Vis.js,
Pace, etc.) are also used to provide extended functionality such as generating dynamic menus,
producing pie charts, validating inputs, enabling file upload, drawing graphs and animating page
loading progress. In addition, CSS files are used to configure the visual appearance the HTML
elements.

5.4. Obtaining the Technical Appraisal Tool

The Technical Appraisal Tool is an Open Source (Apache v2) tool and will be published on GitHub by
the end of January 2017 under the URL https://github.com/pericles-project/TechnicalAppraisalTool.

© PERICLES Consortium 43 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

5.5. Conclusion

The appraisal tool is a web-based tool for appraisal of technical risks. It implements the theoretical
approach described in section 8. The tool uses PERICLES ecosystem models as input, and makes use
of data harvested from external sources such as Google, software repositories and Wikipedia. The
tool features a user interface that presents the complex risk-impact-proximity information in a
number of different views to assist the user in both determining risks in their collections as well as
analysing risks to specific digital objects such as digital artworks or science experiments.

© PERICLES Consortium 44 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

6. EcoBuilder Tool

6.1. Background and Motivation

A key idea behind model-driven preservation is that the software components and associated
processes work with models of the digital ecosystem of the objects to be preserved. It is therefore
important that ecosystem models can be built easily. The EcoBuilder tool is designed to support the
building of ecosystem models, and related policy and QA models. An important target user-base for
this tool is scenario experts, who are not necessarily ontology experts or developers and the tool

enables them to model their digital ecosystems and scenarios.

The EcoBuilder supports the creation of models and their submission to the ERMR triple store via a
provided send function. Two interfaces are provided by the EcoBuilder for model creation: a Java API
for developers, and a Graphical User Interface (GUI) for scenario experts. The resulting model
contains the entities and relations belonging to a designated scenario and is stored in the ontology
formats Turtle and OWL/XML.

The EcoBuilder contains templates for the well-defined creation of all DEM entities and relations.
Templating reduces the complexity of modelling which facilitates a simple and well-defined way to
create models, but it also restricts the broad possibilities of ontologies. For most scenarios the level
of detail for modelling provided by the EcoBuilder is sufficient. Specific demands can be addressed by
either making the required changes directly on the outputted model, or if the EcoBuilder's Java APl is
used then it is recommended to use the Java Jena API® which is imported by the EcoBuilder to deal

with ontology concepts.

The provided templates encompass all DEM sub-ontologies, and the underlying parts of the LRM
which should be directly configurable by the user. The Digital Video Artwork (DVA) domain ontology
(see D2.3.2) is also integrated into the EcoBuilder for demonstrating the tools extendibility and for
creating exemplary DVA scenarios.

6.2. Use and Functionality

The intended users of EcoBuilder are people who want to apply the DEM for a specific scenario. The
intended user groups are persons which want to model their DE, in general persons who manage
complex heterogeneous systems, e.g. archive managers, repository managers, system architects and
also software developers (for using the programming interface).

The EcoBuilder's GUI is designed to make the modelling of DEMs user friendly by providing a
graphical user interface and programming interface, which provides an interface for the connection
to other PERICLES tools that deal with models, e.g. the ERMR which provides a triple store for the
models.

The user is not bound by the EcoBuilder to follow a designated modelling strategy, but we

® https://jena.apache.org/

© PERICLES Consortium 45 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

recommend a structured modelling strategy as the introduced policy based modelling in appendix
10, or a digital object centric modelling. This helps to keep an overview of complex scenarios and
entity linkage.

Here in PERICLES the tool supports the bootstrapping process of feeding the knowledge base from
the functional architecture with a model about a certain DE.

6.3. Design and Implementation

6.3.1. Using the GUI

A screenshot from the graphical interface of the EcoBuilder is shown in Figure 12. On the left side is
the scenario model containing all entities and relations belonging to the user's scenario represented
in a tree. The tree shows the created scenario entity instances ordered by their entity template types
and sub-models to which the template entities belong.

£ EcoBuilder - Create a Digital Ecosystem Model for your Scenario [T T X
File Triple Store

Scenario: EcoBuilder Demo Configuration of Entity 'Significant Movie'
Scenario name: [EcoBuilder Demo | Entity type: Digital Object

Name: \signiﬂcant Movie |
(Scenario entities and relations | Version: [‘

Scenario Model (] Description:

¢ ©1Model: DEM-Core

¢ [J Template: Digital Object
¢ [Significant Movie

¢ CJ[Relation: ownedy|
[Target Entity: Museum
¢ [Relation: accessedVia
[Target Entity: Web Interface
¢] Template: User Community

¢ 3 Museum
¢ [CJRelation: owns

[Target Entity: Significant Movie [5 Apply Changes

¢ [JRelation: manages

[Target Entity: Movie Server Add a relation from this entity
¢ [J Template: Technical Service

Relation Target

¢] Movie Server
¢ [CJRelation: accessedVia
[Target Entity: Web Interface ‘ & Add Relation ‘
¢ [CJRelation: managedBy
[Target Entity: Museum

[y Model: DEM-Policy

‘ownedBy \vHMuseum ‘v‘

Relation: ownedBy

IA community can own ecosystem entities.
Possible domain entities (“from") of this relation:
[y Model: DEM-Process Feosystem Entity

Possible range entities ("to") of the relation:
User Community

¢ 1 Model: DEM-Infrastructure

¢ [0 Template: Service Interface

¢] Web Interface
¢ [CJRelation: providesAccessTo
0O Target Entity: Movie Server
[Target Entity: Significant Movie

[y Model: DEM-Analysis -
[Model: SCAPE-Preservation —|

) Add Entity

Figure 12: Screenshot of the EcoBuilder

© PERICLES Consortium 46 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Ontology relations conform to the triple pattern {subject - predicate - object}, where the subject is
the entity from which the relation points, the object is the entity to which the relation points, and
the predicate is the relation type, e.g. Movie - owned by - Museum. Relations can be created
between entity instances and are displayed in the scenario tree beneath the subject entities. The
object entities of the added relations can be found at the last layer of the scenario tree, beneath the
relation entities. Each object entity is equal to an existing subject entity in the tree. It is possible to
jump to the corresponding subject entity with a double click on an object entity.

The right side of the GUI shows the entity configuration area. Entities can be configured with a name,
a description a version number, and entity template specific configuration options. The templates
will ensure that the underlying ontology resources and relations are created correctly, e.g. for each
GUI provided description an LRM:Description resource is created and linked with the entity via a
LRM:describedBy relation.

Also a list of applicable relations for the tree-selected entity can be found at the right configuration
area. The object entity of the relation can be selected from a list, which contains all existing tree
entities that are in the range of the relation.

The instantiated scenario model is generated from the scenario tree, once the user saves the
scenario. It is stored as both Turtle and OWL/XML file. The final scenario model can be send to the
ERMR's triple store via an option available at the Triple Store top-menu.

6.3.1.1. Connecting to the ERMR

The EcoBuilder provides an interface to send the created models directly to the ERMR's triple store.
The connection information can be configured via GUI, as shown in Figure 13..

=)

File | Triple Store

S [& configure)
C€] send scenario (&

Scenario name:
|_‘:j Save Name

Scenario entities and relatid
[Scenario Model

[y Model: DEM-Core

Configure ERMR

Repository: [EcoBuilder S8

ERMR URI: |https://127.0.0.1/apiftriple/

User: [myuser

[y Model: DEM-Poli¢ Password: [..........

[Close ‘ ‘ Save configuration

[y Model: DEM-Prog

[y Model: DEM-Infrd

M Model: DEM-Analvsis

Figure 13: Screenshot of the EcoBuilder's ERMR connection

Models residing in the ERMR can be further processed by other PERICLES components.

6.3.2. Using the Java API

The EcoBuilder provides a Java abstraction layer for the DEM containing Java classes which depict the
ontology resources. On Java level the template classes for the entities and relations can be accessed
directly to create instances of scenario entities, or for the creation of customised templates. They are

© PERICLES Consortium 47 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

ordered by their corresponding sub-ontologies. The EcoBuilder imports the Java Jena API for dealing
with the underlying ontology concepts. This API can also be used by developers to integrate ontology
concepts into the scenario model that are not provided by the EcoBuilder's API.

The DEM relations are also provided as template classes, that define the domain entities (from which
the relation can point) and the range entities (to which the relation can point), e.g. the "owns"
relation can only point from entities of the types "Human Agent" and "Community" to other DE
entities. Figure 14 shows an example for using the API. The entity templates provide methods for the
fast creation of the most common relations in a best practice fashion.

Community company = new Community(scenario, "Company");
Community artists = new Community(scenario, "Artists");
company.owns(server) ;

HumanAgent admin = new HumanAgent(scenario, "SystemAdministrator");
HumanAgent artist = new HumanAgent(scenario, "Artist");
artist. isMemberof (artists);

admin. isMemberOf (company) ;

Role dataCreator = new Role(scenario, "DataCreators");
dataCreator.describedBy("Persons who create Digital Objects");
artist.hasRole(dataCreator);

importantFile.hasAuthor(artist);

Figure 14: Using the EcoBuilder's Java API to create entities

Modelling with the Java APl is on the one hand more difficult than using the GUI, on the other hand it
enables to adjust the provided templates for scenario requirements, and to load concepts from
external ontologies via Jena. The Java APl offers more liberties than the GUI, therefore we got the
best resulting models by using the EcoBuilder's Java API.

As the EcoBuilder is open source, it can be extended by developers to support other ontologies

required for a designated scenario.

6.3.3. Example use in the PERICLES Project

In this section we describe how the EcoBuilder has been used to automatically update the DEM with
environment information extracted by the PERICLES extraction tool. This is one example of how the
EcoBuilder can be used in a PERICLES context. Later in this document we describe how the tool can
be used in the context of the PERICLES Policy & QA approach.

The PERICLES tools can be used to achieve an almost automated workflow of model change
management, in which digital ecosystem changes are propagated into the models automatically.

The PERICLES Extraction Tool (PET) can extract Significant Environment Information from the
environments of Digital Objects in a continuous extraction mode, which triggers the extraction on
environment changes, as described in D4.1. This extracted information can be used to update the
DEM in case of changes of the underlying digital ecosystem, where a mediator script uses the
EcoBuilder's Java APl to connect PET and the DEM.

The mediator script defines the custom entity and relation templates for the scenario using
constructs from the EcoBuilder API. If for example a Researcher System template is needed, then it
can inherit the principles from the Technical Service template provided by the EcoBuilder to create
DEM Technical Service resources. This template can include methods for the creation of specific

© PERICLES Consortium 48 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

relations and it can be used to build an arbitrary number of Researcher System instances. Those
instances can be created automatically and enriched with live extracted information, once a change
of the underlying system was detected by PET. The templates define which information is valuable
for the enrichment of entities, and the mediator script executes the parsing of the information and
enters it into the templates during the instantiation. Furthermore, the mediator script manages the
automatic creation of relations and dependencies to the other existing entities.

private class ResearcherSystemTemplate extends TechnicalService.TechnicalServiceTemplate {

public ResearcherSystemTemplate() { 1 u
super(scenario, "Researcher System", "The computer of the researcher.");
}

public ResearcherSystem createConcreteSystem(String identifier) {
ResearcherSystem system = new ResearcherSystem(scenario, identifier);
String user_language = System.getProperty("user.language");
String user_timezone = System.getProperty("user.timezone");
String os_version = System.getProperty("os.version");
String os_name = System.getProperty("os.name"); :Z .
system. addProperty (userLanguage, user_language);
system.addProperty (userTimezone, user_timezone);
system. addProperty(osVersion, os_version);
system.addProperty (osName, os_name);
return system;

¥

public class ResearcherSystem extends TechnicalService {
public ResearcherSystem(ScenarioModel model, String identifier) {
super(model, identifier, researcherSystemTemplate);
}

}

Figure 15: (1) Scenario specific template inheriting EcoBuilder templates. (2) Enrichment of entities with extracted

information during initialisation.

Figure 15 shows a screenshot of the Researcher System template which inherits from the
DEM:Technical Service. The initialisation method for instances contains a simple way to enrich the
entity instances with extracted environment information.

DEM-Scenario:ResearcherSystem
a owl:Class ; 1
rdfs:comment "The computer of the researcher."@en ; "
rdfs:subClassOf LRM:AggregatedResource , DEM-Core:TechnicalService ,
LRM:VersionedResource , LRM:ExogenousResource .

DEM-Scenario:LocalMachine

a DEM-Scenario:ResearcherSystem ;
rdfs:label "Local Machine"(@en ; 2
DEM-Scenario:osnhame "Linux" ; u
DEM-Scenario:osversion "4.6.3-1-ARCH" ;

DEM-Scenario:userlanguage "en" ;

DEM-Scenario:usertimezone "MET" ;

LRM:hasPart DEM-Scenario:Terminal ,
DEM-Scenario:ScientificReportforyesterday ,
DEM-Scenario:ScientificReportfortoday .

Figure 16: Extract of the resulting model showing (1) the template entity of the Researcher System, and (2) a Local
Machine which is an instance of this template

Figure 16 shows an extract of the resulting model created by the EcoBuilder from the script shown in

© PERICLES Consortium 49 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Figure 15. The Researcher System template entity inherits from LRM and DEM resources, and is
saved in the resulting scenario model once, while there can be an arbitrary number of instances.

Broader information extracted by PET can be added to models via mediator scripts that include the
parsing of the information into the required formats. Mediator scripts can be further responsible for
the ingest of the models into the repository, and in combination with triggers for sending notification

in case of digital ecosystem or model events.

See also the chapter about modelling strategies and mediator scripts at D3.5.

6.4. Obtaining the EcoBuilder

The EcoBuilder is an Open Source (Apache v2) Java tool built on top of the Digital Ecosystem Model
(DEM), which is described in D3.5.The EcoBuilder will be published on GitHub by the end of October
2016 under the URL https://github.com/pericles-project/EcoBuilder.

6.5. Conclusion and future plans

The EcoBuilder tool enables scenario experts, which are not ontology experts, with the creation of
DEM models. The tool can output the model as file or offers a direct connection to ERMR to store the
models there. Using the tool ensures that a valid model is created. This is made possible by providing
templates for the ontology constructs. The downside of the simplification is that it does not offer all
options from the ontology. Details and domain specific extensions can be added afterwards, if
required. It provides a GUI and an API. The APl enables the possibility to integrate the tool, e.g. for
connecting it to a notification system to populate change into the DEM model.

Ideas for future work are adding the ability to load domain specific ontologies via the GUI to add
specific details about entities if needed and representing the created model as a graph.

© PERICLES Consortium 50/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

PART TWO
APPROACHES

© PERICLES Consortium Page 51/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

7. Approaches for Policy, QA, Model Driven
Preservation and Change Management

7.1. Final Policy Model and Guidelines

This section presents the final version of the policy and QA (Quality Assurance) model, which was
introduced in Deliverable 5.2, and is part of task T5.3.1. The final version takes into account the more
recent discoveries made while developing the prototypes (75.3.2), and the helpful feedback and
discussion from the recent workshops, introducing also a more detailed model of QA as a new,
separate entity. The model is designed to support QA methodologies that can validate and ensure
policies are correctly applied and complied with, within a given digital ecosystem. Furthermore, the
policy framework can include the definition of change management rules for policy change
management, as described later in this deliverable in Section 7.2. While requiring more investment in
their creation, these rules react to some types of change and adjust the ecosystem so that policies
remain valid and correctly implemented. The policy and QA model described in this section has been
implemented in the DEM and can be stored and used in the ERMR.

7.1.1. Modelling Ecosystems for Policy Compliance and QA

When considering policy and QA implementation, we decided to focus on pragmatic approaches that
facilitate implementation and reuse of existing infrastructure, saving cost and time of
implementation. Following the intuition behind the DE modelling approach, we define policy and QA
to have minimum requirements on the technical infrastructure and their specific implementation.
Policy modelling does not replace any enterprise architecture, but is thought of as a thin layer on top
of the Digital Ecosystem Model, defining clearly and unambiguously policies, their implementation,
dependencies, constraints and validation methods. This was recognised as a promising approach
during at the Brussels and IDCC 2016’ workshops.

The issue of implementing policies using formal languages and specific technologies is a high barrier
to adoption, because of initial difficulty of learning and migrating to often uncommon technologies.
Currently, formal language policies are very domain specific, and QA is usually quite limited and
focused on the basic aspects of file-format migration, or left as manual work of developers, system
administrators and practitioners. For this reason, our model doesn’t make any strong assumption on
underlying technologies and languages.

At the basic level, our model supports the description of the policies, QA methods, and their
dependencies in human readable form enable users to communicate and define requirements, to
record and share the knowledge and decisions taken when implementing policies. Since policies
include, by our broad definition, also aspirational policies, our model can help communicate general
objectives of an organisation, and how these map to concrete infrastructure and requirements, and

’ Brussels second evaluation workshop, Oct. 2015; IDCC workshop, Feb. 2016

© PERICLES Consortium 52 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

is not limited to defining constraints and mandatory practices. This is an important record and
communication tool per se.

Furthermore, we propose two different methodologies for policy implementation and QA.

One is described in general terms in section 7.2, and makes use of formal (rule or action) languages
to provide automated change management. It can be implemented using PERICLES technologies
(LRM, DEM, SPIN® rules.) as illustrated in the proof of concept (see section 7.4), or other
technologies.

The second approach introduced in D5.2, and extended here in Appendix 10, is an the automated,
non-formal approach for policy and QA validation based on the definition of QA methods driven by
the Digital Ecosystem Model and automated by triggers reacting to change.

7.1.2. Top Down Policy Implementation Methodology

We propose a simple, three step methodology, starting from a high level view, in order to describe
and implement policies:

1) Model the existing architecture, policy and QA methods using the DEM and the policy derivation
method

2) When possible and effective: use an automated and formal approach based on the DEM
approach and rules (section 7.2)
a) Define policies and QA methods using rule-driven change management
b) The DE analysis will describe dependencies and change of different type

3) When more convenient: use a semi-automated approach (based on free-form processes or
human intervention), and enrich it with QA methods. These methods can be linked to DE model
change by triggers and risk assessment. (See example in Appendix 10.)
a) Implement the policy freely, in any existing architecture and language; use plain text

descriptions for human-driven processes.

b) Define QA methods for policy and where possible, implement them.
c) Use automated validation via QA methods, and change management based on the DEM.

We recommend defining policies and QA methods always in natural language. When possible, the
model supports the definition of triggers for the different processes based on changes to the digital
ecosystem entities.

The triggers can be time-based, or event-based, where the events can represent change in the digital
ecosystem. An LRM based implementation is shown in the next section; other trigger
implementations are easily defined with a different event and trigger methodology.

7.1.3. Final version of the Policy model

Recent discussion (IDCC workshop, Feb 2016) made clear the importance of representing explicitly
aspirational policies. These convey what the organisation aims to archive, but currently does not
implement, and help to drive developments by explaining the interests and future directions. For this

® http://spinrdf.org/

© PERICLES Consortium 53 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

reason, we introduce the type of a policy (represented with Policy Type), clearly stating when policies
are mandatory, partially implemented, or just aspirational and not implemented. Other polices
represent legal requirements, meaning that these cannot be ignored and must have an
implementation. Independently of the type, all policies are relevant and important to record.

The policy data model is defined independently of a specific ontology, but it has been implemented
in the Digital Ecosystem Model and EcoBuilder.

Policies can serve as communication tools, explaining how the institution sees specific issues. For this
reason, policies at different levels should always include a detailed, human readable description,
allowing different roles in the organisation to understand them. Since policies can be partially
implemented, for a number of reasons (lack of resources, priority, technical infeasibility), we make
explicit the real implementation state of policies.

Some policy and QA method implementations can be automated, but still require human validation,
while others can be completely automated or completely manual. This is also explicit in the model.

Below is the final definition of the policy model:

e Identifier: a unique identifier for the policy

* Name: a user-friendly, not necessarily unique, informal name

e Version: version number (it can use the LRM versioning mechanism)

¢ Policy type: mandatory (e.g. by a funding body), legal requirement (law, such as Freedom
of Information Act’), aspirational (principles driving the institution), business driven (what
we do - our business). Not all policies are equal - mandatory ones must be implemented to
satisfy law or other requirements, others are aspirational, and most are met with the best
possible effort.

* Level: what the policy level is. For general policies, we have defined the following levels,
based on the SCAPE policy levels, changed in a generic way so that they are not specific to
Digital Preservation.

Guidance: high level principles and general objectives driving an organisation, the most
abstract level of policy.

Procedure: lower level policies that gives detail of how the policy is implemented without
strong dependencies on the infrastructure

Control: low level description of the policy that includes reference to the specific
infrastructure. For digital preservation, we make use of the SCAPE' policy levels.

* Policy statements: detailed definitions of the policy contents as text (formal or non- formal).
A natural language, human readable statement must be always provided for any policy, so
that the policy can be understood by anyone in the organisation; this way the policy
framework can be used as a communication tool across an organisation.

|II

Format: “formal”; or “non-formal” (free text)

Language: the language used for the policy definition (natural language, ReAL, SPIN, SWRL,

? https://en.wikipedia.org/wiki/Freedom of Information Act 2000
1% http://wiki.opf-labs.org/display/SP/SCAPE+Policy+Framework

© PERICLES Consortium 54 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

etc.)

* hasQAcriteria: reference to the QA criteria implementation described in QA criteria entity
(next paragraph).

e Classification: defines the category of policy; domain specific.
For preservation policies the SCAPE catalogue of policy elements guidance level
classification'’ can be used as a reference.

e Policy authority: the entity that mandates or generates the policy. The authority could be
also a reference to a legal requirement (in case that a policy is mandated by a legal
requirement) or a directive. The authority reference is here to trace who had the authority to
generate the policy.

* Responsible: responsible for the application of the policy (person or role)

e Sub-policies: policies that are a more detailed specification of the parent policy as described
in the policy derivation process (D5.2)

* Implementation: reference to processes implementing the policy.

* Requirement Level: what is the desired level of compliance of the policy (must, should, must
not); as defined in RFC 2119

* Implementation state: how deeply the policy is currently implemented (implemented,
partially implemented, unimplemented, not-implementable). It is necessary to represent
policies that are important as guidance, but can’t currently be implemented.

e Validity information: any guidance to the policy lifecycle: Valid from; Valid to

e Conflict detection attributes: map of attributes for conflicting policies detection (see
paragraph 5.7 in D5.2)

* Target entities: references to entities that are subject of the policy (depending on the policy
level, it could consist of a free text description, a query, or a list of entities)

e Target user community: the user community the policy has been designed for

e Automation status: (manual, automated with human intervention, fully automated).
Specifies if a policy implementation requires human intervention.

* Replaced policy: in case a new policy is created in order to replace an old one

* Policy validation status: the property serves to indicate the current status of a policy in the
ecosystem according to the defined QA criteria: valid (currently respected); non valid
(currently not respected); not decidable.

e Trigger: what will trigger the policy validation. A trigger can also be a reference to a length of
time for recurrent triggering. Triggers can be defined in response of different events,
including change events. Triggers can be implemented using the LRM dependency’s
precondition-impact properties, and SPIN or ReAL.

e Drift threshold: defines the drift value that will activate drift evaluation. This is specific for
semantic and community drift, so that changes in concepts or community topic of a certain
level can be reported and manually validated. An example making use of the Drift threshold
is included in Section 7.4.

" hitp://wiki.opf-labs.org/display/SP/Catalogue+of+Preservation+Policy+Elements
2 https://www.ietf.org/rfc/rfc2119.txt

© PERICLES Consortium 55 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

7.1.4. Quality Assurance Criterion Model

We decided to separate the description to the QA aspects with details that help to describe both
automated, and manual QA processes.

* Format: formal; or non-formal (free text)

* Language: the language used for the criteria definition

* Implementation: reference to the processes or rules implementing and enforcing the QA
criterion

e Statement: human or automated QA process description. The statement describing the QA
criteria. A human readable statement MUST be provided to help communication.

* Trigger: same definition as the policy model

* Process: the reference to a process (can be also a human process) that can validate the
criteria.

* Implementation state: same definition as the policy model

e Automation status: same definition as the policy model

* Responsible (person): responsible for the application of the QA method

e Target entities: The target entities of the QA. A particular QA method may apply only to a
subset of the overall policy target; by default, if no target entity is specified, it is assumed to
be the one of the policy.

© PERICLES Consortium 56 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

7.1.5. Integration of the Policy Model into the Digital Ecosystem
Model

The policy and QA model described here, is integrated in the Digital Ecosystem Model (DEM) (a cross-
task effort involving Task 5.3.2 and WP3) and can be generated using the EcoBuilder tool. Details of
the DEM policy model implementation are described in D3.5 and are not reported here.

An example that applies the implementation of the policy and QA model using the EcoBuilder in a
policy driven modelling approach can be found in Appendix 10. It models the DE of CERN
preservation policies including policy derivation QA.

7.2. Rule-Based Change Management for Ecosystem
and Policy

The Linked Resource Model (LRM) [D3.2, D3.3] is a common base ontology language for change
management. Thanks to the concepts of precondition and impact, as means to handle change in the
digital entities through the concept of dependency, it allows management and propagation of
change in digital ecosystems. When change happens in digital ecosystems, these LRM features allow
defined methods to react and propagate change to the target and dependent entities. The
precondition defines the conditions that have to be satisfied in order to activate a dependency, while
the impact defines the consequences of the dependency activation. By defining dependencies that
make use of these constructs, we propose to implement policies, QA and change management at the
model-level, expressed as constraints on entities in the corresponding LRM model.

In order to accomplish this type of policy implementation, it is necessary to have support for rule
languages at the model level, such as the ReAL language®, or the W3C SPIN rule standard™. In line
with the rest of this task, what we propose here is generic, and can be implemented using different
technologies. In section 7.4 we provide exemplar implementation in SPIN.

In line with the ideas and principles we described in the previous section, we here describe a QA and
change management methodology for policy and ecosystem entities.

7.2.1. Requirements and Functional Description

In order to implement rule-based change management, a proper architecture for change
management must be in place. We are describing such architecture here, in general terms but with a
reference to the PERICLES components that implement that functionality.

The components are listed here and their relationship is represented in Figure 17.

* Repository event listener: at the repository level, a system needs to be in place in order to
register the basic operations and changes that can happen to digital objects. These include

B This ontology language will be described in the deliverable D3.4 Language for Change Management (due
M46)
1 https://www.w3.org/Submission/spin-overview/

© PERICLES Consortium 57 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

all changes that can happen in the data repository, such as the typical CRUD operations:
Create, Read, Update, Delete. In PERICLES, this is represented by the ERMR component,
described in Section 3, which can generate and share events happening in the repository.
Events will be reported to the DE model updater component.

* Digital Ecosystem model updater: this component will listen to change events in the DE (as
reported by the event listeners), and update the ecosystem model accordingly.

* Digital Ecosystem listener: A listener that reports change events into local (end user)
computers, or other type of changes in other concrete ecosystem entities, such as the
concrete services or SW components. Events will be reported to the DE model updater
component.

* Digital Ecosystem Model listener: changes in the Digital Ecosystem Model instances must be
observed and reported to the relevant component; this will allow the implementation of
precondition-impact and rule-based change management. In PERICLES such functionality will
be covered by the LRMS and by a change observer for a SPIN rule engine. The listener
receives change events from the model updater. Changes can be expressed using LRM
deltas™.

* Model consistency checker: validates the consistency of the model and its dependencies;
this can be covered by the LRMS.

* Rule or precondition-impact engine: triggers the impact when the preconditions are
verified. In concrete terms, this is covered by the LRMS (LRM Services) for ReAL, or by a SPIN
rule engine for SPIN.

* Process execution layer: executes the processes, which are triggered by the rules. This can
be simple, direct processes, or more complex workflows. In PERICLES the process compiler
and workflow engine implement such functionality.

!> See PERICLES D3.3

© PERICLES Consortium 58 /152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Ecosystem object level
iqi observes 00000 | e e - - - - !
Dlg.'tal updates of rOther object I
Object Digital DOs .) [Technical Service, User Community, ' |
repository Object Update: DO Repository Process Poliey] _ _ _ _ _ _ _ ! i
Level listener :
(ERMR) i
observes |
| Digital | i
i Ecosystem | |
| listener | |
Model |
Instance e i
Digital i
Level Ecosg Update:
ystem - updates
Entity Digital DE Model
ng)sy;stem updater receives
objec
, Notifies (LRM DELTA)
REST AP| mmmmmmmmme
Call 3 \
Process Rule ' Model] EcDLgitatl - observes Other DE
execution engine *— consistency |* | ronoydsele R changes
layer (SPIN) : validator |
o ! listener

Figure 17: Change management architecture: event propagation and components

7.2.2.

Concrete implementation of policies for change management will be highly dependent on the use

Detailed methodology description

case. In order to give an understandable, familiar example, we describe in this section the generic
approach, exemplified with a simple DP scenario that can be used as a template: the issue of keeping
data accessible.

The LRM model defines change to entities in the ontologies using deltas (1rm:RDF-Delta)
[PERICLES D3.3, 2015], [D.4.4 chapter 4]. Deltas provide meta-information about the modification of
a resource, by defining a list of triples that have been deleted and added to the model. In our
methodology we assume that such deltas are reported by the DEM updater component and are
added to the Digital Ecosystem Model using the LRM Delta notation.

These guidelines™® drive the construction of an ecosystem model that can manage change through
the use of precondition-impact rules.

1) Define the Digital Ecosystem Model and create an ecosystem instance (DEM);

2) Define policies in the Digital Ecosystem Model; (policy)

3) Connect the policy definition to all the entities that are covered by the policy (targets) using an
LRM dependency; (policy dependencies)

4) (Optional) dependencies can be automatically created and destructed by respective constructor
and destructor rules in the policy. This is useful in cases where the dependencies (linking the
policy targets) are dynamic, for example when they are defined on a criterion (e.g. “all video files
in a collection”), as opposed to a fixed set of entities. (appliesTo dependency in Figure 18)

5) LRM disjunctive dependencies can be used to express alternatives, when multiple components or

'® The names between brackets indicate the relevant entity in next section’s example.

© PERICLES Consortium 59 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

solution can address the same task; (players dependency in Figure 18)

6) The central dependency contains change management rules that will handle change in the
relevant entities (canPlay dependency in Figure 18)

7) Additional dependencies define and implement QA methods for other entities involved in the
process, e.g. unit tests or manual dependency checks to be executed upon change (uses
dependency)

Notes on the model:

¢ Thanks to the precondition-impact in the dependencies, the policy will be automatically
enforced on all involved resources upon change in the entities, and the QA methods for the
policy executed.

e Precondition must not generate any change, as this would generate uncontrolled side
effects. This is also a constraint defined in the LRM model.

e The impact can trigger processes, which can in turn change the models or the concrete
Digital Ecosystem entities (that will be reflected on the model).

e Dependencies can either be created by testing constraints on the properties of the to and
from resources or by running a process to enforce a certain condition to hold.

e Policies can enact processes directly through dependencies to resources, or create new
dependencies.

7.2.3. Methodology description for policies dependant on two
entities

In order to better illustrate the change management principles, as we have outlined in the previous
section, we describe a complete example based on the Digital Video Art ontology and scenario
[D2.3.2 and part of D6.6 (pending)]. For readability purposes, this is a simplified example.

7.2.3.1. Scenario

The scenario is based on the high-level policy for preservation of digital media components at Tate,
stating “At least one version of the media components must be playable on a player”. This is a
policy that aims to ensure access, taking into account technology evolution and file format
obsolescence, which is a common issue in Digital Preservation. We have reformulated the policy, to
make the scenario more explicit, into a lower level policy: “A collection of digital videos has to be
kept playable from at least one from a set of video players.”

This specialisation makes clear those two resources involved: the set of video files, and the set of
media players. This type of policy can be adapted to any situation where a data file needs to be
processed from a set of processing (rendering, transformation, etc.) software.

The example implements mitigating actions triggered by the precondition-impact part of
dependencies when critical conditions arise, as shown in Figure 18. More specifically, the Change2
destructor in the canPlay dependency will check on dependency deletion, if there is no longer any
player capable of rendering the video file. In that case format migration (transcode) will be issued in
order to keep video playable. In the case of Tate media components, before final transcoding, the

© PERICLES Consortium 60/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

video would be submitted to a human process of quality assurance, given the high value and low
volume of the resources justifies the high cost of human intervention. In other situations, involving
higher volume, lower value entities, this step could be skipped and the process could be completely
automated. The selection of the parameter AFormat for the transcode process (that defines the
target format for transcoding) could be decided by the human involved in the QA process, or
specified in the policy itself, or be determined by the list of video players (for example choosing a
format supported by the largest number of video players), or again be based on risk analysis.

Policy: videos from collection X are playable on a ‘player’ Dlsjunctl'v A) SW Agent: Quicktime

Changé 0 Precondition: a SW agent is added Suepotedionmats

Precondition: type==video and Collection==X Impact. for all DOVideo in appliesTo:to:

Impact: Create applies to between policy and DO QACheckFormat (DOVideo,SWAgent)

Change 1 if (OK) Create canPlay from SWAgent to DOVideo

[as in 0 but to remove dependency on property deletion] H SW Agent: VLC
Precondition: a SW agent is deleted SupportedFormats
Impact. Delete all canPlay from SWAgent to any DOVideo

’ ’Dependency: appliesTo S 4 \
{ Change 0: constructor Dependency: canPlay
1 Precondition: this dependency created - i
1 Impact: For all SWAgents in players:
! QACheckFormat (DOVideo,SWAgent)
if (OK) Create canPlay from SWAgent to DOVideo
if (canPlay between DOvideo and Player is empty)
Transcode (DOVideo, AFormat)
Change 1: destructor
1 Precondition: this dependency is deleted
1 Impact: delete all canRender to DOVideo
1 . i

Precondition: change in SWAgent:SupportedFromats
Impact:

for all DOVideo: QACheckFormat (DOVideo,SWAgent)
if (FAIL) delete canPlay from SWAgent to DOVideo

DOvideo
Type: video
Collection: X
Format: AVI

! Change 1: destructor

: Precondition: change: this dependency is deleted
1 Impact:
1
1
1

If (canPlay dependencies from DOvideo to Player is empty)
Transcode(DOVideo, AFormat)

Change 2: change in DOVideo format
\ Precondition: change in DOVideo:format

1 Impact: for all players:to :QACheckFormat (DOVideo,SWAgent)
I If (FAIL) delete canRender from DOVideo and SWAgent
VIf(OK) create canRender from DOVideo and SWAgent ’

I QA method: QACheckFormat I

Figure 18: Digital Video Art ecosystem: rule-based change management for 2 entities

Processes used in the example

Process Parameters Description Returns
QACheckFormat A (video), B (rendering Tests if the format of A can be pass/fail
software) rendered by B.
ProcessTranscode | Image Resource, AFormat Transcodes the image to the selected | pass/fail
format

Change scenarios

Given the DE describing the scenario, and relative rules implemented and submitted to a rule engine
and relevant architecture (Figure 17), what follows describes the different type of change and the
automated change management put in place by the system.

Change in supported players (players dependency)

A player is added or removed from the supported players dependency, to indicate that it is one of the

supported (or no longer supported) players in the current scenario.

© PERICLES Consortium 61/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Add a new video player to players dependency

This type of change will activate change 0 precondition in players dependency. The impact will check,
for each of the targets of the appliesTo dependency (all the video files subject to the policy) whether
the new player can play the video file, using the QACheckFormat process’. If the video file is
supported, the rule will create a canPlay dependency between player and video file and will not
propagate further. This will create the dependencies between video player and playable video files.

Delete an existing video player from player dependency

This change can be due to a user action, as when a video player is deprecated; or it could be a step in
a chain of changes to external entities in the DE (propagated change), for example when an
operating system update can make a particular video player no longer usable, and a dependency
impact removes the player from the players.

Step Al - SWAgent dependency target deleted

This event will trigger the impact of change 1 in players, in turn deleting all the canPlay dependencies
between the SW and the single video files (Figure 19).

~

Dlsjunctl.ve dependency: players SW Agent: Quicktime
Precondition: a SW agent is added SupportedFormats
Impact: for all DOVideo in appliesTo:to:

QACheckFormat (DOVideo,SWAgent) A1
if (OK) Create canPlay from SWAgent to DOVideo ™
Change 1: deleted player SW Agent: VLC
Precondition: a SW agent is deleted SupportedFormats
Impact. Delete all canPlay from SWAgent to any DOVideo

DOvideo
Type: video
Collection: X
Format: AVI

Figure 19: Step Al - one player is deleted

Step A2 - canPlay dependency is deleted

This will in turn activate the canPlay change 2 (destructor). This will verify if there is any other
dependency between the video file and a player, indicating that the video is playable (policy
requirement). When that is not the case, the impact will execute the video transcoding process, in
order to make the video playable from another player (Figure 20).

Y This process could itself be implemented in a number of ways, e.g. a simple check for the format being in the
supported format list for the player, or as a more complex validation that renders the video file through the
player and checks for possible errors.

© PERICLES Consortium 62 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

if (FAIYGelete canPlay from SWAg#t to DOVideo

Change 1: destructor
Precondition: change: this dependency is deleted

Impact:
If (canPlay dependencies from DOvideo to Player is empty)
Transcode(DOVideo, AFormat)

----- e

Depende
QA rule:

Figure 20: Step A2: the video is transcoded

Process: Transcode

Step A3 - change in DOVideo format

The transcoding will act on the video file modifying its format. This change will be reported by an
event stating that the property format of DOVideo changed (described by an LRM-Delta). This change
will be reported by the repository listener through an update event, meaning that such changes can
be activated also by other type of changes coming from outside of the digital ecosystem model and
rules (as for example in the case of a manual transcoding of a single video file).

This will activate change 2 of the appliesTo dependency and will thus create the new canPlay
dependencies and delete no longer valid ones. Assuming that the video has been transcoded to a
supported video format, there will now be a player for the specific video file (represented in the DE
by a canPlay dependency).

Dependency: appliesTo \

P
’

SW Agent: Quicktime

Precondition: this dependency created SupportedFormats

Impact: For all SWAgents in players:
QACheckFormat (DOVideo,SWAgent)
if (OK) Create canPlay from SWAgent to DOVideo
if (canPlay between DOvideo and Player is empty)
Transcode (DOVideo, AFormat)

Dependency: canPlay

Precondition: change in SWAgent:SupportedFromats
Impact:

for all DOVideo: QACheckFormat (DOVideo, SWAgent)
if (FAIL) delete canPlay from SWAgent to DOVideo

DOvideo

Type: video A3

Collection: X

Format: AVI -> MP4 Precondition: change: this dependency is deleted

Impact:

If (canPlay dependencies from DOvideo to Player is empty)
Transcode(DOVideo, AFormat)

Precondition: this dependency is deleted
Impact: delete all canRender to DOVideo

e 4

PEET TS

Precondition: change in DOVideo:format
Impact: for all players:to :QACheckFormat (DOVideo,SWAgent)

Figure 21: Step A3: new canPlay dependency is created

QA methodology

The capability of playing a video file can also be validated by a query that will make sure that all the
DOVideo targets of the appliesTo dependency are also target of a canPlay dependency. An
incoherent state can be reported to the user, or notify other corrective actions. This step could also
be implemented as an additional step in change 2 of the appliesTo dependency, executed after
format migration. In such a case the end user will be warned, as this might indicate a condition
where the file has been transcoded to an unsupported format, and executing transcoding again will

© PERICLES Consortium 63 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

not solve the issue but initiate an endless loop. In this situation, the wrong format has been chosen
in step A2, possibly because no suitable transcoding choice is available in the current ecosystem, and

the situation requires human intervention.
Change in Transcode or QACheckFormat processes

The dependencies between the appliesTo, players and canPlay dependencies and the Transcode and
QACheckFormat processes implement QA checks on the processes. These processes can be validated
by QA methods (e.g. unit tests, manual checks etc.) to be run when there is some update of

processed or dependent external entities.
External change and dependency propagation

A very important and powerful feature available from the LRM model is change propagation. We can
illustrate this by extending the digital ecosystem include the Operating System. Operating system
updates can make an existing video player unavailable. The methodology we describe will react to

such external change and address the issue.

Disjunctive dependency: players

Change 0: new player SW Agent: VLC
Precondition: a SW agent is added SupportedFormats
Impact: for all DOVideo in applies to:

QACheckFormat (DOVideo,SWAgent)
if (OK) Create dep. “can play” from SWAgent to DOVideo

Dependency: requires

Precondition: OS in this dependency LRM:to deleted
Impact: Delete this dependency LRM:from

=

Precondition: a SW agent is deleted
Impact: Delete all canPlay from SWAgent to any DOVideo

Figure 22: External digital ecosystem change and propagation

In Figure 22 we see how an external change (operating system) can drive a change in the DEM model
(the Quicktime player is no longer available). This change activates the requires precondition and
impact, removing the player from the list of available players. This will delete the video player
propagating in the sequence of change already described in “Delete an existing video player”

scenario.

Other type of change and their consequences are described in Appendix 6.

7.2.4. Methodology Descriptions for Policies Dependent on a
Single Entity

We start from a policy from space science data, the data policy for the EUMETSAT?, to illustrate the
approach for policy acting on a single resource. This example uses the same concepts illustrated in

the previous paragraph. The EUMETSAT’s purpose is “to supply weather and climate-related satellite

719

data, images and products”®. Its data policy?® defines how the satellite data is made public,

18 European Organisation for the Exploitation of Meteorological Satellites
19 http://www.eumetsat.int/website/home/AboutUs/WhoWeAre/index.html

© PERICLES Consortium 64 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

depending on their role and status. From the policy document? page 14, we have extracted the
following policy for our example, about release of data to free access:

“Meteosat Data and Derived Products older than 24 hours are distributed on request from the
EUMETSAT Data Archive in digital and graphical form via the associated operational service in
formats which represent both full and partial spatial coverage as well as both full and partial
spatial resolution”

In order to define in more detail the ecosystem and policy, we make some assumptions (based on

our experience and not describing EUMETSAT services):

1. We assume that initially all data is initially stored into a private repository, accessible only to
selected people and organisations (the supporting organisations).
A second public repository holds the data accessible to the general public.
In order to make the data available, the policy implementation will create a time-based
trigger to move the data from the private to the public repository.
4. When the time trigger is issued, the dependency will:
a. Move the data to the public repository
b. Create a partial resolution copy

This digital ecosystem (Figure 23) is an effective policy implementation, and allows further defining
QA methodologies to ensure correct functioning. The details of this ecosystem are described in
Appendix 7.

20 http://www.eumetsat.int/website/home/AboutUs/Legalinformation/DataPolicy/index.html

© PERICLES Consortium 65 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Policy: “Meteosat Data and Derived Products older than
(time_before_release) hours are distributed on request [...]
as both full and partial spatial resolution”

Property: time_before_release = 24;

Change 0 : create appliesTo dependency
Precondition: New DOdata delta reported
Impact: if (type==Meteosat data && Location == Private
repository->URL)
Create dependency “appliesTo" from:policy to:DOdata;
Create time trigger for X hours.

Dependency: appliesTo

Precondition: TimeTrigger delta reported
Impact: if (DOdata->location = private repository->URL) and

(

1

1

1 DOdata
: (DOdata->time - creation time) >policy->X

|

1

1

1

1

Type: Meteosat data
URL: Private rep URL

Move(DOdata); PartialRes (DOdata)
Change 1: change in repository URL Creation time :
Precondition: change in Repository URL (delta)

Impact: for all DOdata where location = old URL:

Update location = new URL

Dependency: uses
QA rule:

J

Proce_ss: Move ; Process: PartialRes
Endpoint: http://pericles/Move Endpoint: http://pericles/LowRes
Parameters: DO:data identifier, Parameters:DO:data identifier

Location: from, to

\

Technical Service:
Technical Service: Public repository
Private repository URL: eumetsat/public

URL: eumetsat/private

Figure 23: EUMETSAT data dissemination policy ecosystem for one resource

Change scenarios

Some of the possible changes to the DE and how the change management will manage these follow:

© PERICLES Consortium 66 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Change in Digital Objects

Change: new data is produced

When new data is produced, the policy rule will create a dependency appliesTo between policy and
the data file entity. This rule will also start the time-based trigger that will in fact enact the
dependency rule taking care of moving the data to the public repository when allowed.

Change in policy

Change: release period reduced to 12 hours

In that case the rule will automatically use the policy entity property value, and will not need to be
updated. This means that changes to the release period are automatically managed.

Change: policy is changed to limit public release to partial resolution copy

The rule needs to be updated so that only the partial resolution copy is moved to the public
repository. This requires a simple modification in the impact part of the dependency rule “change 0”.
This is a manual, but rather simple change from:

Move (DOdata); PartialRes (DOdata);

to

Move (PartialRes (DOdata));
Change in technical infrastructure

Change in repository URL

We can imagine the situation where a repository (private or public) is updated in case of a change of
the Internet domain. The rule Change 1 (Figure 23) in the appliesTo dependency will update the
location property of all the DOdata objects to the new repository URL. As both the repository URL
and the DOdata locations are updated, the rule Change 0 will still be applied correctly.

7.2.5. Conclusions for Rule-Based Change Management

We have presented a very generic methodology of policy implementation for digital ecosystem that
relies on the constructs of LRM dependencies. This methodology uses change propagation to reflect
internal and external ecosystem change, giving automated change management. The policy models
we presented can be chained for multiple or complex policies, and can be combined with the other
PERICLES methodologies, for managing situations that include both manual and automated actions.
The methodology is suitable for complex cases, as it is applied by focusing on single policies and
dependencies, by making sure all cases are handled correctly, and eventually extending to combine
multiple, simple policy implementations that are easier to create. This technique supports the
creation of complex digital ecosystem policies and their implementation while dividing the problem
into smaller, more manageable parts.

© PERICLES Consortium 67 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

7.3. Quality Assurance for Semantics and User
Communities

Using the results of the semantic and user community change analysis techniques developed and
described extensively in D4.4 Modelling Contextual Semantics, we are here defining a quality
assurance methodology that aims to address evolution in semantics and user communities.

When a change in a domain ontology of significance or UC, the ontology or community drift
observatory will record it in the ecosystem model. This will in turn trigger policy checking and
automated reporting. This allows alerting users by a tool like Somoclu (reported in D4.3 Content
Semantics and Use Context Analysis Techniques, D.4.4 and DA4.5 Context-Aware Content
Interpretation) when there is a significant, potentially problematic drift in the semantics or user
communities, that will then perform a manual analysis to assess and react to the issue.

The intellectual backdrop against which we measure our contribution is [Schlieder, 2010]. In that
paper, he describes three types of significant changes affecting LTDP. Type 1 concerns hardware and
software obsolescence and amounts to technology drift. His Type 2 is language change, eroding
indexing terminology for advanced access in automated environments, with relevant experimental
results on semantic drifts reported in D4.4. Schlieder’s Type 3 changes modify cultural value systems,
e.g. making fashionable what used to be less accepted the day before. These changes can be
modelled e.g. by drifts in UC perception because public appreciation of museum objects is important
use-related metadata for access, influencing Type 1 efforts and providing the embedding context for
Type 2 ones. At the same time, UC feedback based on artefact value perception from social media
could be a new type of indicator for demand/consumption-driven LTDP for collection management.

7.3.1. Drift Threshold for semantic and UC quality assurance

QA can benefit from the interaction between semantic drift monitoring in a statistical environment,
and ontology maintenance and development. Lists of drifting terms over periods can be thresholded
and fed back to the ontology team for inspection and decision. On the other hand, the reverse
process, feedback from ontology developers to human indexers or algorithms, results in indexing
terminology consistency maintenance (ITCM), to remedy a long known problem from inter-indexer
consistency studies (refs).

A rule, that can be implemented as an LRM dependency, will be activated on any drift delta reported
to the model and determine if the drift threshold has been surpassed. When the value is above the
threshold, the defined impact procedure will be called to react to the change. Given the nature of
drift measurements, in most cases we expect that a human expert will be notified and will have to
react and verify the entity of the drift, and possible, if necessary, correction measures.

© PERICLES Consortium 68 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

7.3.2. Monitoring change in Semantics

Currently we can measure only the average term drift rate over a period, plus list the
merging/splitting terms pointing at the concepts “behind” them. Manual inspection of these lists
gives a first idea of conceptual dynamics (Wittek, Daranyi 2014), but we are not able to interpret the
distances and directions a term has travelled over a period. This is a n-body dynamics problem: given
a high number of particles moving in all directions with different speed, drift detection and
measurement for individual terms is granted, but it's not possible for now to decide on a more
general level what it means if e.g. in the Tate collection, the term “UK” moved north, closer to the
term “nature”, in the epoch between 1796-1800. Therefore, the thresholded alert idea could address
the improving/weakening semantic consistency of term clusters over a period as a QA measure only,
i.e. how reliable is to use any current term agglomeration for the indexing of incoming documents
from an ontology maintenance perspective.

7.3.3. Monitoring change in User Community

By analysing Twitter data, we have characterised the user community surrounding Tate [see
PERICLES DA4.4, 2016]. Being able to identify change in this community is important to preservation
for assessing the social and cultural context of risk, in particular, it is important for the institution (as
well as larger cultural and government agencies) to be able to monitor and manage who their
audience is for access to the institution and its resources (Schlieder, 2010). Here we use social media
for the monitoring of social context with a view to mitigating risk resulting from changes in this
context. In the case of the Tate user community identified using social media data, this is largely self-
selecting, and we therefore expect it to be fluid and dynamic; any changes are likely to evolve over
time (cf. Vaughan, 2015; McCulloh and Carley, 2011). Based on this analysis, we can identify two
primary forms of change: (1) the growth (or contraction) of the community (i.e., the properties of the
social network); (2) the change in the concerns/interests (i.e., behaviour) of the community. To do
this, we take two main approaches: first we examined the network structure of Tumblr over time,
using network statistics in order to identify change; second, we explored the content of Tumblr, in
order to identify broad topics under discussion and how these can help identify change. By
combining both of these approaches, we are able to gain a better picture of the ‘who’ and ‘what’ of
the Tate community as expressed via Tumblr. Given the open-ended nature of possibilities
associated with such changes in user community, we expect human intervention to be required in
response to the automatic identification of change (based on a particular difference threshold being
met) and in the identification/validation of an appropriate threshold.

Here we summarise the methods before then presenting an overview of our findings (detailed
descriptions of these are presented in the appendix 9): To analyse change in the social media user
community around Tate, we harvest data from Tumblr. In contrast to Twitter data which only
remains accessible for a limited period of time, Tumblr data access is not temporally limited, and so
all historical material remains accessible (with the exception of content deleted or removed by the
authors). This is therefore better suited to investigating potential user community changes over time.
The Tumblr posts were previously collected for the study of social media content in this project
(reported in D4.3 [PERICLES D4.3, 2016], which also gives details of the collection methods and

© PERICLES Consortium 69 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

subsequent processing). The analysis of Tumblr data in order to understand user community took
two broad steps, the first was social network analysis to describe the network properties over time,
and the second was topic modelling of the Tumblr post content (to understand user concerns,
described using 5 and 15 topic solutions which provide different levels of granularity) which was also
viewed over time to better understand changes.

Combining social network analysis metrics to the Tumblr network and topic modelling to the content
of the posts of the Tate community on Tumblr, we have identified an example of change in this
community activity relating to the growth in and around 2012: We note that both the 5 and 15 topic
models identified this change in the content generated by the Tumblr community in relation to Tate;
in particular, the adaptation of this social network and its content to meet its new needs. The 5 topic
model identified a temporary change in focus from catalogue data to image data, and a greater focus
on the Tate Modern and sharing exhibition information. Although the first two topic changes may
indicate an exploration with new media, it is the focus on Tate Modern by the community and
sharing/promotion of exhibitions which seems to indicate a more substantive shift in community
usage of Tumblr.

For the 15 topic model, although many of the topics are used infrequently and which come and go in
usage, in this analysis example we focused on five. From this example analysis, we found that
following 2012 there was an increase in the popular describing and critiquing of art objects, along
with a temporary focus on Tate Modern artists, and similarly less focus on images relating to
exhibitions and performances at Tate Modern. Of these, we note that the change of focus relating to
Tate Modern artists rather than exhibitions is interesting, and provides more detail to the general
increase in posts relating to Tate Modern identified in the 5 topic model; in contrast, the increase in
description and critique of art objects captured by the 15 topic model is only regarded as a
temporary change in exploring the use of image descriptions in the 5 topic model. Regardless of
these nuances, we view these broad changes as the increase in number of art appreciation posts
(possibly by ‘Art Lovers’ as identified in the previous analysis of Twitter data [PERICLES D4.4, 2016]),
as well as an increased interest in the community relating to Tate Modern. Both of these large scale
changes of community behaviour are indicative of a social and cultural context, which we expect to
be important in understanding the Tate in its broader online and offline community context.

Overall, the results from the two models show similar changes in the Tate Tumblr community
(primarily the description of art objects and coverage of Tate Modern), but their different granularity
and probabilistic generation mean that they provide detail in different ways, in some cases
identifying increase of a topic, and in others the change in use from one topic to a similar one, but
with nuanced differences. This would indicate therefore that at least for initial monitoring purposes,
it would make sense to include the topics from both models in this process, thereby allowing the
greatest insight into community change processes; the disadvantage to this is that there would be a
slightly greater amount of data to consider, but in this case it does not seem to be too arduous, given
that this would result in 20 topics in total. We note in relation to the 15 topic model, some of these
topics occur with a relatively low frequency in the Tumblr data — this may lead to the possibility that
such a model over fits the data, however, given that we propose the inclusion of the 5 topic model,
then we expect this risk to be mitigated by the use of the broader topics, and greater coverage that
this smaller model provides.

© PERICLES Consortium 70/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Summary

Here we have addressed an important aspect of change in relation to digital preservation, namely
community change. This is important since the social and cultural context in which a cultural
institution operates, determines how it can serve its community. In particular, we have addressed
this question using social network data harvested from Tumbilr relating to Tate over the period 2009-
2015. In addition to exploring changes in social network relationships over this time, we have built a
probabilistic model of the textual content of Tumblr posts using topic modelling. Comparing two
models identifying different granularity of content over this 5 year period, we have been able to
identify community changes in the use of Tumblr content in relation to an example of major network
growth in 2012. This network growth resulted in different focuses by the Tumblr community, with
these mainly related to long standing changed of an increase in the proportion of posts relating to
Tate Modern and the popular critiquing and presenting to the community of Tate art objects; the
different topic models each provided differently nuanced perspectives on these behaviours. Based
on the findings of this example analysis, we propose how this could be incorporated into the
automatic monitoring of community change for risk assessment. Here we detail two metrics and
thresholds which could be used for community change monitoring, namely changes in network
properties and changes in post content: we anticipate that the former will be used to identify large
scale community changes using proposed thresholds based on the current change example analysis;
then the relative changes in topic usage over time will be presented for assessment by a domain
expert, since this evaluation will necessarily require human interpretation and knowledge. We also
expect that human evaluation will be required in order to ensure that appropriate network change
thresholds are being used. In relation to the example analysis of the Tate community Tumblr data,
we note that the insights provided by such analysis, for example the growth in the network and the
resulting increase in posts relating to art appreciation posts, as well as an increased interest relating
to Tate Modern, both provide important indications of the wider social and cultural context of Tate,
which is important in understanding the broader online and offline community context.

7.4. Prototypes for supporting change in technology,
semantics and user communities

We here briefly sum up the results of task 5.3.2, the implementation of the theory and use cases we
presented in Section 7. The concrete implementation details, for sake of brevity, are found in the
appendix.

The first example is a Policy driven Digital Ecosystem inspired by CERN LHC data management,
reported in Appendix 10. The cross task effort that illustrates the use of the policy model, the policy
derivation guidelines, and the process based implementation of Quality Assurance. Further examples
of QA and its use in connection to the DEM are illustrated in D3.5, together with policy driven
modelling and the DEM policy model.

The second example, reported in Appendix 7, illustrates rule implementation of change management
for single entities, based on the EUMETSAT example illustrated in section 7.2.4. This PoC serves to

© PERICLES Consortium 71/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

illustrate how change can be managed automatically in the DEM.

The third example addresses the use case of section 7.3.1, and is included in Appendix 8: it is the
implementation of a rule to monitor and react to semantic and user community drift, making use of
the Drift ontology. This rule will monitor drift recorded in the ontologies, and execute the
appropriate actions.

These proof of concept show how the different techniques we propose for Quality Assurance, policy
and change management can be implemented in some typical Digital Preservation scenarios, using
standard rule language (SPIN) and PERICLES technologies. We believe that the approach we propose
can offer an efficient compromise that allows to address, within the PERICLES model based
approach, both situations where recurrent and simpler technical change can be addressed
automatically (change management), and situations where complex, semantic change can only be
reported and needs to be addressed manually (Semantic, UC change). Furthermore, we took into
account cases where quality assurance and policies need to be implemented in an existing
infrastructure, and we illustrate how this can be addressed with lightweight modelling of a complex
situation and simple tests and QA method implementation that don’t require a pre-defined
infrastructure or a formal model (Appendix 10).

7.5. Conclusion

We have presented the latest developments in Policy, QA, and Change Management. We have
reported the final model for policy and QA representation, implemented in the DEM, together with
new guidelines for policy derivation, QA and compliance. Rule based change management for DE has
been described with use-case examples representing policies and their implementation, supporting
automated change management. We have also presented experiments of semantic and user
community change observation and QA. Finally, we gave a short summary of the Proof of Concept
implementation of the above-mentioned approaches (for sake of brevity, details are included in the
appendices 6, 7, 8, 9 and 10). This contribution defines how policy, QA and change management can
be automated for the different entities of the PERICLES ecosystem, for a quality assured policy
implementation and for automated change management of Digital Ecosystems.

© PERICLES Consortium 72 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

8. Approach to Appraisal

This section focuses on T5.4.1 Modelling of Appraisal Processes and defines the overall approach and
methodology. The Technical Appraisal Tool itself, contained in Section 5 above corresponds to work
in T5.4.2 Appraisal tools, which describes the implementation of these techniques in software tools
that can be used by preservation practitioners.

We introduced our methodology in D5.2, outlined a technical approach and conducted some initial
investigations and experiments. The primary focus since then has been on implementing and
evaluating the individual components, and on development of a practical appraisal tool.

8.1. Objectives and definitions

We first briefly review and update the objectives and definitions from PERICLES Deliverable D5.2.

Appraisal is a process that in broad terms aims to determine which data should be kept by an
organisation. This can include both decisions about accepting data for archival (e.g. acquisition) as
well as determining whether existing archived data should be retained.

In traditional paper-based archival practice, appraisal is a largely manual process, which is performed
by a skilled archivist or curator. Although archivists are often guided by organisational appraisal
policies, such policies are mostly high-level and do not in themselves provide sufficiently detailed and
rigorous criteria that can directly be translated into a machine executable form. Thus, much of the
detailed decision-making rests with the knowledge and experience of the archivist.

With the increasing volumes of digital content in comparison to paper-based materials, manual
appraisal is becoming increasingly impractical. Thus there is a need for automation based on clearly
defined appraisal criteria. At the same time, decisions about acquisition and retention are dependent
on many complex factors. Hence our aim here is to identify opportunities for automation or semi-
automation of specific criteria that can assist and accelerate the human appraisal process.

To summarise, the main objectives of the task were:

1. To identify and define precisely a set of appraisal criteria whose evaluation is both
relevant and can potentially be (partially or fully) automated.

2. To provide methods and associated tools that automate the evaluation of specific
appraisal criteria.

3. To identify points in the content lifespan where appraisal (and reappraisal) is relevant
and in particular, to demonstrate how appraisal is applied in changing environments.

In keeping with the overall PERICLES approach, the aim is to produce a focused set of tools running in
a test-bed environment rather than an archive system. On the other hand, since the aim was to
produce tools to support the user performing appraisal tasks, we deemed it essential to produce an
application front end in which users could be presented with information to support decision-
making, in order to prove the validity of our methodology.

© PERICLES Consortium 73 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Objective 1 was largely completed in D5.2, where we produced a comprehensive catalogue of
appraisal criteria and outlined approaches to automation of certain criteria.

In this deliverable, we expand on objective 2, providing technical details on the methodology and
implementation of tools to for the evaluation of the selected appraisal criteria.

We also provide an expanded discussion of objective 3, indicating how and where our tools can be
applied, building on the continuum approach described in D5.2.

8.2. Narratives
In order to motivate the tool development, we defined two narratives for each case study domain

that described the functionality from a user perspective.

8.2.1. Digital art and media

Narrative M1 in Table 2 describes the first step in performing a technical appraisal of a digital
artwork collection, enabling a user to identify a specific artwork at risk for further detailed analysis.

Title M1: Perform high-level technical appraisal of video-based artwork
collection.
User The target user is a media conservator who has to manage a large collection

of digital video artworks. They are responsible for both assessing key risks to
the digital video components of these artworks, to ensure they can be
successfully displayed in the future, as well as performing preservation
actions where necessary to mitigate for demonstrated risks.

Preconditions We assume that the DVA ontology has been populated for a given
collection. Each DVA has associated video files, players and metadata. In
addition, it may also include system-level and operating system
requirements, platform requirements and physical display specifications.

Step-by-step 1. The user wishes to identify media components of artworks at risk in

narrative the collection. They start the appraisal tool.

2. The appraisal tool gathers data from external sources and
computes a risk analysis of the whole collection.

3. The appraisal tool presents a list of risks and proximities to the
user. This includes e.g. risks of obsolete formats, policy violations.
The risks can be ranked in different ways (e.g. probability of
occurrence, proximity, number of artworks affected).

4. The user selects a risk to analyse. The appraisal tool presents a
visualisation of the magnitude of the risk on the collection.

5. The user selects to view the list of artworks affected by a particular
risk. The appraisal tool provides a list of artworks ordered according
to probability of occurrence, proximity and impact.

6. The user selects to analyse a specific artwork.

Table 2: Narrative for identifying digital video artworks at risk

© PERICLES Consortium 74 / 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Narrative M2 in Table 3 describes a typical set of steps for performing technical appraisal on an

individual artwork. It can be run standalone or following scenario M1. We decided at an early stage

in the design that analysis and preservation processes should only be run on individual artworks

rather than in bulk.

Title M2: Perform detailed technical appraisal and preservation actions for a given
digital video artwork in the collection.

User A media conservator who is responsible for maintaining the digital video
artwork collection.

Preconditions Same as narrative M1.

Step-by-step
narrative

The user starts the appraisal tool and selects to view a specific digital
video artwork, either from narrative M1, name search or browsing a list
of artworks.

The appraisal tool provides a graphical view of the artwork and the
risks and proximities are listed in a table below by the appraisal tool.
These can be ranked in different ways (e.g. by name of artwork, risk
proximity).

The user selects a particular risk to analyse and the appraisal tool
presents a list of preservation actions and costs for the artwork.

The user selects one of the preservation actions to be performed. The
appraisal tool launches the process compiler for building a workflow for
execution.

Table 3: Narrative for risk-impact analysis of an individual artwork

Title S1: Perform high-level technical appraisal of space science experiments.

User The target user is a data manager who has to manage a collection of space
science experiments. They are responsible for both assessing key risks to
the experiments to identify barriers to reusing them in the future, as well as
performing preservation actions where necessary to mitigate for identified
risks.

Preconditions We assume that an ontology has been built for each experiment and
populated for a given collection.

Step-by-step
narrative

1.

The user wishes to identify experiments and components of
experiments at risk in the collection. They start the appraisal tool.
The appraisal tool gathers data from external sources and
computes a risk analysis of the whole collection.

The appraisal tool presents a list of risks and proximities to the
user. This includes e.g. risks of obsolete formats, policy violations.
The risks can be ranked in different ways (e.g. probability of
occurrence, proximity, number of artworks affected).

The user selects a risk to analyse. The appraisal tool presents a

© PERICLES Consortium

75/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

visualisation of the magnitude of the risk on the collection.

5. The user selects to view the list of experiment instances affected by
a particular risk. The appraisal tool provides a list of experiment
instances ordered according to probability of occurrence, proximity
and impact.

6. The user selects to analyse a specific experiment instance.

Table 4: Narrative for identifying experiment instances at risk

The link to the transformation execution is provided as a link in the appraisal tool Ul, but not
explicitly contained within the tool.

8.2.2. Space science

Narrative S1 in Table 4 describes the first step in performing a technical appraisal of a collection of
space science experiments, enabling a user to identify a specific experiment instance at risk for
further detailed analysis.

Narrative S2 is the analogue of M2 for space science, which considers the risk-impact analysis of an
individual experiment instance.

Title S2: Perform detailed technical appraisal and preservation actions for a
given experiment instance in the collection.

User Same as narrative S1.

Preconditions Same as narrative S1.

Step-by-step 1. The user starts the appraisal tool and selects to view a specific
narrative science experiment instance, either from narrative S1, name search

or browsing a list of experiment instances.

2. The appraisal tool provides a graphical view of the experiment and
the risks and proximities are listed in a table below by the appraisal
tool. These can be ranked in different ways (e.g. by experiment
identifier, risk proximity).

3. The user selects a particular risk to analyse and the appraisal tool
presents a list of preservation actions and costs for the experiment.

4. The user selects one of the preservation actions to be performed.
Where possible, the appraisal tool launches the process compiler
to build a preservation process. In other cases, the appraisal tool
will just provide a list of ranked transformation options for the user
to implement offline.

Table 5: Narrative for risk-impact analysis of an individual science experiment instance

The link to the preservation process execution is contained within the technical appraisal tool, but
hands over to other tools within the PERICLES framework.

© PERICLES Consortium 76 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

8.3. Risk types

In order to understand and model the risks and mitigating actions to entities in a digital ecosystem,
we produced a categorisation of ecosystem entities termed the component catalogue, described in
more detail in D5.2. In order to model software-based and video-based artworks, we also consider

hardware components.

The entities occurring in science and media case studies cover the broad types hardware, software,
data and user community. We aimed to determine their specific risks that might occur and then to
determine suitable data sources. Some sample data sources for a selection of entity types are shown
in Table 6 below.

commercial off-
the-shelf (COTS)

Sales of company.
Size of user base.

Entity Entity description Potential risks | Potential data Mitigation
category sources
Hardware Any Failure Manufacturer data, Replacement (like-for-like)
survey data Migration (to different
hardware)
Obsolescence Search engines
Software Operating Obsolescence Search engines. Upgrade (major - new
system- Release frequencies. version, minor - upgrade of

current version)
Virtualisation - same OS, but
running on a VM

Migration (to a completely
different OS)

Operating system
library (e.g.
DirectX)

Obsolescence

Search engines.

Release frequencies.

Sales of company.
Size of user base

Upgrade (to new version)
Migration (to new library)

Custom software
application
(executable only)

Obsolescence

None.

Emulation (rewriting software
to have same functionality in
a given programming
language)

Custom software
application (source
available)

Obsolescence

Search engines (for
programming
language)

Software developer
availability/cost

Upgrade (Modify existing
software, using same
language)

Emulation (rewriting software
to have same functionality in
same or different
programming language)

© PERICLES Consortium

77 / 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Software Obsolescence Search engines. Upgrade (major, minor)
application (open Software Migration (to a COTS
source community) repositories application)

(downloads, Migration (to a different open

source application)
Emulation (by custom
software)

commits, releases).

Software Obsolescence

application (COTS)

Search engines. Upgrade (major, minor)
Migration (to a different
COTS application)
Migration (to an existing
open source application)
Emulation (by custom
software having same

functionality)

Release frequencies.
Sales of company.
Size of user base.

Table 6: Entity catalogue excerpt relating to risk estimation and data sources

In order to investigate these risks, we harvest data from a number of data sources with the aim of
determining the magnitude and proximity of these risks. The most general purpose data sources we
found were search engines, which provide data about a wide range of entities and are in many cases
in sufficient volumes for meaningful statistical modelling. Beyond that, more specialised data sources
are required, for example to examine activity on open source software projects. The evolution of
open source development communities influences greatly the availability and obsolescence of such
software.

End user community evolution can also be considered, from such information as user activity logs,
provided that users can be registered and classified. More indirect measures can also be considered
such as the obsolescence of programming languages, for example to maintain custom software
applications with available source code, or the availability of software developers for that
programming language.

The evolution of policies is, in general, more difficult to characterise using data driven methods.
However, we can consider the evolution and obsolescence of publicly accessible standards using this
approach, which can be interpreted as policies within the PERICLES ecosystem model.

As is pointed out in section 5.3 of (Falcao, 2010), it is proposed that obsolescence may in itself not be
a primary risk, because it only affects the recovery of an artwork after it has failed. However, we may
also consider for example that an artwork may need to be redisplayed on currently available PC
hardware. Thus a conservator may consider the obsolescence of the envisaged PC platform as a
primary risk. Hence any tool should enable the user to examine a range of potential risks.

8.4. Risk assessment workflow

In this section, we present an updated version of the risk assessment workflow, which is illustrated in
Figure 24. The workflow aims to encapsulate a common process for performing technical appraisal
across the two case study domains, and indicating the components involved.

© PERICLES Consortium 78 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

* Ecobuilder Build ecosystem ‘
e Ontology editing model ® Risk-impact Analysis Configure
tools e Risk Model temporal
l parameters
e Process Compiler Registration of ‘ l
e Metadata ecosystem e Risk-impact A nalysis\‘ o~ Bl ayasion
Extraction instance e Compatibility Model modal <
! e Cost Model ‘
e Data Harvester > Harvest and
e Statistical Analysis analyse data ’
from external e Risk-impact Analysis> Run Bayesian
sources analysis
— ! l
* Rlsk-lm.pact Compute primary
Analysis o T
e Risk Model
1 parameters?
Select primary
SN Userinterfoce > risk for analysis

o User Interface Present results and
select preservation

process
: A~ | l
e Process Compiler | Configure and !
o Workflow Engine | execute preservation ;
i process !

Figure 24: Workflow for risk-impact analysis of ecosystem model instances
The workflow is illustrated in blue and the components involved in green. The various models
described in section 5.

Since the initial formulation in PERICLES Deliverable D5.2, we produce the risk mitigation for the
primary and secondary risks in a single step. We have also modified the original approach so that we
can set a time threshold, which represents a minimum sustainability period for a given object. We
then step through a range of differ thresholds to produce multiple potential solutions with different
costs and expected sustainability.

The final step in the workflow is the handover execute preservation processes on the PERICLES
testbed, which will be described in D6.6.

8.5. Related work

The related work about technical appraisal and risk management can be found in appendix 11.

8.6. Data modelling

8.6.1. Modelling approach

© PERICLES Consortium 79 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

The modelling approach we have taken is motivated by ideas from reliability engineering. Reliability
engineering is a branch of systems engineering concerned with dependability in the lifecycle
management of a product; the ability of a system or component to function under stated conditions
for a specified period of time (IEEE, 1990). It is frequently used in industries such as aviation, which
require complex systems such as aircraft to be maintained long beyond the lifetimes of individual
components. The primary focus in reliability engineering is on hardware failure, and there has been
much less focus on the long term sustainability of software components.

.

s \
§ Zowe of Obtnabescence
£
o A \
/ i H :
Inlybdection | Growih | Maturity Decline | Phaw ot Obsolcence
o, e - A - - e
/' e i o | o . L) e i L \, ie
i I . i >
® Time

Figure 25: Standardised lifecycle model for a technology

Figure 25 represents a standardised lifecycle model for the units shipped against time. Here p and o
represent the mean and standard deviation of the distribution function. The lifecycle is divided into a
number of phases, termed Introduction, Growth, Maturity, Decline, Phase-out and Obsolescence.
These phases are based largely on heuristics rather than rigorous analysis, but form an accepted
benchmark supported by a wide range of software tools. To date, reliability engineering techniques
appear to have been applied only to a very limited extent in digital preservation.

The Weibull distribution is widely used in reliability engineering to model failure rates of hardware
components. The Weibull distribution is defined by the pdf function:

k-1
Efz —(z/A)*
fw)={5(5) e ezo
0 <0

where k > 0 is the shape parameter and A > 0 is the scale parameter.

We aimed to investigate the application of such techniques to model the lifecycle of digital
components such as the raw data from Google Trends. The main objective was to estimate the
distribution parameters, fitting error and associated confidence intervals. We would then be able to
make assertions about the predicted obsolescence date of digital technologies as well as an
associated confidence interval. For this we used statistical packages available in R.

8.6.2. External data sources

In this section we briefly describe some of the external data sources that we have used to extract and

© PERICLES Consortium 80/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

model risks associated with ecosystem entities. We discuss the approach and the findings from the
analysis.

8.6.2.1. Google Trends

Google Trends*!is a public website, based on Google search that shows how often a particular search
term is entered relative to the total search volume across various regions of the world, and in various
languages. Data are available since 2004.

Google provides raw trends data as downloadable CSV files. There is also a public API for accessing
Google Trends data, which is what we make use of here. The Data Harvester performs authentication
for a Google account and then downloads search activity data for a given set of terms. In using
Google Trends, there is a risk of ambiguity of search terms, potentially resulting in misleading results.
For example, a search on the term “windows” may return results for searches for replacement
windows in buildings as well as on computer operating systems. Google Trends is however able to
disambiguate search terms (e.g. Windows 8) is labelled as “Operating System”. Hence, by careful
selection of search terms used, we were able to minimise this risk.

One advantage of using Google Trends as a data source is that there is data about a huge range of
entities including not only digital information such as file formats and software applications, but also
hardware such as connector types and displays, and user communities.

We modelled a large number of entity types using the Weibull fitting approach, filtering out those
with a high level of interpolation error. The main issue encountered were lack of data, either because
the entity being modelled had insufficient data points (e.g. the entity in question was introduced
only in the past 2-3 years), or it was introduced a long period before 2004 (e.g. in the 1950s), and
thus a large proportion of the trends data is unavailable.

8.6.2.2. GitHub

GitHub® is a platform is a web-based Git repository hosting service. Its main features are source
code management and distributed version control. GitHub is widely used to host open source
software development projects for personal users, communities and businesses, as well as enabling
private repositories. As of April 2016, GitHub reported® having more than 14 million users and more
than 35 million repositories.

For the purposes of PERICLES, GitHub is used to predict the obsolescence of open source software
applications that are hosted on the site. In this case we used the number of individual commits per
month on each software project. Compared to Google Trends, the volumes were lower, but
correlated well.

8.6.2.3. SourceForge

SourceForge is a web-based service that offers software developers an online platform for

21 https://www.google.co.uk/trends/
22 https://github.com/
23 https://github.com/about/press

© PERICLES Consortium 81 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

management of free and open-source software projects. It provides a number of optional features,
including a source code repository, bug tracking, mirroring of downloads for load balancing and a
wiki for documentation.

As of March 2014**, the SourceForge repository claimed to host more than 430,000 projects and had
more than 3.7 million registered users. In the past several years, many users and project have now
migrated to GitHub, other software hosting facilities, or self-host their software. In comparison, the
SourceForge attracted at least 33 million visitors in August 2009. For Sourceforge we used downloads
per month as the indicator of activity.

8.6.2.4. Stack Exchange

Stack Exchange® is a network of question and answer websites on topics in varied fields, modelled
on Stack Overflow, a site for programming questions that was the original site in this network. Each
site covers a specific topic, and questions, answers, and users are subject to a reputation award
process. In order to extract an activity measure, we counted the monthly questions asked and
successfully answered on a given topic.

8.6.2.5. Wikipedia

Wikipedia®® is a free online encyclopedia, launched on 15" January, 2001, which allows its users to
edit almost any article. Wikipedia is the largest and most popular general reference work on the
Internet and is ranked among the ten most popular websites. Wikipedia consists of more than 40
million articles in more than 250 different languages and as of February 2014, had 18 billion page
views and nearly 500 million unique visitors each month. We used the number of individual commits
to a page as a measure of the interest in a given topic.

8.6.2.6. Discussion

We have uncovered a number of issues in modelling data from different sources. Availability of data
over a suitably long timeframe is a major issue. For Google Trends, data is available only since 2004.
Thus for technologies that have existed for a longer period time and have slow obsolescence rates,
the predictions were less reliable. Conversely, for recently emerging technologies, there is often
insufficient data available to make reliable longer term predictions. Since we are aiming at longer
term predictions, neither of these is a huge issue.

Use of the tool is reliant on the availability of the data from public APIs such as Google Trends and
SourceForge. All of these are outside the control of the designer of the tool. Any changes would
require updates to the tool itself, either to the APIs used on in the Data Harvesting component in
case the presentation of the data itself changes.

In many cases that we analysed, the Weibull distribution provided a good fit to the data. There were

24 https://sourceforge.net/about

25 http://stackexchange.com/

26 https://en.wikipedia.org/wiki/Wikipedia

© PERICLES Consortium 82 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

exceptions where we could not achieve a good fit with any choice of parameters. Examples were the
various versions of the Android operating system. One simple strategy is to set an error threshold
and reject any predictions that exceed this value. However, we are also investigating use of a wider
range of distributions in the fitting. Further research is also needed to establish differences between
the patterns of change and obsolescence between digital technologies (both open source and
proprietary) and technologies which depend on manufacturing.

8.7. Ecosystem models

In this section, we outline the ecosystem model requirements for the technical appraisal tool. As far
as possible, we have reused, adapted and in some cases extended the models developed in WP2.

We assume we initially start with an ecosystem containing a set of entities. Each entity has an
associated set of metadata, together with a category from the five basic ecosystem types.

The technical appraisal tool requires several models as input.

¢ Compatibility model.
* Risk model.

e Cost model.

These are derived from ontologies created in WP2 together with heuristic methods. Each of the
types of model is described in the sections below. Models are required to be constructed for each
specific application area such as digital video artworks.

8.7.1. Compatibility model

The basis of the compatibility model is the ecosystem model that describes the entities and their
dependencies in specific scenarios. In PERICLES WP2 the media case study, ontologies have been
constructed for Digital Video Art and Software Based Art. For the purposes of developing and testing
the technical appraisal tool for the media case study, we have mainly focussed on digital video
playback.

The main extensions that we introduced are to extend the ontology with a larger number of
instances to facilitate more realistic experiments. These are derived from publicly available sources.
We also introduced weights into the model to reflect the degree of compatibility of entities linked by
dependencies based on simple heuristics and background research.

8.7.2. Risk model

The risk model for each entity is derived from the data harvesting and analysis of external data
sources. The risk model is updated periodically as new data are harvested. For example, datasets
from Google are released on a monthly cycle. The processed data are stored in an RDF model.

8.7.3. Cost model

The cost model reflects the transformation cost of replacing one entity by another in the

© PERICLES Consortium 83 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

compatibility model. Thus the model is essentially a set of ordered pairs with an associated cost
value. The cost model used is highly dependent on the application and context in which the appraisal
tool is applied. Currently our cost model is static, but clearly the model would need to be updated
periodically, both introduction of new entities as well as changes to underlying costs. Again this is
stored as an RDF model in the ERMR.

8.8. Risk assessment

This section outlines how secondary risks can be assessed using belief propagation, based on
mapping the ecosystem model instance to a Bayesian network model.

In order to compute secondary risks to complex digital objects, we treat the ecosystem instances E
and associated compatibility model as a Bayesian network®’. A Bayesian network is a probabilistic
graphical model that represents a set of random variables and their conditional dependencies via a
directed acyclic graph.

Given a joint probability distribution p(X) for a vector X of states, we aim to find a configuration that
attains the maximum value,

Xmax

= argmaxy p(X) (1)
or in other words satisfies
P(X™) = maxx p(X). (2)

The maximum corresponds to the maximum over all allowed configurations X, which is different to
the maximising the individual marginal distributions p(X;).

The inference algorithm uses a representation of the Bayesian network as a factor graph®. Factor
graphs have two node types, namely variable nodes and factor nodes. The factor graph has a variable
node for each node in the original graph, a factor node for each factor (i.e. dependency) and
undirected links to each node variable in the factor. The max-product algorithm exploits the
factorisation of (1) to efficiently compute the maximum. The algorithm was first proposed by Pearl
(1988).

In the practical implementation, we obtained better results by using non-normalised weights rather
than probabilities. The max-product algorithm can be efficiently implemented as message passing in
the factor graph as follows. Two types of messages are passed, one from factors f to nodes X,
denoted pr.x and the other from factors to nodes, denoted ux_r These are computed by the
formulae

Himx(X) = maxxy,. xm (F(X, X1, .., Xm) Myoneyix Bxior (Y)) (3)

and

Mx>£(X) = Mganpve Hgsx(X). (4)

27 https://en.wikipedia.org/wiki/Bayesian_network

28 https://en.wikipedia.org/wiki/Factor_graph

© PERICLES Consortium 84 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Here N(f) is the set of neighbour variable nodes to the factor node f, and conversely N(X) represents
the neighbour factor nodes to the variable node X. The messages are passed once from an arbitrarily

chosen root node X,,0:. We can then recover the maximum value from

P(X™™) = maxxroot (Meanixroot) He->x(X)))

And the configuration attaining the maximum value by

X" = argmaxyroot (Meiinnpy Kesx(X)) (6)

We obtain the maximum configuration values for the otter nodes by storing in each factor node the
configuration attaining the maximum value in (3). Once we have the maximum value for the root
node, we can compute the maxima for the other variable nodes recursively by backtracking through
the factor graph.

In the practical implementation, we perform all operations in the log domain, due to potential
rounding errors in computing with small values.

In order to apply the belief propagation approach, we assume the resulting factor graphs are acyclic.
In some situations, there may be cyclic dependencies between nodes. Belief propagation may also be
employed in this case, although the solutions may not be unique as in the acyclic case.

8.9. Conclusions

In Task T5.4 we have conducted both a study and classification of appraisal criteria in the context of
evolving digital ecosystems, as well as developing methods and practical tools for specific criteria.

In D5.2, we produced a large catalogue of appraisal criteria, covering a wide variety of perspectives.
Whilst some criteria can be relatively easily automated, many require both analytical techniques as
well as extensive background knowledge. Our approach was therefore based on the principle of
evaluating specific criteria and providing this information in an easily digestible form to a curator.
Final appraisal decisions are based on combining multiple criteria. A typical appraisal policy for a
museum or gallery may typically combine twenty or more criteria. Decisions may also be based on
external factors such as available funding.

In the technical appraisal work, we have adopted a data-driven predictive approach to evaluating
sustainability of complex digital objects. This extends previous approaches, which were based on
reactive approaches, termed “technology watch”, and confined to relatively simple digital objects. In
order to consider many of the risks that might impact digital objects, it is necessary to consider the
entities and dependencies in the surrounding digital ecosystem which this work exploits. We also
exploited a synergy between digital preservation and reliability engineering, a branch of systems
engineering, which could potentially yield further interesting results for both areas.

Since an important part of the appraisal approach is informing expert curators, we deemed it
essential to develop a user facing tool. Currently the tool is constrained by the background
ontologies and data harvesting sources used. Extending these using the methods demonstrated in
this work would greatly enhance the applicability of the tool. This could best be done as a community

activity, supported by initiative such as ontology design patterns.

© PERICLES Consortium 85 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

9. Conclusion

This deliverable has presented the developed tools and approaches for digital ecosystem
management. An effective digital ecosystem management involves a representation of the
ecosystem which can be expressed with the Digital Ecosystem Model. The model itself is part of D3.5,
but the EcoBuilder tool has been described here, since it is a tool for ecosystem management.
EcoBuilder enables the creation of digital ecosystem models for scenario experts and does not need

ontology experts for the model instantiation.

Policies play an important role in ecosystem, they describe the behaviour of the entities and restrict
them. Policies are a basis for processes that implement them. A generic policy model has been
developed and represented here, it does not enforce executable policies, but an implementation can
be given. The model can be integrated inside other models; an exemplary integration has been done
with the Digital Ecosystem Model. Quality assurance ensures that policies are correctly applied and a
model for this has been created as well. The policy model is complemented with prototypes for
supporting change management by the use of rule engines. It has demonstrated how change can be
addressed automatically and how complex change can be detected, but only reported. A guidance
about implementing policies and quality assurance within existing infrastructure has been given.

The Policy Editor allows to edit predefined policies. Editing allows to fill in values for policies (e.g.
retention time) and combine policies. The tool can work standalone or can be integrated into existing
infrastructure to pull or output the policies. It is not bound to a certain policy structure; the
templates can be high or low level policies.

Ecosystem models enable the analysis of the entities. Two strands of analysis have been covered
here. Appraisal and Risk analysis use the entities from the model and include external data source for
ranking. A theory for measuring risks has been developed and this theory has been implemented
with the appraisal tool.

The other strand is user community change. An experiment with Tumblr data has been done. Posts
about “Tate” have be analysed and the topics have been modelled around those activities. The aim
was to detect shift in the community. This experiment has showed the grow and decline of topics
which can then be used as trigger for notification to other models.

The last covered tool is the ERMR. It allows to store models and digital objects and provides retrieval
interfaces. A definition of policies that operate on the data management level can be defined and it
provides a messaging system. This allows to connect ERMR with external systems and invoke
external processes. Since it is a generic tool for storing of models and digital objects, the output of all
tools that were mentioned here can be kept on ERMR.

© PERICLES Consortium 86 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

10. References

Akritidou M., et al. (2015) Deliverable 6.3 Specification of Architecture, Components and Design
Characteristics. Available online at: http://pericles-project.eu/deliverables/14 (accessed on 26
September 2016).

Atkinson, R., & Flint, J. (2001). Accessing hidden and hard-to-reach populations: Snowball research
strategies. Social research update, 33(1), 1-4.

Baxter, R. et al (2017). Deliverable 6.6 Language for change management. Will be available online at:
http://pericles-project.eu/deliverables/80 (status: pending)

Becker, C., Kulovits, H., Rauber, A., & Hofman, H., et al. (2008, June). Plato: A service oriented
decision support system for preservation planning. In Proceedings of the 8th ACM/IEEE-CS joint
conference on Digital libraries (pp. 367-370). ACM.

Bentley C. (2010). PRINCE2: A practical handbook. Routledge.

Biermann J., et al. (2014). Deliverable 5.1.1 Initial report on preservation ecosystem management.
Available online at: http://pericles-project.eu/deliverables/12 (accessed on 26 September 2016).

Biermann J., et al. (2015). Deliverable 5.2 Basic tools for Digital Ecosystem management. Available
online at: http://pericles-project.eu/deliverables/53 (accessed on 26 September 2016).

Biernacki, P., & Waldorf, D. (1981). Snowball sampling: Problems and techniques of chain referral
sampling. Sociological methods & research, 10(2), 141-163.

Blei, D. (2012). Topic modeling and digital humanities. Journal of Digital Humanities 2 (1),8-11.
Brokerhof A. W., Bilow A. E. (2016). The QuiskScan—a quick risk scan to identify value and hazards in

a collection, Journal of the Institute of Conservation, 39:1, 18-28, DOI:
10.1080/19455224.2016.1152280.

Chanod, J.-P., Lagos, N., Vion-Dury, J.-Y. (2014). Deliverable 3.2 Linked Resource Model. Available
online at: http://pericles-project.eu/deliverables/62 (accessed on 26 September 2016).

Corubolo, F. et al. (2014). Deliverable 4.1 Initial version of environment information extraction tools.
Available online at: http://pericles-project.eu/deliverables/17 (accessed on 26 September 2016).

Dergiades, T., Milas, C., & Panagiotidis, T. (2014). Tweets, Google trends, and sovereign spreads in
the GIIPS. Oxford Economic Papers, gpu046.

Graf R., Gordea S. (2013). A Risk Analysis of File Formats for Preservation Planning. Proceedings iPRES
2013; ed. José Borbinha, Michael Nelson, Steve Knight. http://purl.pt/24107.

Grant, A., et al. (2015). “Final version of integration framework and API implementation”, PERICLES
Deliverable D6.4. Available online at http://pericles-project.eu/deliverables/54 (accessed on 26
September 2016).

Harvey R. (2007). DCC Digital Curation Manual: Instalment on Appraisal and Selection.
http://www.dcc.ac.uk/resources/curation-reference-manual/completed-chapters/appraisal-and-

selection.

© PERICLES Consortium 87 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Institute of Electrical and Electronics Engineers (1990). IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. New York, NY ISBN 1-55937-079-3.

ISO 16363 (2012), Space data and information transfer systems -- Audit and certification of
trustworthy digital repositories. International standard.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=56510

ISO/IEC 31010 (2009), Risk management — Risk assessment techniques. International standard.
http://www.iso.org/iso/catalogue detail?csnumber=51073.

Kenney, A. R., McGovern, N. Y., Botticelli, P., Entlich, R., Lagoze, C., & Payette, Set al. (2002).
Preservation risk management for web resources. INFORMATION MANAGEMENT JOURNAL-PRAIRIE
VILLAGE-, 36(5), 52-61.

Lagos, N., Vion-Dury, J.-Y. (2015). Deliverable 3.3 Semantics for change management. Available
online at: http://pericles-project.eu/deliverables/47 (accessed on 26 September 2016).

Lagos, N., Vion-Dury, J.-Y. (2017). Deliverable 3.4 Language for change management. Will be available
online at: http://pericles-project.eu/deliverables/74 (status: pending)

Lawrence, G. W., Kehoe, W. R., Rieger, O. Y., Walters, W. H., & Kenney, A. R., et al. (2000). Risk
Management of Digital Information: A File Format Investigation. Council on Library and Information
Resources, 1755 Massachusetts Avenue, NW, Suite 500, Washington, DC 20036.

Library of Congress (2016). Sustainability of Digital Formats: Planning for Library of Congress
Collections. Digital Formats http://www.digitalpreservation.gov/formats/sustain/sustain.shtml.

McDonald, S. (2000). Environmental Determinants of Lexical Processing Effort — Unpublished Ph.D.
thesis, University of Edinburgh.

McCulloh, I., & Carley, K. M. (2011). Detecting change in longitudinal social networks. MILITARY
ACADEMY WEST POINT NY NETWORK SCIENCE CENTER (NSC).

McCulloh, I., & Carley, K. M. (2011). Detecting change in longitudinal social networks. MILITARY
ACADEMY WEST POINT NY NETWORK SCIENCE CENTER (NSC).

McHugh, A., Innocenti, P., Ross, S. (2008). "Assessing risks to digital cultural heritage with
DRAMBORA". International Documentation Committee of the International Council of Museums
(CIDOC) 2008, Athens, Greece, 15—18 September 2008.

Mimno et al. (2014). Care and feeding of topic models: Problems, diagnostics, and improvements.
Handbook of Mixed Membership Models and Their Applications, 3-34.

Pearl J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (2nd
ed.). San Francisco, CA: Morgan Kaufmann. ISBN 1-55860-479-0.

Schlieder, C. (2010). Digital heritage: Semantic challenges of long-term preservation. Semantic Web
1.1, 2: 143-147.

Scholte T., Wharton, G. (2011). Installation Art Subjected to Risk Assessment — 91 Jeffrey Shaw’s
Revolution as Case Study, Agnes W. Brokerhof, Tatja Scholte, Bart Ankersmit, Gaby Wijers, Simone
Vermaat in Inside Installation etc. http://cultureelerfgoed.nl/sites/default/files/publications/inside-

installations-theory-and-practice-in-the-care-of-complex-artworks.pdf.

© PERICLES Consortium 88 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Stamatelatos, M. (2000). Probabilistic Risk Assessment: What Is It And Why Is It Worth Performing
It?. NASA Office of Safety and Mission Assurance, 4(05), 00.

Stavropoulos et al., 2016. Deliverable 4.4 Modelling Contextualised Semantics. Available online at:
http://pericles-project.eu/deliverables/90 (accessed on 26 September 2016).

TRAC (2007) Trustworthy Repositories Audit & Certification (TRAC): Criteria and Checklist. (Chicago,
IL: Centre for Research Libraries; Dublin, OH: OCLC Online Computer Library Centre).
http://www.crl.edu/PDF/trac.pdf.

Vermaaten, S., Lavoie, B., & Caplan, P. (2012). Identifying threats to successful digital preservation:
The SPOT model for risk assessment. D-Lib Magazine, 18(9), 4.

Wang, et al. (2011). Random field topic model for semantic region analysis in crowded scenes from
tracklets. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 3441-
3448). IEEE.

Wang, Y-C, Burke, M. and Kraut, R. (2013) Gender, topic, and audience response: an analysis of user -
generated content on Facebook. In Mackay, W.E., Brewster, S., and Bgdker, S. (Eds.). Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI '13) (pp. 31-34) New York, NY:
ACM.

Wittek, P., Daranyi, S., & Liu, Y. H. (2014, June). A vector field approach to lexical semantics. In
International Symposium on Quantum Interaction (pp. 78-89). Springer International Publishing.

Zheng L. (2011). Knowledge Representation and Decision Support for Managing Product
Obsolescence. PhD thesis Virginia Polytechnic Institute and State University.
https://theses.lib.vt.edu/theses/available/etd-12192011-195720/unrestricted/Zheng L D 2011.pdf.

© PERICLES Consortium 89 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

APPENDICES

PUBLIC © PERICLES Consortium Page 90/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

1. Appendix: ERMR GUI Screenshots

Screenshots showing the graphical view of the object store and triple store are shown in Figure 26

and Figure 27.

Pericles - Archive - Test - Mozilla Firefox - + X
File Edit View History Bookmarks Tools Help
j Pericles - Archive - Test x \1-
-
f\('ﬁ‘«i“ﬂ https://c102-086.cloud.gwdg.de/archive/view/Test cHQsemh |Q =] mwh o d YO 5 B =

Home Object Store Triple Store About Contact

Pericles 1. mpm -

Home / Test
Object Store
Triple Store
Add new collection

Users

Groups ® & audit

Activity test2-value2 | J

® @ test2

® @ test3

[csvohe J ea-voi

® 'm test_api

® n add_meta.py Download &

® [testixt Download &

® !E! test_http.txt Download &

Figure 26: The object store (screenshot)

PUBLIC © PERICLES Consortium Page 91/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Pericles - Triple Store - Mozilla Firefox - + %
File Edit View History Bookmarks Tools Help
F T —— x)
|/ Pericles -Triple Store *
@ @ | hps://c102-086.cloud.gwdg.detriple/view/Testlerome & |[Q search | % & R A4 OO 5 om =

Home Object Store Triple Store About Contact

Per'C'e Repository

select ?subject ?predicate 2object {?subject ?predicate ?object}
Object Store
Triple Store
Catalog / TestJerome
Users
Groups
Activity

subject predicate object
<http://www.franz.com/lesmis#character76> <http://www.w3.0org/2000/01/rdf-schema#comment> "1
<http://www.franz.com/lesmis#character76> <http://www.franz.com/lesmis#barely_knows > <http://www.franz.com/lesmis#character58>
<http://www.franz.com/lesmis#character76> <http://www.w3.0org/1999/02/22-rdf-syntax-ns#type> <http://www.franz.com/lesmis#Character>
<http://www.franz.com/lesmis#character76> <http://www.w3.0org/2000/01/rdf-schema#comment> "1
<http://www.franz.com/lesmis#character76> <http://www.franz.com/lesmis#barely_knows> <http://www.franz.com/lesmis#character48>
<http://www.franz.com/lesmis#character76> <http://www.w3.0org/1999/02/22-rdf-syntax-ns#type> <http://www.franz.com/lesmis#Character>
<http://www.franz.com/lesmis#character76> <http://www.w3.0org/2000/01/rdf-schema#comment> 1"
<http://www.franz.com/lesmis#character76> <http://www.franz.com/lesmis#barely_knows> <http://www.franz.com/lesmis#character62>
<http://www.franz.com/lesmis#character76> <http://www.w3.0org/1999/02/22-rdf-syntax-ns#type> <http://www.franz.com/lesmis#Character>
<http://www.franz.com/lesmis#character76> <http://www.w3.0org/2000/01/rdf-schema#comment> "1"

<http://www.franz.com/lesmis#character76> <http://www.franz.com/lesmis#barely_knows> <http://www.franz.com/lesmis#character63>

<http://www.franz.com/lesmis#character76> <http://www.w3.0org/1999/02/22-rdf-syntax-ns#type> <http://www.franz.com/lesmis#Character>

Figure 27: The triple store (screenshot)

2. Appendix: ERMR API

2.1. Object Store REST API
2.1.1. Cloud Data Management Interface

The object store can be used to organize collections and digital objects in the store. It implements
the Cloud Data Management Interface (CDMI) that defines the functional interface that applications
may use to create, retrieve, update and delete data elements from the Object Store. In addition,
metadata can be set on collections and their contained data elements through this interface.

The root URI path for the PERICLES entity registry demonstrator is https://141.5.100.67 and the
CDMI web service is accessible at fapi/cdmi.

PUBLIC © PERICLES Consortium Page 92 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

2.1.2. Collections
2.1.2.1. Create a collection using HTTP
Synopsys

To create a new collection object, the following request shall be performed:

PUT <root URI>/api/cdmi/<CollectionName>/<NewCollectionName>/

where:
e <root URI> is the path to the registry.

¢ <CollectionName> is zero or more intermediate collection that already exist, with one ‘/’

between each pair of collection names.
¢ <NewCollectionName> is the name for the collection to be created.

Response Status

HTTP Status Description

201 Created The new collection was created

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example

PUT to the collection URI to create a collection:
PUT /api/cdmi/MyCollection/ HTTP/1.1
Host: 141.5.100.67

Response:

HTTP/1.1 201 Created

2.1.2.2. Create a collection using CDMI

PUBLIC © PERICLES Consortium

93 /152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Synopsys

To create a new collection object, the following request shall be performed:

PUT <root URI>/api/cdmi/<CollectionName>/<NewCollectionName>/

Where:

» <root URI> is the path to the registry.
* <CollectionName> is zero or more intermediate collection that already exist, with one

slash (i.e., "/") between each pair of collection names.
« <NewCollectionName> is the name specified for the collection to be created.

Request Headers

Header Type Description Requirement
Accept Header String “application/cdmi-container” Optional
Content-Type Header String “application/cdmi-container” Mandatory
X-CDMI- Header String “1.1” Mandatory
Specification-

Version
Request Body

Field Name Type Description Requirement
metadata JSON Object Metadata for the collection object Optional

Response Headers

Header Type Description Requirement
Content-Type Header String “application/cdmi-container” Mandatory
X-CDMI- Header String “1.1” Mandatory
Specification-

Version

PUBLIC © PERICLES Consortium 94 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Response Message Body

Field Name Type Description Requirement
objectType JSON String “application/cdmi-container” Mandatory
objectID JSON String ObjectID of the object Mandatory
objectName JSON String Name of the object Mandatory
parentURI JSON String URI for the parent object Mandatory
parentlD JSON String Object ID of the parent object Mandatory
metadata JSON Object Metadata for the object Mandatory

Response Status

HTTP Status Description

201 Created The new collection was created

400 Bad Request | The request contains invalid parameters.

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example

PUT to the URI the collection object name and metadata:
PUT /api/cdmi/MyCollection/ HTTP/1.1

Host: 141.5.100.67

Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{

“metadata”: {}
}
Response:

PUBLIC © PERICLES Consortium 95 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
"objectType" : "application/cdmi-container",
"objectID" : "00007ED900104E1D14771DC67C27BF8B",
"objectName" : "MyCollection/",
"parentURI" : "/",
"parentID" : "00007E7F0010128E42D87EE34F5A6560",
"metadata" : {

e

}

2.1.2.3. Delete a collection using HTTP

Synopsys

To delete an existing container object, including all contained children, the following request
shall be performed:

DELETE <root URI>/api/cdmi/<CollectionName>/<TheCollectionName>/

Where:
» <root URI> is the path to the registry.
* <CollectionName> is zero or more intermediate collection objects.
* <TheCollectionName> is the name of the collection object to be deleted.

Response Status

HTTP Status Description

204 No Content The collection was deleted

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example

DELETE to the collection URI:

PUBLIC © PERICLES Consortium 96/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

DELETE /api/cdmi/MyCollection/ HTTP/1.1
Host: 141.5.100.67

Response:
HTTP/1.1 204 No Content

2.1.2.4. Delete a collection using CDMI

Synopsys

To delete an existing container object, including all contained children, the following request
shall be performed:

DELETE <root URI>/api/cdmi/<CollectionName>/<TheCollectionName>/

» <root URI> is the path to the registry.

* <CollectionName> is zero or more intermediate collection names.
* <TheCollectionName> is the name of the collection to be

¢ deleted.

Request Headers

Header Type Description Requirement

X-CDMI-Specification-Version Header String “1.17 Mandatory

Response Status

HTTP Status Description

204 No Content The collection was deleted

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization

404 Not Found The resource was not found at the specified URI

PUBLIC © PERICLES Consortium 97 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Example

DELETE the collection at URI:
DELETE /api/cdmi/MyCollection/ HTTP/1.1
Host: 141.5.100.67

Response:

HTTP/1.1 204 No Content

2.1.2.5. Read a collection using CDMI
Synopsys

To read all fields from an existing collection object, the following request shall be performed:

GET <root URI>/api/cdmi/<CollectionName>/<TheCollectionName>/

Where:
» <root URI> is the path to the registry.
* <CollectionName> is zero or more intermediate collection objects.
* <TheCollectionName> is the name specified for the collection object to be read from.

Request Headers

Header Type Description Requirement
Accept Header String | “application/cdmi-container” | Optional
X-CDMI-Specification-Version | Header String | “1.1” Mandatory

Response Headers

Header Type Description Requirement
Content-Type Header String “application/cdmi-container” Mandatory
X-CDMI- Header String “1.1” Mandatory
Specification-

Version

PUBLIC © PERICLES Consortium 98 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Response Message Body

Field Name Type Description Requirement
objectType | JSON String “application/cdmi-container” Mandatory
objectID JSON String ObjectID of the object Mandatory
objectName | JSON String Name of the object Mandatory
parentURI JSON String URI for the parent object Mandatory
parentlD JSON String Object ID of the parent object Mandatory
metadata JSON Object Metadata for the object Mandatory
children JSON Array of JSON | Name of the children objects in the Mandatory
Strings collection object.

Response Status

HTTP Status Description

200 OK

The metadata for the collection is provided in the message body.

400 Bad Request | The request contains invalid parameters or field names.

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization

404 Not Found The resource was not found at the specified URI

Example

GET to the collection object URI to read all the fields of the collection object:

GET /api/cdmi/MyCollection/ HTTP/1.1
Host: 141.5.100.67

Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{

"objectType" "application/cdmi-container",

PUBLIC © PERICLES Consortium

99 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

"objectID" : "00007ED900104E1D14771DC67C27BF8B",

"objectName" : "MyCollection/",
"parentURI" : "/",
"parentID" : "00007E7F0010128E42D87EE34F5A6560",
"metadata" : {
oy
"children" : |
"childl",

“child2",

2.1.2.6. Update a collection using CDMI

Synopsys

To update some or all fields in an existing collection object, the following request shall be
performed:

PUT <root URI>/api/cdmi/<CollectionName>/<TheCollectionName>/

To add, update, and remove specific metadata items of an existing collection object, the
following request shall be performed:

PUT <root URI> /api/cdmi/ <CollectionName> / <TheCollectionName> /
?metadata:<metadataname>

Where:

<root URI> is the path to the registry.

<CollectionName> is zero or more intermediate collection objects.
<TheCollectionName> is the name of the collection object to be updated.

Request Headers

Header Type Description Requirement
Accept Header String “application/cdmi-container” Optional
X-CDMI- Header String “1.1” Mandatory
Specification-

PUBLIC © PERICLES Consortium 100/ 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Version

Request Body

Field Name

Type Description

Requirement

metadata

JSON Object

Metadata for the collection object

Optional

Response Status

HTTP Status

Description

204 No Content

The collection content was updated

400 Bad Request

The request contains invalid parameters.

401 Unauthorized

The authentication credentials are missing or invalid.

403 Forbidden

The client lacks the proper authorization

404 Not Found

The resource was not found at the specified URI

Example

PUT to the collection object URI to set new metadata :
PUT /api/cdmi/MyCollection/ HTTP/1.1

Host:
Content-Type:

141.5.100.67
application/cdmi-container

X-CDMI-Specification-Version: 1.1

{

"metadata"

}

Response:

HTTP/1.1 204 No Content

2.1.3.

PUBLIC

Data Objects

© PERICLES Consortium

101/ 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

2.1.3.1. Create an object using HTTP

Synopsys

The following HTTP PUT creates a new data object at the specified URI:

PUT <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

Where:

* <root URI> is the path to the CDMI cloud.
* <CollectionName> is zero or more intermediate collections that already exist, with

one slash (i.e., "/") between each pair of collection names.
+ <DataObjectName> is the name specified for the data object to be created

Request Headers

Header Type Description Requirement
Content-Type | Header The content type of the data to be stored as a Optional
String data object
Content- Header A valid range-specifier Optional
Range String
Request Body
The request message body contains the data to be stored.
Response Status
HTTP Status Description
201 Created The new data object was created
401 Unauthorized | The authentication credentials are missing or invalid
403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
PUBLIC © PERICLES Consortium 102 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Example

PUT to the collection URI the data object name and contents:

PUT /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1
Host: 141.5.100.67

Content-Type: text/plain;charset=utf-8
Content-Length: 37

This is the Value of this Data Object

Response:
HTTP/1.1 201 Created

2.1.3.2. Create an object using CDMI

Synopsys

To create a new data object, the following request shall be performed:

PUT <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

Where:
» <root URI> is the path to the registry.
* <CollectionName> is zero or more intermediate collections that already exist, with
one slash (i.e., "/") between each pair of collection names.
+ <DataObjectName> is the name specified for the data object to be created.

Request Headers

Header Type Description Requirement
Accept Header String “application/cdmi-object” Optional
Content-Type Header String “application/cdmi-object” Mandatory
X-CDMI- Header String “1.1” Mandatory
Specification-

Version

PUBLIC © PERICLES Consortium 103 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Request Message Body

Field Type Description Requirement
Name
mimetype JSON String | Mime type of the data contained within the value | Optional
field
metadata JSON Metadata for the data object Optional
Object
value JSON String | The data object value Optional

Response Headers

Header Type Description Requirement
Content-Type Header String “application/cdmi-object” Mandatory
X-CDMI- Header String “1.1” Mandatory
Specification-

Version

Response Message Body

Field Name Type Description Requirement
objectType JSON String “application/cdmi-object” Mandatory
objectID JSON String ObjectID of the object Mandatory
objectName | JSON String Name of the object Mandatory
parentURI JSON String URI for the parent object Mandatory
parentlD JSON String Object ID of the parent object Mandatory
mimetype JSON String MIME type of the value of the data object Mandatory
metadata JSON Object | Metadata for the object Mandatory
Response Status

PUBLIC © PERICLES Consortium 104 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

HTTP Status Description

201 Created The new data object was created

400 Bad Request | The request contains invalid parameters.

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example

PUT to the collection URI the data object name and contents:

PUT /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1
Host: 141.5.100.67

Accept: application/cdmi-object

Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{

"mimetype" : "text/plain",

"metadata" : { ...

by

"value" : "This is the Value of this Data Object"”
}
Response:

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
"objectType" "application/cdmi-object",
"objectID" : "00007ED90010D891022876A8DEOBCOFD",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyContainer/",
"parentID" : "00007E7F00102E230ED82694DAA975D2",
"mimetype" : "text/plain”,
"metadata" : {
"cdmi size" : "37"
}
}

2.1.3.3. Delete an object using HTTP

Synopsys

PUBLIC © PERICLES Consortium 105/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

The following HTTP DELETE deletes an existing data object at the specified URI:

DELETE <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

Where:
* <root URI> is the path to the CDMI cloud.
e <CollectionName> is zero or more intermediate collections.
+ <DataObjectName> is the name of the data object to be deleted.

Response Status

HTTP Status Description

204 No Content The data object was deleted

400 Bad Request | The request contains invalid parameters.

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example

DELETE to the data object URI:
DELETE /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1
Host: 141.5.100.67

Response:
HTTP/1.1 204 No Content

2.1.3.4. Delete an object using CDMI

Synopsys

The following HTTP DELETE deletes an existing data object at the specified URI:

DELETE <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

PUBLIC © PERICLES Consortium 106 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Where:
* <root URI> is the path to the CDMI cloud.
e <CollectionName> is zero or more intermediate collections.
+ <DataObjectName> is the name of the data object to be deleted.

Request Headers

Header Type Description Requirement

X-CDMI-Specification-Version Header String “1.1” Mandatory

Response Status

HTTP Status Description

204 No Content The data object was deleted

400 Bad Request | The request contains invalid parameters.

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example

DELETE the data object URI:

DELETE /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1
Host: 141.5.100.67

X-CDMI-Specification-Version: 1.1

Response:
HTTP/1.1 204 No Content
2.1.3.5. Read an object using HTTP

Synopsys

PUBLIC © PERICLES Consortium 107 / 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

The following HTTP GET reads from an existing data object at the specified URI:

GET <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

Where:

<root URI> is the path to the registry.
<CollectionName> is zero or more intermediate collections.
<DataObjectName> is the name of the data object to be read from

Request Headers

Header Type Description Requirement
Range Header String A valid range specifier Optional
Response Headers

Header Type Description Requirement

Content-Type | Header String | The mimetype of the data object | Mandatory

Response Message Body

The response message body is the content of the data object.

Response Status

HTTP Status

Description

200 OK

The data object content was returned in the response.

401 Unauthorized

The authentication credentials are missing or invalid

403 Forbidden

The client lacks the proper authorization

404 Not Found

The resource was not found at the specified URI

PUBLIC

© PERICLES Consortium

108 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Example 1

GET to the data object URI to read the value of the data object:
GET /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1
Host: 141.5.100.67

Response:

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 37

This is the Value of this Data Object

Example 2

GET to the data object URI to read the first 11 bytes of the value of the data object:
GET /api/cdmi/MyContainer/MyDataObject.txt HTTP/1l.1

Host: 141.5.100.67

Range: bytes=0-10

Response:

HTTP/1.1 206 Partial Content
Content-Type: text/plain
Content-Range: bytes 0-10/37
Content-Length: 11

2.1.3.6. Read an object using CDMI

Synopsys

The following HTTP GET reads from an existing data object at the specified URI:

GET <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

GET <root URI>/api/cdmi/<CollectionName>/<DataObjectName>
?value:<range>; ...

GET <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

PUBLIC © PERICLES Consortium 109

152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

?metadata:<prefix>; ...

* <root URI> is the path to the CDMI cloud.

e <CollectionName> is zero or more intermediate collections.

+ <DataObjectName> is the name of the data object to be read from.

* <range> is a byte range of the data object value to be returned in the value field.

» <prefix> is a matching prefix that returns all metadata items that start with the prefix
value.

Request Headers

Header Type Description Requirement
Accept Header String “application/cdmi-object” Optional
X-CDMI- Header String “1.1” Mandatory
Specification-

Version

Response Headers

Header Type Description Requirement
Content-Type Header String “application/cdmi-object” Mandatory
X-CDMI- Header String “1.1” Mandatory
Specification-

Version

Response Message Body

Field Name Type Description Requirement
objectType JSON String “application/cdmi-object” Mandatory
objectID JSON String ObjectID of the object Mandatory
objectName | JSON String Name of the object Mandatory
parentURI JSON String URI for the parent object Mandatory
PUBLIC © PERICLES Consortium 110/ 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

parentID JSON String Object ID of the parent object

Mandatory

mimetype JSON String MIME type of the value of the data object

Mandatory

metadata JSON Object | Metadata for the object

Mandatory

value JSON String data object value

Conditional

Response Status

HTTP Status Description

200 OK The data object content was returned in the response.

401 Unauthorized | The authentication credentials are missing or invalid

403 Forbidden The client lacks the proper authorization

404 Not Found The resource was not found at the specified URI

Example

GET to the data object URI to read all fields of the data object:

GET /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1
Host: 141.5.100.67

Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

Response:

HTTP/1.1 200 OK
X-CDMI-Specification-Version: 1.1
Content-Type: application/cdmi-object

{

"objectType' "application/cdmi-object",
"objectID" : "00007ED90010D891022876A8DEOBCOFD",
"objectName" : "MyDataObject.txt",
"parentURI" : "/MyCollection/",
"parentID" "00007E7F00102E230ED82694DAA975D2",
"mimetype" "text/plain”,
"metadata" : {

"cdmi size" : "37"

by
"valuerange" : "0-36",
"value" : "This is the Value of this Data Object"”

PUBLIC © PERICLES Consortium

111 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

2.1.3.7. Update an object using HTTP

Synopsys

The following HTTP PUT updates an existing data object at the specified URI:

PUT <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

Where:

<root URI> is the path to the CDMI cloud.

<CollectionName> is zero or more intermediate collections.
<DataObjectName> is the name of the data object to be updated.

Request Headers

Header Type Description Requirement
Content-Type | Header The mime type of the data to be stored as a Optional
String data object
Content- Header A valid range-specifier Optional
Range String
Request Body
The request message body contains the data to be stored.
Response Status
HTTP Status Description
204 No Content The data object content was updated
401 Unauthorized | The authentication credentials are missing or invalid
403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example
PUBLIC © PERICLES Consortium 112 /152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

PUT to the data object URI to update the value of the data object:

PUT /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1

Host: 141.5.100.67
Content-Type: text/plain

Content-Length:

37

This is the value of this data object

Response:

HTTP/1.1 204 No Content

2.1.3.8. Update an object using CDMI

Synopsys

The following HTTP PUT updates an existing data object at the specified URI:

PUT <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

PUT <root URI>/api/cdmi/<CollectionName>/<DataObjectName>

?value:<range>

PUT <root URI>/api/cdmi/<CollectionName>/<DataObjectName>
?metadata:<metadataname>

Where:

» <root URI> is the path to the registry.
» <CollectionName> is zero or more intermediate collections that already exist, with

one slash (i.e., "/") between each pair of collection names.
+ <DataObjectName> is the name specified for the data object to be created.

* <range> is a byte range for the data object value to be updated.

Request Headers

Header Type Description Requirement
Content-Type Header String “application/cdmi-object” Mandatory
PUBLIC © PERICLES Consortium 113 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

X-CDMI- Header String “1.1” Mandatory
Specification-
Version

Request Message Body

Field Type Description Requirement
Name

mimetype JSON String | Mime type of the data contained within the value | Optional

field
metadata JSON Metadata for the data object Optional
Object
value JSON String | The data object value Optional
Response Status
HTTP Status Description

204 No Content The data object was updated

400 Bad Request | The request contains invalid parameters.

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization
404 Not Found The resource was not found at the specified URI
Example

PUT to the data object URI to set new field values:
PUT /api/cdmi/MyCollection/MyDataObject.txt HTTP/1.1
Host: 141.5.100.67
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1
{
"mimetype" : "text/plain",
"metadata" : {

PUBLIC © PERICLES Consortium 114 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

"colour": "red",
b
"value" : "This is the Value of this Data Object"
}
Response:

HTTP/1.1 204 No Content

2.1.4. Find REST API

Synopsys

We have defined a minimal find API accessible under /api/find. It can search in names or
metadata of collections and data objects and returns matching objects.

The following HTTP GET query the registry:

GET <root URI>/api/find?findTerms=<term>

GET <root URI>/api/find?findTerms=<term>&where=<where>

Where:
» <root URI> is the path to the registry.
+ <term> is the keyword we are looking for.
* <where> is the place we are looking, it can be “name”, “metadata” or “both”.The
default value is “both”.

Response Message Body

Field Type Description Requirement
Name
result JSON Array of JSON List of URI for the matching Mandatory
Strings object.

Response Status

PUBLIC © PERICLES Consortium 115/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

HTTP Status Description

200 OK The result are returned in the response body.

400 Bad Request | The request contains invalid parameters.

401 Unauthorized | The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization

Example

GET to the find URI to get matching objects:
GET /api/find?findTerms=test HTTP/1l.1
Host: 141.5.100.67

Response:
HTTP/1.1 200 OK

{

“result” : [“/MyContainer/”,
“/MyCollection/MyDataObject.txt”,
-1

2.2. Triple Store REST API

The Pericles triple store API acts as a mediator between clients and the internal triple store
we are using. It interprets the requests of the client and forward a request in the correct
format for the triple store.

The root URI path for the PERICLES entity registry demonstrator is https://141.5.100.67 and the triple
store web service is accessible at /api/triple.

2.2.1. List repositories

2.2.1.1. Synopsys

To list existing repositories, the following request shall be performed:

GET <root URI>/api/triple

PUBLIC © PERICLES Consortium 116 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

where:
e <root URI> is the path to the registry.

2.2.1.2. Response Message Body

The response message contains a JSON list of repositories information (to be refined).

2.2.1.3. Response Status

HTTP Status Description

200 OK The list is returned

2.2.1.4. Example

GET a list of repositories:
GET /api/triple HTTP/1.1
Host: 141.5.100.67

Response:
HTTP/1.1 200 Ok

[{ "title": "DemoLondon", "writable": true, "id": "DemoLondon" },
{ "title": "Test", "writable": true, "id": "Test" }]
2.2.2. Create a repository

2.2.2.1. Synopsys

To create a new repository, the following request shall be performed:

PUT <root URI>/api/triple/<NewRepositoryName>

where:
e <root URI> is the path to the registry.

PUBLIC © PERICLES Consortium 117 / 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

¢ <NewRepositoryName> is the name for the repository to be created.

2.2.2.2. Response Status

HTTP Status Description

201 Created | The new repository was created

2.2.2.3. Example

PUT to the triple store URI to create a repository:
PUT /api/triple/MyRepository HTTP/1.1
Host: 141.5.100.67

Response:
HTTP/1.1 201 Created

2.2.3. Delete a repository

2.2.3.1. Synopsys

To delete a repository, the following request shall be performed:

DELETE <root URI>/api/triple/<repositoryName>

where:
e <root URI> is the path to the registry.

e <repositoryName> is the name of the repository to be deleted.

2.2.3.2. Response Status

HTTP Status Description

PUBLIC © PERICLES Consortium

118 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

204 No Content | The repository was deleted

2.2.3.3. Example

DELETE a repository:
Delete /api/triple/MyRepository HTTP/1.1
Host: 141.5.100.67

Response:
HTTP/1.1 204 No Content

2.2.4, Add triples to a repository

2.2.4.1. Synopsys

The following HTTP PUT/POST requests add triples to a repository. A PUT request empty the

repository first while a POST request add triples.

PUT <root URI>/api/triple/<repositoryName>/statements
POST <root URI>/api/triple/<repositoryName>/statements

Where:
e <root URI> is the path to the registry.
e <repositoryName> is the name of the repository.

2.2.4.2. Request Headers

Header Type Description

Requirement

Content-Type Header String The content type of the triples

e ‘“text/plain” for ntriples

¢ “application/rdf+xml” for RDF
e ‘“text/turtle” for Turtle

Mandatory

PUBLIC © PERICLES Consortium

119 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

2.2.4.3. Request Body

The request message body contains the data to be stored.

2.2.4.4. Response Status

HTTP Status Description

201 Created | The triples were added

2.2.4.5. Example

PUT triples to the repository URI:

PUT /api/triple/MyRepository/statements HTTP/1.1
Host: 141.5.100.67
Content-Type: text/plain

<http://www.pericles.org/models#processl>
<http://www.pericles.org/models#name> "Ingest"
<http://www.pericles.org/models#processl>
<http://www.pericles.org/models#description> "Ingest documents in the
registry" .

<http://www.pericles.org/models#processl>
<http://www.pericles.org/models#identity> "7d4eldc8-1ladf-4cfd-b0b8-
ede46944b006" .

<http://www.pericles.org/models#processl>
<http://www.pericles.org/models#version> "0.1"

Response:
HTTP/1.1 201 Created

2.2.5. List triples of a repository

2.2.5.1. Synopsys

To list triples contained in an existing repository, the following request shall be performed:

PUBLIC © PERICLES Consortium 120/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

GET <root URI>/api/triple/<repositoryName>
GET <root URI>/api/triple/<repositoryName>/statements

where:
e <root URI> is the path to the registry.
e <repositoryName> is the name of the repository to list.

2.2.5.2. Request Headers

Header Type Description Requirement

Accept Header String “application/json” Optional
“application/rdf+xml”

2.2.5.3. Response Message Body

By default the response message contains a JSON list of triples. Specifying
“application/rdf+xml” as the Accept header can be used to obtain the result in XML.

2.2.5.4. Response Status

HTTP Status Description

200 OK The list is returned

2.2.5.5. Example

GET a list of repository triples:
GET /api/triple/MyRepository HTTP/1.1
Host: 141.5.100.67

Response:
HTTP/1.1 200 Ok

[

"<http://www.pericles.org/models#process3>",

PUBLIC © PERICLES Consortium 121 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

"<http://www.pericles.org/models#version>",
"\"1.0\""

1,

[

"<http://www.pericles.org/models#process3>",
"<http://www.pericles.org/models#identity>",
"\"3ecdb028-40ec-453a-bdeb-21ad9234ac5e\""

1,

[

"<http://www.pericles.org/models#process3>",
"<http://www.pericles.org/modelsfdescription>",
"\"Extract metadata in a document of the registry\""
1,

[

"<http://www.pericles.org/models#process3>",
"<http://www.w3.0rg/1999/02/22-rdf-syntax-nsf#type>",
"<http://www.pericles.org/models#process>"

1,

2.2.6. Delete all triples of a repository

2.2.6.1. Synopsys

To delete all triples of a repository, the following request shall be performed:

DELETE <root URI>/api/triple/<repositoryName>/statements

where:
e <root URI> is the path to the registry.
e <repositoryName> is the name of the repository that contains triples to be deleted.

2.2.6.2. Response Status

HTTP Status Description

204 No Content | The triples were deleted

PUBLIC © PERICLES Consortium 122

152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

2.2.6.3. Example

DELETE a repository:
Delete /api/triple/MyRepository/statements HTTP/1.1
Host: 141.5.100.67

Response:
HTTP/1.1 204 No Content

2.2.7. Query a repository

2.2.7.1. Synopsys

To send a SPARQL query to a repository, the following request shall be performed:

GET <root URI>/api/triple/<repositoryName>?query=<SparglQuery>

where:
e <root URI> is the path to the registry.
e <repositoryName> is the name of the repository to query.
e <SparglQuery> is a spargl query encoded as a URI.

2.2.7.2. Request Headers

Header Type Description Requirement

Accept Header String “application/json” Optional
“application/sparqgl-results+xml”
“application/spargl-results+json”

2.2.7.3. Response Message Body

By default the response message contains a JSON dictionary (“application/json”):
e “values stores a list of tuples
e “name” stores a list of names for the returned tuples

PUBLIC © PERICLES Consortium

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

III

Specifying “application/spargl-results+xml” or “application/spargl-results+json” can be used to

obtain these output :

https://www.w3.org/TR/rdf-sparql-XMLres/

https://www.w3.0rg/2001/sw/DataAccess/json-spargl/

2.2.7.4. Response Status
HTTP Status Description
200 OK The result is returned

2.2.7.5. Example

GET to evaluate a SPARQL query on a repository:

GET
/api/triple/MyRepo?query=select%$20?s%20?p%2020%20%7B?s%20?p%2020%7D
HTTP/1.1

Host: 141.5.100.67

Response:
HTTP/1.1 200 Ok

"values": [

[

"<http://www.pericles.org/models#version>",
"\"l . O\""

"<http://www.pericles.org/models#identity>",
"\"3ecdb028-40ec-453a-bdeb-21ad9234ac5e\""

"<http://www.pericles.org/models#name>",

"\"Convert\" "
1,
1,
"names": [
"p" ,
"O"

PUBLIC © PERICLES Consortium 124 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

3. Appendix: Rule Execution Metadata in
the ERMR

As mentioned in Section 3, the ERMR Listener can run Python scripts stored in a special collection of
the object store. We can add a specific metadata to the script to define the rule execution condition
for this script. This corresponds to the topic of the MQTT protocol. The format is
“OPERATION/OBIJECT/PATH” where:

* OPERATION = create, delete, update
* OBIJECT =resource, collection, repository or + for anything

* PATH = collection path, repository name with # that can match a subtree

For instance, the metadata “topic” = “create/+/path/to/watch/#” will execute the associated script
each time something is created in the collection “/path/to/watch”.

4. Appendix: Deployment Options for the
Policy Editor

The diagrams below illustrate various different integration configurations. In the second diagram
(Figure 28), a single adapter offers access to both the Policy Editor and the Ecosystem. Policies will
then be persisted as an Ecosystem entity. Another diagram (Figure 29) shows a configuration
wherein the Policy Editor can query an Ecosystem, but policies are persisted separately to a
dedicated storage component. There is no support for executing processes. The bottom diagram
(Figure 30) shows a minimal stand-alone configuration. The Policy Editor can persist and load policies
via a file-based storage. Neither Ecosystem nor Process Execution Engine are available. In practice,
the choice of the integration configuration depends primarily on the intended usage of the PE in an
application and of what is technically possible and cost-effective. Figure 31 displays a possible
configuration that could integrate with the ERMR and Process Model Compiler of PERICLES.

(O—| PolicyStoreon }
~ | Database
- . =~ Concrete Ecosystem ~
Policy Editor (O Adapter nCan Ecosystem
~—~ NO Process Execution

__ Engine

Figure 28: Policy Editor Deployment: database policy store and ecosystem

PUBLIC © PERICLES Consortium 125/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

/\é—_ Concrete Policy

Store + Ecosystem
=~ Adapter 'CO— Ecosystem l

Policy Editor \9

Concrete Process '
(o i i Process Execution
\gﬁ Execution Engine -@— Engine

Adapter

Figure 29: Policy Editor Deployment: database policy store, digital ecosystem and process execution engine

—

CQ—{ File-based policy store
Policy Editor |—C NO ecosystem

NO Process Execution
__ Engine

Figure 30: Policy Editor Deployment: only a file-based policy storage

ERMR Adapter:

- Policy store O
- Ecosystem link -C AR

Process Model _C: Process Model l

Policy Editor

(o)]T\\- (o)

Compiler Adapter Compiler

Figure 31: Policy Editor integration within PERICLES infrastructure

On the one extreme end, the PE can be used as a fully standalone tool without integration to any
other component. This is a very lightweight approach that allows a policy creator to quickly create a
(printed) set of policies without the overhead and costs incurred of integrating the PE into a bigger
system. Of course the drawback here is that automatic validation of policies cannot be done nor will
the policy creator be helped by an ecosystem model for filling in the blanks in the policies. A typical
real-life example where this configuration could be used would be by (upper) management in an
organization, creating high-level organization-wide policies. The other extreme configuration entails
full integration in a preservation infrastructure: policies become an inherent part of the ecosystem,
are defined using that same ecosystem and can automatically be validated on the ecosystem if there
is an appropriate policy validator component such as the PERICLES Process Compiler available.

PUBLIC © PERICLES Consortium Page 126 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Typically, there is a significant cost associated to this level of integration though as custom adapter
components are to be developed that are the interfaces between the PE and the various
components. Therefore, this kind of configuration makes most sense in a preservation environment
that is relatively stable, mature and large enough to warrant the cost.

5. Appendix: Policy Template Files

This appendix describes the content of policy template files in more detail. A policy template file
contains blueprints for policies and includes:

* properties with content that may or may not contain variables. These variables replace the
values of the properties of the applicable policy model, in which the properties get an empty
value by default. In other words, policy templates give a parametrized default value to one or
more of the model properties. In case a policy template refers to properties that are not
mentioned in the policy model, which is not an unlikely scenario as policy templates can
originate from various sources while the PE will use a single policy model, a translation
wizard will guide the policy creator in resolving these discrepancies by allowing him to
specify the mapping between policy template properties and policy model properties.

* specification of variables:

o variables can be local to a policy or global to the whole policy set. In the former case,
using the PE to change the value of the variable will only have an effect on the policy
that the variable belongs to. In the latter case, the values of variables (identified by
their name) are propagated to all other locations where that variable is used.

o asthe same policy template can be instantiated multiple times, global variables that
are defined in it will be used in each policy instance. This is typically not the desired
behaviour. To deal with this, variable names can be annotated with a suffix that
indicates that each instantiation of the policy will create a new global variable. This
behaviour can be overridden by the policy creator who, instead of automatically
creating a new variable name, can select an existing variable name for the new
variable.

o variables are typed:

III

= in case the type is “global”, the variable is shared among policies. In this
case, the variable properties (currently limited to the type) are defined in a
separate JSON section in the template file.

= otherwise, type values are defined by the template, the model, the digital
ecosystem model or manually entered in the PE.

* an (optional) list of lower level policies.

6. Appendix: Other type of change

We list here the remaining type of change for the DVA change management scenario, in Section 7.2.

Add a new video to a collection

PUBLIC © PERICLES Consortium 127 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

A new video is added to collection X; this can mean that a video is attributed to that collection or a
new DO is added with the property specified. This will trigger change 0 of the policy, that in turn will
create an appliesTo dependency between the policy and video file.

This will also activate the appliesTo change 0 (constructor) that will check if any of the players can
play the video file; creating the relative canPlay dependencies.

At the end of this step, the impact will check if there is any canPlay dependency between the player
and the video file; if that’s not the case, it will trigger transcoding, that will issue step A3, creating the
canPlay dependency between the transcoded video file and the players for the transcoded format.

Change in player’s supported formats

When updating a video player, it may be that the list of supported formats is also updated (old
formats may be dropped; and new formats added). As an example, the QuicktimeVR format was
introduced in 1994 and is unsupported by the currently version of Quicktime (files can still be
rendered by Quicktime version 7 that needs to be separately installed).

In this situation, canPlay change 0 will be activated, and will check, for all videos, if the format is still
supported, deleting unsupported canPlay dependencies.

Any deletion of a canPlay dependency will then activate change 1 (destructor); this will check if the
video can still be played by any player, and if that’s not the case, will trigger transcoding, following
steps A2 and A3.

Change in video format

Any change in video format will carry the sequence of steps A3 (both when the change is internal; for
example for an impact that will trigger transcoding, or external, for changes in the ecosystem for
example if a user updates a video file manually).

7. Appendix: Rule based change
management Proof of Concepts

This example is the implementation of the section 7 rule based change management for a single
resource: the EUMETSAT data policy. Please refer to that section for the background of this PoC. This
PoC makes use of a Digital Ecosystem Model build using the EcoBuilder and provides the SPIN rules
for the model described. It is designed to be executed on a test environment built using the
functional architecture illustrated in Figure 1. The example is described in section 7.2.4. The example
consists on a rule implementation for the data policy that governs the release of data to the public,
so it regards both policy implementation, QA and change management. The rule will enact the policy
and also manage change for example in the release period of the policy. Table 7 indicates the
mapping between the example and this rule implementation.

PUBLIC © PERICLES Consortium 128 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

EUMETSAT example Generic rule

time before release policy property x
appliesTo dependency 1
EUMETSAT policy policy 1

DOdata digital object 1

Table 7: Mapping between the EUMETSAT example notions and notions used for the generic example

For every newly stored data in the private repository, relevant information should be populated in
the ontology. More specifically:

® Every single DO should be stored in the ontology, through its relevant properties and values
instantiations.

e Every single DO should be connected to a policy through the use of 1rm:Dependency
descriptors. For example, for digital object 1 the following triples regarding the policy
dependency may exist:

dependency 1 lrm: from digital object 1

dependency 1 lrm:to policy 1
This type of dependency can be created automatically using the rule described in the original
diagram, that is activated when new data is stored in the private repository. Since policy
cannot include precondition-impact, this rule can be represented by an LRM dependency
between the policy and itself, that can created for the purpose of populating the model.

7.1. Change Scenario 1: value in a policy parameter
changed

A change in the value of the corresponding policy property affects the instance of the policy and thus
of an attached notion in the corresponding instance of dependency. The change is described within
the ontology, as an instance of delta, with the following triples (see also Figure 32):

policy 1 lrm:changedBy delta 1

delta 1 rdf:type lrm:RDF Delta

delta 1 lrm:deletion deletion statement 1
deletion statement 1 rdf:subject policy property x
deletion statement 1 rdf:predicate ex:hasValue

deletion statement 1 rdf:object policy property x value 1
delta 1 lrm:insertion insertion statement 1
insertion statement 1 rdf:subject policy property x
insertion statement 1 rdf:predicate ex:hasValue

insertion statement 1 rdf:object policy property x value 2

PUBLIC © PERICLES Consortium 129 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

7.1.1.

The role of precondition and impact

For every instance of dependency, we may define through 1rm:precondition and 1rm:impact
properties specific SPIN rules that are triggered upon a new change (delta); here, the delta is related
to the change of the value in the policy property, from 24 hours to 12 hours. The query, as seen in
Figure 32, requests for all DOs that violate the policy, by taking into account the new value of the

policy property defined.

We also assume that a time based process (triggered every certain time) will generate a delta in the
‘stored time’ property of an object, that indicates that the object has been in available in private for
that amount of time.

If results are derived from this SPARQL query defined as precondition value, then the impact takes
action. The rule described as value of the corresponding impact accomplishes the following tasks: (i)
updates the ontology by performing the actual changes that delta describes (now, ex:hasvalue
points to the new value of policy’s property), (ii) alters private location to public location for all DOs
that were returned from preconditions query.

precondition_1

impact_1

Description of a property ina policy chang Description: L1 s
by the fatest dena,
pere
All DO that violate policy_1 with new policy property value (i.e. their stored ublic location Vor all DOs ll!al violated policy_’ 1 with the nnew policy
time is greater than the corresponding value of the policy property,¢.g. 12 parameter valu
‘hours) should be moved from private to public repository.
DELETE
SELECT 7digital_object ?stored_time ?location ?policy_property_x ? [
policy_property_x_value_1 ?policy_property_x_value_2 “?policy_property_x exhasValue ?policy_property_x_value_1
WHERE “digita_object exhasLocation ?location
* gependency i me 7aqm object
“?dependency Irm:to INSERT

2policy rdftype exP {
Toole) i rangedy Jiete 2policy_property_x exhasValue ?policy_property_x_value_2
2digital_object exhasLocation 2new. Joceton
2new_location rdttype ex-PublicRep
ocaton SXhacLocatonF aih mew tocaon pah (era value

2delta I deletion ?deletion_statement
2deletion_statement rdf subject ?policy_property_x
2deletion_statement rdf predicate exhas\Value 2new|
2deletion_statement rdfobject 2policy_property_x_value_1)

2delta Imninsertion 7instertion_statement
2insertion_statement rdf subject 7policy_property_x
2insertion_statement rdfpredicate exhasValue
2insertion_statement raf.object ?policy_property_x_value_2

2digital_object exchasLocation ?location
2location rdftype ex PrivateRepository
2digital_object exhasStoredTime ?stored_time

FILTER (?stored_time > 2policy_property_x_value_2)
MINUS

" (2deita Imiprecading 2another_delta) UNION
{?another_detta Inmifollowing 7delta)

v
(ot (exmasvane) (ot (o] [exmevane) (Pl

Figure 32: A change is described within the ontology, as an instance of delta

7.2. Change Scenario 2: total time during which the DO
is stored changed

When a DO is newly stored in a repository, a counter indicating the time passed since the data was
stored, is attached to the DO; here we call it as stored time. Stored time represents the age of the
object within the repository. As time passes by, the stored time of the DO increases: consider a time
based trigger that will change the stored time every X units of measurement of time (e.g. every 1
hour). For every change, a time-related delta will be created, with the following triples (see also
Figure 33):

stored time 1
delta 2

lrm:changedBy
rdf:type

delta 2
lrm:RDF Delta

delta 2 lrm:deletion deletion statement 2

deletion statement 2 rdf:predicate ex:hasValue

PUBLIC © PERICLES Consortium 130/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

deletion statement 2 rdf:object stored time 1 value 1

delta 2 lrm:insertion insertion statement 2
insertion statement 2 rdf:predicate ex:hasValue
insertion statement 2 rdf:object stored time 1 value 1

7.2.1.

As also seen in previously examined change scenario, given the policy that describes the need to

The role of precondition and impact

move the DO into a different repository when the stored time exceeds a specific total time limit, we
create an instance of dependency between the DO and its current stored time. The precondition of
the dependency will be triggered when the stored time value changes according to the latest delta.
As seen in Figure 33, the precondition will query for all DOs that violate the policy, by taking into
account the new value of the stored time of DOs.

and impact here. If results are returned, then the SPIN rule included in the relevant impact takes
action, which triggers the move process for changing the location of the derived DOs.

stored_time_1_v 1rm:from
alue_1 digital_object_1 1n

precondition_2

impact 2

Description: Query triggered when the value of the stored time changes by
the latest delta.

AllDOS that violate policy_1 (ie. thei stored time is greater than the
corresponding value of thé policy property, e.g. 12 hours) should be moved
from existing repository.

SELECT 7digital_object ?stored_tme_x ?stored_time_x_value_1?

Description: Rule triggered when precondition_2 query returns some resuls.

Perfo that ; Alters
diferent one, for all DOs that violated policy_1 with specific policy parameter
value.

DELETE
2stored_time_x exhasValue ?stored_time_x_value_1

2digital_object exhasLocation ?existing_location

stored_time_x_value_2 ?existing_location
WHERE
! 2dependency Imirom 2digital_object
2dependency Imto ?stored_time_x
2stored_time_x rdftype exTime

2stored_time_x exhasValue ?stored_time_x_value_1
2stored_ime _x Irm.changedBy 2delta

INSERT
7stored_time_x exhasValue ?stored_time_x_value_2

2digital_object exhasLocation new_location
2new_location rdftype exRepository
2dependency Imo ?policy 2new_location exhasLocationPath new location path (iteral value)
2policy rdttype ex:Policy)

g ?policy exhasProperty policy_property_x
2policy, y_x ex hasValue policy_pr vall
Eo policy_property_x exhasValue policy_property_value
g 2delta Im:deletion ?deletion_statement

2deletion_statement rdf subjact ?stored_time_x
2deletion_statement rdf predicate exhasValue
2deletion_statement rdfobject 7stored_ime_x_valus_1
2delta Iminsertion ?instertion_statement
2insertion_statement rdf subject ?stored_time_x
oo 2insertion_statement rdfpredicate exhasValus

ont 1 2insertion_statement rdfobject ?stored_time_x_value_2

2digital_object ex hasLocation ?existing_location
2existing_location rdftype exRepository

1 " | FwTER (2stored_time _x_value_2 > 2policy_property_value)

stored_time_t MiNUS
¢ ‘

{2deita In:preceding 2another_delta} UNION
{7another_delta Imvfollowing 7delta)

Figure 33: Dependency and delta graph for a change in value of stored time of a digital object

8. Appendix: Semantic and User Community
drift QA PoC

This final example makes use of the same change management concepts and architecture, applied
this time to change in semantics and User Communities described in Section 10. We here define a
use scenario, and the SPIN rule implementation for the threshold validation.

8.1. Policy and drift model use scenario

In this situation, an organisation wants to maintain its collections usable by its user communities, a
common but very broad objective for digital preservation. This high level policy is expressed in a
guidance policy:

PUBLIC © PERICLES Consortium 131 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Policy 0: “The content of our collections will remain usable by its user communities”

In order to validate this high level policy, one possible quality assurance methodology can be defined
in the human driven, expensive process:

QA method 0: Every 10 years, run a user study (focus group, survey) to discover possible issues with
usability of content. If there are some issues with the content, it is highly likely that these will be
discovered by the user studies; still it is also expensive to run such user studies, and some sudden
changes may be not revealed until the next run of the user study. For this reason, the organisation
creates a derived policy (dependent on policy 0) that can be run automatically, based on concept
drift as an indicator of significant change in semantics:

Policy 1: “If drift in the concepts monitored is above 30% inform the collection manager”

In order to validate such policy, the methodologies described in Section 10 are used, to automatically
monitor and report significant drifts:

QA method 1: When there is change, compute concept drift in the ontologies used to record
metadata and index the collections. The concept drift will be recorded in the Digital Ecosystem
Model ontology. A SPIN rule (described in the next paragraph) will alert if any newly recorded drift
value in the collection ontologies is above the threshold (30%).

Finally, a similar policy is defined to monitor drift in user community:
Policy 2: “If drift in the User Community is above 30% inform the collection manager”

In this case, the implementation (QA method) is completely analogous to the one earlier described.
The analysis of the user community topics will be run periodically and update the DEM model drift
ontology (using LRM deltas) so that an automated rule will verify the threshold and generate alerts if
it is surpassed. The alerts sent to the collection manager will include a list of the terms surpassing the
threshold so there is a precise knowledge on the changes that are causing the alert. In both cases,
the alerts will need to be validated and handled manually.

8.2. Drift Ontology and threshold definition

The drift ontology is a model of concept drift measures between two concepts or two versions of a
concept in two models that represent changes in time. Its main notions are ConceptDrift and its three
subclasses: LabelConceptDrift, IntensionConceptDrift and ExtensionConceptDrift [Stavropoulos et al.,
2016; PERICLES D4.4., 2016; Wang et al., 2011]. The object properties named ‘from’ and ‘to’ connect
the concept(s)®® under drift analysis and the data property named ‘value’ declares the measure of
drift (range between zero and one). An example of triples describing the aforementioned relations is
given below:

intension concept drift 1 rdf:type :Intension Concept Drift
intension concept drift 1 : from :DigitalArtwork
intension concept drift 1 :to :DigitalArtwork™

29Conceptsmaybelongtoanydefinedclassintheontology.

%0 It should be noted that instances of DigitalArtwork which are connected with the instance of

PUBLIC © PERICLES Consortium 132 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

intension concept drift 1 :value '0.4"

where we examine the IntensionConceptDrift of the DigitalArtwork concept in two different models
within time.

We can model the policy that monitors if the drift value of a concept exceeds a specific threshold,
according to the following triples:

concept drift policy rdf:type ex:Policy

concept drift policy ex:hasProperty drift threshold

drift threshold rdf:type ex:DriftThreshold
drift threshold ex:hasValue 0.3

In order to monitor if the new drift value of a specific concept drift exceeds the relevant drift
threshold, we create a dependency between the policy the concept of interest, the precondition and
impact of which carry the SPIN rules that do all relevant actions. Rules and relations can be seen in
detail in Figure 34:

exDrifthreshold | I 1rmsimpace "
e — i precondition_3 =
Lmeee Description: Query triggered when the drift value of the concept changes by Description: Rule L3a s
= < the latest defta.

arift_threshold_v
alue_1 Performs delia 7 a
For all DOs that violate policy_2 (i. their drift value is greater than the for all DO that violated policy_2 with specific policy parameter threshold
corresponding drift threshold value of the policy property) a relevant value.
notification should be triggered to the user.
s DELETE

SELECT %intension_concept_drift 2concept_drif_1_value_1 2

e concept_drift_1_value_2 7concept_of_interest_1 2concept_of_interest 2 " 7intension_concept_drit value 2concept_dif_1_value_1
WHERE)
m: from * 2dependency Im:to Zpolicy INSERT

2policy rdftype ex-Policy «
2policy exhasProperty 2drif_threshold 2intension_concept_drift value 2concept_drif_1_value_2

concept_drift_1_ RN
value_1 M

‘concept_of_inter from———~_
est B

2drif_threshold rdftype ex-DiiftThreshold
ERRIED Tantireshold s navalus ar. reshola_vaie 2concep_ofIneres_1 xWaminghessag e conceptantvalue i
above the threshold value that

2dependency Imirom 2intension_concept_drit the policy defines. Please.
2intension_concept_drit rdftype ConceptDrit procesd, accordingly
2intension_concept_drift value concept_drit_1_value_1
2intension_concepl_drift fom ?concept_of_intérest_1

Change Run 2intension_concept_drift 10 ?concept_of_interest 2

o delta is created Invokes ‘precondit ?intension_concept_drift Irm:changedBy ?delta

concept ‘preconditon check ion query

value 2deita Im:deletion 2deletion_statement

2deletion_statement rafpredicate value
2deletion_statement rafobject 2concept_drft_1_value_1

2delta Iminsertion ?instertion_statement
2inserion_statement rdf predicate valu

e
2insertion_statement rdfobject 2concept_drif_1_value_2

deletion_stateme insertion_statem
1 ent_1

A HRA T TP | (ooettaimpreceding 2another_detta) UNION
{2another. delta Imolowing 7deita)
concept_drift_1_ conceptanti1_) |)
Valie_1 valie_2

Figure 34: Dependency and delta graph for a change in drift value of a specific concept in a model

FILTER (2concept_drifi_1_value_2 > 7drif_threshold_value;

MINUS

9. Appendix: Investigations of Community
Change

In the following, we describe the Tumblr data collection process and resulting data; we then describe
the social network analysis and properties of the Tate Tumblr network; next, we describe our
analysis of the textual content of Tumblr posts from the Tate network using topic modelling and
relate this to changes in the Tate community over time, illustrating this with an example from 2012.
After summarising and discussing these results together, we propose potentially useful measures
and suggested thresholds for incorporating into any form of monitoring community change within

intension concept drift 1 via the object properties :from and :to, are not the same; they have
different URIs corresponding to different representation models.

PUBLIC © PERICLES Consortium 133 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

the Tumblr data relating to Tate.

9.1. Data Collection Method

Tumblr posts were previously collected for the study of social media content in this project (reported
in D4.3 [PERICLES D4.3, 2016]): due to Tumblr’s design, it is convenient to search for specific tags
rather than solely for terms, and therefore a snowball methodology is used to spiral outwards from
initial hits to other posts or blogs that may be of relevance ([Biernacki & Waldorf, 1981; Atkinson &
Flint, 2001]). Use of the substring ‘tate’ in case-insensitive search system captures tagged posts, as
well as mentions of the term itself. A proportion of false positive terms, are also retrieved.

For the purposes of the present study we apply strict filtering rules in order to limit material returned
to material containing either the string ‘tate’ with appropriate word boundaries, or material
containing the Tate’s hostname. For the Tumblr data, a search was completed for posts of any age
containing the term ‘Tate’. Of the original 70,000 posts from 01-Feb-2005 to 24-03-2015, 3,093 were
examined in this present process, textual data from the ‘body’, ‘caption’, ‘description’ fields gave a
total of 473,680 words, 2,793,500 characters (excluding HTML and with URLs normalized; for the
topic modelling analysis, further processing [stopword removal and stemming; using the using the
422 function words from [McDonald, 2000] and the Porter stemming algorithm
(http://tartarus.org/martin/PorterStemmer/), respectively] resulted in a corpus of 286,360 words;

1,838,736 characters). With contrast to the two other social media platforms and search term
approach used (‘tate’), we note that the snowball sample method used gives lower precision than
the approaches used for the other social media platforms (e.g. for Twitter, 22,00/222,356, or ~10%);
however, this is unsurprising given the highly connected and diffuse characteristics of these social
media networks, in many cases Tumblr posts linked to material not solely about Tate nor relevant to
art in general (we discuss this in further detail in [PERICLES D4.3, 2016]; a more general description
of the data is also presented in that deliverable).

9.2. Network analysis of Tumblr data

Network analysis was performed on the cumulative Tumblr data, with these cumulative measures
updated on a daily basis. Links (edges) between users relevant to the Tate community were
identified on the basis of Tumblr connections, with data processed using custom software created in
Python. Note that these are shown only from 2009, since before this date there were not enough
suitable connections between nodes. Network statistics were calculated at the relevant intervals
using the R software package and were average betweenness, number of clusters, density, and
average degree, important for identifying network and community change (McCulloh and Carley,
2011). These are shown in Figure 36 (to account for the variation in values across the statistical
measures, the y axis is shown as a logarithmic scale; raw counts of clusters can be found in Figure
37). Network graphs describing the Tumblr data are also shown in Figure 35, with clusters labelled
with node user names where relevant (data from 2015 is not included in this analysis since it is
incomplete). Note that edges are here illustrated as grey lines, and that in cases where there is a high
density of connection between nodes, this shows up as areas of solid grey (e.g., 7/2014).

PUBLIC © PERICLES Consortium 134 /152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

12009 72009 12010 7/2010
2 B o e
PV o 5
b “ rid R
- p- Vo
. . » .
12011 72011 112012 72012
L. - < " ".
p » - -, -~
- s . "s., fou v s " "(i:‘
oo * * - S
© X g7 OB R
3 . k
’ <

1,2013 72012 1/2014 72014

Figure 35: Tumblr network over time

Examining Figure 35, which shows 6 monthly snapshots of the data, we can see that after a very
small start to the network in 1/2009, this quickly grows with a greater number of users later in that
year (7/2009), however it is not until mid 2010 (7/2010), that the nodes increase and in turn form
more clusters. This pattern continues in 2011 (1/2011-7/2011), which can be seen more obviously in
terms of increase in number of clusters in Figure 37).

The year 2012 however sees a massive growth in the number of users (nodes) in the Tate Tumblr
network, and with this an increase in the number of clusters (1/2012-7/2012); with this pattern
clearly captured by the average betweenness measure showing a great increase in the
connectedness of the nodes, and its effective inverse, network density which shows a reduction
(Figure 36). From 2012 until the end of our time period (mid 2014; 1/2012-7/2014), network grown
continues, but at a much more steady pace (although note that this is illustrated using a logarithmic
scale), reflected in average betweenness and network density; in general the remaining network
measure, average degree, is shows a steady increase throughout the whole time period except for
two bumps relating to network growth in 2009 and 2012 (Figure 36). Considering Tumblr cluster
counts in isolation (Figure 37): here we can see that clusters in general relate to an increase in
network size, such as in 2012 and 2014, however this measure is noticeably erratic, with this more
noticeable since these network metrics are calculated on cumulative daily data (e.g., the trough in
mid 2012 after the peak in early 2012).

Viewing these measures as a whole, we can see the development of a network relating to a Tumbilr
community sharing an interest in Tate. Although to a lesser or greater extent, average betweenness,
density, and average degree are a function of network size (nodes and edges), we note that there is
additionally some utility in the number of clusters within the network for better understanding its
structure. However, as the erratic pattern of Figure 37 attests, in practice care may need to be taken
in interpreting changes in this measure.

PUBLIC © PERICLES Consortium 135/ 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

In the next paragraph, we supplement the view of network change identified statistically, with

analysis relating to the content of the Tumblr community, and how this can help us to understand

change.
Network statistics
10000 ¢ \ T \ \ 7
I Average betweenness o
1000 L Cluster count Ww»/ﬁw"f h
[Density —— /]
L Average degree 7
100 i
[P]
_ Y
3 10 | M el o -]
= E T B T
= i D . ST |
S 1 [W i
3 =
(&}
0.1
0.01
0.001 ‘ - - - -
2009 2010 2011 2012 2013 2014 2015
Time (days, 2007-2015)

Figure 36: Tumblr network statistics

20

Tumblr Network statistics {clusters}

14 |

12 -

10 |

Count

T T
Cluster count

2009

2010 2011

2012 2013 2014 2015

Time (days, 2007-2015)

Figure 37: Tumblr network cluster counts

PUBLIC

© PERICLES Consortium

136 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

9.3. Topic modelling of Tumblr content

Analysis of content can provide better understanding of communities in the Tumblr data. Here we
adopt an unsupervised machine learning method — topic modelling — which we apply to the text of
Tumblr posts in order to identify broad themes. Topic models aim to uncover hidden thematic
structures or ‘topics’ that occur in a collection of documents utilising unsupervised machine-learning
techniques (Blei, 2012). A topic consists of a cluster of words or phrases that show similar patterns of
occurrence; documents may relate to more than one topic, and topic modelling calculates a weight
with which each topic relates to a particular document. We used Latent Dirichlet allocation (LDA) for
topic modelling (Blei 2012). As a generative technique, LDA starts with a model that is then used to
describe the data by adjusting the parameters to fit the model. The assumption is that the whole
corpus of documents contains k number of topics (specified by the user), and that each document
talks about these k topics (to a greater or lesser extent). Therefore, each word in a document
depends on both the topics selected for that document as well as the word distribution within each
of these topics. This intuition is operationalized as a Bayesian Network that models this document
generation process.

Since topic modelling is a probabilistic method there are several possible solutions to representing
the data, with this process requiring input from the researcher in an iterative process. Here we
briefly describe our method: Using the processed data from ‘body’, ‘caption’, ‘description’ fields as
described above (cf. Wang et al. 2013), topic modelling was performed on the 3,093 documents
using the LDA package in Mallet (http://mallet.cs.umass.edu) to generate models for a variety of
number of topics, ranging from 3-20 (3, 5, 7, 10, 15, 20). This was in order to select a number of
topics which best describe the data. In all topic modelling described here, default parameter settings
were used except in the case of a where a relatively low value (0.01) was specified in order to
generate topics which relate more distinctly to particular documents (cf. Mimno et al. 2014). Two
researchers familiar with the data set visually inspected the model outputs to evaluate the ‘topic
keys” (words most representative of the topic), to determine whether they contained a
disproportionate number of poor topics which would indicate a poor description of the data
(specifically topics which were too general, too specific, repetition with other topics, or internally
inconsistent). These key words were then used to manually search through documents containing
the respective topics in models considered suitable for our analysis, in order to get a better sense of
that topic for interpretation and naming of the topics. Following this process we settled on two topic
models which appeared to provide a good summary of the data: these specified 5 and 15 topics, and
they are shown (with their topic keys) in Table 8 and Table 9 respectively, in descending order of
their proportion in the data. In the following section, we describe these in more detail in relation to
the Tumblr Tate community data.

Topic Label Topic ID | Key ltems Proportion

PUBLIC © PERICLES Consortium 137 /152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

URL/Modern 4 removedur| tate modern art london 0.32
week museum exhibit matiss

URL/ArtworkProperties 0 removedurl paint tate work paper cm 0.31
removedimg canva artist

IMG/description 1 removedimg work exhibit show tate art | 0.26
piec time paint

ExhibitionInfo 2 art work artist exhibit tate museum 0.20
modern galleri perform

Foreign 3 de video art la le artist pari film en 0.02

Table 8: Five topic model of Tumblr data

Topic Label Topic ID | Key ltems Proportion

IMG/PaintCharacteristics | 10 paint work artist removedurl 0.22
removedimg imag figur colour form

IMG/Exhibition/Art 1 removedimg work show time exhibit 0.21
make veri year love

URL/Description/Materia | 12 removedurl tate cm paper oil canva 0.20

Is sourc collect removedimg

URL/Modern/Performanc | 6 removedurl tate modern removedimg 0.20

e artist music perform sound tank

Exhibition/Film 9 art work tate exhibit artist museum film | 0.14
present perform

Descriptions/Britain/URL | 14 art exhibit galleri london tate 0.14
removedurl artist britain british

3D 3 space sculptur piec galleri yellow black 0.10
build tate rothko

ArtworkContext/URL 0 art cultur artist removedurl work polit 0.08
commun peopl beui

Modern/Artists/URL 7 kusama tate hirst modern yayoi 0.08
removedurl damien exhibit room

URL/Stlves/Landscape 5 st iv removedurl landscap war tate sea 0.06
mso picasso

URL/Exhibition/London 13 removedurl galleri london august 0.05
novemb matiss tate modern lincoln

URL/Modern/Podcast 11 removedurl art modern week podcast 0.05

museum exhibit matiss barlow

PUBLIC

© PERICLES Consortium

138 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Cities 4 citi al eliasson removedurl walk york 0.02
film london project

Video 2 video art artist instal exhibit paik de pari | 0.01
includ
Foreign 8 de lale en du dan art au par 0.01

Table 9: Fifteen topic model of Tumblr data

9.4. Overview of the topics

5 Topic solution: The five topic description of the Tumblr data shows four contentful and more
frequently used topics, with the fifth (Foreign) showing much lower usage (and which relates mainly
to non-English texts): The two topics with a similarly great level of use are URL/Modern and
URL/ArtworkProperties (0.32 and 0.31, respectively). Of these, the first relates mainly to the Tate
Modern (e.g., exhibitions, or passing references to the gallery), with the second relating to the
physical properties of artworks (e.g., factual information such as canvas size or materials used). Both
of these topics feature URLs which presumably are being referenced by the author and are — to a
greater or lesser degree — the subject of their post.

The topic with the third greatest proportion is IMG/description (0.26), which contrasts nicely with
the previous topic URL/ArtworkProperties, as it refers to a linked image (which the post relates to),
and a description of the art object, however rather than being concerned with the factual physical
and material aspects, the IMG/description topic gives a personal perspective and interpretation of
the art object (e.g., the flow of the brushstrokes, or the meaning of the scene). The final topic,
ExhibitionIinfo (0.20), provides information about exhibitions, perhaps especially promotional
material advertising exhibitions.

15 Topic solution: The 15 topic description of the data can be grouped into four main clusters based
on the proportion of topic usage in the Tumblr data, although as may be expect given the greater
number of topics, the proportions found for topic usage are lower than for those of the 5 topic
solution: The first group with proportions of 0.20 or greater within the data are
IMG/PaintCharacteristics (0.22), IMG/Exhibition/Art (0.21), URL/Description/Materials (0.20), and
URL/Modern/Performance (0.20). The first topic mentions descriptions of paint, techniques and
characteristics in relation to an image(s), the second again contains an image as well discussing
exhibitions in relation to art, the third gives a factual description of an art object in terms of materials
and referencing a URL, and the fourth most frequently used topic includes a URL along with content
relating to (Tate) modern and performance.

The second more frequent grouping of topics (with proportions of between 0.10 and 0.19), are
Exhibition/Film (0.14), Descriptions/Britain/URL (0.14), 3D (0.10). The first of these topics contains
reference to exhibition along with mention of film, the second topic contains factual catalogue-type
information relating to (Tate) Britain along with a URL, and the third topic of this group contains
materials and charactertics of three dimensional art objects.

PUBLIC © PERICLES Consortium 139 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

The third group have usage proportions of between 0.5 and 0.9 in the Tumblr data, and are
ArtworkContext/URL (0.08), Modern/Artists/URL (0.08), URL/Stlves/Landscape (0.06),
URL/Exhibition/London (0.05), and URL/Modern/Podcast (0.05). Of these topics, the first describes
the context of the art object more generally (and less prominently a URL), the second relates to
(Tate) Modern and names of artists from the past 20 or so years (and also a URL), the third to some
extent mentions (Tate) St Ives, as well as other concepts such as ‘landscape’, and the final topic
contains a URL along with (Tate) Modern, which appears to be in the context of exhibitions, and also
mentions ‘podcast’.

Finally, the three least used topics are Cities (0.02), Video (0.01), and Foreign (0.01), which are
respectively, mentions of the word ‘city/ies’ or names of cities, references to video (as in art object,
but also videos posted on social media), and non-English words.

Comparing the two topic models run on the Tumblr data, it is unsurprising that the 15 topic solution
provides greater granularity than the 5 topic model. However, what seems more apparent between
the two models is that the 5 topic model is more abstract, giving a better sense of the concepts and
types of posts it is describing (e.g., description of an image, materials used, advertising an exhibition),
whereas the 15 topic model provides more information about specific content (whether content
relates to 3D, Tate Modern artists, St Ives, Tate Britain). Both of these models, and their respective
granularity, have advantages and disadvantages when describing the data in light of identifying
community change. We discuss this briefly in relation to the data, below.

9.5. Exploring Tumblr content over time: analysis and
an example

So far we have shown how social network analysis provides information about the size and
relationships between the Tate community identified on Tumblr, and topic modelling provides
information about the content of Tumblr posts. In this paragraph we provide analysis of how the
Tumblr topics identified in the previous paragraph change over time, and how these can be related
back to the network changes identified in the first paragraph; this will in turn give us a better
understanding of user community change, especially in terms of how their concerns — expressed
through Tumblr posts — change over time. In addition to describing the results, we will provide
examples of community change identified in this data, and in the final section describe how these
can be incorporated into an automatic process to identify community change.

Topic relationships to documents used to create the two models in the previous section were used to
provide the primary topic representing each Tumblr post (i.e. the single topic showing the highest
proportion of usage in each document); these were then summed for each 6 month period (January-
June 2009, July-December 2009, January-June 2010, etc. until the final period in our data collection,
January-June 2015). We note that 4 posts used in the previous generation of the topic models were
excluded since they dated from before 2009; this left 3,089 remaining posts (as per the social
network analysis, above). Usage of content described using the 5 topic model is shown in Figure 38,

PUBLIC © PERICLES Consortium 140/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

and the 15 topic model is shown in Figure 39; the y axis is the frequency of posts which are primarily
described by that topic.

G600 | {1 C—3 URL_Modem
= Foreign
=3 EshibitionInfo
zo0 4 MG _description
m URL_ArtworkProperties
400 .
300 F .
200 - .
100 F .

A B 7O Ty G787 8 7
SRR

X
et

Figure 38: Tumblr topic frequency over time (2009-2015)(5 topic model)

G600 4 Ehibition_Film

. Foreign

1 Modem_Artists_URL
= URL_Modem_Performance
= URL_Stlves_Landscape
m Cities

. D

- ideo

mmm Descriptions_Britain_URL
mm URL_E xhibition_London
1 URL_Description_Maerials
= URL_Modem_Podcast
= IMG_PaintC haracterigtics
(MG _E xhibition_Art

. AtworkContext_URL

S00

400

300

200

100

Figure 39: Tumblr topic frequency over time (2009-2015) (15 topic model)

Both the 5 and 15 topic models of the Tumblr data over time show the rapid increase in posting
activity in 2012, reaching a peak in the latter half of that year; activity remains high over the next two

PUBLIC © PERICLES Consortium Page 141 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

years, albeit generally declining; the first half of 2015 has relatively low Tumblr posting activity for
the Tate community, but this may be due to an incomplete collection of data for this period. The
peak of activity identified in 2012 appears related to the massive network growth also shown in the
social network metrics of Figure 36. Using this data as an example, we now explore how this
community growth in 2012, and following years, is reflected in the change of content in the Tate
Tumblr community.

Looking in particular at the Tate Tumblr community use of the 5 topics over time, we note content
usage changes as follows: From 2012 onwards, we see a decline in use of URL_ArtworkProperties
(relating to catalogue descriptions of art objects), which picks up again in 2014; with this dip in usage
coinciding with a bump in IMG_description (which relates more to images and their exhibition rather
than catalogue data) in late 2012 and 2013. In addition, there is a consistently higher use of
ExhibitionInfo following 2012 (giving details of exhibitions without relation to a specific image), and a
relatively higher proportion of posts primarily concerned with URL_Modern (perhaps indicated a
higher profile of the Tate Modern and modern works within the collection). We note the very rare
use of primarily Foreign content, with the exception of the latter half of 2010.

In summary, the 5 topic model shows that this network and resulting community change appears to
indicate an apparent initial focus on images relating to exhibits, but this appears to have been used
in place of posts sharing catalogue information of art objects. This change has also resulted in greater
sharing of exhibitions at the Tate (possibly in promotion) and reference to the Tate Modern.

In terms of the 15 topic model, we find that posts primarily about IMG_Exhibition Art and
URL_Modern_Performance dip around 2012, with Modern_Artistists_URL, in contrast, peaking
around this time; in general, IMG_Paint_Characteristics and URL_Description_Materials posts
increase in proportion and stay relatively more common in and following 2012. We note that the
remaining topics were used relatively infrequently or inconsistently across this time period, and so
we do not discuss them in detail.

In summary, the 15 topic data appears to reveal that the rapid network increase around 2012
temporarily focused on Modern_Artists_URL (posts of links relating to Tate Modern artists), while
posts relating to exhibitions in general (IMG_Exhibition_Art) and performances at the Tate Modern
(URL_Modern_Performance) decreased around this time; this network and resulting community
change resulted in a continuing, greater number of detailed posts focussing on the physical
properties and painterly aspects of art objects (IMG_Paint_Characteristics and
URL_Description_Materials), which in practice may be the popular describing and critiquing of
objects in the Tate catalogue. More generally, we see that the granularity of the 15 topic model
provides detailed topics which come in and out of usage, rather than the fairly consistent usage
(albeit with variations in proportion) which is found with the 5 topic model.

PUBLIC © PERICLES Consortium 142 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

10. Appendix: Policy driven Digital Ecosystem
inspired by CERN LHC data management

This example is a cross task effort as an application of the Policy and QA Model (section 7.1) using
the EcoBuilder. The application of the policy and QA model for a digital ecosystem is exemplified with
a scenario inspired by the CERN LHC data management and quality assurance procedures as worked
out at a PERICLES evaluation workshop on the policy model in Brussels (October 2015), and further
refined and reviewed after the workshop. This scenario is implemented using the EcoBuilder’s Java
APl and applies the policy and QA model using the policy driven modelling strategy described in D3.5.
The resulting model was sent to an ERMR test instance. This example further aims to show the level
of complexity that can be described for the scenario without getting into details that would make the
description too hard to comprehend. Entities from the DEM-Analysis model [D3.5] are introduced to
facilitate the analysis of the resulting model, which is shown in Figure 40 .

POLICY ID 0 : QA m'ethod:
“Confidential data must not be part of random
stored outside the samples of data type

- DO: raw, unprocessed data
confidential are

searched in the
external institutions
and on the internet

type: bit preservation be shared with external organisations”

POLICY ID 2: l

“Experimental data produced in non (

organisation”
Type: rights

POLICY ID 1: POLICY ID 3:
"Relevant experimental data must be “Data from experiment type VSE must be
preserved” preserved in X internal copies, and must not

QA method MANUAL: Discard invalid
data based on
algorithms in

HW and SW

must be pi in
at least X internal copies and in Y external (in

POLICY ID 5: — Tape dust sensors reveal
"Maintain X internal copies of data from - potential issues with tapes
~
trusted external organisations) copies " N ~

experiment EX”

DO: filtered raw, unprocessed
data; location: experiment site

DO: data for filtering invalid results

Move data from
experiment
equipment to
computer center

]

POLICY ID 4:
“Maintain Y external copies of the experimental Manual: Move Copy data to
data” data to new tapes internal tape

lata’
(every 3 years) repository
-~
-~

Technical
service:
Instrument

QA method:
TEST: every year validate
tape data checksums

Technical Service:
data center storage
service (ERMR)

Split data in 20% parts L

QA method:

Validate data checksums
for external i
slices

DO: filtered raw,
data; location: data center

DO: 20% slice of the ;:;:';';2;:""“’ DO: catalog data for tapes
data

LEGEND:
P v o — DO: Virtual machine image for Do: Calibration data
: catalog data for Send data to external reate virtual machines processing and cal. software 8 9
external data based on processing env. environment description
and software QA R
relationship
fOLICY ID6: . [DO + SW agent: Software for Calibrate and general ——p
Experimental data must be usable by its user (e —————————— calibration and processing process data dependency
communites” N T T T T TTe e T
type: access \ —m—— T Y Change management : provenance __y,
* Technical Service:)) Rule to process data dependency
Continuous ;3"0"“"3?' service: DO: filtered processed data with latest cal. Data
a | scienti integration integration server V) Prov: reference to GIT SW policy
{ Community: internal scientists] 9! (Jenkins) repository (GIT) version derivation
policy >
Project results will be made public Files will be indexed with relevant implementation
after 4 years metadata

type: access type: access

Figure 40: CERN LHC inspired example DEM using the implementation of the Policy and QA model

10.1. Policy derivation

The CERN example describes which policies underlie the creation, processing, and preservation of
experimental data. It defines quality assurance criteria to ensure these policies and describes the

ongoing processes. As initial step two very generic preservation policies are introduced:
POLICY ID 1:

"Relevant experimental data must be preserved”.

POLICYID O :

PUBLIC © PERICLES Consortium 143 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

"Confidential data must not be stored outside the organisation”
Policy 1 is refined into more specific policies which define the rules of handling confidential and non-
confidential experimental data:

POLICY ID 2 for non-confidential data:

"Experimental data produced in non-confidential experiments must be preserved in at
least X internal copies and in Y external (trusted external organisations) copies ”

Policy 2 is further refined into a maintenance policy:
POLICY ID 4: “Maintain Y external copies of the experimental data”.

For confidential data the policy 3 is derived from policy 1 and further constrained by policy 0:

POLICY ID 3 for confidential data:

"Data from experiment type VSE must be preserved in X internal copies, and must not be
shared with external organisations”.

The implementation of policy 3 is shown in Figure 41:

Policy internalDataPolicy = new Policy(scenario, "Internal Data Preservation");

internalDataPolicy.describedBy("Data from experiment type VSE must be preserved " +
"in X internal copies, and must not be shared with external organisations");

internalDataPolicy.id("3");

internalDataPolicy.derivedFrom(preservationPolicy);

internalDataPolicy.derivedFrom(confidentialPolicy);

Figure 41: Extract of the CERN example implementation using the EcoBuilder API, showing the policy with ID 3.
Finally, policy 5 regulates the creation of data copies and an access policy 6 relates to the
accessibility of the data by the user communities:

POLICY ID 5: "Maintain X internal copies of data from experiment EX”

POLICY ID 6: "Experimental data must be usable by its user communities”
Three further data related preservation policies are mentioned in the diagram but not implemented
in detail, in order to keep the diagram readable:

Metadata policy: Files will be indexed with relevant metadata

Publication policy: Project results will be made public after 4 years

PUBLIC © PERICLES Consortium 144 / 152

DELIVERABLE 5.3

COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Relevant experimental
data must be preserved
Bit Preservation Policy
ID: 1

constraints

* constraints

Experimental data produced in non-
confidential experiments must be
preserved in at least X internal
copies and Y external copies
Aggregated Policy

ID: 2

has part l

constraintsl

has part

Maintain Y external

Split data to

Data from experiment type VSE\
must be preserved in X internal
copies, and must not be shared
with external organisations
Policy

ID: 3

/

l has part

Maintain X internal copies of h
data from experiment EX
Policy

ID: 5)

! is enforced by |

y
Copy datato)

Move data to

copies of the 20% parts new tapes interngl tape
experimental data Process Process rPeposnory
Policy rocess)
ID: 4 is used runs on *
L has QA outpu %Y ("Web Tape

v Interface repository
Validate data Service h Technical
checksums for external as

Interface part Service

organisation slices
Quality Assurance
_Method

validates provides

access to

20% slice of
the data
Digital Object

-
Send data to external
organisations

L Process

Experimental
data
Digital Object

has input

Figure 42: Portion of a DEM diagram created by policy derivation and mapping

A simplified example of such a DEM constructed from policies is illustrated in Figure 42. The example
starts with the generic policy ID 1 (step 1). This very generic policy is then specialised (step 2) for the
experiment categories into non-confidential experiments (ID 2) and VSE experiments (ID 3). The
policy ID 4 and 5 are a further specialisation of ID 2 and 3 and are at a lower level where entities of
the DEM can be associated. Then processes and processed entities are identified and linked to the
policies, a QA method and information about the infrastructure is added (step 3-6).

A graphical representation together with an accompanying description can form already a useful tool
for describing the preservation processes and their requirements in an institution. Once this has
been created, a formal DE description can be created, which allows to applicate external tools for an
automated analysis and quality assurance.

10.1.1.1. Quality assurance

Quality assurance criteria are implemented as special policies, with the purpose of assuring the
quality of normal policies. Following the policy based modelling strategy they are created directly
after the policies, and linked to them. Quality Assurance can be defined also independently of a

policy, to validate the functionality of other ecosystem entities.

QA 1: Checksums of data must be valid

This criterion assures the quality of data handling policies, especially policy 2 and 3 which define the

data copy creation.

QA 2: The tape dust sensors must be in a valid state

PUBLIC © PERICLES Consortium 145 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

This QA criterion assures that the internally preserved copies of the experimental data on tape
storages won't be damaged by dust, by performing concrete checks on the dust that could be
present on the tape system area and would damage the tapes. It is therefore linked to policy 5,

which defines the maintenance of internal copies of all experimental data.

QA 3: Every year validate tape data checksums

This quality assuring policy is derived from QA 1 and also linked to policy 5 (policy 5 is derived from

policy 2 and 3. The derivation and quality assurance relations are visualised in the following image:

derived from

assures quality of

Policy 3
Policy 2

Policy 5

assures quality of

derived from assures quality of

Figure 43: Derivation of the policies and QA relations

Quality assurance methods are specific processes, which implement the defined quality assurance

rules. They are defined in the next step and linked to the policies and quality assurance criteria.
The quality assurance method

QAM 1: Validation of data checksums for external organisation slices

is an implementation of QA 1. Quality assurance methods can also be linked directly to normal

policies, as the method

QAM 2: Search samples of confidential data in external institutions and on the internet

which is an implementation of the confidentiality policy.

At this point all digital ecosystem entities which are constrained by the policies are modelled, and
linked to the policies and to the quality assuring entities. The most important digital object of the
CERN example is the produced experimental data. An experiment process creates the raw data,
which is filtered by a second process that discards invalid datasets based on filtering rules. The
filtered data is moved from the experimental side to a computer on the data center where it is
further processed. All versions of the experimental data are constrained by the digital ecosystem's
policies, therefore the processes which process the data are designed to implement the policies, and

the storages are constrained by the policies.

The software for the further processing of the experimental data is integrated into a virtual machine.
An image for this virtual machine is created by a process, which requires digital objects describing
the processing environment and information about the calibration of the data. It is versioned in a git
repository on the department's server. A Jenkins continuous integration service is running on the

same server. It is linked to

PUBLIC © PERICLES Consortium 146 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

QAM 3: Continuous Integration
which assures the quality of the usability policy 6.
This policy defines the community of internal scientists and has the external scientists as main target

community. It constraints the processing of experimental data in a way that it demands to take care

of the usability of the processing results.
In the CERN example these are the technical services:

TS 1: A tape storage for the preservation of the experimental data
TS 2: The data center storage service (ERMR)

TS 3: The department's development server with the continuous integration services
(Jenkins), and a versioning repository (GIT)

TS 4: The instruments needed to produce the experimental data
The tape storage, the data center storage and the instruments are related to the experimental data

and underlie the policies handling experimental data.

As a next the step policy based modelling strategy suggests to model the digital ecosystems
processes. They are linked to the policies that they implement. Digital ecosystem entities can be
defined as input and output of the processes, it makes therefore sense to model the processes once
the other entities are defined.

P1: Run experiment

P2: Discard invalid data based on algorithms in HW and SW

P3: Move data from experiment equipment to computer center

P4: Calibrate and process data

Pro 1
experiment

output
DO: raw, unprocessed data
input
DO: data for filtering | input [prqo
L invalid results Discard invalid data ’

DO: filtered raw,
unprocessed data;
location: experiment site

input
Pro 3
Move data
output [DO: filtered raw,
unprocessed data;
. location: data center
input
Pro 4
Process data
output

—KL DO: filtered processed data }

Figure 44: Processing of the experimental data

PUBLIC © PERICLES Consortium 147 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Process calibrateData = new Process(scenario, "Calibrate Data");
calibrateData.describedBy("Calibrate and process data.");
calibrateData.hasInput(instrumentInformation);
calibrateData.hasInput(calibrationSW);
calibrateData.hasInput(filteredDatasets);
calibrateData.hasOutput (datasets);

Figure 45: Implementation of the calibration process P4.

Preservation on internal tape repositories:

P5: Copy data to internal tape repository

P6: Manual: Move data to new tapes (every 3 years)
The processes in this example handle the experimental data to fulfil the requirements of the policies.
The policy

POLICY ID 4:

“Maintain Y external copies of the experimental data”

for non-confidential data is implemented through the processes

P7: Split data in 20% parts
P8: Send data to external organisations

The data is splitted into parts for a better handling, whereby each data slice underlies the general

policies for data handling, as:

POLICY: Files will be indexed with relevant metadata

which demands to store metadata together with each part. Also the usability policy, POLICY 6, has to

be considered by the process implementation.

An image for the processing environment of the software which processes further and calibrates the
filtered raw data is created by process 9 and needs calibration information and a description of the
environment as input.

P9: Create virtual machines based on processing env. and software

The image is used to create the software agent which executes the calibration process. Further more
detailed entities are modelled for the communities, human agents, and the technical infrastructure.

10.1.1.2. Entities for the analysis of the model

The last step introduces meta entities which support the analysis of the defined model. A scenario
entity defines a subset of entities with the purpose of providing a designated view on the digital
ecosystem. This reduces the calculation complexity for graph analysis and directs the view on the
important entities for a designates aspect of the model. Scenarios are a useful tool for quality
assurance, as they are complete aggregations of the quality assuring criteria and methods, the
related policies, the constrained entities, and the meta entities describing their relations. A purpose
entity describes the purpose of a scenario or of other entities, and significance entities allow to
define how significant entities are for a designated purpose.

PUBLIC © PERICLES Consortium 148 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Two scenarios are defined for the CERN example:

S1: Processing of experimental data
S2: Preservation of experimental data

Both scenarios include all versions of the experimental data. S1 further includes the data processes
and the policies which constrain data processing, whereas S2 includes the preservation related
policies, processes, and storage infrastructure.

DEM-Scenario:PreservationScenario

a DEM-Analysis:Scenario ;

rdfs:label "Preservation Scenario"@en ;

LRM:hasPart DEM-Scenario:DataCenterStorage , DEM-Scenario:ExternalCopiesPolicy , DEM-
Scenario:TapeDustSensorsVerification , DEM-Scenario:RawDatasets , DEM-Scenario:InternalCopies , DEM-
Scenario:MetadatalndexingPolicy , DEM-Scenario:VerifyTapeDataCheckSums , DEM-Scenario:CheckSums , DEM-
Scenario:Preservation , DEM-Scenario:ValidRawDatasets , DEM-Scenario:TapeCatalog , DEM-
Scenario:Datasets , DEM-Scenario:InternalScientists , DEM-Scenario:TapeDustSensorsState , DEM-
Scenario:ChecksumCalculation , DEM-Scenario:InternalDataPreservation , DEM-
Scenario:TapeDataCheckSums , DEM-Scenario:ExternalDataCatalog , DEM-Scenario:CopyNumberCheck , DEM-
Scenario:TapeStorage , DEM-Scenario:PublicDataPreservation .

Figure 46: The preservation scenario provides a view on the subset of preservation related entities

Scenarios can also investigate rather small aspects of the model, as S3 which is the subset of entities
related to the handling of confidential data, and S4 which is the view on the entities which are
involved in ensuring the usability of experimental data:

S3: Handling of confidential data
S4: Use of experimental data
The purpose of S1 is to investigate and analyse the aspect of experimental data processing separated

from entities which are not of relevance for this scenario, and to depict the data processing flow as a

whole for a better understanding and problem solving.

S2 has the purpose to provide a designated view on the preservation aspects of the model, especially
for the analysis of the compliance of the preservation policies, and the early identification and
solution of preservation related problems.

x
[DO: experimental data]

QA method:

Validate data checksums for DO: 20% slice
external organisation slices of the data

. . Process: Split
Preservation view

Process: Move
data to new tapes

Technical Service:
Tape storage

Policy ID 1:

"Relevant experimental
data must be preserved”
type: bit preservation

(every 3 years)

Process: Copy data to
internal tape repository

Figure 47: Scenario 2 provides the preservation view on the CERN example model

PUBLIC © PERICLES Consortium 149 / 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

Significance values and weighted relations are added to define how significant the entities and
relations are for the scenario. The modeller is free to choose the weights depending on the planned
analysis method. In this example weights are values between 1 and 0. For the preservation scenario
the most important entities are the experimental data object and the high level preservation policy,
which get a value of 1. The data splitting process and the data slices are a bit less important and
would get a medium significance value of 0.6. The process to create the VM gets a low significance
value of 0.2, because the preservation policies and workflows won't be immediately affected in case

of an error of this process.

Annotations are quite similar to a Scenario regarding their ability to enrich entities with information
for analysis, but in contrast to scenarios is their main purpose to add arbitrary information snippets
to entities instead of defining aspect oriented subsets of the whole model. Two annotation are
added to the example to specify if an entity is of relevance for internal procedures, or also for

external scientists:
Annotation 1: @internal
Annotation 2: @external

A third one is used to annotate data which is used at the experiment, and a few more annotations
add calibration parameter values directly to the instrument entity, and quality evaluation

information to datasets:
Annotation 3: @experiment
Annotation 4: @parameter_A=true
Annotation 5: @quality=high

The resulting model can be analysed using static analysis to identify issues with the model or the
underlying digital ecosystem. Furthermore, the model can serve to analyse planned or unplanned
change of the evolving digital ecosystem. Triggers added to the model can be used to execute the QA
methods and validate the state of the policies in case of specified events. In a semi-automated
approach the user will be informed in case of identified errors.

PUBLIC © PERICLES Consortium 150/ 152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

11. Appendix: Related work to technical
appraisal and risk management

Technical appraisal is often focused on characterisation of an object in its current state. However, a
further dimension of appraisal is the effect of passing time: that is, the potential that events might
occur in the future that limit the potential for the ongoing preservation of material. The DCC Digital
Curation Manual identifies risk management as increasingly central to discussion of appraisal and
selection (Harvey, 2007), permitting risks such as reduced accessibility, interpretability or ability to
render material to be balanced against the consequences of that outcome. Traditional risk analysis is
based on risk-impact (mitigation) analysis, for example as specified in (ISO/IEC 31010 Risk
management — Risk assessment techniques, 2009). This is a process, usually iterative, in which the
following sequence of steps is typically taken: identification of risks; assessment of the severity and
potential consequences of those risks (such as financial consequences, impact on schedule or
technical performance, and so forth); planning for mitigation; implementation of mitigating actions
based on the plan developed. As risks evolve, they are tracked and documented.

The general-purpose project management methodology PRINCE2 (Bentley, 2010) specifies a series of
steps in building and applying a risk management strategy. Risk management was brought into the
forefront of preservation by the Cornell Library study into file format migration, reported in
(Lawrence et al, 2000).

Many of the essential characteristics of a risk management toolkit were determined by PRISM
(Kenney et al, 2002). Several existing risk management frameworks are explicitly intended to support
preservation activities. These include DRAMBORA, the Digital Repository Audit Method Based on Risk
Assessment (McHugh, Innocenti and Ross, 2008); TRAC (TRAC, 2007) which includes risk-oriented
terms in a checklist of key terms; and the SPOT model (Vermaaten, Lavoie, & Caplan, 2012), which
focuses on risks to essential properties of digital objects. Many of these approaches are qualitative
and are a form of self-assessment, requiring the application of detailed technical knowledge.

Various tools are designed to support risk management in digital preservation planning, such as
PLATO (Becker et al, 2008). Such tools are primarily reactive rather than predictive. That is, they can
be used to detect events such as the discontinuation or a piece of software or format, but are not
able to forecast such occurrences.

Within the art conservation community, the assessment of risk for a time-based media work of art
was examined within the context of the Culture 2000 ‘Inside Installations’ project (Scholte and
Wharton, 2011). More generally within the Cultural Heritage field two methods have emerged for
risk assessment, namely the Cultural Property Risk Assessment Method (CPRAM) and the ABC
method. Both of these are based broadly on ISO/IEC 31010, and identify risks and their potential
consequences systematically. Again they require subjective assessment of risks into e.g. high,
medium and low levels. In (Brokerhof and Biilow, 2009), the authors point out that due to financial
constraints and the sheer volume of digital material, it is no longer viable for heritage institutions to
apply such manual techniques to digital material.

PUBLIC © PERICLES Consortium 151 /152

DELIVERABLE 5.3
COMPLETE TOOL SUITE FOR ECOSYSTEM MANAGEMENT AND APPRAISAL PROCESSES

A considerable amount of recent research into risk analysis is available, much of which applies
guantitative models in the forecasting of risk. Stamatelatos (2000) recommends the use of
probabilistic risk analysis for the deconstruction and evaluation of risk associated with elements of
complex entities. For the analysis of events that have occurred to ascertain the cause, fault tree
analysis may be used; for the analysis of events yet to occur, event tree analysis may be used. Zheng
(2011) provides a detailed analysis of risk modelling in order to support decision-making in
management of product obsolescence, which may straightforwardly be adapted to the purposes of
forecasting and managing software obsolescence. Risk analysis may use publicly available resources
for informational purposes; for example, Graf and Gordea (2013) demonstrate the use of PRONOM,
Freebase and DBpedia data to evaluate file format obsolescence. Registries of file format risks have
also used quite widely. The Library of Congress's File Format Sustainability Factors (Library of
Congress, 2016) are often used for risk assessment of file formats. These are manually assigned risk
values on a scale from 1-9 assigned by an expert, rather than computed from empirical data. They
also do not however reflect the proximity of the risks.

PUBLIC © PERICLES Consortium 152 / 152

