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Abstract—For achieving efficient spectrum sharing in a context
of dynamic spectrum access, understanding the spectrum usage
by licensed users (primary user: PU), is important for secondary
users (SU). Duty cycle (DC) has been used to express the deter-
ministic and stochastic aspects of spectrum usage. Specifically, a
deterministic model for the mean of the duty cycle (M-DC) has
been proposed in a previous work. The deterministic aspect of
M-DC is affected by social behavior, and common habits of users,
which can be confirmed in cellular systems. On the other hand,
the observed DC (O-DC) during short time duration has random-
ness and a stochastic model is more suitable, e.g. distribution
of O-DC. In this paper, we extend the conventional approach,
in which only either the deterministic or stochastic aspect is
considered, to a combined deterministic-stochastic (DS) model
which represents both the deterministic and stochastic aspects at
once. For the distribution of the O-DC, the beta distribution has
been used as stochastic model, but we employ a mixture of beta
distributions. The mixture-beta distribution can achieve higher
accuracy but requires more capacity for data storage in spectrum
usage measurements since it has a higher number of parameters
than the beta distribution. For this issue, we employ regression
analysis in DS-model since this approach can reduce the number
of parameters while retaining the accuracy. We show the validity
of DS-model based on exhaustive spectrum measurements in
IEEE 802.11-based wireless local area networks and Long-Term
Evolution uplink.

Keywords—Dynamic spectrum access, Spectrum measurement,
Cognitive radio, Smart spectrum access, Duty cycle, Deterministic
model.

I. INTRODUCTION

In the wireless communication field, spectrum scarcity is a
pressing issue. Since most of the spectrum has been exclusively
assigned to the licensed wireless systems, there are not enough
spectrum resources for emerging wireless services. On the
other hand, spectrum utilization measurement reports have
revealed that the utilization rate of most of the licensed
spectrum is not very high in spatial and/or temporal domains
[1]. One possible solution for this issue is spectrum sharing
since it can utilize the underutilized spectrum resource. In fact,
several types of spectrum sharing have been investigated, such
as dynamic spectrum access (DSA) [2], [3], licensed shared
access (LSA) [4], and citizens broadband radio service (CBRS)
[5], and they differ with types of priorities and licensing.
Several kinds of spectrum sharing are surveyed in [6], [7].

K. Umebayashi, and M. Kobayashi are with the Department of Electrical
and Electronic Engineering, Tokyo University of Agriculture and Technology,
Tokyo 183-8538, Japan.
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In this paper, we focus on DSA in which a secondary user
(SU) can utilize spectrum licensed to a primary user (PU),
while the spectrum is not occupied by the PU [2], [3]. This
approach is expected to achieve efficient spectrum utilization.
In DSA there are mainly two key techniques: spectrum sensing
to find vacant spectrum and spectrum management techniques,
such as spectrum allocation and channel access, to utilize the
vacant spectrum efficiently. The key techniques can be de-
signed properly and enhanced by information of PU spectrum
usage since this information indicates trends and aspects of the
PU spectrum usage. For example, the knowledge of the duty
cycle (DC) can enhance spectrum sensing performance [8], [9]
and spectrum management [10]–[13].

In [14], a concept of smart spectrum access (SSA), which
corresponds to sophisticated DSA, has been presented. Two-
layered SSA has been presented as a practical configuration
for SSA. This two-layered SSA concept consists of DSA
as the first layer and a spectrum awareness system (SAS)
as the second layer. SAS is dedicated for spectrum usage
measurements to extract useful prior information so that SUs
in DSA can be relieved of having to perform spectrum usage
measurements. The spectrum usage information, based on long
term, wide band, and broad area spectrum measurements, is
stored in a data base in SAS. A large number of sensors
have to be deployed for the measurements. At a sensor, the
observed signal is just a sequence of I-Q samples which are
converted into statistical information, such as DC. For storing
the obtained statistical information efficiently, proper spectrum
usage modeling is required.

There have been many investigations of spectrum usage
modeling based on measurement campaigns and most of them
are introduced in [13], [15], [16]. The measurement campaigns
have shown the DC and measured power of various spectrum
bands and various measurement sites [17]–[21]. This type
of measurement campaigns has simply evaluated spectrum
utilization and potential spectrum opportunities (i.e., how much
spectrum in a certain dimension, such as time and space,
is vacant). There are also detailed spectrum usage models
in time, frequency and space domains, respectively [22]–
[25]. In these investigations, not only the spectrum utilization
ratio, but also the trends and variations of feature quantities
in terms of spectrum utilization, such as DC [22], signal
strength [24] and busy time (vacant time) [26], [27], have been
considered. In addition, the extracted information can enhance
the key technologies in the spectrum sharing. Specifically, a
model considering statistics of signal strength and arrival rate
of mobile service was proposed in [24] and the extracted
information is used for an optimization of sensing strategy.
In [27], statistics of channel busy time and idle time are
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used to design channel selection algorithm in a multichannel
cognitive radio network. In this paper, we focus on time-
domain spectrum usage modeling in terms of DC since this
information can enhance the spectrum sensing performance
[9], [28].

Two-state Markov chains have been used to model the be-
havior of spectrum usage in the time domain [22], [29]. Specif-
ically, the aspect of transition between “busy” and “idle” can be
described by a set of transition probabilities in Markov chain.
In fact, statistics of spectrum usage in the time domain, such as
DC, transition probabilities, and state holding times vary over
time. This time-varying aspect depends on the spectrum usage
(i.e., social behavior and common habits). The time-varying
aspect can involve a deterministic behavior, e.g., in the cellular
system, the traffic load is typically high in daytime and low
in nighttime and this provides the deterministic behavior of
the DC. In this case, the time variation can be described by
a deterministic model [22]. The deterministic behavior has a
time period of one day for cellular systems. Therefore, several
days are necessary for spectrum usage measurements to set
proper parameters for the deterministic model.

In spectrum usage measurements with short time duration,
such as one second, the observed duty cycle (O-DC) is random.
The randomness of O-DC can be expressed by its probability
density function (PDF), which corresponds to a stochastic
model [22]. On the other hand, in the deterministic model, the
mean of O-DC (M-DC) is used to describe the deterministic
behavior. In previous works, the models characterize either
the deterministic or stochastic behavior, but not both of them
simultaneously.

In this paper, we extend the previous model in [22] to a
deterministic-stochastic-DC (DS-DC) model in which both de-
terministic and stochastic behaviors can be expressed at once.
We investigate a spectrum usage model which can describe not
only the stochastic behavior, but also the deterministic behavior
in the time domain. There are two issues in this investigation.
First, we attempt to combine the stochastic and determin-
istic models, but how the models can be combined is not
straightforward. Second, typically there is trade-off between
accuracy of model and the number of parameters. Specifically,
efficient models should reproduce the actual distribution, such
as empirical distribution of O-DC, accurately while the number
of parameters is relatively low. We investigate a method to
achieve efficient modeling with a low number of parameters
that can retain adequate accuracy. In this investigation, we
need empirical data of O-DC, which are obtained by means of
spectrum measurements.

Our main contributions are summarized as follows:
• For the PDF of O-DC, the beta and Kumaraswamy

distributions have been used as stochastic models [22].
To achieve better accuracy, a mixture-beta distribution,
in which two beta distributions are used, is employed as
a stochastic DC model. We verify the accuracy of the
mixture-beta distribution stochastic model by spectrum
measurement campaigns.

• Two types of DS-DC models are presented in this paper.
In the first DS-DC model, a deterministic model is
used for each parameter of the stochastic DC model

Fig. 1: Measurement system

(i.e., the mixture-beta distribution used for the PDF
of O-DC). While the mixture-beta distribution can be
more accurate than the beta distribution, the mixture-
beta distribution needs more parameters. For this issue,
we use polynomial regression analysis to reduce the
number of parameters, which is denoted by RDS-DC
model. This reduction of parameters can reduce the data
storage burden in the SAS.

• We verify the efficiency of the RDS-DC model based
on spectrum measurement campaigns in a 2.4 GHz
802.11 wireless local area network (WLAN), and an 800
MHz Long Term Evolution (LTE) uplink. The RDS-DC
model requires less parameters and can retain the same
accuracy.

The remainder of this paper is organized as follows. First,
Section II describes the measurement setup (including signal
processing) employed to obtain O-DC. Section III presents
spectrum usage models proposed in previous works, namely
a deterministic model for M-DC. In Section IV, stochastic
models based on beta distribution and mixture-beta distribution
for O-DC are shown. The stochastic model based on mixture-
beta distribution corresponds to our proposal and we evaluate
its validity by spectrum usage measurements. The proposed
DS-DC and RDS-DC models are presented in Section V. In
Section V-D, numerical evaluations based on two spectrum
usage measurement campaigns are shown. Finally Section VI
concludes this paper.

II. MEASUREMENT SETUP AND METHODOLOGY

The measurement setup and methodology to obtain the
empirical data of O-DC are shown in this section. We per-
formed two spectrum usage measurement campaigns in two
frequency bands: the first frequency band W1 is 2452 - 2472
MHz, mainly utilized by IEEE 802.11 WLAN, and the second
frequency band W2 is 835 - 845 MHz, utilized by LTE uplink.
We use W1 and W2 to denote the two measurement campaigns.
The measurement system is located in our laboratory on
fourth floor of a building in Koganei-campus, Tokyo University
of Agriculture and Technology, Tokyo, Japan (35◦41’55.8”N
139◦31’00.6”E).

The block diagram of the measurement system is shown
in Fig. 1. The measurement system consists of antennas that
can observe the target frequency bands W1 and W2, cables, a
real-time spectrum analyzer (RSA) (Tektronix RSA6100A), a
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Fig. 2: Measurement time schedule

network hard disk, a measurement system control computer,
and a data analysis computer.

The measurement system control computer takes care of
the measurement time scheduling, which is shown in Fig. 2.
The number of days for spectrum measurement is denoted by
D. Since we focus on the daily deterministic behavior of the
spectrum usage, the time duration of the deterministic model
is set to one day as in [22]. While deterministic behaviors of
spectrum usage in weekdays and weekends may be different,
we only focus, without loss of generality, on the spectrum
usage during weekdays. In the spectrum usage measurement
campaigns, we set D = 29 days for W1 and D = 21 days for
W2. The difference in terms of D in both measurements is due
to the storage limitation of the high-capacity hard disk. One
day (24 hours) is divided into H super time frames, each of
which consists of M measurement cycles. The time durations
for one super time frame, and one measurement cycle are
denoted by TH and TC , respectively. In the two measurement
campaigns, we set TH and TC to one hour and one minute,
respectively. We assume that O-DC during TH approximately
maintains stationarity and the statistics of O-DC are estimated
during each super time frame. To validate the stationarity of
the observed O-DC series for one hour, we employ augmented
Dickey-Fuller test with significance level 5% and we have
confirmed that the measurement results pass the test.

One measurement cycle consists of a measurement period
and a data analysis period, whose time durations are denoted
by TM and TA, respectively. Typically TM depends on the
capability of the spectrum measurement devices, such as in-
ternal buffer size and sampling rate. During one measurement
period, the RSA observes the target frequency (either W1 or
W2) for TM seconds. Note that the observation of the RSA
is continuous unlike typical swept spectrum analyzers. TM

has to be much longer than one continuous spectrum usage
cycle, such as data packet, for proper DC estimation in the
target frequency bands (W1 and W2). The time durations
for data packet in WLAN and LTE are at most about 0.87
ms, (corresponding to the time duration of the IEEE 802.11
PLCP (Physical Layer Convergence Procedure) protocol data
unit), and 0.93 ms (corresponding to the time duration for the
physical uplink shared channel in LTE), respectively. Based on
this, we set TM = 100 ms.

The observed data is first stored in the network hard disk
and then transferred to the data analysis computer. The data
analysis computer provides estimates of the DC by means of
fast Fourier transform (FFT)-based energy detection and post
processing to achieve accurate spectrum usage detection per-
formance [30]. The estimated DC is denoted by ΨE(c, h, d),
where c, h, d, indicate the index numbers for the measurement
cycle, super time frame, and day, respectively. This ΨE(c, h, d)
corresponds to O-DC. Since TA has to be long enough to
complete the data transfer and the data analysis, we set
TA = 59.9 sec, which was proven to be sufficient in our
measurement system.

The measurement period is divided into NT time slots and
Welch FFT based power spectrum estimation is performed in
each time slot. There are NF frequency bins in one time slot.
The time duration for one time slot is denoted by TS and
this time slot corresponds to one Welch FFT time duration.
TS has to be shorter than one continuous spectrum usage
cycle (e.g., one data packet). The spectrum usage detections
are performed at the data analysis computer based on the
estimated power spectrum for NT × NF , energy detection
(ED), and signal area estimation with false alarm cancellation
[30]. The parameters for the Welch FFT based ED are as
follows. In Welch FFT, 1024 data samples are divided into 15
segments while the overlap ratio is set to 0.5 [31]. Therefore,
the number of frequency bins are set to 128. We set the
threshold based on constant false alarm rate criterion where the
target false alarm rate is set to 0.01. In this criterion, we need
noise floor information in order to set the threshold and we
employ forward consecutive mean excision (FCME) algorithm
for noise floor estimation [32], [33]. The displayed average
noise level of Tektronix RSA6100A is -151 dBm/Hz.

The outputs of the spectrum usage detection are denoted by

DnT ,nF
=

{
1 (spectrum is occupied)
0 (spectrum is vacant),

(1)

where nT is the time slot index number and nF is the
frequency bin index number. We define a set of index numbers
of frequency bin, nF , involved in Wi as Wi. Now O-DC in
the frequency band Wi can be obtained by

ΨE(c, h, d) =
1

NT

∑
nT

(
1−

∏
nF∈Wi

(1−DnT ,nF
)

)
. (2)

This equation indicates that if a part of the target frequency
band Bi is occupied, the state of the whole target frequency
band is detected as occupied as well. In case of OFDM
(Orthogonal Frequency Division Multiplexing) based commu-
nication, a few sub-carriers can be used at a particular time.
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In this case, subset of the channel is physically occupied by
PU at that time, but the whole channel is reserved for the PU.
Therefore, (2) is a convenient and reasonable way to define
O-DC for PU protection.

The estimated M-DC at the hth super time frame,
ΨE(c, h, d), is obtained by averaging over c and d as

ΨM (h) =
1

D ·M
∑
d

∑
c

ΨE(c, h, d), (3)

The deterministic behavior of spectrum usage, which depends
on social behavior and common habits, is determined in this
work by the time schedule in the laboratory: the laboratory
members arrive in the office at 9:00 and leave anytime between
17:00 and 22:00.

III. DETERMINISTIC MODEL FOR DC

In this section, we introduce the deterministic model pro-
posed in [22]. The deterministic model shows the deterministic
behavior of M-DC, ΨM , and it is defined by

FΨM
(t) = Fmin +

K−1∑
k=0

Ake
−(

t−τk
σk

)2
(0 ≤ t ≤ T ) (4)

where Fmin is the minimum of FΨM
(t), the term Ake

−(
t−τk
σk

)2

is the kth bell shaped exponential term, Ak is the maximum
amplitude for the kth bell shaped exponential term, τk is the
central time to determine the location of the kth bell shaped
exponential term, and σk determines the width of the kth bell
shaped exponential term. The number of parameters involved
in this deterministic model is N(FΨM

|K) = 1 + 3K. This
model corresponds to the deterministic model for low-medium
loads proposed in [22].

Now we confirm the validity of the model in (4) based
on the two measurement campaigns W1 and W2. In Figs. 3a
and 3b, ΨM (h) (M-DC), ΨE(c, h, d) (O-DC), and FΨM

(t) for
WLAN (W1) and LTE (W2) are plotted, respectively. The ratio
of the size of one frequency bin nF to the total bandwidth
Wi is 1/128 in both results. Each point corresponding to
O-DC is obtained by averaging the measurements over one
measurement cycle with duration TC = 1 minute (see Fig. 2).
Each point corresponding to M-DC is obtained by averaging
the measurements over one super time frame with a duration
of TH = 1 hour (see Fig. 2). In FΨM

(t), the least square
error criterion is used for parameter fitting. In both cases (W1

and W2), the deterministic model FΨM
(t) is fitted to the M-

DC points ΨM (h). In WLAN, the minimum ΨE(c, h, d) is
around 0.1, which is caused by periodic beacon signals from
WLAN access points (APs). On the other hand, the minimum
ΨE(c, h, d) of LTE can be as low as zero. In W2, even though
the fit is not perfect for every single point, which is not
uncommon with empirical data as observed in related studies,
e.g., [22], the overall fit is satisfactory.

In both measurements results, the DC is relatively high
during the day time as a result of human presence in the
laboratory. In addition, in the case of relatively high M-DC,
ΨE(c, h, d) can have a significantly greater variance and the

maximum ΨE(c, h, d) can be larger than 0.9. This suggests
that the deterministic model may be applicable for the variance
of ΨE(c, h, d), which will be discussed in detail in Section
V-A.
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(a) Measurement campaign W1.
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(b) Measurement campaign W2.

Fig. 3: Measured DC (M-DC and O-DC) and M-DC based on
model (ΨL/M

D (t)) as a function of time.

IV. STOCHASTIC MODELS FOR DC
A. Stochastic model based on Beta distribution for O-DC

If the spectrum measurement time duration is not long
enough, such as one hour, the deterministic aspect may not be
noticeable and only the stochastic behavior component may
be present. For example, in Figs. 3a and 3b, ΨE(c, h, d) is
approximately stationary when observed in one-hour periods
but not when observed across different super frames. In such
a case, a stochastic model can express the stochastic behaviors
of O-DC.

In stochastic DC models, typically a basic PDF is employed.
The beta distribution is one of the strong candidates to describe
the stochastic aspect of O-DC ΨE(c, h, d) in the hth super
frame [22], [34]–[36]. The beta distribution has two preferable
properties. The first one is that its domain is the interval [0, 1]
which is the same domain as that of the DC. The second one
is that the beta distribution is a conjugate prior distribution,
therefore it is useful for Bayesian estimation.

Based on the beta distribution, a stochastic model for O-DC
ΨE(c, h, d) is given by

fΨE ,B(x) =
1

B(α, β)
xα−1(1− x)β−1, (5)

where 0 ≤ x ≤ 1, α > 0 and β > 0 are shape parameters, and
B(α, β) is the Beta function defined by:

B(α, β) =

∫ 1

0

zα−1(1− z)β−1dz. (6)

The mean and variance of the beta distribution, µB and σ2
B

are given by

µB =
α

α+ β
(7)

σ2
B =

αβ

(α+ β)2(α+ β + 1)
, (8)
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(a) Measurement campaign W1,
Time: 1:00 - 2:00. DKL for beta
distribution and mixture-beta dis-
tribution are 0.74 and 0.09, re-
spectively.
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(c) Measurement campaign W2,
Time: 1:00 - 2:00. DKL for beta
distribution and mixture-beta dis-
tribution are 0.77 and 0.09, re-
spectively.
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Fig. 4: Empiric distribution of the measured DC (O-DC) and
PDF based on the stochastic DC models.

respectively. The mean, µB , from the hth super frame, is
equivalent to ΨM (h). We employ the Metropolis-Hastings
curve-fitting algorithm, which is a Markov chain Monte Carlo
method, to set the model parameters [37].

B. Stochastic model based on mixture Beta distribution for
O-DC

As an alternative model, we propose a mixture-beta distri-
bution in which two beta distributions are used. The stochastic
model based on the mixture-beta distribution is defined by

fΨE ,Bm
(x) =

1∑
b=0

wbfΨE ,Bb
(x)

=

1∑
b=0

wb
1

B(αb, βb)
xαb−1(1− x)βb−1, (9)

where wb is the weighting coefficient for the bth beta distribu-
tion (b ∈ {0, 1}), fBb

(x) is the bth beta distribution as defined
in (5), and αb > 0 and βb > 0 are the shape parameters. Since
we consider two beta distributions, w0 +w1 = 1, w0 ≥ 0 and
w1 ≥ 0. The mean and variance for the bth beta distribution

are denoted by µBb
and σ2

Bb
. They are available from (7) and

(8), respectively. The parameters are related as follows:

µBm
=

1∑
b=0

wbµBb
, (10)

The number of parameters of the beta and mixture-beta dis-
tribution are N(fΨE ,B(x)) = 2 and N(fΨE ,Bm

(x)) = 5,
respectively. Notice that the mixture-beta model could be
extended to more than two beta distributions, however the
evaluations will indicate that two beta distributions already
provide a reasonable level of accuracy. This fact indicates that
there is no need to use more than two beta distributions since
this would unnecessarily increase the number of parameters
and the data storage burden in the spectrum measurement
system without providing noticeable accuracy improvement.
Therefore, we only consider two beta distributions in the
mixture-beta model.

C. Comparison of stochastic models
We will compare the validity of the stochastic models by

means of the Kullback-Leibler divergence (DKL). For discrete
probability distributions, g(xi) and f(xi), DKL is defined by

DKL =
∑
i

g(xi) log

(
g(xi)

f(xi)

)
. (11)

This is a measure of the non-symmetric difference between two
probability distributions. The DKL which has been commonly
used to measure the difference between two probability dis-
tributions, i.e., evaluation of O-DC model in [22], [34], takes
non-negative values. Specifically, smaller DKL indicates that
two probability distributions are more similar, e.g., DKL = 0
indicates that g(xi) and f(xi) are identical. It is worth noting
that, while the DC is by definition a continuous parameter with
a continuous distribution, the empirical distribution obtained
from experimental measurements is discrete as a result of the
binning required to calculate the histogram (i.e., the empirical
PDF). Therefore, a discretized version of the continuous beta
distribution model needs to be defined for comparison with
the experimental results in order to calculate DKL. Since the
domain of the beta distribution is [0, 1], 0 ≤ xi ≤ 1, we
define ∆x = 1/ND where ND is the number of partitions
for the interval (in this work we set ND = 100). Specifically,
xi = (i + 1/2) × ∆x, where i = 0, 1, · · ·ND − 1. Finally,
f(xi) for the beta distribution fΨE ,B(x) in (5) of the paper is
given by

f(xi) =

∫ x=xi+∆x

x=xi−∆x

fΨE ,B(x)dx.

Figs. 4a and 4b show the measured O-DC at W1 (WLAN)
and the fitted distributions based on the beta (5) and the
mixture-beta (9) models, respectively, for different time peri-
ods (1:00-2:00 and 14:00-15:00, respectively). The time peri-
ods 1:00-2:00 and 14:00-15:00 correspond to typical examples
of relatively low M-DC case and relatively high M-DC case,
respectively. In all cases, the model based on the mixture-beta
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distribution agrees better with the measured O-DC compared
to the beta distribution. In WLANs the beacon signals provide
a narrow peak at DC=0.1 in Figs. 4a and 4b for W1. The beta
distribution cannot express this narrow peak adequately. In the
case of daytime (Fig. 4b: 14:00-15:00), the traffic provides a
heavier right tail in the region where the DC is greater than
0.2. This aspect can be well described by the mixture-beta
distribution, but not by the beta distribution.

Figs. 4c and 4d show the measured O-DC at W2 (LTE)
and the fitted distributions based on the beta (5) and mixture-
beta (9) models, respectively, for different time periods (1:00-
2:00, and 14:00-15:00). Again the model based on the mixture-
beta distribution agrees well with the measured O-DC. In Fig.
4c, the curve is monotonically decreasing and this aspect can
be described by both models. However, the model based on
the mixture-beta distribution provide a more accurate fit to
the measured O-DC. In Fig. 4d, it is observed that there is a
narrow peak at DC=0.1 but this shape cannot be fitted by the
beta distribution while the mixture-beta distribution provides
a good fit. In the region where the DC is greater than 0.3,
the curve provided by the beta distribution is above the curve
provided by the measured O-DC in most DC, on the other
hand the mixture-beta distribution again provides a better fit.
DKL performances are shown in the captions of Figs. 4a, 4b,
4c and 4d, which also shows the benefit of the mixture-beta
distribution.

There are two reasons why the mixture distribution is a
more convenient model. Firstly, the mixture-beta distribution
can provide more accurate fits to empirical data since it has
more the parameters (i.e., degrees of freedom) than the beta
distribution, i.e., N(fΨE ,B(x)) = 2 < N(fΨE ,Bm(x)) = 5.
Secondly, measured O-DC during one super time frame at
a given location may include various types of traffic such
as periodic beacon signals and random data packets. In this
case, a mixture distribution may be more appropriate since
each traffic follows a different distribution of O-DC and the
model distribution has to describe the mixture of the different
distributions. The existence of different types of traffic during
one super time frame at the same location can be confirmed
in the actual measurement results shown in Figs. 5. In Fig.
5a, measured PSD (power spectrum density) at 13:10 is shown
while Fig. 5b shows the corresponding detection results (white
and black correspond to DnT ,nF

= 0 and DnT ,nF
= 1,

respectively). There are both bursty data packets and beacon
signals. In Fig. 5c and Fig. 5d, PSD and detection results at
13:13 are shown and there are only periodic beacon signals. As
it can be appreciated, there may be cases where the observed
spectrum occupancy is the combination of different types of
traffic, each of which may have a different distribution, and
therefore a mixture distribution is a more appropriate model.

V. DETERMINISTIC-STOCHASTIC MODEL FOR DC
As confirmed in the previous section, the deterministic

model can express the deterministic behavior of one statistic,
such as M-DC, and the stochastic model provides whole statis-
tical information at a given time. To express both deterministic
and stochastic aspects at once, a DS model for DC is proposed
in this section.

(a) PSD of W1 in case of high
DC.
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(b) Detection results of W1 in
case of high DC.

(c) PSD of W1 in case of low
DC.
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(d) Detection results of W1 in
case of low DC.

Fig. 5: PSD and detection results of W1 in cases of high and
low DC.

First, we will show that the variance of O-DC can be also
described by the deterministic model. If it is possible, it implies
that the whole statistical information may be expressed by a
deterministic model and this corresponds to the DS-DC model.
We will show two DS-DC models based on the mixture-beta
distribution. The first model is based on a straightforward
approach while the second model is based on regression
analysis.

A. Deterministic model for the variance of the DC

As confirmed in Figs. 3a and 3b, the variability of O-DC
is relatively low in the night, e.g., 3:00, and relatively high in
the daytime, e.g., 15:00. During night, the number of users is
relatively low and it leads to that low variance on the O-DC. On
the other hand, during day-time, the number of users increases
and there are various types of data traffic, which includes high
O-DC and low O-DC (see Fig. 5). This leads to high variance
on the O-DC. This fact suggests that the deterministic model
in (4) may be applicable to express the deterministic behavior
of the variance as well.

Comparisons between the measured variance and the deter-
ministic model for variance in W1 and W2 are shown in Figs
6a and 6b. In both cases, the deterministic model can express
the deterministic aspect of the variance. This extension should
be available for all parameters in the stochastic models and it
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(a) Measurement campaign W1
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(b) Measurement campaign W2

Fig. 6: Measurement of O-DC variance and deterministic
model of O-DC variance as a function of time.

Fig. 7: Flow chart for derivation of DS-DC model based
distribution parameters.

is used in the first DS-DC model, which is presented in the
following subsection.

B. Deterministic-stochastic model for DC
The DS-DC model is a straightforward approach to combine

the deterministic and the stochastic (mixture-beta distribution)
models. In the DS-DC model, the deterministic model is used
to describe the deterministic behavior of each parameter in
the stochastic model. In the mixture-beta distribution, five
parameters are necessary to determine the distribution (9). We
apply the deterministic model (4) to the five parameters, µBm ,
µB0 , µB1 , σ2

B0
, and σ2

B1
. The derivation process for parameters

of a distribution based on the DS-DC model is shown below
and the flow chart of the derivation is shown in Fig. 7.
Specifically, during one super frame, the five parameters can
be estimated; such estimates are denoted by µ̂Bm(h), µ̂B0(h),
µ̂B1(h), σ̂2

B0
(h), and σ̂2

B1
(h). By curve fitting, such as the

least-square method, each parameter in the deterministic model
can be specified and the obtained deterministic functions are
denoted by Fµ̂Bm

(t), Fµ̂B0
(t), Fµ̂B1

(t), Fσ̂2
B0

(t), and Fσ̂2
B1

(t).
Note that Fµ̂Bm

(t) is equivalent to FΨM
(t). A set of functions

can provide µBm
(t), µB0

(t), µB1
(t), σ2

B0
(t), and σ2

B1
(t) at

time t.
Based on the provided parameters by the set of functions,

the PDF of O-DC is available. Therefore, this set of functions
constitutes the DS-DC model. ω0 and ω1 can be obtained from
(10), while αb can be obtained as

αb =
µ2
Bb

− µ3
Bb

− µBb
σ2
B0

σ2
B0

(12)

and βb can be obtained as

βb =
αb(1− µBb

)

µBb

. (13)

In this DS-DC model based on the mixture-beta distribution,
the number of parameters is given by N(fΨE ,Bm

(x)) ×
N(FΨM

|K) = 5(1 + 3K). In the case of the beta distribution
for DS-DC model, the number of parameters is given by
N(fΨE ,B(x))×N(FΨM

|K) = 2(1 + 3K).

C. Deterministic-stochastic DC model with regression analysis

The number of parameters in a model is related to the
required storage capacity of the data server in SAS and
therefore a smaller number of parameters is desirable. For this
issue, the RDS-DC model is here proposed, which employs
regression analysis to reduce the number of parameters. This
idea comes from the fact that the variance of O-DC (Figs. 6a
and 6b) and the mean of O-DC (Figs. 3a and 3b) have similar
deterministic behaviors and this suggests that there may be
some correlation between mean and variance. Specifically, a
larger M-DC leads to a larger variance as confirmed in Fig.
3a and Fig. 6a. In the deterministic model, it may require
five parameters for each statistical parameter, but a polynomial
regression analysis can reduce the number of parameters. In
RDS-DC, we use the deterministic M-DC Fµ̂Bm

(t). Then, the
other parameters, µBm , µB0 , µB1 , σ2

B0
, and σ2

B1
, are obtained

by NRth order polynomial regression analysis between µBm

and each parameter, p, as

p =

NR∑
n=0

Bn,p · µn
Bm

. (14)

where Bn,p is a coefficient for the regression analysis. The
coefficients can be obtained by the least-squares method with
the measurement results. The estimated parameter p and µBm

in dth super time frame are denoted by µ̂Bm(d) and p̂(d),
respectively. In this paper, we consider cases of NR = 2 and
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NR = 1. When NR = 2, according to the least-squares method
the regression analysis parameters can be given by

B1,p =

∑D
d=1(µ̂Bm

(d)− ¯̂µBm
)(p̂(d)− ¯̂p)∑D

d=1(p̂(d)− ¯̂p)2
, (15)

where ¯̂µBm
and ¯̂p are the averages of µ̂Bm

(d) and p̂(d),
respectively, and

B0,p = ¯̂p−B1,p
¯̂µBm

. (16)

When NR = 1, by setting B1,p = 0, B0,p can be obtained
from (16).

The number of parameters for RDS-DC is
(N(fΨE ,Bm

(x)) − 1) × (NR + 1) + N(FΨM
|K) =

4× (NR + 1) + 1 + 3K.

D. Model verification based on measurement results
1) O-DC distributions: To confirm the validity of the DS-

DC models, several distributions and models of O-DC are
shown in Fig. 8. In Fig. 8a, the empiric distribution of O-DC
in each time (super time frame) is shown. This is a baseline
result that the other models attempt to reproduce. In Fig. 8b,
the stochastic model with mixture-beta distribution is used to
express the distribution of O-DC at each super time frame. This
distribution is denoted by Stochastic model based Distribution
(SD). SD does not consider the behavior in time domain
and corresponds to a conventional approach. In this case, the
number of parameters is N(fΨE ,Bm

(x))×H = 5H = 120.
The distribution in Fig. 8c is obtained by DS-DC model

in which the number of parameters is 35. This distribution
is denoted by DS-DC model based Distribution (DD). In
DD, the parameters in the stochastic model are modeled by
the deterministic model, i.e., the deterministic model and
stochastic model are combined. The results in Figs. 8d and 8e
are obtained by RDS-DC models with NR = 0 and NR = 1
in (14), respectively. This distribution is denoted by RDS-DC
model based Distribution (RD) with NR and RD corresponds
to our proposed approach. The number of parameters in RDS-
DC models are 11 and 15 when NR = 0 and 1, respectively.
The numbers of parameters for each distribution are summa-
rized in Table. I. We will evaluate accuracy of SD, DD and
RD in the following section by DKL performance.

Three points can be confirmed by the results in Fig. 8.
First, all of them have almost analogous shape, but there
are a few differences as follows. Second, SD with mixture
beta distribution reproduces the empirical distribution (Fig.
8a) adequately, especially the SD can reproduce non-smooth
aspects in time domain since it does not have constraints in the
time domain. Third, RD with NR = 1 and DD result in similar
distributions, however RD with NR = 0 is slightly different.
Specifically, the peak of the distribution in time interval from
0:00 to 6:00 in RD with NR = 0 (Fig. 8d) is smaller than the
others.

2) DKL performances: We also evaluate the accuracy of the
models numerically by means of DKL between the empirical
distribution and the model based distributions. DKL can indi-
cate the difference between different probability distributions,

TABLE I: Number of parameters for each distribution.

Distribution Number of
parameters

SD: Stochastic model based Distribution 120
DD: DS-DC model based Distribution 35
RD: RDS-DC model based Distribution with NR = 0 11
RD: RDS-DC model based Distribution with NR = 1 15
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(a) Emprical O-DC distribution at
each time (super frame)
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(b) SD with mixture beta distri-
bution
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(c) DS-DC model based Distribu-
tion (DD).
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(d) RDS-DC model based Distri-
bution (RD) with NR = 0.
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(e) RDS-DC model based Distri-
bution (RD) with NR = 1.

Fig. 8: Distributions of O-DC in W1

with smaller DKL values indicating a better accuracy. DKL
performance as a function of time for W1 is shown in Fig. 9a,
where SD with beta distribution is also evaluated.

First, we can confirm that SD with beta distribution achieves
the poorest DKL performance. On the other hand, SD with
mixture-beta distribution can achieve the best DKL per-
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formance. This indicates the benefit of the mixture beta-
distribution. Second, it can be confirmed that RD with NR = 1
and DD can achieve a similar DKL performance compared to
SD with mixture-beta distribution. RD with NR = 0 based
distribution is slightly worse than RD with NR = 1 and DD.
The trends observed in Fig. 9a can be understood based on the
results shown in Fig. 8.

The DKL performance is also evaluated in W2 to confirm the
validity of the models in a different case and the result is shown
in Fig. 9b. The stochastic model with beta based distribution
again achieve a relatively worse DKL performance. In W2,
there is one aspect different from W1, i.e., RD with NR = 0
achieves the poorest DKL performance in the time interval
from 01:00 to 09:00. As shown in Fig. 3b, distribution of O-
DC between midnight and morning, such as 01:00 to 09:00, is
significantly different from distribution of O-DC in day-time
in W2. In this case, when NR = 0, there is only a constant
term in (14) and it is not sufficient to express the deterministic
behavior appropriately, which explains the observed result. The
performance for the rest of models is similar as for W1.

3) Final remarks: The results in Table I and the DKL perfor-
mances in Figs. 9a and 9b indicate the existence of a trade-off
between the accuracy of the model and the required number of
parameters (which determines the data storage and complexity
requirements). SD with mixture-beta distribution can achieve
the best DKL performance, however it also requires the highest
number of parameters. On the other hand, RD with NR = 1
can achieve a slightly worse DKL performance compared to
SD with mixture-beta distribution, e.g., average gap regarding
DKL performance between RD with NR = 1 and SD with
mixture-beta distribution is 0.01, with a significantly lower
number of parameters, which in fact provides the best trade-
off between accuracy and storage/complexity requirements. A
user of the spectrum usage models can select a proper model
by considering such trade-off. A comparison in terms of the
number of parameters between RD with with NR = 1 and
DD indicates that the reduction rate by RD with NR = 1 is
about 42%. Actual values of storage/complexity requirements
are determined by not only the number of parameters, but
also the measurement points, such as frequency bands and
measurement locations. Therefore, the improvement regarding
the number of parameters is appreciated when the number of
measurement points is large.

VI. CONCLUSION

In this paper we have investigated models for spectrum
usage in the time domain. The spectrum usage in the time
domain is typically expressed in terms of the DC. In previous
works, models for expressing the stochastic and deterministic
behaviors of the DC have been investigated separately but
not jointly. To overcome this drawback we have proposed
several joint deterministic-stochastic models that can express
both the deterministic and stochastic behaviors simultaneously.
The improved accuracy of the proposed models has been
corroborated with empiric data obtained from two long-term
spectrum measurement campaigns performed in the WLAN
and LTE uplink bands. Moreover, we have also shown that
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Fig. 9: Kullback-Leibler divergences

by means of a regression analysis it is possible to reduce the
number of parameters required by the proposed deterministic-
stochastic model while preserving a similar level of accuracy.
This improved modeling approach not only provides an equally
remarkable level of accuracy but also reduces the data storage
and complexity requirements in the data server of a SAS and
therefore constitutes an excellent candidate for spectrum usage
modeling in future spectrum-aware communication systems.
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