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Glossary 

A: amyloid , a small peptide involved in Alzheimer’s disease pathology 

AD: Alzheimer’s disease 

AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, a key glutamate receptor that is 

targeted by epilepsy treatments 

Decanoic acid: a medium chain fatty acid of ten carbons 

GBM: glioblastoma multiforme, an aggressive form of brain tumour 

GluA1-4: subunits of AMPA receptors 

Ketones: D-β-hydroxybutyrate (BHB) and acetoacetate (ACA) 

Ketogenic: generating ketones 

MCT: medium-chain triglyceride  

Medium chain fatty acids: a fatty acid of 6-12 carbons in length, often derived from MCT 

Octanoic acid: a medium chain fatty acid of eight carbons 

PPAR: peroxisomal proliferator-activated receptor gamma 

PTZ: pentelenetetrazol an epileptogenic compound use to generate seizures 
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Abstract 
 

The ketogenic diet has been used for almost 100 years as a non-pharmacological treatment for refractory 

epilepsy; the generation of ketones was proposed to be a key mechanism by providing neurons with an energy 

source that is more efficient than glucose, resulting in beneficial downstream metabolic changes. However, in 

vitro and in vivo studies have challenged the central role of ketones as medium chain fatty acids, which are part 

of a commonly used ketogenic diet, the medium chain triglyceride (MCT) ketogenic diet, have been 

demonstrated to directly inhibit AMPA receptors (key excitatory neurotransmitter receptors), and to change cell 

energetics through mitochondrial biogenesis. Through these mechanisms, medium chain fatty acids are likely to 

block seizure onset and raise seizure threshold, These mechanisms may also play roles in the  ketogenic diet’s 

potential in other therapeutic areas, such as reducing neurodegeneration in Alzheimer’s disease, proliferation and 

spread of cancer, and insulin resistance in type 2 diabetes. Analyzing medium chain fatty acids in future 

ketogenic diet studies will provide further insights into their importance in other forms of the ketogenic diet. 

Moreover, the results of these studies may facilitate the development of new pharmacological and dietary 

therapies. 

 

Introduction 
The ketogenic diet, a high-fat, low-carbohydrate diet, was developed nearly one century ago as a treatment for  

epilepsy to mimic the metabolic profile of fasting by reducing blood glucose and increasing ketone levels, as 

starvation had long been observed to reduce the frequency of seizures. In the 1920’s and 1930’s, the ketogenic 

diet became an established treatment for epilepsy1, but rapidly lost favor following the development of phenytoin 

and the subsequent growth in antiepileptic drug development. However, there was a resurgence of interest in the 

diet in the 1990’s for drug-resistant epilepsy in children in whom it is increasingly being used. Despite its long 

and burgeoning use, the mechanisms underlying its efficacy in epilepsy have remained unclear. Recent advances, 

however, have resulted in a paradigm shift in our understanding of the putative mechanisms underlying such 

diets, and have paved the way for novel dietary and drug therapies.   

 

The ketogenic diet exists in two main forms. The “classic” ketogenic diet provides 60-80% of dietary energy 

through long chain fats (comprising 16-20 carbons)2. This diet is particularly stringent (there is a very low 

carbohydrate content) and consequently is difficult to maintain. So an alternative medium-chain triglyceride 

(MCT) ketogenic diet was developed2, where fats are provided though triglycerides comprising ~60% octanoic 

(an eight carbon fatty acid) and ~40% decanoic acid (a ten carbon fatty acid). In contrast to the classic ketogenic 

diet, only about 45% of dietary energy is provided by these medium chain fats (so allowing a larger carbohydrate 

component) 2, and more rapid metabolism of the shorter fatty acid results in more efficient ketone generation.  

 

The MCT ketogenic diet is currently used world-wide to treat drug-resistant epilepsy, mainly in children1, but 

also in adults3,4. In addition, both the classical and MCT ketogenic diets have garnered increased interest as 

potential treatments for other diet-sensitive disorders, including Alzheimer’s disease,5-7 cancer,8-12and 

diabetes,13,14 As with epilepsy,  the main therapeutic mechanism was assumed to occur through the replacement 

of carbohydrates by ketones as an alternative energy source15. However, despite the efficacy of the ketogenic diet 

in epilepsy, several studies have shown a poor correlation between plasma ketone levels and seizure control16, 

and ketones do not acutely block seizure activity in an in vitro model.17 Indeed, one study has shown seizure 

control in the absence of ketosis.18 These observations challenge the view that ketones alone have a role in 

seizure control and raise the question of the roles of other components, in particular, the high fat content. Several 

studies have indicated that medium chain fats provided in the MCT ketogenic diet, can have a direct action on 

seizure activity and mitochondrial function. The aim of this review is to summarize the most recent advances in 

our understanding of the mechanisms of action of the MCT ketogenic diet, in relation to epilepsy and other 

disorders.  

 

Metabolism of the MCT ketogenic diet 
Dietary triglycerides ( the main form of dietary fat in the body) are hydrolyzed in the gut and intestines by lipases 

that preferentially hydrolyze medium-chain over long-chain esters19 (Figure 1). Medium-chain triglycerides are 

hydrolyzed to medium-chain fatty acids  (fatty acids with 6-12 carbons), which are then absorbed directly 

through the gut wall, and transferred to the liver where they are rapidly degraded in first-pass metabolism19. The 

liver metabolises these medium chain fatty acids through β-oxidation, which is mainly directed towards the 

generation of three major ketones, β-hydroxybutyrate, acetoacetate, and acetone (collectively called ‘ketone 

bodies’). These ketones as well as those fats that escape metabolism are distributed through the circulatory 
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system in blood. The brain is thought to be dependent primarily on glucose as an energy source, and secondarily 

on hepatically-derived ketone bodies. However, medium chain fatty acids are able to cross the blood-brain 

barrier20,21, reach brain concentrations that are >50% that of plasma fatty acids20 and provide an alternative 

energy source for astrocytes. Evidence indicates that medium chain fatty acids have direct and differing effects 

on astrocyte energy metabolism. Octanoic acid seems to undergo β-oxidation in astrocytes more easily than does 

decanoic acid, and so more readily produces ketones, whereas decanoic acid preferentially stimulates glycolysis, 

producing lactate22 which neurons are able to use as an energy source. Decanoic acid could promote the proposed 

astrocyte-neuron lactate shuttle, which has been proposed to be the main energy source for neurons; however the 

importance of this shuttle in vivo  has been challenged.23 In addition, neurons are also capable of β-oxidation of 

medium chain fatty acids at low rates, but octanoic acid is preferentially oxidized (over decanoic) suggesting a 

key metabolic role in the regulation of medium chain fat levels.24 
 

The MCT ketogenic diet and epilepsy  
 

Ketones and seizures 

Under normal dietary conditions, ketones (acetoacetate, beta-hydroxybutyrate, and acetone) are found in blood 

plasma at very low levels, but their concentration increases under fasting conditions up to a total of 9 mM/L and 

can be taken up by brain, crossing the blood-brain barrier via monocarboxylate transporters25. Under fasting 

conditions, ketones can provide the energy source for cells, and have been considered the key mechanism of 

action of the ketogenic diet15,26. Patients with mutations of the glucose transporter, GLUT1, which plays a critical 

role in glucose transport from the systemic circulation to the brain, respond well to both classical and MCT 

ketogenic diets because ketones are thought to replace the energy supply normally provided by glucose.27 There 

is evidence that glucose supplementation diminishes the anticonvulsant effects of the ketogenic diet in a mouse 

model of epilepsy, so that both fat administration and carbohydrate restriction in the ketogenic diet may be 

important in seizure control.28 It is also likely that ketone bodies influence amino acid metabolism, either directly 

as substrates or indirectly, resulting in changes to GABA and glutamate concentrations.29 But do ketones have 

any direct effects on synaptic transmission or intrinsic neuronal excitability or can they directly or indirectly 

modify neuronal or network excitability ? Neither β-hydroxybutyrate, nor acetoacetate affect ionotropic 

GABAergic (GABA(A) receptor mediated) or glutamatergic (AMPA and NMDA receptor mediated) currents at 

therapeutically relevant concentrations.30 Acetone and β-hydroxybutyrate only affect GABA(A) receptors and 

glycine receptors at toxic levels (>100 mM).31 Nevertheless, there is a suggestion that ketones can compete with 

chloride at the vesicular glutamate transporter, so decreasing vesicular glutamate content and consequently 

glutamatergic transmission.32 In addition, high concentrations of acetoacetate (10 mM) have been shown to 

inhibit voltage-dependent Ca2+ channels (VDCCs) in pyramidal cells of the hippocampus.33 However, ketones at 

high concentrations (10 mM) have no direct effects on in vitro seizure-like activity induced in ex vivo 

hippocampal slices by applying the GABA(A) receptor antagonist, PTZ17, or exposing them to low external 

magnesium.17 The evidence, therefore, despite a possible effect on glutamatergic transmission does not support a 

direct action of ketones on seizure activity. 

 

Ketones can, however, have indirect effects on neuronal and network excitability, and have anti-seizure effects in 

some in vivo seizure models.34-36 Switching from glucose to ketones results in a hyperpolarization of neurons and 

a reduction in neuronal excitability. One indirect mechanism could be the reduction in ATP production from 

glucose oxidation, opening ATP-sensitive potassium (KATP )channels,37; in particular the ketone -

hydroxybutyrate has been proposed to modify seizures through KATP channels (and GABA(B) receptor signaling) 

in a Drosophila seizure model.38 Other possible indirect mechanisms include inhibition of the mitochondrial 

permeability transition pore, which has been implicated in mitochondrial dysfunction and neuronal death,34,35 and 

inhibition of adenosine kinase so increasing adenosine levels, and activating the inhibitory adenosine A1 

receptors34,35. Moreover, ketones have been implicated in epigenetic effects that could be disease modifying in 

chronic epilepsy, possibly through an action on adenosine metabolism.39,40 Overall, there is mixed evidence that 

ketones can have an effect on seizure activity, and it is most likely that this occurs through indirect metabolic 

effects. 

 

Medium chain fats as a direct mechanism for seizure control  
Research on medium-chain triglycerides within the MCT ketogenic diet has provided important insights into the 

roles for fatty acids in seizure control. The efficacy of decanoic acid in seizure control has been shown in in vitro 

experiments, where seizure-like activity is induced in hippocampal slices with PTZ, or perfusion with artificial 

CSF containing no magnesium.17 Importantly, in these studies, decanoic acid blocked seizure-like activity within 

30 minutes of application, within replenishing (perfusate) conditions and  under conditions (high glucose) in 

which ketone generation is unlikely to occur17. Decanoic acid also reduces seizure thresholds in a range of in vivo 
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animal models of acute seizures including both the 6 Hz test (a model of drug resistant seizures)  and the 

maximal electroshock test (a model of tonic-clonic seizures) although it is not active against PTZ-induced 

seizures (proposed to be a model of absence seizures)17,20. These experiments support a direct role of decanoic 

acid in seizure control.   

 

An important step forward in understanding the role for decanoic acid in seizure control was the discovery that 

decanoic acid can act as a selective antagonist of AMPA receptors (Figure 2), demonstrated by direct inhibition 

of these receptors in vitro.17 AMPA receptors, are composed of four subunits, each containing an amino terminal 

and ligand binding extracellular domain, and three transmembrane domains. These receptors are key components 

in the generation of seizures41, are blocked by micromolar concentrations of decanoic acid.17 The mean 

concentration of decanoic acid in blood plasma from patients with epilepsy that receive the MCT ketogenic diet 

is around 157 µM42. Decanoic acid rapidly and easily crosses the blood brain barrier after ingestion in rodent 

models20. It is therefore likely that, in patients with epilepsy on the MCT ketogenic diet, decanoic acid would 

reach sufficient concentrations in the brain to reduce excitation and thereby provide seizure protection. This 

decanoic acid-dependent AMPA receptor inhibition is likely to be receptor isoform specific, shows enhanced 

inhibition during synaptic activation (when neurons are depolarised), and is non-competitive to glutamate17, and 

thus might provide a strong basis for therapeutic efficacy. Interestingly, direct inhibition of AMPA receptor 

activity has been well established as an effective therapeutic mechanism in focal seizures and generalized tonic-

clonic seizures and a recently licensed antiepileptic drug perampanel acts directly on AMPA receptors but at a 

different site from decanoic acid.43,44 Thus, the effects of decanoic acid seen in in vivo models are therefore likely 

to be a direct result of AMPA receptor inhibition.  

 

Octanoic acid is the more abundant fatty acid in the MCT ketogenic diet supplement, and is found in epileptic 

patient blood plasma at around 310 µM.42 A range of animal studies have investigated its role in seizure control. 

In one series of experiments, acute oral dosing of rodents with increasing levels of octanoic acid increased the 

threshold for induction of myoclonic and clonic convulsions in a rat model.21 Octanoic acid also significantly 

increased the seizure threshold in the 6 Hz seizure model, through an adenosine receptor dependent manner 

under reduced glucose levels.45 However, using the same seizure model, this therapeutic effect was not seen in 

animals that received dietary octanoic acid-containing triglycerides16, when glucose levels were not controlled. 

Octanoic acid has no inhibitory activity at AMPA receptors at concentrations found in patients on the MCT 

ketogenic diet17 suggesting the potential anti-seizure effect is more likely to occur through indirect effects on 

adenosine receptors. However, novel branched octanoic acid derivatives, such as 5-methyloctanoic acid provide 

both in vitro and in vivo seizure control and AMPA receptor inhibition.17,46,47  

 

 

Medium chain fats as an indirect mechanism for seizure control.  

An alternative mechanism for the effect of the MCT ketogenic diet on epilepsy arises from beneficial effects 

upon brain energy metabolism. The diet causes alterations in glycolysis and/or mitochondrial function, where 

increasing ATP availability leads to an increase in seizure threshold.48 Although long-chain fatty acids can 

uncouple mitochondria so potentially decreasing ATP production and lowering seizure threshold (although 

mitochondrial uncoupling can also have a paradoxical neuroprotective effect), medium-chain fatty acids are 

much less likely to have a physiological role as uncouplers.19 Clinical studies into the effects of ketogenic diets in 

mitochondrial disorder patients report marked improvements in seizure control.49,50 This may be partly due an 

action of decanoic acid on the peroxisomal proliferator-activated receptor gamma (PPAR)51,52, resulting in  

enhanced mitochondrial function by stimulating mitochondrial biogenesis and increasing mitochondrial complex 

I activity.51 Decanoic acid is a recognized PPAR agonist and PPAR agonists elicit neuronal mitochondrial 

biogenesis (Figure 3).53-55 Similar results have been shown in an in vivo model, where the dietary treatment of 

rats with decanoic acid-containing triglycerides increased brain mitochondrial function and ATP synthesis 

capacity,16 and one study confirmed a synergistic effect of PPAR agonists with the ketogenic diet in an in vivo 

seizure model.56 This mechanism of increased brain mitochondrial function appears to be specific to decanoic 

acid and unlikely to be shared by octanoic acid, the other major component of the MCT supplement. Octanoic 

acid does not activate PPAR53, nor does it enhance levels of mitochondria in vitro51 and octanoic acid-

containing triglycerides do not enhance mitochondria function in vivo.16 In addition, decanoic acid does not affect 

glycolytic enzymes suggesting limited contribution to its anticonvulsant properties.16 The increased activity of 

decanoic acid in these studies, in comparison to octanoic acid, suggests a role for dietary decanoic acid providing 

seizure control from the MCT ketogenic diet.16,20.  

 

Although the discovery of these direct and indirect mechanisms has yet to be widely adopted, their identification 

is likely to trigger an increasing interest in fatty acids as a therapeutic mechanism of the diet. Monitoring plasma 
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fatty acid levels (especially medium chain fatty acids) in clinical studies relating to the MCT diet may provide a 

corollary from this. Further research will be needed to examine the complex interactions in the brain between 

medium chain fatty acids,  ketones and the role of both components in therapeutic function.  

 

The MCT ketogenic diet in other diseases 
In addition to the established role drug resistant epilepsy treatment, the MCT ketogenic diet is increasingly being 

considered as a potential treatment for a range of other indications. 

 

Alzheimer’s disease   

The ketogenic diet might be a potential treatment for Alzheimer’s disease since it may function to combat 

metabolic changes underlying the disease.5,6  Reduced uptake and metabolism of glucose has been strongly 

linked to progressive cognitive and motor degeneration as cells starve due to inefficient glycolysis.7 This 

association has provided a rationale for using the ketogenic diet as a therapeutic treatment, where ketones present 

an alternative energy source15 that replenishes glycolytic and tricarboxylic acid cycle intermediates57. One in 

vitro study has also shown that the direct application of the ketone β-hydroxybutyrate in relevant concentrations 

protects hippocampal neurons from amyloid  (A) toxicity.58 In another study, 20 patients with a diagnosis of 

Alzheimer’s disease or mild cognitive impairment, received a single oral dose of MCT, but only those without 

the ApoE4 allele showed enhanced short-term cognitive performance with a range of tests, indicating that ApoE4 

genotype may influence response to dietary treatments.59 In addition, both classical and MCT ketogenic diets 

improve motor function, but not cognition, in a transgenic mice model of amyloid deposition.60 Three studies 

(including two randomized control trials) have reported that treatment with an MCT diets benefitted only patients 

with mild forms of Alzheimer’s disease but not those that were genetically predisposed with an ApoE4 mutation 

which is strongly associated with an increased risk of developing Alzheimer’s disease.61-63 

 

There is strong evidence that A increases AMPA receptor currents and triggers subunit internalization; this   

directly links glutamate receptor hyperactivity to neurotoxicity and memory loss in Alzheimer’s disease. A has 

been shown to interact with  adrenergic receptors which regulate gene expression and the activity of receptors 

including AMPA-type glutamate receptors via the cAMP/PKA signaling cascade.64,65 Phosphorylation of AMPA 

receptor GluA1 subunits by PKA has been shown to increase channel opening probability which results in 

augmented calcium entry into the cell, leading to neurotoxicity.66 A study67 has shown that the addition of Aβ to 

neuronal cultures causes neurotoxicity by strengthening calcium-dependent AMPA-receptor generated currents. 

This suggests that Aβ induced excitotoxicity could contribute to the widespread neuronal death in Alzheimer’s 

disease. In addition to ketones providing energy to glucose resistant neurons, the MCT ketogenic diet might also 

improve neuronal survival through the inhibition of AMPA receptors by decanoic acid. There is evidence that A 

treatment triggers the internalization of GluA2 subunits, the only AMPA receptor subunit type that confers 

calcium impermeability.68,69 Internalization of GluA2 could therefore further increase total post-synaptic calcium 

influx, which could further increase inflammation and neurotoxicity. It needs to be noted, however, that it has 

been suggested that Aβ-induced internalization of AMPA receptor subunits could be sufficient to reduce LTP 

and therefore be linked to memory loss in Alzheimer’s disease.70 Indeed, patient studies have shown that loss of 

GluA2 precedes pathological marker (tangle) development in the brain.71 This effect would be augmented if the 

remaining postsynaptic subunits were to be blocked by AMPA receptor antagonists. More research is needed to 

determine a role for the MCT ketogenic diet and AMPA receptor antagonists in the treatment of Alzheimer’s 

disease. 

 

Mitochondrial dysfunction has also been implicated in the pathogenesis of Alzheimer’s disease. With a high 

demand for energy, the brain is rendered dependent on mitochondria, leaving it sensitive to aberrant changes in 

mitochondrial function. Structural abnormalities of mitochondria, imbalances in mitochondrial fission and fusion, 

and defective electron transport chain activity have been observed in Alzheimer’s disease models.72 Moreover, 

evidence suggests that Aβ accumulation is associated with toxic effects against mitochondria, including impaired 

energy homeostasis and electron transport chain complex activity, particularly of cytochrome c oxidase72, 

disrupted mitochondrial structure and dynamics73, and increased mitochondrial oxidative stress.72,74 With 

mitochondria intrinsically linked to cell signaling, mitochondrial damage consequentially leads to cell death and 

may potentially be responsible for the synaptic degeneration observed in Alzheimer’s disease. However, very 

few studies have investigated the therapeutic effects of the MCT ketogenic diet in light of mitochondrial 

function, although one in vitro study has reported the attenuation of deleterious Aβ-induced effects on cortical 

neurons treated with coconut oil (containing high levels of MCT), observing increased cell survival and 

improved mitochondrial structure and size.75 Whilst the mechanisms of these observed effects remain unknown, 

there remains a potential for the role of medium chain fatty acids in this context. In particular, decanoic acid, 

which has the ability to improve mitochondrial function51,76 may prove beneficial in the amelioration of Aβ-
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induced mitochondrial damage. In addition, role of decanoic acid as an antioxidant51,77 and as a PPAR 

activator78 may  provide molecular mechanisms underlying the improved mitochondrial function. 

 

Cancer    
Ketogenic diets have gained considerable interest as an adjunctive therapy in the treatment of cancer, with data 

from both different animal models8 and observational patient studies9-12, although evidence for clinical efficacy 

from randomized controlled trials is lacking. Cancer cells are often highly dependent on glucose as a substrate, 

relying on anaerobic glycolysis to provide ATP, known as the Warburg effect79; this dependence on glucose is 

utilized in tumor imaging using positron emission tomographic uptake of fluorodeoxyglucose. The commonly 

accepted mechanism by which the ketogenic diet may aid in cancer therapy is that the lowering of circulating 

glucose, and the inability of tumors to use ketone bodies, results in reduced tumor growth or tumor 

regression.80,81 Whilst this theory remains the most accepted explanation for a mechanism of the ketogenic diet, 

several studies have suggested that the effect on tumor growth may not be solely via a decrease in glucose levels. 
9,12,82 Indeed, many tumors preferentially use glutamine as a substrate rather than glucose but whether a ketogenic 

diet has any effect on such tumors is unknown. 

 

A link between the MCT ketogenic diet, AMPA receptors, and cancer treatment comes from studies 

demonstrating that human glioblastoma cells express increased levels of AMPA receptors83, and inhibition of 

AMPA receptors suppresses migration and proliferation of glioblastoma multiforme cells84 and other cancer 

cells85. Furthermore, the recently licensed AMPA receptor-specific inhibitor Perampanel, which binds at a 

different site to decanoic acid (Figure 2)17, has been shown to be a potentially chemotherapeutically active 

adjuvant in a single case study of glioblastoma multiforme cells treatment.86 These studies thus suggest that 

AMPA receptor inhibition through decanoic acid17 might provide an adjunctive cancer treatment. 

 

 

 

Diabetes  

Diabetes can be broadly split into type 1 diabetes, in which the pancreas does not produce enough insulin due to 

a combination of genetic and environmental factors, and type 2 diabetes in which lifestyle choices including 

obesogenic diets rich in carbohydrates and saturated fats, together with lack of exercise, lead to hyperglycaemia 

and insulin resistance.87 Dietary interventions, including the MCT ketogenic diet have been investigated as new 

therapeutic approaches, mainly in type 2 diabetes mellitus due to its increased incidence. In a number of studies, 

MCT ketogenic diets have been found to reduce serum lipid levels and improve lipid profiles, decrease body fat 

and reduce total body weight in both animals13 and humans14 and to increase energy expenditure.88 MCTs also 

reduce insulin resistance and improve glucose tolerance in animal models and in patients with Type 2 

diabetes.13,89 Although the exact mechanism of these overall effects remains unknown, these studies suggest a 

beneficial role of MCTs in the treatment of type 2 diabetes and associated glucose-sensitive metabolic disorders 

(eg, XX +ref). Ketogenic diets in patients with type 1 diabetes is more limited and the literature consists of case 

reports of patients with type 1 diabetes and poorly controlled epilepsy, or anecdotal reports. A major concern 

about implementation of any ketogenic diet in patients with diabetes, especially type 1, is the potentially life-

threatening complication of diabetic ketoacidosis as a lack of insulin promotes fatty acid oxidation and ketosis.  

 

Mitochondrial dysfunction has also been postulated to play a role in insulin resistance and, consequently, the 

pathology of diabetes. Patients with Type 2 diabetes have been found to exhibit impaired mitochondrial 

activity90, with alterations in function and morphology91, as well as increased reactive oxygen species levels92, 

linked to insulin resistance. Genetic variations and alterations in gene expression of PPARγ coactivator-193, the 

master regulator of mitochondrial biogenesis, have also been proposed to play a role in the pathogenesis of 

diabetes. In light of these findings, a role for decanoic acid as a PPARγ agonist may provide a therapeutic effect 

in treatment of diabetes. Thus, increasing mitochondrial content through decanoic acid treatment, in conjunction 

with improved mitochondrial function and increased antioxidant capacity, could form a vital defence against the 

deleterious effects of mitochondrial dysfunction in diabetes.  

 

Conclusion and future directions 
The MCT ketogenic diet is widely considered to function through the generation of ketones, in the treatment of a 

range of disorders including epilepsy, cancer, Alzheimer’s disease, and diabetes. However, the underlying 

mechanisms of the diet are still largely unknown. The recent discovery of roles for medium chain fats, provided 

in the diet, in the direct inhibition of a key neurotransmitter receptor (the AMPA receptor), and through 

regulating cellular energy through PPAR activation and mitochondrial biosynthesis have provided alternative 

therapeutic mechanisms to explore. Understanding the role of AMPA, PPAR and mitochondrial biosynthesis, in 
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relation to MCT ketogenic diet-responsive disorders may provide new therapeutic targets, and facilitate the 

development of new pharmacological and dietary treatments such as altered fatty acid with MCTs, or chemical 

modification of fats to reduce first-pass metabolism clearance. Since the proposed mechanism of AMPA receptor 

inhibition, PPAR activation and mitochondrial biosynthesis provides a rationale for efficacy in other conditions, 

further clinical studies are necessary to validate the use of the MCT ketogenic diet in treatment in these disorders 

(Table 1). In addition, further clinical studies are necessary to either decrease or mitigate potential adverse effects 

of ketogenic diets, such as the low grade acidosis resulting from elevation in β-hydroxybutyric and acetoacetic 

acids.94 Furthermore, it remains to be elucidated if other ketogenic diets, such as the classical diet, are also 

associated with elevated levels of medium chain fatty acids, and monitoring of these components in clinical 

studies will help to explore these mechanisms. Validation of these and other targets of fats provided in the diet 

may both improve and widen the use of the diet, in both children and adults, for the treatment of epilepsy, cancer, 

Alzheimer’s disease, diabetes, and other disorders. 

 

Search strategy and selection criteria 
We selected references by searching PubMed for manuscripts published in English between Month/Day 2010 

and Sept 18st 2017, using the term “ketogenic diet” or ”medium chain triglyceride” and assorted combinations of 

the following terms: “epilepsy”, “seizures”, “antiepileptic drugs”, “dementia”, “neurodegenerative disease”, 

“Alzheimer’s disease”, “diabetes”, “cancer”, and “tumor”. We examined the reference lists within original 

research and review articles for additional references. We finalised the reference list on the basis of originality 

and relevance to the scope of this Review.  
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Figure 1: Breakdown and circulation of dietary medium chain trigylcerides.   (1) The consumption of MCT 

(containing decanoic acid (ten carbon) and octanoic acid (eight carbon)) as a supplement in the MCT ketogenic 

diet. (2) Medium chain fatty acids (decanoic acid and octanoic acid) are liberated from the triglycerides in the 

intestine, transferred to the liver, where (3) the majority of these medium chain fatty acids are broken down to 

three ketone bodies (BHB, ACA and acetone). (4) Both fatty acids and ketones are transported through the 

circulation to the brain. (5) Transport of fatty acids and ketones across the blood brain barrier leads to neuronal 

exposure as the site of action for the treatment of epilepsy. 
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Figure 2: Schematic representation of the relation between AMPA receptors and decanoic acid. Schematic 

representation of AMPA receptors that occur as heterotetramers. Individual subunits comprise a large extra-

cellular amino (NH2) terminal domain and ligand binding domain (for glutamate), three transmembrane domains 

(M1, M3 and M4) and reentry loop (M2). The proposed site for decanoic acid, on the M3 domain, is distinct to 

that of perampanel at the linker regions (S1-M1 and S2-M4) to the M1 and M4 domains. The carboxy terminal 

(HOOC) resides on the cytoplasmic side of the membrane.  
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Figure 3: Schematic representation of the activation of peroxisome proliferator-activated receptor gamma 

(PPAR) signaling through decanoic acid. Decanoic acid (DA) binds the PPAR to bind target DNA (with the 

retinoid X receptor (RXR) to elevate gene transcription, where enhanced gene expression is thought to trigger 

mitochondrial biogenesis. This effects leads to elevated tricarboxylic acid (TCA) cycle and complex 1 activity, 

and complex 1 activity, resulting in optimal ATP availability.   
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Identifier Study title Intervention(s) Condition/study 

population 

Lead centre Expected date 

of completion* 

NCT03075514 Ketogenic Diets as an Adjuvant Therapy in 

Glioblastoma: A Randomised Pilot Trial 

Modified KD 

vs. MCT KD 

Glioblastoma University of 

Liverpool, UK 

March 2018 

NCT02825745 Use of Betashot in Children and Adults 

With Epilepsy 

MCT based 

emulsion 

Epilepsy National Hospital for 

Neurol. & Neurosurg. 

& Great Ormond 

Street Hospital for 

Children, UK 

December 2017 

NCT02516501 Impact of a Ketogenic Diet Intervention 

During Radiotherapy on Body Composition 

MCT based 

emulsion 

Neoplasms Schweinfurt, Germany June 2018 

NCT02021526 Triheptanoin (C7 Oil), a Food Supplement, 

for Glucose Transporter Type I Deficiency  

Normal diet + 

C7 oil vs. C7 oil 

as part of KD 

Glucose 

Transporter Type 

I Deficiency 

University of Texas 

Southwestern Medical 

Center, USA 

June 2019 

NCT02426047 Medium Chain Triglycerides as an Adjunct 

to the Modified Atkins Diet for Women 

With Catamenial Epilepsy 

Modified Atkins 

diet plus MCT 

based emulsion 

Epilepsy Johns Hopkins 

University, USA 

March 2018 

NCT02912936 A Medium Chain Triglyceride Intervention 

for Patients With Alzheimer Disease 

MCT milk vs. 

olive oil milk 

Alzheimer’s 

Disease 

University of British 

Columbia, Canada 

February 2018 

NCT02679222 Comparing the Ketogenic Effect of 

Coconut Oil and Different MCTs 

Different MCT 

supplements 

Healthy adults Université de 

Sherbrooke, Canada 

December 2016 

NCT02709356 Medium Chain Triglycerides and Brain 

Metabolism in Alzheimer's Disease 

Different MCT 

emulsions 

Alzheimer's 

disease / healthy 

elderly people 

Université de 

Sherbrooke, Canada 

July 2017 

NCT02409927 Effect of MCT Emulsification on 

Ketogenesis in Human Adults 

Different MCT 

preparations 

Healthy adults Université de 

Sherbrooke, Canada 

September 2014 

NCT02551419 Proof of Mechanism of a New Ketogenic 

Supplement Using Dual Tracer PET 

(Positron Emission Tomography) 

MCT milk vs. 

olive oil milk 

Adults with Mild 

Cognitive 

Impairment 

Université de 

Sherbrooke, Canada 

June 2018 

* Final data collection date for primary outcome measure 

Table 1: Current clinical trials using medium-chain triglyceride ketogenic diets. Clinicaltrials.gov was search using the terms ‘medium-

chain’ AND ‘ketogenic’ in October 2017
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