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ABSTRACT
Memory errors continue to compromise the security of today’s

systems. Recent efforts to automatically synthesize exploits for

stack-based buffer overflows promise to help assess a vulnerabil-

ity’s severity more quickly and alleviate the burden of manual

reasoning. However, generation of heap exploits has been out of

scope for such methods thus far. In this paper, we investigate the

problem of automatically generating heap exploits, which, in addi-

tion to finding the vulnerability, requires intricate interaction with

the heap manager. We identify the challenges involved in automat-

ically finding the right parameters and interaction sequences for

such attacks, which have traditionally required manual analysis.

To tackle these challenges, we present a modular approach that is

designed to minimize the assumptions made about the heap man-

ager used by the target application. Our prototype system is able to

find exploit primitives in six binary implementations of Windows

and UNIX-based heap managers and applies these to successfully

exploit two real-world applications.

CCS CONCEPTS
• Security and privacy → Vulnerability management; Soft-
ware and application security;
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1 INTRODUCTION
Programming errors that allow the corruption of critical portions

of program memory, such as stack and heap buffer overflows, re-

main a prevalent problem [24, 26]. An attacker can exploit such

vulnerabilities and inject new code to be executed or re-use existing

code for malicious purposes. Even though many modern program-

ming languages are memory safe and rule out such risks by design,

unsafe low-level languages, such as C and C++, continue to be

popular. This is driven not only by large amounts of legacy code,

but also performance requirements and the resource constraints of

embedded environments.

Buffer overflows on the stack are well-studied and have a long

history of being exploited. The basic strategy is to overflow a local

buffer on the stack with input data until it overwrites a code pointer

(typically the return address). An arms race of ever-more sophis-

ticated defenses and attacks has lead to stack exploits becoming

increasingly difficult to execute against hardened programs [24].
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Tools for automated exploit generation are designed to find stack-

based vulnerabilities and automatically construct customized ex-

ploits [2, 4, 6, 16]. While the appeal of such tools to potential attack-

ers seems obvious, they actually offer a powerful pro-active defense

strategy in the form of an automated penetration tester. Using these

tools, developers can attempt to exploit their own systems at low

cost. Furthermore, by seeding an exploit generator with a reported

bug, developers can automatically assess the bug’s exploitability

and prioritize its patching accordingly.

Attacks against the heap are considerably more difficult than

stack-based exploits. They are based on overflowing a dynamically

allocated buffer and overwriting metadata, which causes subse-

quent operations of the heap manager (such as free) to violate

security assumptions. For example, by writing attacker-controlled

data to an attacker-controlled location. Just like stack-based buffer

overflows, heap attacks require a programming error, such as a

missing bounds check in the target application, which introduces

the vulnerability in the first place. In addition, however, setting up

the attack correctly requires intricate knowledge of the structure of

heap metadata and the internal state of the heap manager; without

it, the program will likely crash without executing any attacker-

controlled code. Akin to the arms race in stack exploits, modern

developments in hardening heap managers against common exploit

techniques have made this type of attack even more complex [20],

but still feasible.

So far, the task of crafting exploits for the heap–even for classic

vulnerabilities in systems like Windows XP—still lies firmly in the

realm of manual analysis. Despite similarities to stack-based exploit

generation (e.g., the requirement of an overflow-type vulnerability),

the absence of automatic techniques for heap exploits suggests that

heap-specific challenges are fundamentally difficult to overcome.

In this paper, we focus on the key differences between stack-based

and heap-based exploit generation. Existing approaches for finding

the initial overflow vulnerability can be fully reused; what differs

is the search for a feasible exploit, given an existing vulnerability.

We make the following contributions:

• We introduce heap-based vulnerabilities, in particular, the

classic unsafe unlinking vulnerability, in the context of the

automatic exploit generation problem. We explain the key

challenges of the problem and analyze the steps required for

any successful exploit in this class of attacks (§3).

• We propose a modular approach based on symbolic execu-

tion to automatically find (i) reusable attack patterns against

heap managers and (ii) instances of these patterns in real-

world applications (§4).

• We demonstrate our approach using a prototype implemen-

tation (§5) and present a series of experiments where we

generate working exploits for binaries of both closed- and

open-source heap managers and applications (§6).
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Figure 1: Memory layout of the free chunk header on the
Windows heap (32 bit system). Each box corresponds to one
byte.

2 BACKGROUND
We now first briefly recall the functionality and concepts behind

heap memory management (§2.1) and then provide the basics of

symbolic execution, the program analysis technique that underlies

our approach (§2.2).

2.1 Heap Memory Management
The heap memory manager is the system component responsible

for the provision, organization, and optimization of dynamically

allocated memory. At runtime, applications request memory from

the heap manager using calls such as malloc() or HeapAlloc().
The heap manager maintains a list of free memory chunks and,

upon receiving a request for memory of a particular size, it searches

that list for a chunk greater than or equal to that requested by the

client application. It is the application’s responsibility to respect

the boundaries of the memory chunk and to eventually release it

by calling free() or HeapFree().

Freelists. Different heap managers select different locations for

storing heap metadata. Many popular heap managers, including

the default Windows heap manager [17] and Linux’s dlmalloc or

ptmalloc2 [10], employ freelist-based memory management. In

this model, the heap manager prefixes a memory chunk with heap

metadata (a header) that describes attributes such as the flags and

size of the chunk. This results in a heap layout where memory

chunks containing application data are intermixed with heap meta-

data. If an application inadvertently permits user data to be written

past the boundaries of the allocated chunk, then there is a good

chance of user input overwriting adjacent heap metadata.

If a memory chunk is not allocated, then its header forms part

of the freelists and contains both a forward (fd) and backward (bk)
pointer to the next and previous free chunk, respectively. These

headers are traversed by the heap manager while it searches for

suitable chunks during memory allocation. Other operating sys-

tems, for example, FreeBSD and OpenBSD, use BiBoP memory

managers [3], which align allocations to page boundaries and store

metadata at the start of a page.

Windows XP Heap. In Windows XP, applications dynamically

allocate memory via userspace API functions in kernel32.dll,
such as HeapAlloc and HeapFree, which in turn forward the re-

quests to API functions like RtlAllocateHeap of theHeapManager

residing in ntdll.dll. The heap manager is divided into a high-

performance front-end manager, utilizing lookaside lists and the

/* Take a chunk off a bin list */
#define unlink(P, BK, FD) { \

FD = P->fd; \

BK = P->bk; \

FD->bk = BK; \

BK->fd = FD; \

}

Figure 2: The unlink macro from glibc 2.3.3.

low fragmentation heap, and a robust, general-purpose back-end

manager, utilizing freelists and the heap cache [20, 25]. The purpose

of both is to minimize the amount of requests for large memory

blocks that must be forwarded to the operating system’s virtual

memory manager (VMM).

The Heap Manager divides blocks acquired from the VMM into

smaller, re-usable chunks. The heap chunk header is 16 bytes in size

(see Figure 1). The first 8 bytes, containing the chunk size and flags,

are present in every header type, including busy chunks, but the

fd and bk pointers are only present in free chunks of memory. The

back-end heap manager maintains several circular doubly-linked

lists (FreeList[0] – FreeList[128]) to keep track of free memory

chunks in any particular heap. When the client application calls

HeapAlloc, the heap manager searches the freelists; if it finds a

suitable chunk (equal to or greater than in size than was requested),

the heap manager unlinks the chunk from a FreeList and returns it

to the client application.

Windows versions up to XP Service Pack 1 implement the unlink-

ing of a free chunk header Pwithout any sanity checks in essentially
the same way as the multi-line macro in Figure 2, which is found

in the source code to ptmalloc in the GNU C library 2.3.3. Note

that ptmalloc uses fd and bk in place of flink and blink for the

list pointers. Arguments BK and FD are used as temporary storage.

Unsafe Unlinking Exploit Primitive. An attacker who controls

P->fd and P->bk can choose their values to trigger a write of an

arbitrary value to an arbitrary memory location. The line FD->bk =
BKwill write the value in P->bk to the address computed as the sum

of P->fd and the offset of the bk field in the enclosing list struct, i.e.,
(p->fd)->bk = p->bk, in expanded form. The second write access

to BK->fd then reverses the roles of the values; its values depend

directly on the ones chosen for the first write and can trigger an

access violation if not chosen carefully (this is a typical challenge

for writing working heap exploits).

Such elementarywrite-anything-anywhere operations have been

dubbed exploit primitives, since they serve as building blocks in a

chain of primitives used to achieve arbitrary code execution. There

are a number of other common heap-management operations, such

as the coalescing of two adjacent free chunks into a single large

chunk of memory, that may give rise to exploit primitives if heap

metadata is corrupted and not verified.

Windows versions beginning with XP Service Pack 2 (SP2) have

added two sanity checks to the unlinkmacro that use the data struc-

ture invariants of the circular doubly-linked freelist (node->bk->fd
== node and node->fd->bk == node) to verify the list’s local in-

tegrity before executing a write.



Lookaside List Exploit Primitive. Singly-linked lists, such as the

lightweight lookaside lists in the Windows heap manager, do not

allow to implement such a simple invariant check. Thus, versions

up to Windows 2003 Server remain vulnerable via their lookaside

lists even though the exploit primitive in the unlink operation was

removed.

The lookaside list can be exploited by corrupting heap metadata

such that an attacker-chosen pointer is eventually inserted into the

list. Once HeapAlloc returns an entry from the lookaside list to

the application, any write to that pointer by the application targets

attacker-chosen memory. If the data written is also attacker-chosen,

then the attacker has again found an exploit primitive.

2.2 Symbolic Execution
Symbolic execution is a technique for the systematic enumeration of

program paths, and it has been highly successful in automated test

case generation [5, 7, 13, 14]. In symbolic execution, inputs to the

program under test are given symbolic instead of concrete values.

Whenever a symbolic input variable is used in a conditional state-

ment, execution forks and follows both branches. During execution,

the conditional expressions on branches are added as conjunctions

to the path condition. The path condition expresses the condition

over input variables under which that path is taken. Whenever a

path forks into two, the symbolic execution engine can rule out

infeasible paths by calling a constraint solver to check whether both

or just one of the resulting path conditions is satisfiable. Symbolic

execution is sound, since all the paths it explores are also feasible

in real executions.

In principle, a symbolic execution engine eventually explores

all control flow paths in a target program; symbolic execution is

theoretically complete. In practice, the exponential growth in the

number of paths limits the amount of exploration that an engine

can achieve. Many symbolic execution engines furthermore forego

completeness by sometimes concretizing parts of the symbolic state

space. For instance, when external functions are called, parameters

whose value depends on symbolic input can be fixed to a single

concrete value to rule out any forking in the callee.

Automatically generating exploits is in many ways similar to

generating a test case exhibiting a particular bug. Therefore, sym-

bolic execution is well-suited as a foundation for this task. Prior

work on automatic exploit generation has either built directly on

symbolic execution [2, 4, 6], or closely related techniques such

as bounded model checking [16]. Many challenges that exploit-

generation systems encounter in practice, e.g., path explosion, are

also largely shared with symbolic execution. For the purpose of

this paper, we treat this problem as orthogonal, but acknowledge

that it is an active area of ongoing research.

Path explosion (or, equivalently, state space explosion) describes

the problem arising from the fact that, in general, the number of

program paths is exponential in the size of the program. Many tech-

niques have been proposed to cope with path explosion, including

search strategies that prioritize important paths [5], function sum-

maries [12], and state merging, which tries to reduce the number

of paths by combining states using disjunctions [18].

Interactions with the environment increase the difficulty of ex-

ercising accurate behavior in the program under test. Tools such

as KLEE [5] are equipped with a handful of system call models

that abstract and imitate the application-system interaction. Unlike

KLEE, the S
2
E system [7] does not model the environment, but

instead provides a full operating system stack, composed of appli-

cations, system libraries, drivers and the kernel. If required, S
2
E

could explore the entire system symbolically, although in practice,

one typically chooses to run most of the system concretely while

just selectively enabling symbolic execution. The environment is

normally several orders of magnitude larger than the unit under

test and avoiding its exploration improves scalability.

3 AUTOMATIC HEAP EXPLOITATION
We now frame the problem of automatic heap exploitation (§3.1),

introduce our modular approach (§3.2), and illustrate its phases

following a practical example (§3.3).

3.1 Problem Definition
In the scope of this paper, we restrict ourselves to read and write

exploit primitives. Therefore, we define a heap vulnerability as an

application vulnerability that allows an attacker to manipulate heap

metadata into executing an exploit primitive for writing attacker-

controlled data to an attacker-controlled location. Our goal is to

design an algorithm that is complete (or as complete as possible)

for this subclass of heap-related vulnerabilities, and that reliably

finds and exploits write primitives in heap management code.

The problem of exploiting heap-based vulnerabilities differs from

that of exploiting stack-based or string-format vulnerabilities in

that it actually involves two separate targets: (i) the application
containing a heap-based buffer overflow and (ii) the heap manager
that mediates the memory allocations. Exploit primitives in heap

managers, e.g., write-4 or write-n for writing 4 or n bytes to an

arbitrary address, respectively, exist independently of application-

specific implementations. Thus, it suffices to locate a set of exploit

primitives once for each heap allocator. The exploit primitives

and often even the subsequent control-flow hijack parameters can

then be directly applied to different applications (given that non-

randomized code, such as trampoline offsets, remains constant in

shared modules such as kernel32.dll).
This modularity is a key aspect of our approach. For a given

heap manager, we first discover reusable exploit primitives in an

automatic process using a generic testing harness (the application
surrogate). For a given application and runtime environment, we

then use the matching primitives to automatically generate an

exploit for a heap-based vulnerability.

The contributions of our present work focus only on the specifics

of exploiting heap management code; we consider the general

search for application bugs (which could lead to vulnerabilities) as

an orthogonal problem. Indeed, existing powerful test case genera-

tion tools can provide input for our system, which then assumes

the role of classifying bugs according to their exploitability. This

approach is in line with previous work on exploit generation that

seeds its search with known crashing inputs [2, 16].

Modern exploit mitigation techniques such as Address Space

Layout Randomization (ASLR) [19] orW ⊕ X present further chal-

lenges that we consider out of scope for now. In addition to the path



77F52346 mov [ebp-C4h], eax
77F5234C L_unlink:
77F5234C mov [eax], ecx
77F5234E mov [ecx+04h], eax
77F52356 ...

Figure 3: A code segment with an exploit primitive.

condition for reaching an exploit primitive, such defense mecha-

nisms introduce additional constraints on the exploit solution (and

may render some vulnerabilities non-exploitable). A number of

techniques exist to circumvent known protections in many sce-

narios and may be applicable in the context of automatic exploit

generation [9, 22, 23].

3.2 Modular Exploit Generation
Overall, our approach to generating heap exploits follows a five-

phase process, of which the first two phases are always independent

of the target application, and the third and fourth can often be

kept independent. All phases rely on symbolically executing the

application program together with the heap management code. The

phases are:

(1) Interact: Find a crashing sequence of heap-interactions that

overwrites heap metadata and generate a surrogate program

that implements the sequence.

(2) Primitive: In the surrogate, fill the overflow buffer with

symbolic bytes to discover an exploit primitive in the heap

manager.

(3) Hijack: In either the heap manager or the target application,

locate a transfer of control flow to a memory pointer and im-

pose constraints on the symbolic input such that the exploit

primitive hijacks the pointer.

(4) Bounce: If necessary for control flow diversion, locate a

trampoline in library or application code that transfers con-

trol to attacker-controlled code.

(5) Payload: Synthesize the exploit payload and emit driver

code for feeding it to the application.

3.3 AlgorithmWalkthrough
We now present an example of applying the algorithm in order to

clarify the individual steps.

Enumerate Heap Interaction Patterns. The initial step (Interact)

entails finding a sequence of interactions between an application

and a heap manager that permits heap metadata to be sequentially

overwritten by a buffer overflow. As input, this phase uses an alpha-

bet of heap-management functions and buffer access and overflow

operators. Our system enumerates sequences until it finds one that

leads to the corruption of heap metadata and a subsequent crash,

e.g., (HeapCreate, HeapAlloc, HeapAlloc, Overflow, HeapAlloc).
Here, the trailing HeapAlloc call trusts the now-corrupted meta-

data and performs an unsafe unlink operation (see §2.1), causing

the subsequent execution of an exploit primitive. The crashing se-

quence is then cast into a surrogate program that acts as a test

harness for the heap manager.

77EB9B82 mov eax, [L77ED63B4]
77EB9B87 cmp eax, esi
77EB9B89 jz L77EB9BA0
77EB9B8B push edi
77EB9B8C call eax

Figure 4: The UEF exception handler dispatch.

The output of the Interact phase is a set of similar interaction

sequences that lead to exploit primitives and vulnerable heap layout

configurations for arbitrary heap managers.

Find Exploit Primitives. During the second phase (Primitive),

our system makes the overflowing bytes symbolic, because they

will be derived from input in a concrete attack. It then monitors

the program state for exploit primitives, which it detects as writes

of symbolic data to a symbolic address. This is synonymous with a

write of attacker data to an attacker-controlled location.

In our example, amemory copy instructionwith symbolic operands

is observed in ntdll.dll (see Figure 3). Both the EAX and ECX regis-
ters are symbolic and can be freely chosen by the attacker (modulo

the constraints imposed by the path condition).

At this point, our system has produced a path condition that

corresponds to a range of concrete inputs under which the target

program reaches an exploit primitive.

Control Flow Hijack. To achieve arbitrary code execution, the

exploit must divert the control flow of the application. In phase

Hijack, our system uses the exploit primitive to overwrite the

memory location that will be used for the next indirect control

transfer reachable from the exploit primitive.

Examples of exploitable indirect control transfers are function

pointers or installed exception handlers. In our example, the corrup-

tion of heap metadata causes a second exploit primitive to produce

an access violation in the heap manager and triggers a series of ex-

ception handlers. As Figure 4 shows, one of the exception handling

dispatch routines moves the value at memory address 77ED63B4
into EAX and calls it.

This memory address serves as the target for the exploit primitive

and completes the next step in the chain; by constraining EAX to be

equal to 77ED63B4when executing the mov [eax], ecx instruction
in Figure 3, control will eventually transfer to the location pointed

to by ECX.

Trampoline Search. To complete the exploit, we need to constrain

themanipulated jump target such that the program executes foreign

code, which, in our exploit model, is held in the attacker-controlled

overflow buffer. To make this control transfer reliable, Bounce

searches for a “trampoline”, another indirect control transfer, that

jumps to the address held in a register that happens to point to the

user-supplied buffer at the time.

Continuing our example, our system scans the processor state at

the time of the initial control flow hijack and finds that the registers

EDI and EBP point to our buffer. The system then searches for a

matching trampoline, i.e., call or jmp instructions to EDI/EBP+offset,
in any module loaded in the target process. This address completes

the next step; the ECX register has to be constrained to the trampo-

line memory address when the exploit primitive is executed.



Exploit Generation. The remaining phase, Payload, consists of

constructing a valid shellcode that satisfies the constraints imposed

on the buffer at the time of the trampoline jump. We use an elastic

shellcode template with NOP slides that can be adapted to satisfy

constraints. It is fitted with Service Pack-specific offsets to API

functions called from the shellcode. The exploit is expressed as

a C-based character array and also packaged into a stand-alone

executable Python script, selected according to the attack vector’s

method of delivery, e.g., over a network or the command line.

4 THE HEAP EXPLOIT SYNTHESIS CHAIN
We now present the details of our approach and explain the phases

for finding and satisfying the constraints under which the full chain

of events, necessary for the successful construction of an exploit,

unfolds. We discuss how to discover a vulnerable heap interaction

sequence (§4.1), locate a suitable exploit primitive (§4.2), hijack the

application control flow (§4.3), find a suitable trampoline (§4.4), and

synthesize the final exploit (§4.5).

4.1 Application-Heap Interaction
Given the implementation of an arbitrary heap manager H and its

API, the first phase (Interact) consists of searching for a sequence

of application-heap interactions that corrupts heap metadata and

violates the internal consistency of heap data structures. Once a

crashing sequence is found, it is written to a surrogate program,

which is then passed to the next phase, Primitive.

Successful sequences will typically contain (1) a call for creat-

ing a private heap (if necessary), (2) initial memory allocations to

generate metadata and a target memory buffer on the heap, (3)

an overflow θ to overwrite metadata, (4) an in-bounds write γ (if

necessary) and (5) a heap API call processing the invalid metadata

and triggering an exploit primitive. However, the exact sequence

and number of events that is required depends on the particular

heap manager. With this knowledge, it is possible to guide search

heuristics by prioritizing promising sequences of heap interactions.

This set of operations has so far been sufficient, but could in

principle be extended by other generic operations. While the API

calls and the overflow operator have obvious purposes, the need

for an in-bounds access is more subtle: depending on the type of

heap metadata corruption, an exploit primitive may only be reached

once the application executes a normal write (of attacker-controlled

or constant data) to a corrupted pointer, which has in turn been

inadvertently returned by a heap API function.

Interact begins by running an application surrogate that is an

interpreter for the alphabet

Σ = {Create, Alloc, Free,γ ,θ } ,

where Alloc and Free stand for malloc / HeapAlloc and free /

HeapFree, respectively, Create for the Windows-specific call to

HeapCreate, γ for an in-bounds buffer write, and θ for an out-of-

bounds heap overflow. The interpreter iterates over an input string,

interpreting symbols until it reaches the end and exits. For each

heap-management symbol, it executes the corresponding operation.

The input string can be fuzzed or symbolically executed up

to a fixed length (our prototype does the latter). With five sym-

bols in Σ, injecting a string of three characters results in a search

FreeList[0] Hn Dn Hn+1 Dn+1 Hn+2 Freen+2

Hn+2.blink

Hn+2.flink

Figure 5: Heap metadata is adjacent to buffer content.

space of 5
3 = 125 heap interactions. Crashes can be robustly

detected by interpreting signals (on Linux) or intercepting the

UnhandledExceptionFilter (on Windows).

Heap Configurations. In Windows heap management, after allo-

cation requests for memory of size Dn and Dn+1 bytes, and with

Freen+2 bytes remaining unallocated in the heap, the memory lay-

out will resemble that of Figure 5. Header Hn+2 references a free

block of memory and forms part of the FreeLists. If an application

permits buffer Dn+1 to be overflown (the overflow area is marked

in bold), then the flink and blink pointers in Hn+2 can be set to

arbitrary values. HeaderHn+2 points back to the FreeList[0] such
that a search for available memory terminates upon returning to the

beginning of the head node. In Figure 5, the heap is not fragmented

and coalescing is not required, so Hn+2 can summarize the en-

tirety of free memory available in the heap. Any further allocations

would split Freen+2 into Dn+2 and Freen+3, moving Hn+2’s flink
and blink pointers further towards the end of the heap. However, a
series of de-allocations could poke holes in consecutively allocated

memory and would result in a fragmented heap, with buffer Dn po-

tentially sitting next to new flink and blink pointers. The ability

to conduct more advanced manipulations of heap memory layouts

is desirable, because it can enable more surgical heap exploitation.

Limitations. In this work, we restrict our model to heap-based

buffer overflows that always overwrite heap metadata sequentially

by writing past the boundaries of allocated buffers. However, in

practice, there exist many methods for overwriting heap metadata.

For example, an integer arithmetic error in an array subscript could

directly corrupt heap metadata from any point in a program, while

leaving adjacent fields, such as heap header cookies, intact.

4.2 Heap Exploit Primitives
Given the heap manager H and a surrogate S implementing a

known-crashing interaction sequence, the next phase, Primitive,

discovers a set of heap exploit primitives P for overwriting security-

sensitive data in the application.

Figure 6 shows the set of exploit primitives with respect to sym-

bolic bytes.Mn [·] maps a memory address to its corresponding

n-byte value and x is an attacker-controlled symbolic value, which

may have arbitrary constraints imposed upon it. If only attacker-

specified input is made symbolic and critical operations eventually

manipulate symbolic bytes, then attacker input is reaching critical



Mn [c] ← x symbolic write-n to fixed location

Mn [x ] ← c fixed write-n to symbolic location

Mn [x ] ← x symbolic write-n to symbolic location

v ← Mn [x ] read-n from symbolic location

Figure 6: Description of heap exploit primitives.

if(!prev_inuse(p)) {
prevsize = p->prev_size;
size += prevsize;
p = chunk_at_offset(p, -prevsize);
unlink(p, bck, fwd);

}

Figure 7: Coalescing of chunks in dlmalloc.

operations under some constraints. The constraints determine the

level of control that the attacker exercises over the values used in

those critical operations. Hence, once a flow of symbolic data to a

symbolic destination is detected, we have discovered a heap exploit

primitive. Generally, we deal with full or partial write-n primitives

(for n = 1, 2, or 4 or a 32-bit system). Full write-n primitives give

the attacker control over both the data and the destination address,

whereas partial writes only allow the attacker to control one of

them.

Primitive involves injecting symbolic data past the boundaries

of allocated buffers, as per the application-heap interaction se-

quence determined in Interact, and repetitively picking new

paths to explore in surrogate S (see Algorithm 1). Each path is

executed, instruction by instruction, until program termination or

until an exploit primitive is found. If the instruction is of the form

I = (Mn [A] ← V ), such that a valueV is being written to memory

address A, and both A and V contain symbolic values, then the

instruction I is a write-n primitive.

The path is passed to the the next phase, Hijack, and execution

resumes from the instruction immediately following the exploit

primitive.

Read Primitives. Some heap managers, such as dlmalloc and

ptmalloc2, also require the use of read exploit primitives. Upon

overflowing the heap chunk header with symbolic bytes, field

p->prev_size becomes symbolic (see Figure 7) and the unlink
macro performs memory load operations from the symbolic ex-

pression. Depending on the memory model of the symbolic exe-

cution engine used, a symbolic read is either concretized or leads

to expensive subsequent solver queries involving array logic. We

use a concrete memory model, i.e., a symbolic expression must be

concretized before it is used as a pointer for a memory read. Concep-

tually, any feasible address is a possible solution; for completeness,

all possible addresses have to be eventually enumerated. We decide

to concretize symbolic reads to a memory address within bounds

of the attacker-controlled buffer, if possible. This follows a general

strategy of making symbolic as much as possible of the program

state. If the value chosen does not lead to a write primitive, the

current path terminates unsuccessfully and a new path is forked

with a new value. In the case of dlmalloc, the result is that the

Data: a surrogate S exercising a select sequence

Result: a tuple {Aval ,Vval} for exploit primitive

while (P = pickNewPath(S)) , ⊥ do
while (I = nextInstruct (P )) , ⊥ do

if (I =Mn [A] ← V ) then
if (A = sym) ∧ (V = sym) then
{Aval ,Ref } = Hijack (P , I);
Vval = Bounce (Ref );
ok = P.aC(A = Aval ,V = Vval);
if ok , ⊥ then

return {Aval ,Vval};
end

end
end

end
end

Algorithm 1: Discovering an exploit primitive.

unlink macro fetches symbolic bytes and ultimately executes a

write-4 exploit primitive as before.

4.3 Hijacking the Control Flow
Hijack addresses the problem of finding, given a set of exploit

primitives, a writable pointer T such that a single or a chain of

exploit primitives can hijack the control flow of the heap manager

by redirecting T to an attacker-controlled address.

To this end, Hijack locates indirect control transfers on the

current path that depend on writable memory locations using a

static dependency analysis. For simplicity, we focus on locations

that are not modified (note that aliasing does not pose a problem in

path-wise symbolic execution with a concrete memory model). If

the path does not contain an indirect control transfer, the current

path will again terminate unsuccessfully and symbolic execution

will resume with another path through the program, until an exploit

has been either found or the program is shown to be immune to

exploitation under the model used.

Hijack returns the tuple {Aval ,Ref } where Aval is the memory

location that control has been transferred to and Ref is a relative
address, such as dword ptr[edi+74h], that references the injected
buffer at the point of control transfer toAval . Such control transfers

are often observed in application-specific code, such as call tables

and C++ vtables, and also exception handling routines. It is common

practice in manual exploitation to build more reliable exploits by

making use of jmp or call trampolines [16], rather than guessing

or hardcoding memory addresses. The assumption is that a register,

which happens to contain a pointer to an attacker-controlled buffer

at the time of control being transferred to an arbitrary attacker-

chosen address, will always contain such a pointer, regardless of

the absolute value of the buffer’s memory address.

4.4 Locating a Trampoline
Subsequently, Ref is converted into a binary sequence that performs

a call or a jmp to Ref and Bounce searches for the binary sequence
in all modules that are loaded in the target process (including system

libraries such as kernel32.dll on Windows). The resulting offsets



Vval andAval are candidate values for the write-n primitive. In other

words, setting ecx to Aval and eax to Vval in a primitive such as

mov [ecx], eax is, under the chosen path, guaranteed to transfer

control toVval , which in turn, and by construction, transfers control
to an attacker-supplied buffer on the heap. To verify the suitability

of the chosen values for Vval and Aval , the constraints A = Aval
and V = Vval are added to the path condition, and, if it remains

satisfiable, the values are valid for use.

At the point of the control transfer to Aval , all eight general

purpose registers are scanned for values falling within the range of

the injected buffer. For each register r , our system also performs

a scan from dword ptr[r+00h] to dword ptr[r+FFh] to locate

indirect references to the buffer.

Finally, a working exploit requires finding memory offsets for

API functions used in the shellcode and call trampolines that

redirect control to shellcode. To that end, Bounce uses an in-vitro

scanner embedded in the guest operating system to scan modules

of interest. The list of modules is compiled from the modules that

are loaded in the target process at the point of the control flow

hijack.

4.5 Synthesis of Exploit Payload
The final phase, Payload, generates a shellcode respecting all con-

straints established in the previous phases. Given an application

containing a heap-based buffer overflow and a set of exploit-friendly

heap-interaction sequences, the generated exploit has to guide the

application towards one such sequence. In addition, the exploit

payload must cause an exploit primitive to overwrite an invoked

pointer and cause subsequent execution of arbitrary code.

Recall that a trampoline transfers control to a memory address

residing within the boundaries of the injected buffer. Hence, the

exact offset from the start of the buffer, to which control is trans-

ferred, is dependent on Ref . We shall refer to the bytes residing at

that offset as the landing site (see Figure 8). An exploit must be con-

structed within the confines of both spatial and value limitations

on the input. Since Ref transfers control to a particular offset from

the start of the injected buffer, it is mandatory to exercise control

over several bytes at the landing site. If the successive bytes are

bad bytes, this at least permits us to introduce a jmp instruction to

the rest of the shellcode. Failure to do so could cause an invalid

instruction or access violation once control reaches that part of

the buffer. In order to avoid executing bad bytes in the user input

that cannot, due to constraints, assume values of valid instructions,

we prefix all such bytes with a jmp and conveniently jump over

them. If we install shellcode as an exception handler, an invalid

instruction in the shellcode may result in an infinite loop.

The rest of the bytes that do not form part of the shellcode or

any auxiliary gadgets are set to NOP instructions in order to form

a NOP slide directed towards the shellcode. The resulting NOP slide
could be contiguous up to the shellcode or alternatively, it could

be a segmented NOP slide. The reliability of the Ref offset thus

determines the probability of successfully executing the shellcode.

We use a roughly 20-byte shellcode to run calc.exe using

WinExec and terminate the target process using ExitProcess. The
offsets of these functions, which are Service Pack-specific, are re-

trieved during Bounce and are inserted into the shellcode. We

{0x90,0x90,0x90,0x90,0x90,0x90,
0x90,0x90, landing ,0x90,0x90,
0x90,0x90,jump 2,bad,bad,0x90,
0x90,0x90,0x90,0x90,0x90,0x90
0x90,0x90,0x90, shellcode };

Figure 8: An elastic exploit template.

require two bytes for every jmp instruction that is inserted (see

Figure 8). As a consequence, a single byte located between two

bad bytes is itself considered a bad byte, as it cannot facilitate a

jump to valid code. Thus, the exploit is constructed using an elastic

shellcode template.

5 IMPLEMENTATION
We designed our system as plugins (about 5 KLOC of C++) to

the S
2
E binary symbolic execution framework [7]. S

2
E executes

code manipulating only concrete values natively and dynamically

translates symbolic code from x86 to LLVM bitcode for symbolic

execution with KLEE.

Our S
2
E analyzer plugin inspects program states for heap exploit

primitives. We also make use of a custom selector plugin to apply

search heuristics, such as path prioritization. In addition, we have

extended S
2
E plugins, such as the WindowsMonitor plugin, to work

on unsupported Windows XP service packs, e.g., SP0 and SP1. The

purpose of the extensions is merely to allow S
2
E to run Windows

XP SP0 and SP1 as guest operating systems and is not related to

the technique presented in this paper. We also modified KLEE’s

core modules to enable the partial processing of concolic bytes and

floating point data types. The modification proved to be crucial in

attacking the GDI component in Windows (see §6.2). In the exploit

generation phase, we produce a compact stand-alone Python script

that delivers the exploit over a chosen interface, e.g., over TCP/IP

sockets to network-enabled applications.

6 EVALUATION
In this section, we first present our evaluation targets and method-

ology (§6.1) and then present experimental results to answer the

following questions:

(1) Effectiveness (§6.2): Can our system automatically generate

heap exploits for real-world applications?

(2) Generality (§6.3): Does our system apply to a wide range of

heap managers?

(3) Automation (§6.4): What level of automation does our im-

plementation offer?

(4) Performance (§6.5): What is our system’s overall perfor-

mance and what is the contribution of the individual steps?

6.1 Evaluation Targets and Methodology
Heap Managers. As target heap managers, we selected all four

Windows XP heap managers, from Service Packs 0 to SP3, and

the open source implementations of dlmalloc (Doug Lea’s malloc)

and ptmalloc2 (the heap manager currently used in the GNU C

library, glibc). The evolution of the security of the built-in Windows



XP heap manager over the range of Service Packs is representa-

tive of the development of countermeasures across other platforms

as well. The heap vulnerabilities are not mere programming er-

rors, but complex operations on data structures which occasionally

result in unsafe program states. For example, both the Windows

heap and glibc contained unsafe unlink macros (see §2.1). Over

the years, both gradually introduced similar safety measures, e.g.,

cookies to the heap header and non-writable guard pages to prevent

cross-page overflows. For the purposes of exploit generation, each

Windows XP Service Pack represents a completely separate heap

manager, since each is a binary build with a unique set of pointer

offsets. Consequently, an exploit is tailored for deployment against

a particular Service Pack.

We also built dlmalloc and ptmalloc2 on Windows, but the

detection and use of their respective exploit primitives happens

completely inside the code of the application. While their hijack

on Windows is mediated via the UEF exception handler, a different

(possibly application-specific) function pointer can serve as a hijack

target on other platforms.

Applications. As test targets we employ two real-world closed-

source applications, WellinTech KingView and a Windows GDI

component. Both applications contain remotely exploitable heap-

based buffer overflow vulnerabilities that may lead to arbitrary code

execution. Manual exploits for both applications are available in

online security databases.

WellinTech KingView 6.53 (CVE-2011-0406) is a SCADA/HMI

application used in industrial control systems to visualize process.

It is a large and complex applications consisting of hundreds of files

and utilities. The vulnerability, which was discovered in 2011 and

given CVE-2011-0406, is present in the HistorySvr.exe module

that starts up in the background as a Windows service and listens

on TCP port 777.

The MS04-032 vulnerability is present in a core component of the

Windows operating system, the Graphics Device Interface (GDI)

library. The vulnerability is triggered when the thumbnail icon of a

specially-crafted Enhanced Metafile (.emf) image file is rendered

by an application. An attack vector would include an HTML email,

an ordinary website or a remote shared drive.

Both real-world applications were tested on Windows XP SP1

and targeted via the unlink exploit primitive. The exploit gen-

eration should therefore work successfully on any of the unsafe

unlink heap managers.

6.2 Effectiveness
We have successfully found and utilized fully-controlled write-4
primitives on Windows XP SP0 and SP1; a combination of read-4
and write-4 primitives that work in concert with each other in

dlmalloc and ptmalloc2; and partial read-4 and write-4s, fol-
lowed by an alphabet-induced write-4 (full or partial) in Windows

XP SP2 and SP3. The fact that a HeapAlloc call returns a sym-

bolic pointer during the lookaside sequence means that even API

hooks can recognize this vulnerability. In our model, we recog-

nize the vulnerability, since it results in a write primitive, due to a

trailing γ (within-bounds write) at the end of the sequence. In sum-

mary, we have verified applicability of our unlink attack sequence

on UNIX-based systems for dlmalloc 2.7.2 and glibc v2.3.3

(ptmalloc2); on Win32 systems for Windows 2000, Windows XP

SP0, and Windows XP SP1. We verified the lookaside attack on

Windows XP SP2 and SP3, and Windows 2003 Server.

Our prototype system successfully automates the entire end-

to-end process of crafting a calc-spawning exploit for the two

target applications. It demonstrates that, at least for these case

scenarios, the “hacker mind” can be imitated to a practical degree.

For a bare-bones surrogate application, full exploit generation for

an unlink vulnerability with a UEF handler hijack took 5.9 seconds;

a lookaside list exploit with app-specific hijack took 9.8 seconds.

6.3 Generality
As mentioned in §6.2, we can find and utilize fully- or partially-

controlled read and write primitives on all Windows XP Service

Packs. In dlmalloc and ptmalloc2, successfully dealing with read
is a pre-requisite for employing write primitives to hijack pointers.

Hijack Method. Our search for an invoked, writable code pointer

on Windows XP SP0 and SP1 results in finding and hijacking the

UnhandledExceptionFilter. The dlmalloc and ptmalloc2man-

agers are compromised via the samemechanism, as neither employs

its own exception handling and each passes control directly to the

UEF after an access violation. We are, however, unable to exploit

applications that preclude the execution of UEF, for example, by in-

stalling a VEH handler. The VEH exception handler is not the default

handler and its dispatch is protected from execution by a condi-

tional guard. This means the head node to its exception handler

chain cannot be found using our method.

The hijack method slightly differs for later Windows versions.

From Windows XP SP2 onward, the UEF pointer is protected by

EncodePointer, rendering the UEF hijack method infeasible. How-

ever, unlike the unlink technique, the lookaside technique allows
control flow to exit the heap manager, permitting us to search for a

hijackable pointer inside application code. Thus, to hijack applica-

tions on Windows XP SP2 and SP3, we apply the same routine that

detects the UEF dispatch to application code, automatically lifting a

valid, but non-reusable target pointer.

Memory Wrappers. Often enough, mid-sized or large software

projects, like the cross-platform Webkit, opt to employ their own

memory-management routines, usually in an effort to achieve

greater performance. We use dlmalloc and ptmalloc2 as memory

wrappers around the Windows heap. This scenario serves to show

off that our system can exploit custom heap implementations, even

if the underlying operating system heap is immune to attack. While

dlmalloc and ptmalloc2 are open source, our system does not use

their source code as an input. We are therefore able to demonstrate

that the binaries of dlmalloc and ptmalloc2 on Windows can

be executed symbolically, which is a pre-requisite for automatic

exploit generation.

Applicability. Although our evaluation is performed onWindows

XP, the exploitation techniques found and exercised by our system

are also known to be applicable to Windows 2000 SP0–SP4 and

Windows 2003 Server. This includes, at minimum, another five real-

world heap managers that our system can target without modifica-

tion. The early Windows XP versions, dlmalloc, and ptmalloc2
are all attacked using the unlink method, as it is convenient and



sufficiently powerful. Nevertheless, our techniques are not limited

to the unlink method, as shown by using the lookaside method

against later Windows XP versions that are explicitly hardened

against unsafe unlinking.

The benefits of our prototype system are most clear-cut when

an exploit, which is under construction for a newly-tasked heap

manager, differs only in minor low-level detail and is still covered

by the model in use. The extending of exploit models or templates

requires human reasoning, but minor low-level details are parsed

in a straightforward fashion by laborious, repetitive calculations,

perfectly suited for out-sourcing to a fast, automated process.

Sequence Enumeration. Designing or evolving effective heuristics
to filter out non-exploitable sequences has been left for future work.

The ascertaining of correct values for performing more complex

heap manipulations, such as repairing the default process heap

automatically, is also beyond scope. However, in all our test cases,

the path from the post-overflow invocation of the HeapAlloc or

malloc call to the execution of the exploit primitive was quite short.

Thus, while it may not qualify as a general criterion, terminating

the exploration of a sequence after 15 seconds is an effective search

heuristic for isolating the unlink and lookaside sequences.
We have conducted searches of state spaces of up to 5

7
config-

urations, covering just over 65,000 states, which encompass both

the unlink and lookaside exploitation techniques. Note that for

maximum speed, one should instead employ a userland fuzzer with

additional optimization steps that reduce the size of the state space.

Our search lazily explores most permutations of the alphabet, in-

cluding sequences without any θ operator. Using an S
2
E plugin for

searching, one complete sequence exploration takes on average 1.1

seconds, with θ interpreted as a concrete overflow.

6.4 Automation
Injection Models. As briefly mentioned in §5, in order to simulate

user input, we inject symbolic data by utilizing conventional input

vectors, such as arguments, files on disk, network transmissions

or environment variables. To this end, we implement a number of

complex interfaces, which we have observed to be necessary for the

injection of real-world applications. These complex interfaces en-

sure a target application receives the symbolic input properly. Our

plugin intercepts WSAAsyncSelect in order to retrieve the message

code and socket identifier used for the registration of asynchronous

network event notifications. The collected data is replayed into an

application’s main message loop using GetMessageA; this simulates

a network event occurrence that results either in the acceptance of

a new connection or in the reading from an established connection

stream. In the latter case, a ioctlsocket call is intercepted to sim-

ulate data waiting to be read from the operating system’s network

buffer. Only then is any subsequent attempt to read the data using

recv utilized to inject symbolic bytes.

This procedure was used to inject the WellinTech KingView

SCADA/HMI application. It is infeasible to deliver an oversized

input to KingView, and thus infeasible to exploit it, if only recv
is modeled. This demonstrates how difficult it is, in practice, to

stimulate behavior from real-world applications. It requires not

only having models for each of the four individual API calls, but

Length States Crashes Time (s) Technique

1 5 0 0

2 25 1 18

3 120 6 94

4 580 28 580 unlink

5 2,792 124 3,062

6 13,468 548 11,106

7 65,152 2,446 73,606 lookaside

Table 1: Number of states, crashes and time taken for each
step in enumerating vulnerable heap interaction sequences.
The unsafe unlinking attack is discovered after four steps,
and the lookaside vulnerability after seven.

also to have the four API calls work in concert with each other to

create a consistent illusion of incoming network traffic.

To exploit the two real-world applications, we needed to boot-

strap the symbolic execution engine with a concrete prefix and

suffix. We consider finding the path to a vulnerability to be an or-

thogonal problem, but acknowledge that it is an active research area

and an important sub-problem in a full exploit generation system.

KingView Vulnerability. To tackle the CVE-2011-0406 vulnerabil-

ity in KingView, we provided an auxiliary concrete input consisting

of 30,000 concrete bytes, with the addition of 70 symbolic bytes.

The auxiliary bytes that form the prefix are derived from a crashing

test case (without exploit). The prefix allows to reach the location

of the crash without re-exploring the entire application.

The nettransdll.dll that is host to the heap-based buffer over-
flow unfortunately computes a cyclic redundancy check (CRC16)

on received network data before passing it on. The error-checking

calculation has no effect on the exploitability of the vulnerability,

i.e., the resulting checksum does not have to match the expected

value for the exploit to work. However, the execution of the CRC16

routine itself can be problematic. A concrete prefix is often em-

ployed to get the symbolic execution engine through problematic

portions of code, e.g., an application is made to perform difficult

computations on a concrete header of a packet, so it thereafter

passes the entire packet, which bears a trailing symbolic suffix, to

the code of interest. In CVE-2011-0406, a checksum is computed on

the entire packet, resulting in a fork explosion upon the injection

of only a single symbolic byte. Cryptographic code, e.g., message

digest functions, is well-known to be problematic for symbolic exe-

cution tools. Therefore, we solve the problem by providing an S
2
E

abstraction for the CRC16 function with local consistency. Alter-

natively, a concolic string seeded with the concrete prefix can be

used instead. Overall, generation of a full exploit took 22 seconds.

Windows GDI Vulnerability. To generate an exploit for the MS04-

032 Windows GDI vulnerability, we provided an Enhanced Metafile

(EMF) file format template as the auxiliary concrete input. The

template consists of a 64-byte concrete prefix, the file header, and

4-byte concrete suffix, the file terminator. An arbitrary number of

symbolic bytes (in our case, 67 symbolic bytes) was injected into

the "data" portion of the EMF template by ReadFile hooks that in-

tercepted the IStream::Read interface data buffering. The control



Technique States CpuConcr CpuKlee Queries QConsts UserTime (s) QueryTime (ms) SolverTime (ms)

Unlink (SP0) 1 190,898 0 0 0 6.87 0 0

3 24,099,316 84 2 19 1.23 0.011 0.005

7 24,097,122 2,315 262 2,772 1.36 0.301 0.008

7 24,097,122 2,315 264 3,817 1.39 0.306 0.012

Lookaside (SP2) 1 231,020 0 0 0 7.48 0 0

5 50,048,788 2,073 8 86 1.80 0.017 0.018

6 50,779,813 5,266 12 146 1.90 0.020 0.029

6 54,470,030 8,892 26 1,273 2.26 0.056 0.035

6 55,675,071 8,892 27 1,322 2.43 0.059 0.038

Table 2: Number of states, executed concrete and symbolic instructions, solver queries, constructs, running time, time for
query generation, and overall solver time.

flow subsequently descended into gdiplus.dll, whereby KLEE at-

tempted to invoke the external function int32_to_floatx80 with

symbolic arguments. Recall that S
2
E converts translation blocks

that manipulate symbolic bytes into LLVM, for execution by KLEE.

Vanilla KLEE does not support the invocation of the external func-

tion with symbolic arguments and only had limited experimental

support for concolic data types. Thus, a few of KLEE’s Core modules

were patched to enable S
2
E to ingest x86 floating point operations

with concolic floating point data types. This enabled the end-to-

end construction of exploit code for MS04-032. There is reason to

suspect that future exploit systems for graphics-processing code

with an S
2
E back-end will demand analogous extensions. Exploit

generation took 20 seconds in this case.

6.5 Performance
All experiments were performed on a 2.5 GHz Intel Core i5 with 8

GB 1600 MHz DDR3, running a Mac OS X 10.8.5 operating system.

Table 1 shows statistics of our experiment in finding vulnerable

heap interaction sequences (Interact). The unlink and lookaside

techniques were found automatically at length 4 and 7 of the inter-

action string (see §4.1).

In Table 2, we show statistics over time for executing the unlink
technique on Windows XP SP0 and the lookaside technique on
Windows XP SP2. The number of instructions (both concrete and

symbolic) give a measurement of the size of the heap manager;

the number of queries estimates the effort required for symbolic

execution to pinpoint the exploit primitive. We also list timing

measurements for the time spent constructing queries and solving

them (using the STP solver). If a system is faced with particularly

complex constraints then this will reflect in the increase in time

that is spent generating and solving SAT queries. None of the heap

managers we tested gave rise to complex symbolic expressions,

since in neither case did the symbolic bytes go through any conver-

sion process, e.g. a hash function. This is understandable, as being

critical components of operating systems, heap managers strive

for best performance and simplicity. Therefore, the SAT queries

produced by shellcode-building code were straightforward to solve.

7 RELATEDWORK AND DISCUSSION
Automatic exploit generation tools described in academic litera-

ture [2, 6, 16] have previously tackled the problem of automating

the exploit writing pipeline for stack-based buffer overflow and

format string vulnerabilities. Due to limitations in their modeling

of security vulnerabilities, the capability of the aforementioned

systems did not extend to other classes of vulnerabilities. There is

no previous study in academic literature that tackles the problem

of synthesizing exploits for heap vulnerabilities. In [15], an input

is produced that causes a heap-vulnerable program to crash. The

result is analogous to that achieved by a fuzzer and requires no

modeling or comprehension of the heap domain, nor does it require

the selection of appropriate pointers to craft working shellcode.

While we have not previously observed any such instances, it is

conceivable to imagine a hardened heap implementation that would

pro-actively attempt to resist symbolic execution [11, 21]. Such a

defense might not hinder manual efforts to construct exploits for

heap implementations, but might present a challenge to automated

analysis and exploit-generating tools.

Our compositional approach to heap exploitation is reminiscent

of algorithms for compositional symbolic execution [1, 12]. Stan-

dard symbolic execution re-explores a procedure if two distinct

paths lead through it. In contrast, compositional symbolic execu-

tion explores procedures in isolation and combines inter-procedural

paths to form a set of realistic program paths. Since each intra-

procedural path is explored only once, the number of possible

inter-procedural paths grows linearly rather than exponentially in

the number of procedures explored [12].

The most common method for tackling the state space explosion

problem is restricting the size of the state space to be searched

(at the risk of further incompleteness). In the implementation of

existing automatic exploit generation systems [2, 6], pre-conditioned
symbolic execution is used to narrow down the target state space

to search in accordance with a chosen pre-condition. Similarly, we

use concrete prefixes in demonstrating exploit generation for our

real world targets.

Automated software testing has a variety of potential applica-

tions, which can be broadly characterized as either informative,
defensive or offensive. Informative testing discloses a bug or secu-

rity vulnerability within the program under test, most popular with



tools aimed at developers, such as as static analyzers or fuzzers. It

is often not necessary to produce a shell-spawning exploit in order

to recognize that a vulnerability is present and demands fixing. In

contrast, automated defensive and offensive solutions take action

in response to the discovery of a vulnerability. For example, an

automated patch generator [8] aims to shorten the vulnerability

window that exists from the discovery of a vulnerability to the

formulation of a patch-based fix. While some degree of automation

has been achieved in academic literature, end-to-end self-healing

software is the subject of ongoing research.

8 CONCLUSIONS
The problem of automatically synthesizing exploits for heap vul-

nerabilities has not been previously tackled. In this paper, we have

introduced the nature of heap-based vulnerabilities in the context

of the automatic exploit generation problem. We have presented a

general framework for discovering exploit primitives in heap man-

agers with varying heap layouts. Finally, we have demonstrated

that it is feasible to use our solution for real-world implementa-

tions of heap managers, and to generate working exploits for target

applications.
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