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Abstract 

Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed 

to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in 

quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are 

associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New 

U-Pb dating of zircons from the Jagoi Granodiorite indicate Triassic magmatism at c. 208 Ma and c. 

240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations 

confirm contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic 

subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin 

derived from the magmatic arc at the Sundaland–Pacific margin. West Sarawak and NW Kalimantan 

are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in 

the Triassic.  

One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early 

Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to 

deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons 

in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW 

Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin 

containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The 

youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation 

indicate volcanic activity continued until c. 86 to 88 Ma when subduction terminated. 

 

Keywords: 40Ar/39Ar dating; U-Pb LA-ICP-MS geochronology; detrital zircon; accretionary margin; 

Kuching Zone; Sarawak 
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1. Introduction 

Borneo is part of Sundaland and records a complex tectonic history due to collisions in the Mesozoic 

and Cenozoic. Early reconstructions placed all of Borneo in the Sunda region from the 

Paleozoic/Early Mesozoic (Gatinsky et al., 1984; Metcalfe 1988) or from the Late Mesozoic onwards 

(Ben-Avraham, 1973). Van Bemmelen (1949) and Haile (1974) inferred a Paleozoic basement 

underneath SW Borneo and this basement was interpreted later (e.g. Gatinsky et al., 1984; Metcalfe, 

1988) to indicate that Borneo was part of the SE Asia core and Cathaysia from the Paleozoic. More 

recently Borneo has been interpreted as composed of various fragments that were accreted to 

Sundaland and derived either from Gondwana or Cathaysia (e.g. Metcalfe and Irving, 1990; 

Metcalfe, 2009; Hall et al., 2009; Hall, 2012). 

Until recently, the metamorphic rocks in SW Borneo and the Kuching Zone (Haile, 1974) of Sarawak 

were undated but were considered to be Paleozoic basement (van Bemmelen, 1949; Tate, 1991; 

Tate and Hon, 1991). This supposed age was the basis for correlation of SW Borneo and Sarawak and 

suggested a Cathaysian origin for both. The Kuching Zone has been interpreted (Fig. 1a) to include a 

Cathaysian terrane (Semitau) bounded by suture zones (e.g. Metcalfe, 2006, 2009; Zahirovic et al., 

2014) or as a wide suture zone (Hall and Sevastjanova, 2012). However, south of the Kuching Zone 

the SW Borneo block is now interpreted as a Gondwana block that was added to Sundaland in the 

Cretaceous (Hall et al., 2009; Metcalfe, 2009; Hall, 2012). Furthermore, Davies (2013) and Davies et 

al. (2014) reported Cretaceous ages for the Pinoh Metamorphics of the Schwaner Mountains in SW 

Borneo. The changing interpretations of SW Borneo, and Cretaceous ages of the Pinoh 

Metamorphics, raise questions about correlations of metamorphic rocks from West Sarawak to SW 

Borneo, and whether the Kuching Zone was attached to SW Borneo or Sundaland or was  a separate 

terrane. 

The study area is located in West Sarawak in the Kuching Zone. When this study began there were 

no radiometric ages reported from metamorphic and many sedimentary rocks in West Sarawak. This 

study reports new results based on field investigations, 40Ar/39Ar geochronology of metamorphic 

rocks and U-Pb dating of detrital zircons from sedimentary rocks and one igneous pluton. A new 

interpretation of the Mesozoic tectonic evolution of West Sarawak (Kuching Zone) is proposed. 

2. Geological background 

The Kuching Zone (Haile, 1974) in West Borneo comprises the southern part of Sarawak (West 

Sarawak) and extends into west and central Kalimantan (Fig. 1b). The zone includes sedimentary 

rocks ranging in age from Paleozoic to Mesozoic, and metamorphic rocks. These are overlain by 
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largely undeformed Upper Cretaceous to Cenozoic sediments, and bounded in the north by the 

Lupar Line and to the south are the Pinoh Metamorphics and the Schwaner granites. 

In the Kuching Zone thick Upper Cretaceous to Cenozoic fluvial or marginal marine sediments (Haile, 

1957; Liechti et al., 1960; Wolfenden and Haile, 1963; Wilford and Kho, 1965; Haile, 1974; Tan, 1979) 

overlie a heterogeneous crust with fossils of Paleozoic and Early Mesozoic age, including a 

Cathaysian fauna and flora from the Permian onwards (Kon`no, 1972; Beauvais and Fontaine, 1990; 

Vachard, 1990). The Lupar Line separates the Kuching Zone from the Sibu Zone (Central Sarawak) to 

the north and has been interpreted as a suture (e.g. Hutchison, 1996, 2005; Tan, 1979) and as a 

major strike-slip fault (Haile, 1974; Gower, 1990; Hall, 2012). The Sibu Zone is composed of deep 

marine sediments, but no basement rocks have been found (Kirk, 1957; Liechti et al., 1960; 

Wolfenden, 1960; Haile, 1974). South of the Kuching Zone, SW Borneo or the SW Borneo Basement 

(Haile, 1974) is composed of Cretaceous granites (Haile et al., 1977; Williams et al., 1988; Bladon et 

al., 1989) intruded into metamorphic rocks which were assumed to be Paleozoic (Zeijlmans van 

Emmichoven, 1939; van Bemmelen, 1949; Pieters et al., 1987). Haile (1973) describes the SW Borneo 

Basement as “little-known zone with a complex Paleozoic and Early Mesozoic history of repeated 

sedimentation, orogeny, volcanism and intrusion.” 

Metamorphic rocks in the Kuching Zone were assigned to the Tuang Formation and the Kerait Schist 

and interpreted as Carboniferous or older basement (Pimm, 1965; Tate and Hon, 1991). The 

metamorphic rocks were assumed to be older than unmetamorphosed Devonian to Carbo-Permian 

limestones and calcareous sediments such as the Terbat Limestone Formation of Sarawak or Telen 

River sediments of Kalimantan (Rutten, 1940; Cummings, 1962; Pimm, 1965; Wilford and Kho, 1965; 

Sanderson, 1966; Metcalfe, 1985; Vachard, 1990; Sugiaman and Andria, 1999) although no contacts 

have ever been reported from West Sarawak or nearby Kalimantan. The supposed Paleozoic schists 

have led many authors to interpret a pre-Carboniferous metamorphic basement beneath the whole 

of West Sarawak (e.g. Zeijlmans van Emmichoven, 1939; van Bemmelen, 1949; Pieters and 

Supriatna, 1990; Hutchison, 2005; Metcalfe, 2009) which extended into Kalimantan based on 

correlation (e.g. Tate and Hon, 1991) with the similarly undated Pinoh Metamorphics of Kalimantan, 

also assumed to be Paleozoic (Zeijlmans van Emmichoven, 1939; van Bemmelen, 1949). These 

metamorphic rocks have been interpreted as the oldest rocks exposed in Borneo (Tate and Hon, 

1991). However, recently the Pinoh Metamorphics were dated as Early Cretaceous (Davies, 2013; 

Davies et al., 2014). Exposures of younger metamorphic rocks of Late Mesozoic age in West Sarawak 

have been assigned to various formations (Lubok Antu Melange, Serabang, Sejingkat and Sebangan 

Formation) with uncertain protoliths and origin and have been interpreted to be related to a 

Cretaceous to Cenozoic accretionary setting (e.g. Tan, 1979, 1982, 1993; Hutchison, 2005). 
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The occurrence of various undated metamorphic rocks and their interpretation as basement, and 

the Cathaysian fauna in Upper Paleozoic and Lower Mesozoic sedimentary rocks, led to 

interpretations that the Kuching Zone is a separate terrane, named Semitau (e.g. Metcalfe and 

Irving, 1990; Metcalfe, 2002, 2009; Zahirovic et al., 2014) or was part of/similar to the basement of 

the SW Borneo block (e.g. Metcalfe, 2002, 2006; Hall, 2002). The Semitau block as defined by e.g. 

Metcalfe and Irving (1990) includes only part of the Kuching Zone, bounded by the Lubok Antu 

Melange (named the Kapuas Complex in Kalimantan) in the north and the Boyan Melange in the 

south (Fig. 1b). However, the mapping of Supriatna et al. (1993) and Pieters et al. (1993) 

demonstrated that Jurassic and possibly Triassic sediments outcrop southwest of the Boyan Melange 

and therefore the definition of the Semitau block is rather unclear. Collision in the Late Cretaceous 

with another terrane called the Luconia-Dangerous Grounds block (Hall et al., 2009; Hall, 2012) or 

collision of a Semitau block with SW Borneo in the Late Eocene (Hutchison, 1996; 2005; Zahirovic et 

al., 2014) was assumed to be related to southward-directed subduction below West Borneo (e.g. 

Williams et al., 1988).  

3. Stratigraphy   

The geological map of the units discussed in this study (Fig. 2) is based on geological maps compiled 

for West Sarawak by Liechti et al. (1960) and Heng (1992) modified by new field observations made 

in this study. The following section summarises previous stratigraphic ideas and outlines differences 

based on the new observations. 

3.1. Metamorphic rocks 

Some metamorphic rocks in Sarawak have been assigned to separate metamorphic formations 

named the Kerait Schist and the Tuang Formation (Pimm, 1965; Tate and Hon, 1991), and others 

included in various formations of Cretaceous (and possibly Late Jurassic) age named the Sejingkat, 

Serabang and Sebangan Formations and the Lubok Antu Melange (Wolfenden and Haile, 1963; Tan, 

1979, 1982, 1993; Hutchison, 2005).  

3.1.1. Kerait Schist and Tuang Formation 

The Kerait Schist is poorly exposed and outcrops only in the Kerait valley (Pimm, 1965) where it 

forms small isolated exposures with no observable contacts. In contrast to the undeformed Upper 

Carboniferous to Permian Terbat Formation (Cummings, 1962; Pimm, 1965; Wilford and Kho, 1965; 

Sanderson, 1966; Metcalfe, 1985; Vachard, 1990) c. 30 km to the west, the Kerait Schist is 

metamorphosed and strongly deformed and Pimm (1965) concluded it was older.  
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The Tuang Formation is found in the area southeast of Kuching and near Sungai Tuang. Tate and Hon 

(1991) reported the Tuang Formation is distributed over an area of approximately 80 km² and 

included phyllites, pelitic and basic schists, metasandstones, pelitic hornfels and silicified volcanics 

and chert. However, they also included exposures north of Kuching assigned in this study to the 

Triassic sedimentary rocks (see below). No contacts were reported by Tate and Hon (1991). They 

reported that the age of the Tuang Formation was thought to be pre-Carboniferous based on an 

unpublished report of a ”dubious fossil tentaculid”.  They also stated that “In west Sarawak, the 

oldest rocks are the Tuang and Kerait Schist Formation” and this statement appears to be based on 

the inference that deformed metamorphic rocks must be older than undeformed dated sedimentary 

rocks.  

Today the Kerait Schist and the Tuang Formation are found in small inliers and exposures. In this 

study the Kerait Schist was examined in the only current exposure in the northern part of the Kerait 

valley. The Tuang Formation is observable only in small isolated exposures which have no contacts 

with other rocks. Housing development and expansion of the airport in southern Kuching may have 

significantly reduced the area of exposure.  The Tuang Formation was examined at various locations 

in south Kuching and in the Sungai Tuang area. Rock types in both formations include mylonites, 

phyllites and low-grade quartz-mica schists, and as discussed below they are of similar age. 

Therefore, the two formations are here grouped together and named the West Sarawak 

Metamorphics. 

3.1.2. Upper Mesozoic metamorphic rocks 

Metamorphic rocks are found in the Serabang, Sejingkat and Sebangan Formations (Wolfenden and 

Haile, 1963) that resemble melanges (Hamilton, 1979; Tan, 1993; Hutchison, 2005), and in the Lubok 

Antu Melange (Tan, 1978; Tan, 1979) named the Kapuas Complex in Kalimantan (Williams et al., 

1988) thought to be of Late Jurassic to Cretaceous age. Because of similarities in lithology and the 

interpreted Late Jurassic to Cretaceous age they are discussed together in this paper. 

The interpreted ages of the melanges are based on fossils. Radiolaria from recrystallised cherts were 

identified as Upper Jurassic to Lower Cretaceous (Wolfenden and Haile, 1963; Tan, 1978; Tumanda 

et al., 1993; Basir and Aziman, 1996; Basir, 1996, 2000). Tan (1979) also reported Upper Cretaceous 

foraminifera from the Lubok Antu Melange. Tan (1979, 1982) included the undeformed calcareous 

Middle Eocene Engkilili Formation in the Lubok Antu Melange. However, Haile (1996) disputed this, 

based on lithological and deformation differences, and excluded the Engkilili Formation from the 

Lubok Antu Melange. 
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Metamorphic rocks include locally mylonitized and brecciated shale, slate, recrystallized chert and 

meta-chert, quartzite and pelitic hornfels associated with greenstone, meta-gabbro, meta-basalt and 

amphibolite, sheared phyllite, schist, and metagreywacke, associated with microdiorite, serpentinite 

and andesite in a pelitic matrix (Wolfenden and Haile, 1963; Tan, 1978, 1993). None of the 

metamorphic rocks have been dated. 

In NW Kalimantan, close to the Sarawak border, a second melange belt is exposed and named the 

Boyan Melange (Williams et al., 1986). Williams et al. (1989) considered the Boyan Melange as Late 

Cretaceous. The relation of Boyan Melange and the melanges in West Sarawak are uncertain. 

In this study metamorphic rocks from the Sejingkat Formation at Tanjung Bako, the Serabang 

Formation in the Biawak area and around the Pueh intrusion, and the Lubok Antu Melange in the 

Lupar valley were examined. A greenstone fault block (TB10, Jalan Datu Stephen Yong) described in 

Tate and Hon (1991) as Tuang Formation, is regarded as part of the Upper Mesozoic metamorphic 

rocks based on the findings in this study. As discussed further below it differs petrographically and in 

age from the West Sarawak Metamorphics.   

3.2. Triassic sedimentary rocks  

Sedimentary rocks in the Sadong valley were assigned to the Sadong Formation (Liechti et al., 1960; 

Wilford and Kho, 1965). Lithologies include mudstones, siltstones, sandstones, shales, 

conglomerates, meta-sediments, thin limestone beds, marl and coal (Wilford and Kho, 1965). 

Tuffaceous sandy mud layers and volcanic rock fragments are commonly interbedded throughout 

the succession (Wilford and Kho, 1965), and record contemporaneous volcaniclastic input. The 

Sadong Formation was interpreted to represent an estuarine to neritic deposit (Liechti et al., 1960) 

with periodically brackish water influence (Wilford and Kho, 1965). The age of deposition is 

interpreted to be Carnian to Norian (Late Triassic) from a small assemblage of plant material, named 

the Krusin flora, with Cathaysian affinity (Kon`no, 1972) and from fossil bivalves within the 

succession (Liechti et al., 1960; Wilford and Kho, 1965). In this study the Sadong Formation was 

examined in road-sections south of the Kerait valley, where mainly inclined sandstone and shale 

alternations with interbedded thin coal layers are exposed.  

Similar rocks observed in this study north of Kuching were previously included by Tate and Hon 

(1991) and Tan (1993) in the Tuang Formation. These rocks are here named Kuching Formation and 

include all sedimentary to meta-sedimentary rocks exposed along Sungai Sarawak north of the city 

of Kuching. The Kuching Formation comprises an alternation of graded sandstones, siltstones and 

mudstones interpreted as a marine turbidite succession. It is possibly a deeper marine lateral 
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equivalent of the shallow marine Sadong Formation. Folding and a very low-grade greenschist facies 

overprint are observed locally in both formations. 

3.3. Triassic volcanic rocks 

Andesites and basalts of the Serian Volcanic Formation form a mountain range in West Sarawak and 

NW Kalimantan (Pimm, 1965). The formation is reported to interfinger with the Triassic sedimentary 

rocks (Wilford and Kho, 1965) and is therefore concluded to be Triassic. Basir et al. (1996) identified 

Early Jurassic radiolaria in a tuff sequence near Kampung Piching, subsequently named the Binong 

Bed. Basir and Uyop (1999) included the Binong Bed in the Serian Volcanic Formation. The volcanic 

rocks in West Sarawak indicate magmatic activity from the Triassic to Early Jurassic. Possible time 

equivalents of the Serian Volcanic Formation in NW Kalimantan are the undated Sekadau Volcanics 

(Rusmana et al., 1993) and the undated Jambu Volcanics (Supriatna et al., 1993). 

In this study the Serian Volcanic Formation was examined in a small active quarry south of Kuching. 

The dominant rock type is andesite. The rocks are affected by metamorphism and could be classified 

as metabasites. The contact with the Tuang Formation (West Sarawak Metamorphics) appears to be 

faulted but is not exposed. 

3.4. Jagoi Granodiorite - Triassic granitoids 

Triassic granitoids are exposed in northwest and central Kalimantan in the Embuoi and Busang 

Complexes and at the border of Sarawak there is the Jagoi Granodiorite. In Kalimantan, K-Ar ages 

from the Embuoi Complex and the Busang Complex range from 201 to 263 Ma (Williams et al., 1988; 

Bladon et al., 1989; Supriatna et al., 1993, Pieters et al., 1993). Williams et al. (1988) also reported 

one sample with an age of 320 ± 3 Ma. Williams et al. (1988) subsequently named the area of 

Triassic granitoids the NW Kalimantan domain. Recent U-Pb zircon data from a metatonalite in west 

Kalimantan dated as 233 ± 3 Ma (Setiawan et al., 2013), in combination with the NW Kalimantan 

ages, indicates a significant Triassic igneous province. 

The Jagoi intrusion in Sarawak is part of a small mountain range at the border with Kalimantan close 

to the town of Serikin and includes the peaks of Gunung Jagoi and Gunung Kisam. Previous dating 

yielded ages ranging from Cretaceous to Triassic. These included a whole rock K-Ar age of 89.3 ± 3.6 

Ma (JICA, 1985), a K-Ar age of 112 Ma from a hornblende-bearing xenolith (Bignell, 1972), and K-Ar 

hornblende ages of 123 ± 15 Ma,  192 ± 10 Ma (JICA, 1985) and 195 ± 2 Ma (Bladon et al., 1989). This 

wide age range shows some uncertainty about the timing of the magmatic activity in the Jagoi 

intrusion. The Jagoi Granodiorite is reported to be the basement for the Upper Jurassic Bau 

Limestone Formation and the Upper Jurassic to Cretaceous Pedawan Formation (Ting, 1992). JICA 
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(1985) reported local alteration of the Jagoi Granodiorite, resulting in silicification, sericitization and 

chloritization.  

In this study the Jagoi Granodiorite was sampled at one location for petrographic and geochemical 

analyses, and age dating.  

3.5. Upper Jurassic to Cretaceous sedimentary rocks 

Upper Jurassic to Lower Cretaceous calcareous sediments and limestones were assigned to the 

Kedadom Formation and the Bau Limestone Formation in West Sarawak (Wilford and Kho, 1965; 

Bayliss, 1966; Yanagida and Lau, 1978; Ishibashi, 1982; Beauvais and Fontaine, 1990) and have a 

Cathaysian affinity from the Kimmeridgian onwards (Beauvais and Fontaine, 1990). In Kalimantan, 

limestones of the Brandung Formation with a Cathaysian affinity were deposited in a shallow marine 

reef environment in the Callovian (Schairer and Zeiss, 1992). 

The clastic uppermost Jurassic to Cretaceous Pedawan Formation overlies the Jurassic to Lower 

Cretaceous calcareous formations (Wilford and Kho, 1965; Muller, 1968; Nuraiteng and Kushairi, 

1987, Morley, 1998). The Pedawan Formation contains contemporaneous volcanic material (Wilford 

and Kho, 1965; Supriatna et al., 1993) and indicates a switch from a calcareous shallow marine 

environment to a clastic-dominated deeper marine depositional environment. The Pedawan 

Formation was examined in various outcrops around the town of Bau and the west of Kuching. It 

comprises alternations of graded sandstones, laminated sandstones and mudstones, deposited as 

turbidites with interbedded limestones and thin tuff or dacite layers, suggesting contemporaneous 

magmatism. 

4. Sampling and methodology 

4.1. Sampling 

The Tuang Formation (TB4, TB249) and the Kerait Schist (TB35) (West Sarawak Metamorphics), the 

Sadong (712, 713a_b), Kuching (TB12, TB250a), Pedawan (STB07a, STB34, STB61a, STB62, STB68a_b, 

TB109) and Serian Volcanic (TB6) Formations, the Jagoi intrusion (TB114), and Upper Mesozoic 

metamorphic rocks of the Serabang and Sejingkat Formations (TB66a_c, TB67, TB68a_b, TB74, TB79, 

TB86, TB162) and the greenstone TB10 were sampled in this study for petrographic and geochemical 

analysis, and dating. Fig. 3 displays the sample locations and the distribution of metamorphic and 

igneous target lithologies. Fresh rocks with minimal alteration were sampled from outcrops or 

nearby float. White micas from three metamorphic samples for 40Ar/39Ar dating and zircons from 

seven sedimentary/igneous samples for U-Th-Pb dating were separated. 
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4.2. Sample preparation 

Sample preparation was carried out at Royal Holloway University of London. The samples were 

crushed to gravel-sized chips using a jaw crusher and the more friable (meta-) sedimentary samples 

by pestle and mortar. A 63-250 μm fraction was separated, which was used for geochronology 

analysis.  

White mica was separated using standard heavy liquid lithium heteropolytungstate (LST) at a density 

of 2.75 g/cm³ and a FRANTZ magnetic barrier separator. The white mica separates were handpicked 

under a binocular microscope to achieve the required purity of >99% for the final separates that 

were analysed at The Australian National University (ANU).  

Zircon was separated by using standard heavy liquids sodium polytungstate (SPT) and lithium 

heteropolytungstate (LST) at a density of 2.89 g/cm³ and a FRANTZ magnetic barrier separator. 

Additional heavy liquid separation was performed with di-iodomethane (DIM) at 3.3 g/cm³ to 

maximise the purity of the zircon separates. The zircon separates were hand-picked or poured and 

mounted in epoxy resin blocks. These resin blocks were polished to expose mid-grain sections. 

Zircons were imaged in transmitted light and with cathodoluminescence secondary electron 

microscope (CL-SEM) for selecting the analysis spot for each grain and to detect cracks and 

inclusions, and zoning of zircons prior the analysis. CL-SEM of the igneous sample (TB114) was 

obtained only after the LA-ICP-MS analysis. 

4.3. Geochronology 

4.3.1. 40Ar/39Ar dating 

40Ar/39Ar dating of white micas was performed for samples TB10, TB35 and TB249 at the Australian 

National University. The white mica aliquots were analysed using the using in vacuo step-heating 

method in a resistance furnace attached to a VG1200 mass spectrometer (Forster and Lister, 2010, 

2014; Forster et al., 2015). The internal laboratory biotite standard GA-1550 (98.5 ± 0.8 Ma; Spell 

and McDougall, 2003) was used as the flux monitor for the samples. 22-23 heating steps were 

performed on each sample, with a minimum difference of +30˚C between successive heating steps.  

A final heating step at 1450˚C ensured all gas was released from the sample. 

The data were reduced using Noble software in accordance with the correction factors and J-factors.  

Correction factors were calculated from the analyses of CaF2 and K-glass, and J-factors were 

calculated from analysis of the flux monitors. Standard values recommended by the IUGS 

subcommission on geochronology for 40K abundances and decay constants were used (Steiger and 

Jäger, 1977).  The decay factor of 40K (λ40K) for all age calculations was set at 5.5430e–10 yr–1. Data 
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interpretation was carried out using the programme eArgon written by G. S. Lister. Results tables for 

each step heating experiment are presented in Supplementary Table 1. 

4.3.2. LA-ICP-MS U-Th-Pb dating 

LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) dating of zircons from 7 

samples was performed at Birkbeck College, University of London. Zircon U-Pb dating was performed 

on a New Wave NWR 193 (213 for a single sample) nm laser ablation system coupled to an Agilent 

7700 quadrupole-based plasma mass spectrometer (ICP–MS) with a two-cell sample chamber. A 

spot size of 25 μm for the NWR 193 nm and of 30 μm for the NWR 213 nm system was used. The 

Plešovice zircon standard (337.13 ± 0.37 Ma; Sláma et al., 2008) and a NIST 612 silicate glass bead 

(Pearce et al., 1997) were used to correct for instrumental mass bias and depth-dependent inter-

element fractionation of Pb, Th and U. 

Data reduction software GLITTER (Griffin et al., 2008) was used. The data were corrected using the 

common lead correction method by Andersen (2002), which is used as a 204Pb common lead-

independent procedure. 

4.4. U-Pb age data reduction 

For grains older than 1000 Ma, the age obtained from the 207Pb/206Pb ratio is given and for grains 

younger than 1000 Ma, that from the 238U/206Pb ratio is given, because 207Pb cannot be measured 

with sufficient precision in these samples resulting in large analytical errors (Nemchin and Cawood, 

2005). Ages greater 1000 Ma were considered to be concordant if the difference between the 

207Pb/206Pb and 206Pb/238U age is 10% or less and ages smaller 1000 Ma were considered to be 

concordant if the difference between the 207Pb/235U and 206Pb/238U age is 10% or less. 

Isoplot 4.11 (Ludwig, 2003) was used for graphical illustration of conventional Concordia plots 

(Wetherill, 1956) and Tera-Wasserburg Concordia diagrams (Tera and Wasserburg, 1972). Concordia 

and Tera-Wasserburg plots were used to identify individual peaks or visually assess outliers (due to 

e.g. lead loss, inheritance and common lead) within the population which were excluded from the 

weighted mean age calculation. The weighted mean age was calculated for the igneous samples 

TB114 and for the pyroclastic sample STB68b from the significant youngest population. Age 

histograms with probability for the rocks were created with Isoplot 4.11 (Ludwig, 2003). Age 

histograms and probability density plots for (meta-) sedimentary rocks were created using an R 

script written by I. Sevastjanova. Results tables are presented in Supplementary Tables 2 for each 

sample. 
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4.5. Geochemistry 

4.5.1. SEM white mica geochemistry 

Micas used for the 40Ar/39Ar dating (TB10, TB35, TB241) were first analysed with a HITACHI S3000 

scanning electron microscope (SEM) at Royal Holloway University of London. Chemical analyses 

were conducted with Aztec energy-dispersive X-ray detection system (EDS) by Oxford Instruments 

using an acceleration of 20 kV and 76 μA. The mica classification presented in this study follows the 

classification scheme of Tischendorf et al. (2004). Representative mica data is presented in 

Supplementary Table 3. 

4.5.2. XRF geochemistry 

Samples were processed with a jaw crusher and a tungsten-carbide mill at Royal Holloway University 

of London. Fusion discs and powder pellets were analysed for major and trace elements with a 2010 

PANalytical Axios sequential X-ray fluorescence (XRF) spectrometer with 4kW Rh-anode X-ray tube. 

Analysed samples include the Serian Volcanic Formation (TB6) and the Jagoi Granodiorite (TB114). 

XRF data tables are presented in the Supplementary Table 4.1 and normative calculations are in 

Supplementary Table 4.2. 

5. Petrography 

5.1. Metamorphic rocks 

5.1.1. West Sarawak Metamorphics 

Quartz-mica schists (TB4, TB35 and TB249) of the West Sarawak Metamorphics are strongly foliated 

low-grade mylonites. Fig. 4a and b are outcrop photographs of the quartz-mica schists. A foliation 

defined by fine grained white mica, polycrystalline quartz and an opaque phase (Fig. 4c and d) is 

crenulated by later stage deformation. 

The compositions of the white micas are rather restricted; homogeneous grains show no significant 

changes throughout sample or any zoning. Analyses of white micas of samples TB35 and TB249 are 

plotted on Fig. 5 and Supplementary Fig. 1.  

Sample TB249 contains white mica with Si content from 3.28 to 3.33 a.p.f.u. Mg# numbers range 

from 0.61 to 0.67. Almost all observed white micas have a very minor paragonite content (Na/(Na + 

K) from 0.021 to 0.068. Following the classification scheme of Tischendorf et al. (2004) the white 

mica of sample TB249 plots along the muscovite-phengite boundary (Fig. 5).  
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White mica of sample TB35 has a similar composition to sample TB249. The compositions show 

slight variations, but grains are generally homogeneous. Si content ranges from 3.26 to 3.47 a.p.f.u. 

Coarser white mica grains within the foliation bands usually have slightly higher Si values compared 

to finer grained white micas. The Mg# numbers range from 0.76 to 0.84 and are slightly higher than 

the white mica of sample TB249. The paragonite component ranges up to 0.051.  According to the 

classification scheme of Tischendorf et al. (2004), the white mica in sample TB35 can be classified as 

muscovite (Fig. 5).  

5.1.2. Upper Mesozoic metamorphic rocks 

Sample TB10 is a chlorite-albite-(orthoclase)-quartz-mica schist (Fig. 4e and f). Fresh, clean white 

mica was carefully obtained from cleavage surfaces. The dominant mica is fine-grained phengite. The 

sample has various domains where chlorite is more abundant than mica. Brittle deformation 

associated with abundant quartz and feldspar veining is common within the sample. Fine grained 

clinozoisite and epidote were observed. Polycrystalline quartz and albite bands are common. 

Occasionally alkali feldspar is present in these bands. White micas have similar Si values to the other 

two samples and range from 3.29 to 3.35 a.p.f.u. However, the micas have high FeOtot and higher 

MgO and K2O. The Mg# number is lower due to the high Fe content, ranging from 0.47 to 0.56. The 

paragonite component ranges up to 0.035. According to the classification scheme of Tischendorf et 

al. (2004), the white mica in sample TB10 can be classified as phengite (Fig. 5 and Supplementary Fig. 

1).  

Samples from the Serabang Formation include various undated meta-sediments. TB86 is a 

hornfelsed folded meta-sediment. The hornfels is composed of monocrystalline quartz, lithic 

fragments, chert, polycrystalline quartz and rare microcline. It resembles a quartz-rich but texturally 

immature sediment which has been locally folded and has been affected by a contact metamorphic 

overprint related to the younger Pueh intrusion. Grain size variations define layers which resemble 

the original sedimentary structure of the rock. Extension cracks are filled with quartz and quartz 

segregations are observed.  

Associated with these meta-sediments are silicified brecciated fault rocks (cataclasites), quartzites 

and recrystallized cherts from the Serabang and Sejingkat Formations. The quartzites are entirely 

composed of monocrystalline quartz and domains of microcrystalline quartz. Grain boundary 

migration is common and indicates recrystallization of quartz. The microcrystalline quartz domains 

are separated by a mesh of quartz veins. Coarser quartz is affected by static recrystallization and 

grain size reduction is common. Within the samples are dark, near isotropic domains which are 

heavily brecciated (Fig. 4g). Abundant circular areas of fibrous chalcedony are present (Fig. 4h) and 
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more fibrous chalcedony is present in finer grained domains. Extension cracks in various directions 

are filled with polycrystalline quartz. Monocrystalline or polycrystalline quartz is present in coarser 

crack fillings which usually form a quartz vein mesh. The mesh is interpreted to resemble the original 

structure of the protolith. The microcrystalline quartz domains are probably pseudomorphs after 

olivine or serpentinised olivine. The unusual structures of the samples suggest that the quartzites of 

the Serabang and Sejingkat Formations are silicified serpentinites. Similar silicified serpentinite has 

been reported from many areas including the Semail nappe of Oman (Stanger, 1985), the United 

Arab Emirates (Lacinska and Styles, 2013) and the Stalemate Fracture Zone in the NW Pacific 

(Silantyev et al., 2012). Magnetite occurs along cracks as commonly found in serpentinised olivine. 

Angular opaque crystals are magnetite, rutile and pyrite. No chromite was found. 

5.2. Triassic sedimentary rocks  

Five samples from the Sadong and Kuching Formations were analysed in thin section. Three of the 

five samples were dated (see below). All samples are classified as lithic greywackes in the QFL 

diagram (Supplementary Fig. 2) (Pettijohn et al., 1987). The samples are composed mainly of 

monocrystalline quartz, polycrystalline quartz and lithic fragments, with subordinate volcanic quartz 

and chert (Supplementary Table 5). The samples lack feldspar or feldspar is below 1 %. Lithic 

fragments including metamorphic, volcanic and sedimentary rocks indicate a wide variety of source 

rocks. Cherts indicate a source of deep marine sedimentary rocks. 

5.3. Serian Volcanic Formation 

One sample of the Serian Volcanic Formation (TB6) is an andesite which is the dominant rock type in 

the Serian Volcanic Formation. It is fine grained with plagioclase needles and quartz in a dark ground 

mass. Chlorite and epidote replace plagioclase and pyroxene. The sample has coarse grained 

plagioclase-pyroxene xenoliths (Fig. 6a) and well-rounded polycrystalline quartz xenoliths (Fig. 6b). 

Late stage deformation produced extensional fractures filled by polycrystalline quartz or chlorite.  

5.4. Jagoi Granodiorite 

The Jagoi Granodiorite sample TB114, an amphibole granodiorite, is composed mainly of plagioclase, 

alkali feldspar, quartz, biotite and amphibole. Plagioclase and alkali feldspar are affected by sericitic 

alteration and saussuritization. Biotite is usually chloritised (Fig. 6c). Epidote, clinozoisite and chlorite 

replace amphiboles. An opaque phase occurs usually with amphibole or biotite. Fine grained titanite 

is present within the chloritised biotite. The Jagoi Granodiorite has a coarse grained phaneritic 

texture. There are no indications of shearing, mineral alignment or metamorphic overprint. 

Plagioclase forms large euhedral crystals with polysynthetic twinning, which are commonly zoned 
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(Fig. 6d). Alkali feldspar occurs usually as zoned euhedral to subhedral crystals. Biotite shows 

undulose extinction indicating minor deformation. Quartz occurs commonly as monocrystalline 

grains with non-undulose to slightly undulose extinction. Amphibole occurs as subhedral to anhedral 

crystals which may be twinned (Fig. 6e and f). 

5.5. Pedawan Formation 

Five representative clastic samples of the Pedawan Formation were selected. Four samples are 

classified as lithic greywackes and a single sample as a lithic arenite (Supplementary Fig. 2) (Pettijohn 

et al., 1987). They are mainly composed of feldspar, lithic fragments and monocrystalline quartz with 

subordinate polycrystalline quartz and chert (Supplementary Table 5). Feldspar is predominantly 

plagioclase. Lithic fragments are mainly volcanic and minor sedimentary.  

Two of the lithic greywacke samples are composed mainly of volcanic lithic fragments and volcanic 

quartz. Both samples are almost devoid of feldspar. The very fine grained character, the whitish 

appearance and the composition indicate a pyroclastic origin for the two samples. 

A micritic packstone (STB61a) from the upper part of the Pedawan Formation, interbedded with the 

clastic sediments, has Turonian foraminifera and the fossil assemblage indicates an inner neritic 

environment of deposition (Table 1).  

6. Analytical results 

6.1. XRF geochemistry – results 

6.1.1. Serian Volcanic Formation 

The metabasite of the Serian Volcanic Formation is a high-K calc-alkaline andesite based on the K2O-

SiO2 diagram (Peccerillo and Taylor, 1976) and an andesite in the QAPF diagram (Streckeisen, 1974). 

In the tectonic discrimination diagrams of Schandl and Gorton (2002) it is classified as an active 

continental margin or oceanic arc rock. Crustal influence is confirmed in the normalised spider-

diagrams by the enrichment of large ion lithophile elements (LILEs) such as Cs, Rb and Ba, a positive 

Pb peak and a negative Nb trough (Fig. 7). The high field strength elements (HFSE), such as Yb and Y, 

are slightly higher than the N-MORB values. A subduction-related origin is interpreted for the Serian 

Volcanic Formation, possibly in an island arc.  

6.1.2. Jagoi Granodiorite 

Sample TB114 is classified as granodiorite in the QAPF diagram (Streckeisen, 1974), which is the 

dominant lithology of the Jagoi intrusion. It is an I-type granite according to the classification of 

Chappell and White (2001) with a calc-alkaline character in the AFM (Irvine and Baragar, 1971) and 
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in the K2O-SiO2 diagram (Peccerillo and Taylor, 1976). It has a high Na2O value (>3.2 wt%), A/CNK<1.1 

and <1% normative corundum. The ASI (aluminium saturation index) value is 1.02 and the sample is 

therefore classified as peraluminous (Frost et al., 2001). It has an Fe*-number of 0.77 and is 

classified as magnesian. The MALI (modified alkali-lime index) value is 3.1 at 70.4% SiO2, classifying 

this as calcic (Frost et al., 2001). It can be described as a magnesian calcic peraluminous granitoid 

using the Frost et al. (2001) classification, similar to island arc plutons, plagiogranites and plutons 

associated with Cordilleran batholiths. The sample plots into the volcanic arc granite (VAG) field in 

the tectonic discrimination diagrams of Pearce et al. (1984) with trace element values and ratios (Y, 

Nb, Yb, Ta and Rb) indicating a volcanic arc-related origin. Crustal influence is confirmed in the 

normalised spider-diagrams by the enrichment of LILEs, with prominent troughs in Nb, La, Ce, P and 

Ti, and a positive Pb and K peaks (Fig. 7). HFSEs are below the N-MORB values and indicate 

depletion. A subduction-related origin for the Jagoi Granodiorite is interpreted from the 

geochemistry.  

6.2. 40Ar/39Ar mica geochronology 

Three metamorphic samples were dated by the 40Ar/39Ar method. Two of these have a Triassic age 

(TB35, TB249) and are named the West Sarawak Metamorphics in this study, while a single sample 

revealed Cretaceous ages (TB10). Sample TB249 is a quartz-mica schist previously mapped as Tuang 

Formation (Tate and Hon, 1991). Sample TB35 is a strongly foliated low-grade mylonitic quartz-mica 

schist from the Kerait Schist (Pimm, 1965). TB10 is a chlorite-albite-(orthoclase)-quartz-mica schist 

sampled from an isolated outcrop in SW Kuching previously assigned to the Tuang Formation (Tate 

and Hon, 1991). The analytical data for the step heating procedure are presented in Supplementary 

Table 1 for each sample. 

6.2.1. West Sarawak Metamorphics 

TB249 

The sample was analysed in 22 heating steps. The apparent age plot (Fig. 8a) shows a relatively 

simple Triassic age plateau with a potential Cretaceous overprint. The age spectrum shows minimal 

argon loss in the first 5 steps (450 – 630˚C), rising rapidly to a well-defined plateau at 216.8 ± 1.2 Ma 

calculated from steps 6 – 11 and 13 (marked green). For better visual presentation, only the heating 

steps 2-18 are displayed in the apparent age plot. The orange coloured step (step 12) is considered 

an outlier and is excluded from the age calculation. The initial steps are affected by calcium 

contamination and may not show reliable ages. 
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TB35 

The sample was analysed in 23 heating steps. The apparent age plot indicates a Triassic 

metamorphic event with a thermal event in the Cretaceous and/or Cenozoic (Fig. 8b). The Triassic 

plateau is calculated at 219.6 ± 3 Ma from steps 9-12 (marked in green) from a slightly disrupted 

plateau. Only the first 16 steps of the analysis are displayed in the apparent age plot. All steps after 

16 are above 99.7 % argon released and can be disregarded. The age spectrum initially shows argon 

loss in the first 8 steps (450 – 700˚C). These steps may be affected by younger low grade 

metamorphic events but also show significant chlorine contamination. The upper limit is recorded in 

step 10 at approximately 222 Ma (marked in orange). 

6.2.2. Upper Mesozoic metamorphic rocks – sample TB10 

The sample was analysed in 23 heating steps. The apparent age plot indicates metamorphism in the 

Cretaceous, and a possible thermal event in the Cenozoic (Fig. 8c). The age spectrum rises 

asymptotically from c. 23 Ma towards an upper limit of c. 143 Ma in the first 9 heating steps (450 – 

780˚C). Then it drops in the next 4 steps to a lower limit of 118.5 ± 1 Ma calculated from steps 14 

and 15 (marked in orange), before it rises again to the same upper limit in step 18. The upper limit is 

defined by steps 10, 11 and 18 (marked in green), and gives an apparent age of 143 ± 2.2 Ma. For 

better visual presentation, only the heating steps 2-19 are displayed in the apparent age plot. The 

observed age spectrum usually suggests mixing of age populations potentially from two different 

phases. However, phengite compositions analysed are very restricted and indicate that the 

complicated age spectrum is derived from a single phase which records various metamorphic events 

in the Cretaceous. 

6.3. U-Th-Pb zircon geochronology 

6.3.1. Triassic sedimentary rocks 

Zircons from two samples (712, 713b) of the sedimentary Sadong Formation were analysed. A total 

of 272 concordant U-Pb ages were obtained from 259 zircons (Fig. 9a and b). The data for the two 

samples are presented in Supplementary Tables 2.1 and 2.2. All zircons analysed were between 70 

and 200 μm in length. The two samples analysed have very similar zircon age distributions, 

consisting in total of 64 Phanerozoic, 203 Proterozoic and 5 Archean ages, and show very similar 

dominant age peaks. There is a wide peak in the Permian-Triassic and a narrow major peak at 

around 1.8 Ga (Paleoproterozoic). Permian-Triassic ages range from 205 to 290 Ma with a major 

peak at 240 to 270 Ma. There are minor differences between the two samples for older Phanerozoic 

zircons. A small number of Carboniferous and Devonian ages were obtained from sample 712, and a 

few Silurian ages from sample 713b. Both samples have a few Ordovician ages. The major 
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Proterozoic age peak at 1.8 Ga is accompanied by a small number of scattered Paleoproterozoic and 

Archean ages, ranging from 1.7 Ga to 2.8 Ga with a small peak at around 2.4 Ga. The oldest age 

recorded in the Sadong Formation is Neoarchean at 2732 ± 10 Ma in sample 713b. The youngest age 

is 212 ± 2 Ma (Norian, Late Triassic) in sample 713b and 205 ± 2 Ma (Rhaetian, Late Triassic) in 

sample 712. Both grains are interpreted to be affected by potential lead-loss and the second 

youngest grains of each sample (231 ± 3 Ma, 225 ± 2 Ma) are interpreted to give a reliable magmatic 

age. The Proterozoic and Archean zircons are mainly rounded, indicating multiple reworking, and are 

generally pinkish in colour. The Permo-Triassic and Carboniferous zircons are subrounded to 

euhedral, suggesting first cycle to moderately recycled input, and are commonly colourless. 

A lithic greywacke sample (TB250a) was analysed from the Kuching Formation. A total of 129 

concordant U-Pb ages were obtained from 121 zircons (Fig. 9c). The data table for the sample is 

presented in the Supplementary Table 2.3. All zircon grains are between 70 and 200 μm. The zircon 

populations are similar to the Sadong Formation, consisting of 30 Phanerozoic, 92 Proterozoic and 7 

Archean and dominant age peaks in the Permian-Triassic and in the Proterozoic at 1.8 Ga. Permo-

Triassic ages range from 221 to 284 Ma with a major peak at 240 to 245 Ma.  There is a minor zircon 

age population in the Carboniferous to Devonian. The major Proterozoic age peak at 1.8 Ga is 

accompanied by a small number of widely distributed Paleoproterozoic and Archean ages, ranging 

from 1.5 Ga to 3.4 Ga. The oldest age recorded in the Kuching Formation is Paleoarchean at 3436 ± 

11 Ma, which is one of the oldest U-Pb zircon ages reported from Borneo. The youngest age is 

Norian (Late Triassic) at 221 ± 3 Ma. The Phanerozoic zircons are commonly euhedral and 

subrounded with slightly elongated form and indicate a first cycle to moderately recycled sediment, 

and are commonly colourless. They have generally concentric or sector zoning which record 

magmatic growth (Fig. 8d). The Precambrian zircons are dominated by rounded and subrounded 

grains which are interpreted to indicate multiple recycling and are generally pinkish in colour or the 

ages are related xenocryst cores.  

6.3.2. Jagoi Granodiorite 

Sample TB114 from the Jagoi Granodiorite was dated. A total of 108 concordant U-Pb ages were 

obtained from 104 zircon grains. The data for the sample is presented in the Supplementary Table 

2.4. All zircon grains are between 80 and 150 μm in length and dominated by elongated zircons with 

concentric (oscillatory) zoning. CL from zircons is usually very dark, indicating high U-Th ratios. Cores 

are rare and are related to inherited ages. Some zircons have greyish homogeneous rims. The zircon 

population is composed of mainly Late Triassic zircons with very few Jurassic and Middle Triassic 

zircons. The Tera-Wasserburg diagram (Fig. 10a) indicates common lead in the discordant analyses. 
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A weighted mean age of 208.3 ± 0.9 (MSWD = 4.6) is calculated for the Jagoi Granodiorite from an 

age range between 200 to 217 Ma (Fig. 10c). Inherited ages are around c. 240 Ma (Fig. 10b). 

Several apparently concordant and near concordant Jurassic, and discordant Cretaceous ages, 

ranging from 82 to 200 Ma, suggest a younger thermal event, potentially in the Late Cretaceous (Fig. 

10a). Concordant ages of 163 and 182 Ma are related to rims or overprinted cores. The relatively 

high MSWD indicates a post-intrusive overprint and inheritance. CL images with analytical spots for 

assorted zircons are displayed in Fig. 10d. 

6.3.3. Pedawan Formation 

U-Pb zircon ages of the Pedawan Formation were acquired from sedimentary samples STB07a and 

STB34, and the pyroclastic sample STB68b. 

Sample STB34 is a lithic arenite. A total of 70 concordant U-Pb ages were obtained from 80 zircons. 

The data table is presented in the Supplementary Table 2.5. All zircon grains are between 63 and 250 

μm. The zircons include 60 Phanerozoic, 9 Proterozoic and 1 Archean age (Fig. 11a). Most prominent 

peaks include the Early Cretaceous, the Late Jurassic and the Permian-Triassic. The Early Cretaceous 

population has a major peak between 110 and 120 Ma. The Middle Mesozoic peak ranges from Early 

Cretaceous to Middle Jurassic between 130 to 170 Ma with a major peak at 150 to 160 Ma. The 

Permian-Triassic has two peaks, the younger between 220 to 240 Ma and a second between 250 to 

260 Ma. A small number of ages are in the early Paleozoic (Carboniferous and Ordovician). 

Proterozoic ages are composed of Neoproterozoic, ranging of 700 Ma to 800 Ma, and 

Paleoproterozoic, ranging from 1.6 Ga to 2.1 Ga. The oldest age recorded in sample STB34 is 

Neoarchean at 2502 ± 34 Ma. The youngest age is 102 ± 1 Ma (Albian, Early Cretaceous). The 

Mesozoic zircons are commonly euhedral to subrounded and indicate a first cycle to moderately 

recycled origin. There are several dark rims of Cretaceous age which indicate a metamorphic event 

at this time. Permian zircons are generally subrounded to rounded and suggest moderately recycled 

grains. The Proterozoic zircons are mainly rounded and indicate multiple recycling. The Archean age 

is found in a xenocryst core.  

Sample STB07a is a lithic greywacke. A total of 78 concordant U-Pb ages were obtained from 106 

zircons. The data are presented in Supplementary Table 2.6. All zircon grains are between 63 and 

200 μm. The zircon age populations consist of 56 Phanerozoic and 22 Proterozoic ages (Fig. 11b). 

Most prominent peaks are Late and Early Cretaceous, Late Jurassic, Permian-Triassic and around 1.8 

Ga to 1.9 Ga. The Cretaceous peaks include subpeaks at 85 to 100 Ma and at 120 to 130 Ma. Jurassic 

ages range from the Jurassic-Cretaceous boundary at 140 to 150 Ma, the most dominant age peak of 

the sample, to 180 Ma. The whole Triassic and the Late Permian is represented in the sample ages 
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ranging from 200 to 260 Ma. Minor populations are Early Permian, Devonian and Proterozoic up to 

1.8 to 1.9 Ga. The oldest age recorded in sample STB07a is 1874 ± 15 Ma (Paleoproterozoic). The 

youngest age is 86 ± 1 Ma (Santonian, Late Cretaceous). The Mesozoic dominated by subrounded to 

euhedral zircons, indicating mostly moderately recycled material with minor first-cycle material. The 

Proterozoic is mainly composed of rounded zircon grains which indicate multiple recycling.  

Sample STB68b is a pyroclastic deposit sampled at Gunung Singai. A total of 101 concordant U-Pb 

ages were obtained from 121 zircons. The data table is presented in the Supplementary Table 2.7. All 

zircon grains are between 63 and 200 μm. All U-Pb ages obtained are Mesozoic. The sample is 

composed of mainly Cretaceous zircons with a few Jurassic zircons (Fig. 12a). The Cretaceous has a 

major peak at 90 to 100 Ma which forms more than 50% of the zircon age population (Fig. 12b). The 

Lower Cretaceous to Upper Jurassic zircon population ranges from 140 to 175 Ma. The oldest age 

recorded in sample STB68b is 173 ± 2 Ma (Middle Jurassic). The youngest age is 87 ± 1 Ma 

(Coniacian, Late Cretaceous). The variability of Cretaceous zircon ages indicates that the sample was 

not sourced by a single magmatic pulse and zircon growth may have occurred during a long period of 

time. Jurassic ages suggest inherited detrital sources. The weighted mean age calculation of the 

Cretaceous population results in 95.6 ± 0.6 Ma (MSWD = 2.9) (Fig. 12b). In view of the interpreted 

long period of zircon crystallisation and inheritance, only the youngest population was used to 

identify the timing of eruption (Fig. 12c). The weighted mean age calculation of the youngest 

population consisting of five grains gives an age of 88.5 ± 1.5 Ma (MSWD = 1.3). CL images with 

analytical spots for assorted zircons are displayed in Fig. 12d. 

7. Discussion 

Table 2 summarises the age data obtained by U-(Th)-Pb zircon dating and by the 40Ar/39Ar white mica 

dating. The following paragraph discusses the tectonic implications for West Sarawak and adjacent 

areas from the age, provenance and geochemical results. Fig. 13 displays the results of the U-Pb 

zircon and 40Ar/39Ar white mica age dating and their tectonic significance. 

7.1. Triassic magmatism  

Triassic magmatism in West Sarawak is recorded by the Serian Volcanic Formation, the Jagoi 

Granodiorite and the volcaniclastic sediments of the Kuching and Sadong Formations. These are 

interpreted to be the subduction products of a volcanic arc at the margin of Sundaland. A 

subduction-related origin of the Jagoi Granodiorite is indicated by the geochemistry. 

An I-type amphibole granodiorite (TB114) of the Jagoi Granodiorite was dated. Zircon U-Pb dating 

yielded an age of 208.3 ± 0.9 (Late Triassic) and an inherited age of c. 240 Ma. The inherited age is 

interpreted as the first magmatic phase and the younger age is interpreted as a second magmatic 
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phase with some recrystallization of older zircons. A similar interpretation was given by Supriatna et 

al. (1993) for K-Ar ages of the Triassic Embuoi complex in NW Kalimantan with initial crystallisation 

at 230-263 Ma and later recrystallization at 201-214 Ma. The Jagoi Granodiorite was affected by 

later thermal events which resulted in lead-loss in zircons and ages ranging from Early Jurassic to 

Late Cretaceous. A Cretaceous thermal overprint could account for the wide range of K-Ar ages for 

the Jagoi Granodiorite reported by various previous authors (Bignell, 1972; JICA, 1985; Bladon et al., 

1989).  

No age dating was carried out on andesitic rocks of the Serian Volcanic Formation, but a Triassic age 

is inferred by Pimm (1965) and Wilford and Kho (1965) from the interfingering with the Triassic 

Sadong Formation. A subduction-related origin is interpreted from geochemical data for sample TB6. 

Triassic volcaniclastic sediments are assigned to the Sadong Formation and newly-defined Kuching 

Formation. The two formations have very similar characteristics and are interpreted to be lateral 

equivalents deposited in different parts of an arc basin. The Sadong Formation is a shallow marine to 

estuarine deposit (Liechti et al., 1960; Wilford and Kho, 1965) and the Kuching Formation is a deep 

marine turbidite.  U-Pb zircon dating provides a maximum depositional age (MDA). The MDA of the 

Sadong Formation is c. 225 to 240 Ma (Carnian to Ladinian) and the MDA of the Kuching Formation is 

221 Ma (Norian) to c. 230 Ma (Carnian). Within the Sadong Formation are two grains that are slightly 

younger; they were interpreted to be affected by lead-loss and excluded from the MDA 

determination. Since the Sadong Formation is locally metamorphosed it is possible that some zircons 

were partly reset by this metamorphism. The Norian to Ladinian MDA is consistent with the previous 

published paleontological ages of Late Carnian (Kon`no, 1972) and Norian (Liechti et al., 1960; 

Wilford and Kho, 1965) for the Sadong Formation. The Sadong Formation has a Cathaysian flora 

(Kon’no, 1972) which indicates deposition at low latitudes.  

The Triassic ages of the Jagoi Granodiorite in West Sarawak and plutonic rocks in NW Kalimantan 

indicate widespread magmatism in a plutonic province in NW Kalimantan and West Sarawak. The 

Triassic volcanic and volcaniclastic rocks indicate widespread volcanic activity in the same region. 

The volcanic arc is interpreted to have been built on older continental basement. The zircon age 

peak at c. 1.8 Ga in the Triassic sedimentary rocks indicates recycling of older material. 

Paleoproterozoic zircons of c. 1.8 Ga in the region are known from the Malay Peninsula 

(Sevastjanova et al., 2011) and from Indochina (Thailand/Laos) (Carter and Moss, 1999; Burrett et al, 

2014; Arboit et al., 2016). Plutons of Paleoproterozoic age at c. 1.8 Ga are known from the Cathaysia 

block in SE China (Liu et al., 2009; Chen et al., 2016). It is therefore concluded that the western part 

of NW Kalimantan and West Sarawak (western part of the Kuching Zone) was a Cathaysian fragment 

that was part of, or was accreted to, Sundaland in the Triassic. 
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7.2. Triassic metamorphism 

Prior this study no dating had been carried out on the metamorphic rocks in Sarawak. They were 

previously assumed to be Permian/Carboniferous or older and to represent old basement (Pimm, 

1965; Tate and Hon, 1991; Hutchison, 2005). The results of this study require revision of this 

assumption. 

Three metamorphic rocks were dated with the 40Ar/39Ar method in this study. Two samples yielded 

Triassic ages. The samples are strongly foliated low grade mylonites with abundant quartz veins and 

quartz segregations. Their compositions indicate a quartz-rich fine-grained protolith, potentially 

volcaniclastic sediments. White mica from TB35 (Kerait Schist) and TB249 (Tuang Formation) were 

dated as c. 216 to 220 Ma. Because of the similarity in character and ages of the rocks from the two 

formations it is proposed to drop the previous assignment to separate formations, which is based 

only on geographical location, and introduce the term West Sarawak Metamorphics to include all 

isolated exposures of metamorphic rocks from this area.  

The volcaniclastic Sadong and Kuching Formations locally show low-grade metamorphism and are 

interpreted as the unmetamorphosed and very low grade equivalents of the West Sarawak 

Metamorphics. Abundant quartz veins and quartz segregations within the Kuching Formation 

indicate a slightly higher degree of metamorphism compared to the Sadong Formation. The 

metamorphism might be related to burial depth or deformation. 

The Triassic ages of the metamorphic rocks are interpreted to record metamorphism associated with 

the Sundaland volcanic arc.  

7.3. Triassic arc setting 

There are two possible scenarios. A Triassic subduction margin could be the southern continuation 

of west-directed Paleo-Pacific subduction along the eastern margin of South China and Indochina 

(Fig. 14a) associated with the Indosinian orogeny, as shown by e.g. Carter and Clift (2008). Extensive 

Permian to Triassic magmatism in Vietnam is reported by e.g. Faure and Fontaine (1969), Lasserre et 

al. (1974), Lepvrier et al. (2004), Pham et al. (2008), Liu et al. (2012), Vladimirov et al. (2012), 

Ishihara and Orihashi (2014), Hieu et al. (2015) and Halpin et al. (2016). Similar magmatic activity is 

reported from SE China by Shao et al. (1995), Yu et al. (2010), Deng et al. (2012), and Mao et al. 

(2013), and from Hainan Island by Li et al. (2006) and Jiang et al. (2015). Gatinsky et al. (1984) and 

Hutchison (1989) suggested west-directed subduction could be traced southwards from the Kontum 

Massif in eastern Vietnam. Kudrass et al. (1986) reported Triassic sediments similar to the Sadong 

Formation from South China Sea (Reed Bank area) dredge samples. 
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Alternatively, Triassic magmatism and metamorphism could be the result of east-directed 

subduction of the Paleo- or Meso-Tethys. Permian-Triassic magmatism is recorded in the Malay 

Peninsula (e.g. Bignell and Snelling 1977; Liew and Page, 1985; Darbyshire, 1988; Cobbing et al., 

1992; Searle et al., 2012) and has been attributed to east-directed subduction of the Paleo-Tethys 

and accretion during the collision of Sibumasu with the Sukhothai island arc and East Malaya (e.g. 

Hutchison, 1989; Metcalfe, 2006; Sevastjanova et al., 2011; Searle et al., 2012).  

Pimm (1967) however, demonstrated geochemical differences between the Serian Volcanic 

Formation and subduction-related rocks in the Malay Peninsula. The subduction of the Paleo-Tethys 

was also completed by the Late Triassic (Sevastjanova et al., 2011; Metcalfe, 2013). There are no 

Late Triassic metamorphic rocks reported from the Malay Peninsula (East Malaya) and metamorphic 

rocks associated with the Sibumasu-Sukhothai island arc-East Malaya collision occur only in 

Sibumasu (see review in Morley et al., 2013). The position of the Serian Volcanic Formation would 

favour a west-directed subduction zone as the distance to the Paleo-/Meso-Tethys subduction zone 

would have been much greater than to the Paleo-Pacific subduction zone. 

7.4. Jurassic stable platform 

There are no Early and Middle Jurassic records in West Sarawak. A non-magmatic interval in the 

region is interpreted from drilling in the South China Sea to show subduction pulses rather than 

continuous long-lived subduction throughout the Jurassic and Cretaceous (Xu et al., 2016). 

Sedimentation in West Sarawak in the Late Jurassic is recorded by the Bau Limestone Formation and 

the Kedadom Formation (e.g. Bayliss, 1966). This limestone reef complex seems to be on top of the 

Triassic sedimentary, metamorphic and igneous rocks. Schairer and Zeiss (1992) reported Middle 

Jurassic ammonites from the Brandung Formation, the NW Kalimantan equivalent of the Bau 

Limestone Formation, suggesting an earlier beginning of reef facies in that region. The Brandung 

Formation is close to Triassic rocks of the Balaisebut Group and the Embuoi Complex (Supriatna et 

al., 1993) which suggests a similar setting of Jurassic reef facies on top of Triassic and older 

accretionary rocks. This suggests that by the Middle Jurassic parts of NW Kalimantan formed a stable 

carbonate platform which extended in the Late Jurassic into present-day West Sarawak.  

7.5. Late Jurassic – Early Cretaceous deep marine setting 

A significant change occurred before the beginning of the Cretaceous. Deep marine Late Jurassic to 

Early Cretaceous sedimentation is reported from parts of the Serabang Formation (Wolfenden and 

Haile, 1963; Basir and Aziman, 1996) northwest of the carbonate platform. In the Late Jurassic to 

Early Cretaceous (Muller, 1968; Morley, 1998; Basir and Uyop, 1999) the carbonate platform was 

rapidly subsiding and clastic open marine sedimentation of the Pedawan Formation was established. 
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7.6. Cretaceous magmatism 

Cretaceous magmatism is evident in the Cretaceous volcaniclastic Pedawan Formation (Wilford and 

Kho, 1965; Muller, 1968; Nuraiteng and Kushairi, 1987, Morley, 1998), which incorporates layers and 

beds of pyroclastic deposits. Upper Jurassic fossils were reported from only one location (Basir and 

Uyop, 1999) and an extension of the Pedawan Formation into the Jurassic is uncertain. U-Pb dating 

of zircons from the Pedawan Formation in this study revealed dominant Cretaceous and Jurassic age 

peaks and abundant Paleozoic and Proterozoic zircons. The MDA of the analysed sedimentary 

samples ranges from 86 to 102 Ma. This age is consistent with the palynological age assigned by 

Morley (1998) to the youngest part of the Pedawan Formation. The pyroclastic sample (STB68b) 

dated in this study has a calculated weighted mean age of 88.5 ± 1.5 Ma which is interpreted as the 

age of eruption. Foraminifera in one sample indicate a similar/slightly older Turonian (92.8-91.3 Ma) 

age of deposition. 

Abundant Upper Jurassic to Lower Cretaceous zircons are interpreted as subduction-related and 

derived from a nearby arc. Upper Cretaceous zircons of the Pedawan Formation may have been 

sourced by the Schwaner Mountain arc of SW Borneo. The wide age range of Paleozoic and 

Proterozoic zircons indicates additional sources compared to the Triassic volcaniclastics. These 

zircons may be related to the arrival of the SW Borneo block, providing a new source area, or could 

have been derived from the Malay Peninsula or SE Vietnam.  

The Pedawan Formation is interpreted as a forearc basin fill in a long-lived subduction zone. The 

termination of arc-related sedimentation in the Coniacian or Santonian is interpreted to mark the 

end of subduction below West Sarawak and SW Borneo.  

7.7. Cretaceous metamorphism 

Metamorphic rocks are known from the Serabang Formation, Sejingkat Formation, Sebangan 

Formation and the Lubok Antu Melange are all melanges which contain Cretaceous sediments and in 

West Sarawak are interpreted to be Cretaceous. 

TB10 is a metamorphic rock previously assigned to the Tuang Formation (Tate and Hon, 1991) which 

was assumed to be Carboniferous or older. Dating in this study with the 40Ar/39Ar method yielded a 

much younger age. White micas in the sample TB10 yielded an Early Cretaceous metamorphic age. It 

is concluded that this schist is likely a fragment in a melange similar to fragments observed in the 

Serabang, Sebangan and Sejingkat Formations. The Cretaceous metamorphism is interpreted to be 

associated with the Cretaceous subduction zone. 
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The Boyan Melange in NW Kalimantan is dated as Late Cretaceous (Williams et al., 1989) and may be 

an extension of the Lubok Antu Melange-Kapuas Complex to the south. If so, this would indicate a 

large area underlain by accretionary material and not two separate accretionary belts. The dated 

schist sample is slightly older than the age interpreted (Williams et al., 1989; Basir, 1996) for the 

Kapuas Complex-Lubok Antu Melange and Boyan Melange and suggests accretion onto the 

Sundaland margin in the Early Cretaceous.  The age of the Lubok Antu Melange is still debated. Tan 

(1979, 1982) included the undeformed Middle Eocene calcareous Engkilili Formation in the melange, 

but undeformed sediments of similar or greater age reported north and south of the Lubok Antu 

Melange (Haile, 1957; Wolfenden, 1960; Tan, 1979) suggest an older age for the melange. Haile 

(1996) disputed the inclusion of the Engkilili Formation in the melange and if the Engkilili Formation 

is excluded the available age data (Tan, 1979, 1982; Basir, 1996) suggest a Late Jurassic to 

Cretaceous age for the melange. 

The ocean associated with this Cretaceous accretionary margin was named the Danau Sea by Haile 

(1994) and is considered in this study to be part of the Paleo-Pacific subduction. Remnants of this 

Cretaceous accretionary margin are found within the Serabang Formation (Wolfenden and Haile, 

1963), Lubok Antu Melange (Tan, 1979; Tan, 1982; Basir, 1996) and in the Boyan Melange (Williams 

et al., 1989). The Sibu Zone may be underlain by similar accreted material. This would suggest a very 

wide zone of accreted material from eastern West Sarawak to Central Sarawak.  

7.8. Cretaceous arc setting 

Cretaceous magmatism in the region was reported from the Schwaner Mountains in SW Borneo 

based on dating by the K-Ar method (e.g. Haile et al., 1977; Williams et al., 1988) and by U-Pb zircon 

dating (van Hattum et al., 2013; Davies, 2013; Davies et al., 2014). Pulses of Late Jurassic to 

Cretaceous magmatism from the South China Sea are reported by Xu et al. (2016). Extensive 

Cretaceous magmatism is known from the Da Lat Zone in SE Vietnam from U-Pb ages (Nguyen et al., 

2004; Shellnutt et al., 2013). Minor Cretaceous plutons are also reported from the Malay Peninsula 

(e.g. Searle et al., 2012). Taylor and Hayes (1983) interpreted a wide Cretaceous subduction margin 

in eastern China and Vietnam. A similar Andean arc from SE China to Borneo was also suggested by 

e.g. Charvet et al. (1994), Clements et al. (2011) and Pubellier and Morley (2014). Yan et al. (2010) 

reconstructed the arc from Taiwan to SE Vietnam. No magmatism is recorded in West Sarawak in the 

Late Jurassic to Early Cretaceous. However, metamorphism at this time is indicated by schist sample 

TB10 (this study) and the Serabang Formation (Wolfenden and Haile, 1963). It is concluded that 

there was an Andean arc from SE China to Borneo in the Cretaceous, subducting the Paleo-Pacific in 

a similar setting as in the Triassic. 
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SW Borneo was suggested to have been the Banda block rifted from the Australian margin in the 

Late Jurassic (Hall et al., 2009; Hall, 2012) leaving the Banda embayment (Spakman and Hall, 2010; 

Hall and Spakman, 2015). SW Borneo has a completely different stratigraphic and magmatic history 

from now adjacent parts of Sundaland but there is still only limited evidence for an Australian origin. 

Alluvial diamonds reported from southern Borneo resemble diamonds from NW Australia (Taylor et 

al., 1990) and were interpreted by White et al. (2016) to be derived from the Australian margin of 

Gondwana.  

The SW Borneo block is interpreted to have docked with Sundaland in the Early Cretaceous (Hall et 

al., 2009; Hall, 2012) but the exact timing of the arrival is still uncertain. The shift from shallow 

marine carbonate sedimentation to volcaniclastic sediments of the Pedawan Formation in the Early 

Cretaceous may mark the arrival of SW Borneo. Age data in SE Vietnam (Nguyen et al., 2004; 

Shellnutt et al., 2013) and in the Schwaner Mountains (Haile et al., 1977; Williams et al., 1988; van 

Hattum et al., 2013; Davies, 2013; Davies et al., 2014) indicate a magmatic arc from c. 120 Ma in 

eastern Sundaland (Fig. 14b) which remained active until c. 90-80 Ma (Clements et al., 2011; Hall, 

2012). 

The wide accretionary zone related to Late Jurassic to Early Cretaceous subduction and to the 

Schwaner Mountain arc in the early Late Cretaceous would indicate a trench relatively distant from 

the magmatic arc. This suggests a flat slab subduction model. Flat slab subduction along the eastern 

SE China margin has been suggested for the Mesozoic (e.g. Li and Li, 2007; Li et al., 2007) and in 

northeast China in the Cenozoic (e.g. Tang et al., 2014). 

Early in the Cretaceous small fragments of continental crust were accreted from Cathaysia. 

Cretaceous metabasites in the South China Sea were reported from dredge samples by Kudrass et al. 

(1986) and a Late Mesozoic accretionary zone has been interpreted by Zhou et al. (2008).  

7.9. Younger metamorphic episodes from the 40Ar/39Ar dating 

The three metamorphic samples record a complex thermal history. All three samples show 40Ar/39Ar 

ages in the initial steps of the step-heating method which are significantly younger than the inferred 

Mesozoic ages of metamorphism (Fig. 13). The amount of radiogenic Ar indicates that these ages are 

not a consequence of contamination and are therefore not artefacts. However, these first steps 

need to be interpreted cautiously as chlorine and calcium values are high and the ages may not be 

very precise.  

The initial heating steps for Triassic samples TB35 and TB249 indicate a Cretaceous overprint. The 

age of this event is coincident with the metamorphic age of sample TB10 and is interpreted as 

indication of a widespread Cretaceous metamorphic event. 
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Triassic sample TB35 and Cretaceous sample TB10 record a potential Oligocene metamorphic event. 

The age of c. 25 to 30 Ma is coincident with 40Ar/39Ar ages reported by Davies (2013) from the Pinoh 

Metamorphics and with apatite fission track ages in igneous rocks reported by Moss et al. (1998). 

The age is interpreted to indicate a widespread shearing event in Borneo at c. 25 Ma, potentially 

related to the Lupar Line trend and counter-clockwise rotation (Schmidtke et al., 1990; Fuller et al., 

1999) of Borneo. Early Miocene volcanics (Sintang Suite) in West Sarawak and NW Kalimantan 

(Hutchison, 2005) are not deformed or sheared and indicate termination of shearing before their 

emplacement.  

7.10. Origin of the Kuching Zone 

Borneo is composed of several fragments which were accreted from the Triassic onwards and form a 

heterogeneous crust in central Borneo. It is interpreted that by the Late Cretaceous, Borneo was 

composed of several different tectonic components that included SW Borneo, NW Sulawesi, E Java–

W Sulawesi, Triassic Sundaland, and the Mesozoic accretionary complex (previously partially 

assigned to a Luconia-Dangerous Grounds block by Hall, 2012) as shown in Fig. 15. The Argo (E Java–

W Sulawesi) and Inner Banda blocks (NW Sulawesi and E Sabah) include parts of eastern Borneo and 

rifted from the Australian margin of Gondwana in the Late Jurassic (Hall, 2012; Hennig et al., 2016). 

SW Borneo comprises the block that was derived from the Australian margin in the Late Jurassic to 

Early Cretaceous and today includes the Schwaner Mountains and the region south of them. 

Essentially it comprises the area named by Haile (1974) the West Borneo Basement. Triassic 

Sundaland encompasses the area of Triassic granitoids, metamorphic and sedimentary rocks that 

form the basement to the Middle to Upper Jurassic carbonate platform of NW Kalimantan and West 

Sarawak (western Kuching Zone) and were part of Cathaysia from the Permian onwards. The 

Mesozoic accretionary complex is located in the northern and eastern part of West Sarawak and 

underlies most of the eastern part of the Kuching Zone and potentially the whole Sibu Zone. It 

includes Cathaysian fragments that were accreted between the Triassic and the Cretaceous derived 

from the South China continental margin. The Busang Complex and the Telen River sediments are 

probably such fragments. The Kuching Zone is therefore underlain by the Triassic Sundaland margin 

and the Mesozoic accretionary complex that formed along the Paleo-Pacific subduction zone 

between the Triassic and Late Cretaceous (Fig. 14).  

There must be a suture in western Borneo between Triassic Sundaland and SW Borneo. The 

northern margin of Triassic Sundaland is marked by the Triassic Serian Volcanic Formation, which 

represents the Triassic volcanic arc and may locate the position of the suture between Triassic 

Sundaland and the Mesozoic accretionary complex. The Lupar Line is not considered to represent a 
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suture and is merely a younger strike-slip fault that exposes part of the melanges in Kalimantan and 

West Sarawak. 

8. Conclusions 

Metamorphic rocks, which were previously thought to represent pre-Carboniferous basement, have 

been dated as Late Triassic and are named the West Sarawak Metamorphics. These metamorphics 

do not represent old basement. They indicate collision and metamorphism associated with a Triassic 

accretionary margin in eastern Sundaland, potentially part of the Indosinian orogen. U-Pb zircon 

ages from the Jagoi Granodiorite reveal a complex history. Early magmatism occurred around 240 

Ma and a later magmatic episode associated with recrystallisation has been dated as c. 208 Ma. 

Triassic volcaniclastics (Sadong and Kuching Formations) were sourced by a contemporaneous 

Triassic volcanic arc built on continental crust as indicated by reworking of Paleoproterozoic crust 

(with zircon ages of c. 1.8 Ga). Their MDA is dated as c. 221 to 230 Ma. They are interpreted as the 

forearc basin fill at the eastern Sundaland margin where there was west-directed subduction of the 

Paleo-Pacific. The Triassic part of Borneo (western part of the Kuching Zone) is not considered to be 

a separate Semitau block, but is interpreted to belong to the Mesozoic eastern Sundaland margin. 

One other metamorphic rock, also previously thought to be pre-Mesozoic basement, have been 

dated as Early Cretaceous and are associated with the Serabang, Sebangan and Sejingkat 

Formations, all melanges, which indicate accretion during the Late Jurassic to Cretaceous and are 

part of a zone of Cretaceous accretionary material. This accretionary zone is associated either with a 

new subduction zone which initiated in the Cretaceous or with resumption of subduction, as 

indicated by the Cretaceous volcaniclastics of the Pedawan Formation and the magmatic rocks of the 

Schwaner Mountains. 

The data obtained in this study are interpreted to indicate a long-lived subduction margin in eastern 

Sundaland from the Triassic to the Late Cretaceous. Within this west-directed subduction margin, 

several fragments of Cathaysia, and basic and metabasic rocks, were accreted to the continental 

core of Sundaland. The Cathaysia fragments were derived from South China to the north/northeast. 

The results of this study cause us to doubt the existence of a separate ‘Semitau block’. The 

metamorphic rocks show an Oligocene overprint which may be related to a major widespread 

shearing event in Borneo due to counter-clockwise rotation. 
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Figure captions 

(Size preferred below each caption) 

Fig. 1: a) Principal continental blocks of SE Asia showing the interpreted Semitau and SW Borneo 

(SWB) blocks (modified after Metcalfe, 2013). Sibumasu and Indochina-East Malaya formed Early 

Mesozoic Sundaland. b) Tectonic provinces of NW Borneo (modified after Haile, 1974). The black box 

shows the research area in the Kuching Zone (West Sarawak). 

(1.5 column size) 

Fig. 2: Mesozoic stratigraphy map of West Sarawak (modified after Liechti et al., 1960; Heng, 1992). 

The map includes our own field observations. West Sarawak and NW Kalimantan form the Kuching 

Zone. Central Sarawak is the Sibu Zone. (T. = Tanjung/headland, G. = Gunung/mountain). 

(double column size) 

Fig. 3: Sample locations and map of metamorphic rocks and the Triassic Jagoi intrusion in West 

Sarawak (modified after Liechti et al., 1960; Heng, 1992). Samples in italics and brackets were not 

dated; all other samples were dated with U-Pb zircon, 40Ar/39Ar white mica or micropalaeontology. 

Note: Mesozoic sediments and the Triassic Serian Volcanic Formation are not shown. 

(double column size) 

Fig. 4: Metamorphic rocks in West Sarawak. a) Folded quartz-mica schists (TB249). b) Phyllitic and 

folded quartz-mica schist (TB35). c) and d) Thin section photomicrographs of white mica foliation 

bands in plane and crossed polarized light (TB249). e) and f) Thin section photomicrographs of the 

Cretaceous schist showing chlorite and epidote/clinozoisite alteration in plane and crossed polarized 

light (TB10). g) Offset of various extension cracks in opaque porphyroblast in plane polarized light 

(TB66a). h) Radial fibrous chalcedony and extension cracks in crossed polarized lights (TB68b). (Ms = 

muscovite, Op = opaque phase, Qp = polycrystalline quartz, Ab = albite, Phg = phengite, Ep = 

epidote, Clz = clinozoisite, Chl = chlorite). 

(1.5 column size) 

Fig. 5: Classification of the analysed micas in the mgli-feal diagram (mgli = Mg – Li; feal = Fetot + Mn + 

Ti + VIAl) of Tischendorf et al. (2004). Shaded area indicates solid-solution series. White micas of the 

West Sarawak Metamorphics are classified as muscovite/phengite, white mica of the Upper 

Cretaceous metamorphic rocks as phengite. 

(single column size) 
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Fig. 6: Thin section photomicrographs of the Serian Volcanic Formation (TB6) and the Jagoi 

Granodiorite (TB114). a) Plagioclase-pyroxene xenolith crossed polarized light (Serian Volcanic 

Formation, TB6). b) Polycrystalline quartz xenoliths crossed polarized light (Serian Volcanic 

Formation, TB6). c) Biotite with chloritization and basal section (Jagoi Granodiorite, TB114). d) 

Euhedral oscillatory zoned plagioclase affected by alteration (Jagoi Granodiorite, TB114). e) and f) 

Amphibole twinnings in plane and crossed polarized light (Jagoi Granodiorite, TB114). (Pyx = 

pyroxene, Plg = plagioclase, Qp = polycrystalline quartz, Am = amphibole (hornblende), Bt = biotite, 

Chl = chlorite.) 

(1.5 column size) 

Fig. 7: N-MORB normalised spider-diagram for the Triassic igneous rocks: Serian Volcanic Formation 

(TB6) and the Jagoi Granodiorite (TB114) indicating enrichment in LILE interpreted as subduction-

related. N-MORB normalisation values from Sun and McDonough (1989). 

(single column size) 

Fig. 8: Apparent age plots from the 40Ar/39Ar step heating experiments. a) Sample TB249 shows a 

plateau with ~70% of gas release at ~217 Ma. b) Sample TB35 shows an asymptote at ~220 Ma with 

Ar loss in the initial steps. c) Sample TB10 shows an upper age limit of 143 Ma and a lower age limit 

of 119 Ma, as well as Ar loss in the initial steps and mixing between the limits. 

(1.5 column size) 

Fig. 9: U-Pb zircon age histograms with probability density plot of detrital samples from Sadong 

Formation a) 712 and b) 713b, and Kuching Formation c) TB250a showing two major age peaks in 

the Permian-Triassic and in the Proterozoic at 1.8 Ga. The Permian-Triassic age peak is associated 

with a fresh magmatic source and the 1.8 Ga peak indicates recycling of Sundaland crust. Histograms 

for each sample use a bin size of 10 Ma for Phanerozoic ages and 50 Ma for Precambrian ages. d) 

Catholuminescence (CL) image of zircons with analysis spots (yellow circles) of sample TB250a. Spot 

sizes are c. 25 µm. Spot numbers of Triassic samples are listed in Supplementary Tables 2.1 to 2.3. 

(1.5 column size) 

Fig. 10: U-Pb zircon ages for sample TB114 of the Jagoi Granodiorite. a) Tera-Wasserburg plot 

showing a significant Late Triassic zircon population with inheritance of a very small Middle Triassic 

population. Ages affected by lead-loss and common lead range from the Jurassic to the Cretaceous. 

b) Zircon age population histogram with probability density of all concordant ages. Outliers are 

coloured in grey. Jurassic ages are from lead-loss affected grains. c) Weighted mean age calculation 
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gives an age of 208.3 ± 0.9 Ma. Blue marks are excluded outliers. d) CL image of zircons with analysis 

spots (yellow circles). Spot sizes are c. 30 µm. Spot numbers are listed in Supplementary Table 2.4. 

(1.5 column size) 

Fig. 11: U-Pb zircon age histograms with probability density plot of detrital samples a) STB34 and b) 

STB07a of the Pedawan Formation showing several age populations ranging from Cretaceous to 

Proterozoic which indicate a wide range of sources. The dominant Late Jurassic and Cretaceous 

peaks indicate intensive magmatism. Histograms for each sample use a bin size of 10 Ma for 

Phanerozoic ages and 50 Ma for Precambrian ages. Spot numbers are listed in Supplementary Table 

2.5 and 2.6. 

(1.5 column size) 

Fig. 12: U-Pb zircon ages for pyroclastic sample STB68b of the Pedawan Formation. a) Concordia plot 

showing a significant Late Cretaceous zircon population. b) Zircon age population histogram with 

probability density plot of all concordant ages. Inherited ages range from Early Cretaceous to Middle 

Jurassic. Inlet figure shows weighted mean age calculation for the Late Cretaceous population. c) 

Weighted mean age calculation for youngest population gives an age of 88.5 ± 1.5 Ma. d) CL image 

of zircons with analysis spots (yellow circles). Spot sizes are c. 25 µm. Spot numbers are listed in 

Supplementary Table 2.7. 

(1.5 column size) 

Fig. 13: Summary of magmatic and metamorphic ages from the accretionary margin in West Sarawak 

and NW Kalimantan. Data from the Schwaner Mountains of the SW Borneo block from Haile et al. 

(1977), Williams et al. (1988), van Hattum et al. (2013) and Davies et al. (2014). Data from SE 

Vietnam from Nguyen et al. (2004) and Shellnutt et al. (2013). 

(1.5 column size) 

Fig. 14: Tectonic reconstruction for West Sarawak and central Kalimantan in the Mesozoic (modified 

from Hall, 2012). a) Late Triassic subduction of the Paleo-Pacific. The volcanic arc in Triassic 

Sundaland (West Sarawak) is formed by the Serian Volcanic Formation and the Jagoi Granodiorite 

with deposition of the volcaniclastic Kuching and Sadong Formations in the forearc basin. b) Early 

Late Cretaceous subduction of the Paleo-Pacific. The Schwaner Mountains form the volcanic arc in 

SW Borneo and the volcaniclastic Pedawan Formation is deposited in the forearc basin. (SPG – 

Songpan Ganzi accretionary complex, SWB - Southwest Borneo, TS – Triassic Sundaland of 

Borneo/western part of the Kuching Zone, NWS - Northwest Sulawesi, EJWS - East Java-West 

Sulawesi). 
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(1.5 column size) 

Fig. 15: Tectonic provinces of Borneo (basement map). (SWB - Southwest Borneo, TS - Triassic 

Sundaland of Borneo/western part of the Kuching Zone, NWS - Northwest Sulawesi and E Sabah, 

EJWS - East Java-West Sulawesi). 

(1.5 column size) 

Table captions 

Table 1: Summary of the identified fossil assemblage of sample STB61a of the upper part of the 

Pedawan Formation (classification scheme by BouDagher-Fadel, 2013). 

Table 2: Summary of radiometric ages obtained in this study. (1σ error for U-Pb; 2σ error for 

40Ar/39Ar). 
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Table 1: Summary of the identified fossil assemblage of sample STB61a of the upper part of the 
Pedawan Formation (classification scheme by BouDagher-Fadel, 2013). 
 
 

Sample Description Fossil assemblage Environment Age/Zone 

STB61a 
Micritic packstone 
with intensive 
reworking 

Dicarinella imbricata, Globotruncana 
spp., Helvetoglobotruncana helveticae, 
Concavatotruncana canaliculata, 
Dicarinella hagni, Concavatotruncana 
sp., Sigalitruncana sigali, Sigalitruncana 
schneegansi 

Inner neritic 
Late Cretaceous, 
Turonian (Zone 2, 
92.8-91.3Ma) 
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Table 2: Summary of radiometric ages obtained in this study. (1σ error for U-Pb; 2σ error for 40Ar/39Ar). 
 

Location Sample Longitude Latitude 
Sample 

type Rock type Formation Mineral Method 
Weighted mean/ 
plateau age (Ma) 

Error 
(Ma) 

STB68 STB68b 110.14464 1.49882 outcrop pyroclastic deposit Pedawan Formation zircon U-Pb 88.5 1.5 

STB07 STB07a 109.89238 1.57748 outcrop volcaniclastic sediment Pedawan Formation zircon U-Pb 86* 1 

STB34 STB34 110.26065 1.18386 outcrop volcaniclastic sediment Pedawan Formation zircon U-Pb 102* 1 

TB10 TB10 110.29034 1.47734 outcrop chlorite schist Upper Mesozoic 
white 
mica 40Ar/39Ar 118.5 1 

    
 

  
 

  metamorphic rocks 
white 
mica 40Ar/39Ar 143 2.2 

TB114 TB114 109.99646 1.33366 float granodiorite Jagoi Granodiorite zircon U-Pb 208.3 0.9 

TB249 TB249 110.32029 1.49617 outcrop quartz-mica schist 
West Sarawak 

Metamorphics (Tuang 
Formation) 

white 
mica 

40Ar/39Ar 216.8 1.2 

TB35 TB35 110.65461 1.17556 outcrop quartz-mica schist 
West Sarawak 

Metamorphics (Kerait 
Schist) 

white 
mica 

40Ar/39Ar 219.6 3 

TB250 TB250a 110.36448 1.53395 outcrop volcaniclastic sediment Kuching Formation zircon U-Pb 221* 3 

713 713b 110.60248 0.996716 outcrop volcaniclastic sediment Sadong Formation zircon U-Pb 225* 2 

712 712 110.54335 0.94992 outcrop volcaniclastic sediment Sadong Formation zircon U-Pb 231* 3 

           * U-Pb age of the youngest detrital zircon, that is interpreted as maximum age of deposition 
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Highlights 

 40Ar/39Ar dating of metamorphics in Sarawak revealed Late Triassic metamorphism. 

 Volcaniclastics have Mesozoic zircons indicating contemporaneous magmatism. 

 Detrital U-Pb zircon ages reveal reworking of Paleoproterozoic crust. 

 Part of West Sarawak was connected to Sundaland from the Triassic onwards. 

 A new reconstruction for West Sarawak from the Triassic onwards is proposed. 


