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Abstract

In this thesis aberration corrected scanning transmission electron microscopy (ac-

STEM) is employed to study the atomic structure of size-selected nanoclusters. The

nanoclusters are produced using a magnetron sputtering gas aggregation cluster

source with lateral time of flight mass filter, which enables the deposition of high

precision samples. For Au nanoclusters, the combination of these techniques is

used to determine atomic structure as a function of size, elucidate cluster growth

mechanisms, determine the lowest energy structural isomers and investigate control

of atomic structure through formation conditions. To further investigate the atomic

structure of Au nanoclusters, an in-situ heating holder for the ac-STEM is used to

extract a quantitative value for the energy di↵erence between competing structural

isomers. A study of surface melting of Au clusters on amorphous-carbon is also

presented and the results are discussed with reference to several models for nanoscale

melting. Finally, ac-STEM and STEM electron energy loss spectroscopy are used to

study the atomic structure and ageing in air of size-selected Ag nanoclusters. It is

shown that exposure to air induces a change in both atomic structure and chemical

composition.
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Chapter 1

Introduction and Background

1.1 Nanoclusters Overview

Nanoclusters are aggregates of between 10 and 106 constituent atoms or molecules

[1] that can be formed from a wide variety of materials, such as metals [2], semicon-

ductors [3], and noble gases [4]. They may consist of a single element or molecule,

or of multiple elements, as is the case for bimetallic clusters [5, 6]. Depending on the

constituent material, nanoclusters may be bound by ionic bonding (e.g.(NaCl)
N

),

metallic bonding (e.g.Co), covalent bonding (e.g.Si) or by Van der Waals forces

(e.g.(Ar
N

))[7]. In this thesis, the term nanocluster refers to particles that are well

defined (size, composition) and are small enough for size-dependent properties to

be apparent. The term nanoparticle is used more generally to describe particles be-

tween 1 and 100nm in size. All of the experimental results in this thesis are focused

specifically on nanoclusters.

The properties of nanoclusters di↵er widely from those of the bulk material.

Reasons for this include the large surface to volume ratio of clusters, and changes to

the HOMO-LUMO gap compared with the bulk material for metals. The gap be-

tween the HOMO and the LUMO controls electronic, optical and reactive properties.

For individual atoms, electron energy levels are discrete, whereas for a nanocluster

the wave functions of the numerous atoms overlap and the energy levels are split

(hybridisation), this changes the HOMO-LUMO gap. For bulk material the large

1



CHAPTER 1

number of atoms means that the split energy levels form quasi-continuous bands.

Changing the coating, composition or size of a nanocluster can change the HOMO-

LUMO gap and thus its optical properties [8]. For example a blue shift in the absorp-

tion peaks with decreasing core size has been reported for glutathione-protected gold

nanoclusters [9]. The large surface to volume ratio of nanoclusters can dramatically

increase their reactive properties; gold, which is inert in bulk form, is a catalyst in

nano-form. The large surface to volume ratio also causes the melting point of many

materials to be suppressed and to become highly size dependent at the nanoscale

[10] due to the reduced cohesive energy of surface atoms. Contrary to this, it has

been discovered that small tin clusters (10-30 atoms respectively) have a melting

point higher than the bulk material [11]. The reason for this is unknown, however

it is suggested that it may be attributed to di↵ering atomic structure (with higher

cohesive energy) compared with the bulk.

Nanoparticles (clusters) have a wide range of uses across multiple disciplines due

to their size dependent properties. Numerous types of nanoparticles can be used

to catalyse reactions [12, 13]; for example Ni-Ga nanoparticles are a catalyst for

carbon dioxide reduction to methanol [14] and small gold nanoparticles made from

55 atom clusters have been shown to catalyse the oxidation of styrene by dioxygen

[15]. The high biocompatibility of gold nanoparticles has led to their use in a variety

of medical and bio applications such as for drug delivery [16] and sensing of bio-

molecules [17]. In sensing, when the target substance binds to the nanoparticle

(or its ligands) there is a detectable change in one of its properties (e.g. plasmon

resonance, conductivity, fluorescence). For drug delivery, the drug to be used is

attached to the nanoparticle (or its ligands) and its release is stimulated (e.g.by

light, pH, etc.) in the targeted area. An example of this is in targeted cancer therapy

research [18]. Silver nanoparticles, which have antibacterial properties [19], are used

in wound dressings and clothing [20], and titanium dioxide nanoparticles can be

found in products such as toothpaste and sun cream [21]. As well as direct contact

with people (through cosmetics etc.), inevitably a proportion of these nanoparticles

2
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are released into the environment. Consequently, there is a great deal of interest in

the potential toxic e↵ects of these nanoparticles on living organisms, plants and the

environment [22].

1.1.1 Magic Electronic and Geometric Numbers

Nanoclusters present numerous di↵erent structures, both single crystalline (octahe-

dra) and twinned (decahedra and icosahedra). Single crystalline structures consist

of a continuous crystal lattice (e.g. face-centred-cubic) across the entire cluster,

whereas twinned structures contain multiple orientations of a crystalline lattice.

For a given size there are a number of di↵erent geometric arrangements (structural

isomers) that are possible. The structure that has the lowest energy, the ground

state structure, is most favourable at T=0K. However, multiple structures (for a

given size) are observed experimentally as a result of kinetic trapping [1] and the

appreciable Boltzmann weight at room temperature of multiple structures that lie

close to the ground state. Certain sizes, corresponding to either closed geometric

or closed electronic shells, are more energetically favourable; these sizes are called

magic numbers.

Electronic magic numbers were demonstrated experimentally in 1984 by Knight

et al [23]. Peaks in mass spectra of Na clusters were observed at 8, 20, 40, 58 and

92 atoms, this can be seen in figure 1.1. These peaks were explained by electron

shell closures. Metallic clusters can be modelled as spheres with positive charge

distributed throughout and valence electrons filling electronic shells, closing of elec-

tronic shells corresponds to the most stable sizes, called magic numbers. It is most

likely that the e↵ect of electronic shell closure will be seen for alkali metals (followed

by noble metals) because their valence electrons are weakly bound.[1]
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Figure 1.1: a) Mass spectrum of sodium clusters N=4-75. Insert corresponds to

N=75-100. b) The calculated change in the electronic energy di↵erence �(N+1)-

�(N), vs N, where �(N) is the di↵erence in electronic energy between adjacent

clusters. Figure and adapted caption from reference 23.

Mass spectra of sodium clusters produced in a gas aggregation source and ionised

using lasers showed that for clusters with more than 2000 atoms certain sizes had

higher ionisation potentials, hence were more stable (see figure 1.2) [24]. These sizes

corresponded to geometric shell closing of the Mackay icosahedron and cuboctahe-

dron. For smaller sizes of Na clusters it was shown that the magic numbers are

still dominated by electronic shell closing. The crossover size from electronic shell

magic numbers at small sizes to geometric shell magic numbers at larger sizes varies

depending on material [25]. Temperature has also been shown to a↵ect the crossover

size between electronic and geometric magic numbers [26]; for higher temperatures,

when clusters are liquid, electronic structures are expected to dominate whereas at

lower temperatures, when clusters are solid, geometric shell closures are expected to
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dominate.

Figure 1.2: a) Mass spectra of Na, clusters photoionized with 400 and 410 nm

light. The y axis denotes the total number of counts accumulated in a 40 ns time

channel after about 105 laser shots. Two sequences of structures are observed at

equally spaced intervals on the n1/3 scale. b) Averaged mass spectra of Na. clusters

photoionized with 415 and 423 nm light. Minima indicated correspond to cluster

sizes with higher ionisation potentials - more stable sizes. Adapted figures and

caption from reference 24.

1.1.2 Geometric Structures

For single crystalline face-centred-cubic (fcc) clusters, potential geometric structures

are the octahedron and truncated octahedron (TO), both of which are shown in

figure 1.3. The octahedron consists of two square pyramids sharing a base. The

truncated octahedron is an octahedron with cuts at the vertices. The truncated

octahedron can be described by the length of the edge of the corresponding complete

octahedron, n
l

, and the depth of the cut at the vertices in number in layers, n
c

. The

total number of atoms in any truncated octahedron is given by [1]:
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N(n
l

, n
cut

) =
2n3

l

+ n
l

3
� 2n3

cut

� 3n3
cut

� n
cut

. (1.1)

The cuboctahedron (as shown in figure 1.3B) is a specific type of truncated octahe-

dron, for which n
l

=2n
cut

+1 [1].

Figure 1.3: A) Octahedron. B) Cuboctahedron, 561 atoms

The decahedron (Dh) is a non-crystalline structure formed of two five-sided pyra-

mids sharing a common base. A decahedron can also be described as multiply

twinned fcc because it consists of five fcc tetrahedra.There are two possible trunca-

tions that make the cluster more spherical, hence more stable: 1) truncation of the

edges of the shared base to expose (100) facets yielding the Ino-decahedron [27], 2)

cutting re-entrances between the (100) facets of the Ino-Dh yielding the Marks dec-

ahedron [28]. The three decahedron variants are shown in figure 1.4. Decahedra can

be described by the lengths of the sides of the (100) facets (m,n), and the number

of layers cut by the Marks re-entrance, p. The total number of atoms is given by

[1]:

N(m,n, p) = (30p3 � 135p2 + 207p� 102)/6 + (5m3 + (30p� 45)m2

+(60(p2 � 3p) + 136)m)/6 + (n(15m2 + (60p� 75) + 3(10p2 � 30p) + 66))/6� 1.

(1.2)
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Figure 1.4: A) Decahedron side view, 609 atoms. B) Decahedron front view, 609

atoms. C) Ino-Decahedron side view, 561 atoms. D) Ino-Decahedron front view,

561 atoms. E) Marks-Decahedron side view, 434 atoms. F) Marks-Decahedron front

view, 434 atoms.

The other non-crystalline structure is the Mackay icosahedron (Ih), shown in

figure 1.5. This structure is formed from 20 fcc tetrahedra, all positioned around a

central point, hence it can also be considered a multiply twinned fcc structure. The

total number of atoms in a Mackay icosahedron is given by:

N(k) =
10

3
k3 � 5k2 +

11

3
k � 1 (1.3)

where k is the number of atomic shells [1]. For the cuboctahedron, icosahedron and

Ino-decahedron (with m=n) the series of magic numbers corresponding to closed

atomic shells is: 13, 55, 147, 309, 561, 923, ...

For each structural isomer there is a competition between the surface energy

and the internal strain. To minimise the surface energy, close-packed facets and a

spherical shape are needed, however to minimise the internal strain an fcc bulk-like

crystalline structure is required [1]. The truncations discussed above act to lower

the surface energy by making the structures more spherical (and in some cases
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Figure 1.5: Icosahedron containing 561 atoms

exposing close packed facets). Non-crystalline structures (Ih, Dh) will always have

high internal strain but this may be balanced by a lower surface energy compared to

single crystalline structures at certain sizes. For metal nanoclusters it is generally

expected that the lowest energy structure will be the icosahedron at small sizes,

the decahedron at intermediate sizes and fcc at larger sizes [1]. This is because the

icosahedron has a large volume contribution (due to the displacement of atoms from

the bulk) but a low surface energy, therefore as cluster size is increased the volume

contribution increases rapidly making the structure unfavourable. The decahedron

has higher surface energy than the icosahedron (less spherical shape) but lower

internal strain; hence the volume contribution as size increases is lower compared

with the Ih. The fcc structure has lower internal strain than the Ih or the Dh but

it has the highest surface energy, this makes it unfavourable at small sizes but most

favourable at larger sizes when the volume contribution dominates.

1.2 Atomic Structure of Au Clusters

The use of gold clusters has been reported in multiple applications, including cataly-

sis [15], drug delivery [16], and biological sensing [17]. Determination of the structure

of nanoclusters (of di↵erent sizes, compositions, formation conditions) is an impor-

tant step towards understanding, and tuning, their properties. For instance it is

thought that establishing the structure of catalyitically active sites is important for

understanding how catalysts work and thus designing new, more e�cient catalysts

[29]. Indeed, new catalysts for H2O2 production have been designed and synthesised
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based on an understanding of the structure at the active site [30].

All cases discussed below are for bare (not ligated) clusters that are freestanding

or on a carbon support - for which the interaction with the cluster is low. Another

area of study is that of Au clusters on di↵erent supports, Au clusters on metal

oxides are catalyst systems and it is important to understand the interface between

the support and the cluster to understand the active site [31]. Similarly, the study

of the structure of ligated clusters is an import field of research because of their

use in catalysis [32] and bio-applications [16, 17, 33, 34]. These topics will not be

discussed further here - the report will concentrate on freestanding clusters and

clusters deposited on carbon - the subject of results presented in this thesis.

1.2.1 Experimental Studies

The atomic structure of nanoclusters can be determined by trapped ion electron

di↵raction [35], scanning tunnelling microscopy (STM) [36], HRTEM and ac-STEM.

The advantage of trapped ion electron di↵raction is that the structure of free clus-

ters can be investigated without any possible distortion that may be caused by a

substrate. However, this method is limited by the size range of clusters that can be

trapped and also looks at the entire collection of cluster ions ( 105) meaning that if

multiple structural isomers exist, or if structures that are not predicted by models

exist, they may not be recognised. STM with a Cl functionalised tip can be used

to determine the structure of individual clusters and also to gather information on

electrical properties [36]. The disadvantage of this method is that the clusters must

be supported on a conducting or semiconducting substrate and this may disrupt

the cluster’s structure. Also the method is very time consuming in comparison to

TEM making statistical analysis unrealistic. The most direct method for determin-

ing atomic structure is by TEM (either HRTEM or ac-STEM). The limitations of

this method are that it requires the nanoclusters to be deposited on a surface and

the electron beam can cause damage to the sample. However, the method allows

atomic resolution imaging of an extensive range of sizes and materials on an indi-
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vidual particle basis. This literature review will concentrate on (S)TEM studies of

Au nanoclusters.

The first direct measurements of the atomic structure of Au clusters were made

in the 1960’s by Ino et al and Ogawa et al [37, 38, 39] using TEM. Since then there

have been many TEM investigations of Au clusters, most of these early studies

concentrated only on determining the structures presented by Au clusters that had

been produced by evaporation of Au on to an a-carbon substrate [40, 41, 42, 43].

For example in 1991 Borel et al used HRTEM and multislice image simulation to

study the structures of Au clusters, and reported that Dh, Ih and multiply twinned

particles (MTP’s) were observed commonly whilst fcc single crystals were not [42].

Similarly another HRTEM study in 1992 by Yacaman et al reported that Dh clusters

matched well with model structures whilst Ih clusters appeared distorted [43]. More

recent studies tend to use cluster beam sources to soft land clusters on to a carbon

support and concentrate on determining the ground state structure of clusters, size-

selected studies, and resolving the atomic structure of ultra-small clusters using

aberration-corrected (S)TEM.

Patil et al [44] performed an experiment designed to determine the ground state

structure of Au clusters in the 1-20 nm size range. The clusters were created in

a gas aggregation cluster beam source and soft-landed onto carbon films. In some

cases the clusters were annealed in the gas phase before deposition. They found

that in the samples that had not been annealed, the clusters had multiply twinned

polycrystalline structures. In contrast, when they were annealed to a temperature

higher than their melting point (1400K for largest sizes), for clusters in the correct

orientation, (111) lattice fringes were observed. The smallest size clusters for which

fringes could be observed were approximately 400 atoms. Based on this result they

concluded that fcc is the ground state structure for Au clusters in this size range.

This result has the disadvantage that the atomic structure of small size clusters could

not be resolved and o↵-axis clusters could not be identified. These problems are

solved in many of the following studies due to the invention of aberration-corrected
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(S)TEM and comparison of images with multislice (S)TEM simulations for di↵erent

cluster orientations.

In a study by Ajayan et al [45] experimental HRTEM results on the phenomenon

of quasi-melting under the electron beam are reported. Small gold particles de-

posited on MgO were found to ‘decouple’ from the substrate under electron beam

irradiation and to fluctuate continually between di↵erent structural motifs. This is

called a quasi-molten state. The frequency of fluctuations was found to increase as

the interaction with the substrate decreased. Whilst a large amount of energy (high

electron beam dose) was needed to initiate the quasimolten state, only a very small

amount of energy (low electron beam dose) was needed to maintain the fluctuations.

It is even suggested that these fluctuations may continue at room temperature with

no additional energy from the electron beam. Based on this result, it is suggested

that these small particles become trapped in deep potential energy wells correspond-

ing to stable structures and that intense electron beam irradiation enables them to

access a ‘shallow potential energy surface’ with multiple local minima resulting in a

quasimolten state. Van Huis et al [46] also observed this rapid fluctuation between

structural motifs in large (5nm, 9nm) colloidal Au particles at elevated tempera-

tures (�1000K), just below the melting point, noting that the particles are ‘hopping

between various local minima’.

In a separate study by Doraiswamy et al [47] the mechanism of quasimelting was

investigated by HRTEM for Au, Ag and Pd particles. Ag is known to sublimate at

temperatures �600�C and the melting point of Pd is 327.5�C, this was used to set

an upper limit on the temperature that the electron beam heats the sample. No

melting of Pd, or sublimation of Ag, was observed during electron beam irradiation

with the same dose required for quasimelting of Au particles. This demonstrated

that the electron beam dose required for observation of quasimelting corresponds to

a temperature much lower than the melting point of Au. Hence it is concluded that

quasimelting is not a result of the electron beam causing a temporary molten state

(through thermal-spikes) and that the energy barriers between structures must be
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relatively low.

Koga et al [48, 49] have studied the atomic structure of 3-18nm gold nanopar-

ticles as a function of size and also investigated temperature dependent structural

transformations. The gold nanoparticles used in this study were produced using

an inert gas aggregation cluster source and deposited onto amorphous carbon. The

structures were determined using high-resolution-TEM tilt series; sets of 20 images

were taken for each cluster at di↵erent angles to obtain 3D structural information.

The structures were then identified by comparison with multi-slice simulated images

for Ih, Dh and fcc structures.

In the 3-18nm size range it was reported that the majority of structures were Ih,

Dh were the second most abundant and there were very few fcc structures observed.

The Dh structures had what is described as ‘pancake’ (truncated pentagonal bipyra-

mid) structure. Neither the icosahedron nor the ‘pancake’ decahedron is expected

to be the lowest energy structure in this size range. It is proposed that these clusters

are grown kinetically on small Ih and pancake Dh seeds via shell-by-shell growth

and that they cannot overcome the energy barrier to transform into the more sta-

ble Marks-Dh (M-Dh) structure. For larger clusters there was a slight decrease in

the proportion of Ih and a corresponding increase in the proportion of Dh. This

is thought to be a result of the higher absorption cross-section, and hence faster

growth, of Dh compared to Ih. [48]

In a separate study by Koga [49], gold nanoclusters were annealed at successively

higher temperatures (1173K, 1225K, 1273K) just below their melting points. It was

reported that for smaller clusters the Ih transform into Dh and that with higher

annealing temperatures larger sized clusters (up to 14nm) transform as well. The

clusters were also annealed at 1373K, above the bulk melting point temperature.

This process of melting then freezing resulted in the formation of fcc structures,

indicating that the energy barrier between fcc and Dh structures in this size range

is very high. In the annealed sample, the proportion of fcc structures observed

increased with the size of the clusters (from 6-18nm) and the proportion of Dh
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structures decreased correspondingly; this result implies that the fcc structures have

the lowest energy at larger sizes.

In the TEM studies discussed above the exact size of the clusters in number

of atoms was not known, the clusters were not mass selected and only diameters

were used to describe the cluster sizes, it has been suggested that the ground state

structure can be altered by the addition of just a few atoms [50] and for this reason

it is important to know the exact size of the clusters. In the NPRL group the atomic

structure of size-selected Au nanoclusters (�m/m ⇡ 20) has been widely reported

[51, 52, 53, 54, 55].

In 2008 Li et al demonstrated that the 3D atomic structure of size-selected gold

clusters can be determined using HAADF ac-STEM [51]. Au clusters containing

309±6 atoms were produced by a magnetron sputtering gas aggregation cluster

beam source. The clusters were then imaged by HAADF STEM. This enabled Z-

contrast images of the clusters to be acquired, in which the intensity of an atomic

column is proportional to the number of atoms it contains, hence 3D structural

information was obtained. The images were then compared with simulated HAADF

STEM images of the cuboctahedron, Ino-decahedron and icosahedron to determine

the atomic structure. Both the shape of, and the variation in intensity across the

imaged clusters was used to compare the experimental and simulated images. It

was found that 32% were Ino-decahedral, 25% cuboctahedral, and 8% icosahedral;

the remaining proportion was not identified either because they had irregular facets

that did not match to a simulated model or there was no ordered arrangement of

the atoms. It was reported that during imaging the clusters often rotated under

the electron-beam and that occasionally structural transformations were observed.

Intensity profiles were taken across the images and compared against the simulations;

it was seen that the intensity of the outer atomic columns was lower experimentally

than theoretically and an extra shoulder was seen at the edge in all cases. This

deviation from the model was attributed to movement of surface atoms on a faster

timescale than the image acquisition.
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In the same study the intensity of size-selected clusters ranging from 55 atoms to

1500 atoms was also measured and it was found that the relationship between size

and intensity is linear in this size range. This confirmed that each atom contributes

equally to the electron scattering signal detected and validates the method of using

HAADF STEM for determination of 3D atomic structure information in Au clusters

with up to 1500 atoms. Indeed, it was later determined that this method is valid

for clusters containing up to 6500 atoms [56].

Subsequently, the NPRL group has also reported on the atomic structure of

deposited (carbon substrate), size-selected Au clusters containing 20, 55 and 923

atoms [52, 53, 54, 55].

For Au20 a tetrahedral structure was reported [52]. However, other lower sym-

metry structures were seen more frequently. Continuous sequences of images were

taken for individual clusters, from these it was seen that the clusters continually

transform between di↵erent atomic arrangements. Structural changes to a lower

energy atomic arrangement were also seen under the electron beam; clusters tended

to stabilise with either the tetrahedral arrangement or more commonly a circu-

lar structure. In this particular study a low dose was used for imaging (8.8x103

e�/Angstrom2/frame, 13.3x13.3nm field of view) to limit damage to the clusters

and it was confirmed (by measuring cluster intensity across images series) that un-

der these condition knock-on-damage did not cause atoms to be sputtered from the

clusters.

Similarly, for Au55 [53] it was shown that the structures of the clusters fluctuate

continually under the e-beam. Predicted chiral structures and amorphous structures

were often seen in the image sequences. However, none of the high symmetry fcc,

Ih or Dh motifs were observed. To identify the chiral structures multi-slice STEM

simulations were performed on predicted chiral geometries at di↵erent angles of

rotation, creating a ‘simulation atlas’. This method is used in several studies [53,

54, 55] and is explained in more detail in chapter 2.

In the case of Au923 clusters, Wang et al [54] deliberately induced structural
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transformations. Experiments were performed by taking a continuous series of im-

ages (at a dose of 2.4⇥ 104 e�/Angstrom2/frame for up to 500 frames, field of view

10.5⇥10.5nm) of individual Au923 clusters and observing changes in the atomic struc-

ture. The structures were assigned as Ih, Dh, or fcc by comparison with a simulation

atlas for the Au923 icosahedron, Ino-decahedron and cuboctahedron as shown in fig-

ure 1.6. It was reported that nearly all the Ih (41/42) convert into Dh (29/41) or

fcc (12/41), only one case (1/18) of an fcc to Dh transformation was observed and

all Dh structures stayed Dh over the 500 frames. Based on the structural transfor-

mations, the proposed order of stability for this size is from Dh-fcc-Ih. However it

is noted that the preference for the Ih-Dh transitions could be due to the potential

energy barrier from Ih-Dh being lower than for Ih-fcc, and that it is not necessarily

true that the Dh structure has a lower energy than the fcc. MacArthur et al [57]

reported a similar result for large (6-20nm) colloidal gold particles. They found that

ex-situ annealing to 100�C and 250�C resulted in an increase in Dh isomers and a

corresponding decrease in Ih isomers. Moreover it was found that the transition

from Ih to Dh is initiated at ⇡100�C.

Figure 1.6: Typical HAADF-STEM images of Au923 clusters and corresponding

simulations. (a)-(d) the HAADF images for (a) a decahedron along a fivefold axis

(<110> axis); (b) fcc polyhedron along the <110> axis; (c) icosahedron along a

fivefold axis; and (d) icosahedron along a twofold axis (<112> axis), respectively.

(e)-(h) the simulated images obtained from the standard atomic models of the Ino-

decahedron, cuboctahedron, and icosahedron, respectively. The arrow in (a) marks

the edge where no reentrant structure is observed. Figure and caption from reference

54.
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The most recent work on Au923 [55] has shown that by varying formation con-

ditions, the atomic structure of the nanoclusters can be controlled. The relative

proportions of Ih, Dh, fcc and unidentified/amorphous (UI/A) structures were iden-

tified (as above) for samples produced with a range of magnetron powers and con-

densation lengths. In all cases Dh were most commonly observed, followed by fcc

with Ih being least abundant in all cases. It was found that as the magnetron power

is increased the proportion of Ih increase monotonically and the proportion of Dh

decrease. This is explained by the increased density of sputtered material at high

magnetron power resulting in rapid growth conditions far from equilibrium; hence

Ih structures are kinetically trapped, having grown from small Ih seeds. Similarly,

as condensation length is decreased the proportion of Ih increases, this is explained

by the increased growth time at long condensation lengths leading to a reduction

in kinetic trapping of Ih structures. Both of these results are accounted for by the

metastability of the Ih structure at this size, which was shown in the previous Au923

study. As before [54] the relationship between the Ih and Dh structure was also seen

(i.e. as the Ih portion increased the Dh portion decreased).

Outside of NPRL, Li et al [58] have also used ac-HAADF STEM imaging to

obtain the 3D atomic structure of clusters. Ultra-small gold clusters containing 25

atoms (calculated from measuring the HAADF intensity of single Au atoms) were

prepared by evaporation of Au onto amorphous carbon films. They used HAADF

images of the ultra-small clusters to create basic model structures that were then

relaxed by DFT and used to create mulitslice STEM simulations. From a sequence

of HAADF STEM images a structural transition (caused by the e-beam irradiation)

from a square shape to an elongated shape was observed. By comparing the same

images to the multislice simulations they identified that the transition was from a 2D

square structure to 3D elongated structure. This example shows how HAADF STEM

images can be used to work back to a structure. While this is possible for smaller

clusters, it presents a much larger challenge for larger clusters (several hundreds of

atoms) for which there would be a huge number of possible atom arrangements.
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The above studies show that although static studies of nanoclusters have merit

for determining possible low lying isomers, dynamical or temperature dependent

experiments are needed to obtain information on the order of stability of structural

isomers. Both the study by Plant et al on Au923 structure control [55] and the

observation of energetically unfavourable structures by Koga et al [48] show that

the proportion of structural isomers observed is not necessarily representative of the

ground state.

1.2.2 Theoretical Studies

The general trend expected for metal nanoclusters, based on the competition be-

tween surface energy and internal strain, is that the Ih will be most stable at small

sizes, the Dh at intermediate sizes and fcc structures at larger sizes. This trend is

supported by many theoretical studies [59, 60, 61, 62], however the predicted sizes at

which these structural transitions occur varies widely and in some cases variations

from this trend are reported [50, 51, 62, 63].

Baletto et al [60] calculated the structural crossover sizes for a range of metal

nanoclusters by molecular dynamic simulations using both Rosato Guillope and

Legrand (RGL) and embedded atom model (EAM) potentials. The general trend

for metals from Ih!Dh!fcc with increasing size is reported, although for gold the

Ih region is virtually non-existent and the Dh region is also very small meaning

that fcc structures are already lowest in energy at 600 atoms. This is explained

by the fact that for gold, changing the interatomic spacing (as is the case for the

non-crystalline Ih and Dh structures) results in a large increase in energy. For other

metals the e↵ect is not so large and as a result the Ih and Dh regions are present

up to much larger sizes.

In contradiction to this Barnard et al [59] predicted a wide Ih region, at 250K the

Ih was predicted to be the lowest energy structure for clusters < 5nm in diameter,

the Dh between 5 and 15 nm and fcc (including fcc twins) >15nm. At 0K the

Ih region was reported to be even larger; Ih being the lowest energy structure for
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clusters <11nm in diameter, the Dh between 11 and 14nm and fcc structures at

>14nm. These calculations were made using a thermodynamic model [64].

Chen et al [63] used Ino’s theory [27] to determine the most stable structures

at di↵erent sizes, however parameters used were determined from the Sutton-Chen

potential (rather than using experimental values). They reported that for N<200

the Ih has the lowest energy and for N>200 the truncated octahedron has the

lowest energy. This corresponds to a crossover size of 2nm, much lower than the

10nm crossover predicted by Ino’s theory. In this study the energy of numerous

perfect geometries were minimised to confirm the trend. It was found that for

N<500 the Ih is the lowest energy structure, for 500<N<2000 the octahedron, for

2000<N<10000 truncated Dh, truncated octahedra and octahedra are all lowest and

for 10000<N<15000 the octahedron and truncated octahedron are lowest. There was

not a clear intermediate Dh region, however the energy of the truncated decahedron,

although not lowest, is also reported to be very low in the intermediate size ranges.

The melting and freezing behaviour of nanoclusters in the 2-5nm size range was

calculated from molecular dynamics simulations (MEAM potential) by Kuo and

Clancy [61]. All clusters were initially created as fcc, melted then cooled again.

It was found that the clusters transform from fcc to Ih at high temperatures (⇠

100K below melting point). As the temperature is increased further, near to their

melting point, the clusters take on a quasi-molten state where the structure fluc-

tuates continuously. The general trend at low temperatures is reported as being

from Ih!Dh!fcc with increasing size. However, as the temperature is increased

Dh and smaller sized fcc structures were found to transform into Ih before melting,

and larger fcc transformed into Dh before melting. For freezing the reverse of this

behaviour is reported.

In a study on the atomic structure of Au309, Curley et al [65] performed simula-

tions to determine low energy structural isomers for comparison with experimental

results. Initially using the Gupta many body potential to determine the energy of

perfect Ih, Dh and cuboctahedron (fcc) structures, they found that Ih is most stable,
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followed by Dh, then fcc. However, all isomers were found to be within 4meV of each

other, meaning that experimentally all are likely to be observed. A global optimi-

sation was then undertaken to determine further low lying isomers in the size range

294-324 atoms; local minima were found for incomplete and distorted Ih structures,

and interestingly for size 309 a distorted Ih was found to be more stable than the

perfect Ih geometry. The average energy di↵erence between structures in the two

lowest energy minima was on average only 0.3meV, this means that experimentally

many di↵erent distorted structures should be observed.

Goedecker et al [50] used a minima hopping global optimisation method (RGL

potential) to determine low energy isomers in Au clusters with <318 atoms. They

reported that the addition of just a single atom completely changes the lowest energy

atomic structure - this is in contrast to the MD simulations discussed above in

which Ih, Dh and fcc regions are predicted. It is also reported that the energy

di↵erence between low-lying isomers is very small and that practically this means

many di↵erent geometries would be observed experimentally at room temperature,

not only because of kinetic trapping but also because of their Boltzmann weight at

non T=0K temperatures. Additionally for these small sized clusters most of the

structures were found to be more complex than the perfect Ih, Dh and octahedral

magic number geometries.

Li et al [62] have performed DFT studies on 1.1-3.5nm diameter Au clusters

(Au55-Au923). For high symmetry (Ih, Ino-Dh, cuboctahedron) magic number clus-

ters the order of stability is reported to be Ih>Dh>fcc. However, several low sym-

metry structures were also determined by global optimisation and several of these

were lower than their high symmetry counterparts. For example, for cluster sizes

>549 atoms lower symmetry fcc-type isomers were more favourable than the per-

fect Ih and for cluster sizes <561 atoms reconstructed, lower symmetry Ih and Dh

structures were lower in energy than the perfect Ih.

Several molecular dynamics studies have been conducted on the freezing of gold

nanoclusters. These types of simulation can give insight in to how metastable struc-

19



CHAPTER 1

tures are produced under experimental conditions. All simulations in references

66-69, reported that a metastable Ih structure is most commonly formed when a

liquid gold cluster is frozen. Using the EAM potential Yoon et al [66] reported that

for a liquid Au561 cluster, crystallisation initiates at the surface, not at the core as

would be expected from nucleation theory. They found that five-fold Ih symmetry

regions nucleate on the surface, which then acts as a seed for the crystallisation of

the core - this is said to be due to the low kinetic barrier to Ih structure at the

surface. Similarly Bowles et al [68] found that the surfaces of liquid clusters often

have regions similar to (111) Ih facets and this is why Ih structures are favoured

upon freezing. Ferrando et al [67] also investigated the e↵ect of the freezing rate

on the structures that are formed in 2-4nm Au clusters; they report that at fast

cooling rates Ih are preferentially formed but at slower cooling rates there are more

Dh, p-Dh and fcc structures. The poly-decahedral structures are formed by the

simultaneous nucleation of multiple five-fold axis and are more common at faster

freezing rates.

Several factors should be taken in to consideration when comparing experimental

data to theoretical studies. 1. Kinetic trapping of structures in experimentally

produced clusters meaning that systems are not at equilibrium. 2. The e↵ect of

non-zero temperature must be taken into account. Most experiments are performed

at room temperature or above (and many theoretical studies at T=0K) meaning

that, assuming equilibrium, the Boltzmann weight of lower-lying isomers will be

appreciable. This will be particularly important if isomers are in close competition

as is reported in many cases (e.g. Dh and fcc). 3. The size distribution of samples

- the addition of a few atoms may impact the ground state structure.

1.3 Melting of Nanoclusters

It is well known that the melting point of materials is suppressed at the nanoscale.

Generally, this can be explained by the increased surface to volume ratio at the

nanoscale in combination with the reduced cohesive energy of surface atoms. In this
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section, several models of melting point suppression at the nanoscale are explained

and studies on the melting of gold nanoparticles discussed. This section is relevant

to results presented in chapter 5, in which the melting of size-selected gold clusters

is investigated.

1.3.1 Models of Melting Point Suppression

Pawlow derived the first model of melting point suppression for nanoparticles in 1909

using thermodynamic principles - the triple point model [70]. The model is based

on the assumption that at the melting point the chemical potentials of solid and

liquid spherical nanoparticles (with the same radius) are equal (µ
s

(p,T)=µ
l

(p,T)).

By expanding the chemical potential at the triple point to the first order (in 1/r),

the equation below is obtained for melting point suppression [71]:

T
m

= T0

 
1� 2V

s

Lr

 
�
s

� �
l

✓
⇢
s

⇢
l

◆2/3
!!

. (1.4)

Where T
m

is the suppressed melting temperature, T0 is the bulk melting

Figure 1.7: Models of melting point suppression. The green line is Pawlow’s triple

point model, the red line the liquid shell model (0.25nm shell thickness) and the blue

region the liquid nucleation and growth model. Table 1.1 shows the parameters used

for plotting these models.
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Table 1.1: Parameters used to produce figure 1.7

Symbol Value Reference

T0 1336 K [71]

V
s

10.7109⇥10�6m3/mol [70]

L 12362 J/mol [71]

�
s

1.4 J/m2 [71]

�
l

1.13 J/m2 [71]

�
sl

�
s

- �
l

[71]

⇢
s

18400 kg/m3 [71]

⇢
l

17280 kg/m3 [71]

temperature, V
s

is the molar volume of the solid, L is the molar latent heat, r is the

particle radius, �
s/l

is the surface tension of the solid and liquid particle respectively

and ⇢
s/l

is the mass density of the solid and liquid respectively. The full derivation

can be found in reference [1]. This model is plotted in figure 1.7, the result is a 1/r

dependence on the melting point.

The liquid shell model was devised by Reiss and Wilson in 1948 [72] and re-

worked by Hanzen [73] and Sambles [74]. Similarly to Pawlow’s model it is based

on thermodynamics. The model assumes that melting is initiated at the surface and

that close to the melting point a liquid shell, of thickness t, exists around the edge

of the particle. The thickness of the liquid shell is independent of temperature. A

schematic of this is shown in figure 1.8. The melting point for a particle of radius r

and liquid shell thickness t is given by: [71]

T
m

= T0
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(1.5)

where �
sl

is �
s

-�
l

and t is the thickness of the liquid shell. The 1
r�t

term in liquid

shell model results in lower melting temperatures for smaller particles compared

with Pawlow’s model (greater melting point suppression). Equation 1.5 is plotted
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in figure 1.7 for a shell thickness of 0.25nm. Figure 1.9 shows the e↵ect of increasing

the shell thickness.

Figure 1.8: A schematic of the liquid shell model. The solid core, radius r-t, is

shown in grey, and the liquid shell, thickness t, is shown in blue.

Figure 1.9: The liquid shell model is plotted for three di↵erent shell thicknesses:

0.25nm, 0.5nm and 0.75nm.

The liquid nucleation and growth model is a thermodynamic model based on

nucleation theory that also provides an explanation for the process of melting. In

this model the liquid nucleates on the surface of the particle and spreads inwards
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over time, until, at a certain solid core radius, the particle completely melts [70].

Couchman and Jesser [75] determined a lower boundary on the melting temperature

by considering that the Helmholz free energy of solid and liquid particles must be

equal for melting to occur. The lower boundary was given by:

T
m

= T0

✓
1� 3

L

✓
V
s

�
s

r
s

� V
l

�
l

r
l

◆◆
(1.6)

where V
s/l

is the molar volume of the solid/ liquid and r
s/l

is radius of the solid/liquid

particle. Assuming the radii of the solid and liquid particles are equal and that the

di↵erence between V
m

and V
s

is also negligible, equation 1.7 is obtained [70].

T
m

= T0

✓
1� 3�

sl

V
s

Lr

◆
. (1.7)

At the upper limit a critical core radius, r
c

, exists; for a core radius r
c

the

criterion that the chemical potential of the solid and liquid particles are equal is

met and therefore the particle must be molten. The critical radius is given by [70]:

r
c

=
2�

sl

V
s

T0

L(T0 � T )
. (1.8)

The upper boundary is given by Pawlow’s model (considering µ(s)=µ(l)). Ac-

cording to this theory the particle may melt at any point between the lower and

upper boundaries, but melting becomes more probable as the upper boundary is ap-

proached. The melting region predicted by the liquid nucleation and growth model

is shown in fig 1.7.

1.3.2 Melting of Au Nanoparticles

Sambles performed an electron microscope study of the melting temperature of 5-

50nm Au nanoparticles by measuring their evaporation rates [76]. For particles

in the temperature range 1150-1300K, two regions with di↵erent evaporation rates

were observed. The change in evaporation rate was used to determine the melting

temperature of the particle. Sambles experimental results are shown in figure 1.10.
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In 1976 Bu↵at and Borel furthered the experimental results of Sambles by per-

forming scanning electron di↵raction experiments to determine the melting points

of Au particles with diameters of 2-25nm [10]. They used a heating stage in an

electron di↵ractometer and measured the di↵racted intensity of the (220) ring until

it was no longer identifiable (using loss of atomic lattice structure as the indicator

for melting). The size distribution of the sample was then measured using HRTEM.

Quantitative analysis of the di↵raction ring intensities alongside the measured size

distribution enabled the melting point to be determined for a given particle diam-

eter. Their experimental results are shown in figure 1.11. A comparison was made

with the second order approximation of the triple point model and the liquid shell

model (see section 1.3.1 for model details), both of which provided a good fit to the

data. In the case of the liquid shell model a shell thickness of 0.6nm was optimal.

Figure 1.10: Sambles’ experimental data of gold particle melting. Variation of

the melting temperature with the reciprocal radius for gold particles, determined

by measuring the change in evaporation rate. Figure and adapted caption from

reference 76.
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Figure 1.11: Bu↵at and Borel’s experimental data of gold particle melting. Ex-

perimental and theoretical values of the melting-point temperature of gold particles

determined from di↵raction: circles, present work; squares, Sambles; the solid line

results from a least-squares fit to the second-order relations of the triple point model,

using the experimental data and an estimated value of the Debye-Waller factor. Fig-

ure and adapted caption from reference 10.

Castro et al [77] used the change in field emission current of a cluster during

heating to determine its melting point. Size-controlled clusters were deposited on to

tungsten field emitters and the field emissions of individual clusters were measured

as the temperature was increased. At a temperature just below the bulk melting

point, there was a sudden change in the field emission current that was interpreted

to be due to a sudden shape change caused by the melting of the particle. A

dependence on the melting temperature with size was reported for particles with

diameters greater then 2nm.

In section 1.2.1 a study by Koga et al [49] was discussed in which the e↵ect

of annealing on the atomic structure of gold nanoparticles was investigated. They

found that Dh-fcc transitions were only observed when the particles were heated

above their melting point. This property was used to determine the melting point of

two di↵erent sizes by observing the lowest temperature that Dh-fcc transitions were

observed for particles of that size. Figure 1.12 shows their results plotted alongside

Pawlow’s model, the liquid shell model and several molecular dynamics calculations
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of Au nanoparticle melting (their measured temperature for Ih-Dh transitions is also

shown).

Figure 1.12: A size-temperature structural stability diagram of Ih gold nanopar-

ticles. Melting points (T
m

) and Ih-to-Dh transition points (T
Ih�Dh

) determined

in this study are denoted by solid squares (with dashed line fit) and solid circles,

respectively. The solid and dashed curves are melting temperatures predicted by

Pawlow’s theory [78] and the liquid shell model [71]], respectively. Melting points

by previous simulation works are plotted by circles [71]], diamonds [79], and trian-

gles [80], where each value is normalised by the bulk melting temperature. Figure

and adapted caption from reference 49.

The development of in-situ heating holders for (S)TEM has enabled direct imag-

ing of nanoparticle melting, with atomic resolution. Lee et al [81] used a high

temperature holder alongside HRTEM to directly observe melting point suppression

in Au. An 8nm Au particle on graphite was heated to 1100K and imaged whilst the

particle size gradually decreased. Originally the particle was a single crystal (fcc),

when the size of the particle decreased to 5nm a transition to liquid (loss of atomic

structures) was observed. This process can be seen in figure 1.13. The measured

melting temperature of 1100K for a 5nm Au particle was reported to be in good

agreement with previous experimental studies by Bu↵at and Borel and Sambles.
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Figure 1.13: A typical example showing successive stages of diminution of a Au

particle on a graphite substrate maintained at 1100 K. The numbers inserted in each

micrograph indicate relative times in seconds. During the diminution, a crystalline-

to-liquid phase transition (i.e., melting) occurred at the particle size of approxi-

mately 5nm (d). Figure and caption from reference 80.

Marijn et al [46] reported a similar result using an in-situ heating holder in

the TEM. They found that by oscillating the temperature of a 5.5nm Au particle

between 990 K and 1000 K, the particle melted and recrystallized repeatedly. A

study by the same group [82] investigated the e↵ect of high temperature on the

surface of Au nanoparticles, giving some insight into the mechanism of melting. It

was reported that a 10nm Dh particle showed loss of atomic structure around the

edges at 600�C and loss of atomic structure in half the particle at 700�C. For larger

particles (20-30nm) at high temperatures (>600�C) amorphous regions were also

observed at the surface, which were attributed to the formation of liquid regions

and the coexistence of solid and liquid phases.

There are numerous molecular dynamics simulations of Au nanocluster melting

[59, 61, 71, 79, 80, 83, 84, 85, 86, 87, 88, 89]. Several of these studies [80, 84, 86,
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88, 89] have calculated melting temperatures for specific cluster sizes, these results

are plotted in figure 1.14. The general trend of melting point suppression can be

seen, however di↵erent studies predict a di↵erent degree of suppression. As well as

size, atomic structure has also been predicted to play a role in cluster melting; Chen

et al [84] calculated that for a gold cluster with 309 atoms, the Octahedron will

melt at 635 K, the decahedron at 646 K and the Ih at 647 K. They suggest that

the Ih melts at the highest temperature because it’s energy is lowered by surface

reconstruction prior to melting. In this study surface premelting is also discovered

for the Octahedron and decahedron Au309 clusters before complete (core) melting.

More generally, surface melting (sometimes referred to as premelting) is a widely

predicted phenomenon in theoretical studies [59, 80, 83, 86, 88, 89]. For example,

Lewis et al [86] observed that for Au clusters with diameters of <3nm, melting

initiates at the surface and spread inwards. Similarly, Shim et al [88] reported that

the surface atoms in Au clusters (1.6-6nm in diameter) premelt before complete

(core) melting. However, not all studies observe premelting [61, 79, 84]. Cleveland

et al [85, 85] did not observe the formation of a liquid layer prior to melting, instead

structural transformation to an icosahedron was reported before complete melting.

Kuo et al [61] also report structural transformation to Ih, followed by a quasimolten

state prior to melting. Whilst in the quasimolten state the clusters are reported

to continually transform between di↵erent structural isomers. Size dependence of

surface melting as a mechanism has also been published. Ercolessi et al [80] found

that for particles with N>350 atoms a liquid shell formed prior to melting, whereas

in smaller particles (N=100-350 atoms) no liquid shell was formed. Wang et al [89]

reported a similar e↵ect; the formation of a liquid shell (premelting) was observed

for a cluster with N=7164 atoms, but not for a cluster with N=456 atoms, which

only formed a partial liquid surface layer.
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Figure 1.14: Molecular dynamic simulations results. The calculated melting tem-

perature is plotted versus the number of atoms. Where a specific atomic structure

is investigated, it is stated in the figure legend. Data reproduced from references 79,

83, 85, 87 and 88 .

The majority of theoretical studies concentrate on calculations of free Au clus-

ters. However, the majority of experimental studies, in particular (S)TEM studies,

are of Au clusters supported on a surface. Therefore, it is important to consider the

e↵ect of the surface to be able to interpret experimental results. Molecular dynamics

simulations performed by Kuo et al [61] found that the addition of a silicon sub-

strate improved the stability of clusters at high temperature, stopping the cluster

from forming a quasiliquid state. Lee et al [87] investigated the e↵ect of a graphite,

alumina and tungsten substrate on melting, using a thermodynamic model. They

found that for Au clusters on a graphite or alumina substrate the melting temper-

ature was hardly altered compared to that an unsupported cluster, whereas on a

tungsten substrate the melting temperature was much higher.
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1.4 Atomic Structure of Ag Nanoclusters

There is a great deal of interest in the toxicity of Ag nanoparticles, partially due

to their abundant use as an antibacterial. The atomic structure and stability of

these nanoparticles may ultimately influence their toxicity; for example, a shape

dependence of the toxicity of Ag nanoparticles to human alveolar epithelial cells has

been shown [90]. Another area of research for which atomic structure is expected to

be important is catalysis. Ag nanoparticles are catalysts for ethylene expoxidation

and it has be shown that their catalytic activity is dependent on both size and

shape [91]. Ethylene expoxidation produces ethylene oxide which is used as an

intermediate to produce many other chemicals, for example antifreeze. In regard to

shape dependence, the packing of surface facets was considered to be a key factor,

highlighting the importance of an understanding of atomic structure.

In this section, only results for bare Ag clusters that are free or supported by

carbon will be discussed. This is for comparison with the experimental results

presented in chapter 6.

1.4.1 Experimental Studies

Reinhard et al [92] studied the atomic structure of Ag clusters produced in a gas

aggregation cluster beam source by performing electron di↵raction experiments on

the cluster beam. (HR)TEM was also used to determine the size distributions of the

clusters. The results show the presence of large Ih clusters that are not expected to

be energetically favourable. This is explained in terms of cluster growth in the cluster

beam source; large clusters were formed far from the evaporation source where there

was a decrease in the temperature, this led to rapid growth of the clusters, hence

trapping (or freezing) of metastable icosahedra. It was also found that the large Ih

are distorted in contrast to a perfect Mackay icosahedron. Formation parameters

in the gas aggregation source were varied and the result on the atomic structure of

the clusters was determined. Higher evaporation temperatures resulted in more fcc

(expected to be low energy) structures. This is explained by the fact that at higher
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temperatures, larger clusters also have enough energy to transform to lower energy

fcc structures.

Trapped ion electron di↵raction was used by Schooss et al [93] to determine the

atomic structure of Ag55 cluster ions. The clusters were produced in a magnetron

sputtering gas aggregation source and trapped in a quadrupole ion trap for electron

di↵raction experiments. Potential low energy structures (the cuboctahedron, trun-

cated, decahedron and mackay icosahedron) were optimized using DFT and used for

comparison with the experimental results. It was found that for Ag55+ clusters the

structure was the Mackay Icosahedron and for Ag55� clusters a Jahn-Teller distorted

icosahedron.

Barke et al [94] used soft x-ray free electron laser pulses to obtain single shot

wide angle scattering di↵raction patterns of individual Ag particles. The Ag par-

ticles were produced with a magnetron sputtering gas aggregation cluster beam

source and di↵raction patterns for individual particles in the beam were collected

as the nanoparticle beam experienced a perpendicular free electron laser photon

beam. The nanoparticle geometries were then identified by comparison with simu-

lated di↵raction patterns for di↵erent geometries. They found truncated octahedra,

icosahedra, decahedra and flat hexagonal structures for particles 10’s of nanometers

in diameter. The presence of large (⇡100nm) metastable (Ih, flat hexagonal, Dh)

structures in the beam is noted and it suggested that this might be due to growth

on smaller seed structures.

FFT analysis of HRTEM images was used by Gracia-Pinilla et al [95] to de-

termine to atomic structure of size-controlled silver clusters. The Ag clusters were

produced in a magnetron sputtering, gas aggregation cluster beam source, size-

selected, and soft-landed (<0.1ev/atom) to preserve their structure. They found

that for 3.7-5.5 nm clusters, the structures were either Ih or Dh and for 1.3 and 2.5

nm clusters the structure was crystalline. The presence of Ih structures is explained

by small Ih clusters acting as seeds for growth of larger clusters.

Volk et al [96] found that, similarly to in gas aggregation sources, kinetics (growth
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rate) determines the proportion of atomic structures observed for Ag clusters pro-

duced in superfluid helium droplets. Ag clusters were grown in superfluid helium

droplets and deposited on to amorphous carbon films for HRTEM imaging. The

atomic structure of the clusters was determined by comparison with simulated fcc,

Dh and Ih structures. The size distribution of the clusters was also determined,

and fractionated according to the structural assignments. Their results are shown

in figure 1.15.

Figure 1.15: a) Relative abundances of the observed cluster morphologies. Frac-

tions labelled with c.i. in the legend belong to clusters which were subject to deeper

investigation before being classified. b) Histograms of cluster diameters with fitted

Gaussian curves for (a) fcc ( d = 2.62(5) nm, n⇡550 atoms), (b) Dh (d = 3.34(7)

nm, n⇡1150 atoms), and (c) Ih clusters (d = 3.93(2) nm, n⇡1870 atoms).Figure

and adapted caption from reference 95 .

The Ih clusters had the largest mean diameter, Dh intermediate and fcc smallest.

This is in contradiction to what would be expected based on energetics, it is at-

tributed to the low temperature formation conditions and fast cooling rates. It is

suggested that for small clusters the addition of an atom greatly increases its tem-

perature so it can transform to a low energy structure (Ih for small sizes, Dh slightly

larger), once a certain size is reached the cluster no longer has enough energy to

transform between structures and the cluster grow on these Ih and Dh seeds. It was

also reported that molecular dynamics simulations show that small Ag clusters may

transform to fcc structures upon deposition, which explains the abundance of fcc

structures at small sizes.
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1.4.2 Theoretical Studies

Baletto et al [60] investigated the general trend of structure vs size in Ag clusters

containing up to 40,000 atoms. The RGL potential was used to calculate the ener-

gies of truncated-octahedra, truncated-decahedra and icosahedra for clusters up to

40,000 atoms and the EAM potential was then used to check the validity of struc-

tural crossover sizes for clusters with up to 1000 atoms. Figure 1.16 shows the excess

energy divided by the number of surface atoms (�) for di↵erent cluster structures,

plotted against the number of atoms. For the RGL potential it was found that the

Ih is lowest, and decreasing, in energy up to 147 atoms, the Dh is lowest between 300

and 20,000 atoms and fcc structures are most stable at larger sizes. This result was

confirmed by comparison with the Ih-Dh crossover size calculated using the EAM

potential.

Figure 1.16: The quantity �=(E
tot

-NE
coh

)/N2/3 as a function of the size N, calcu-

lated by means of RGL potentials for silver clusters. Circles, squares, and triangles

refer to icosahedra, decahedra, and truncated octahedra, respectively. Figure and

caption from reference 60.

The general trend of structure vs size for Ag clusters was also investigated by

Wang et al [63]. Their results are shown in figure 1.17. Analytical calculations of

cluster energies were performed using Ino’s theory, but with parameters determined
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Figure 1.17: Average potential energies per atom for di↵erent structures of Ag

nanoparticles with N< 2000 (left), 2000<N<10000 (right), and 10000<N<50 000

(bottom), calculated with the Sutton-Chen potential. Analytical results calculated

with Ino’s theory are plotted in lines: red solid, decahedron; green dashed, trun-

cated decahedron; blue short dashed, icosahedron; magenta dot dashed, octahedron;

orange double dot dashed, tetrahedron; grey dot, truncated octahedron. Those for

perfect structures are shown in symbols: circle, decahedron; square, truncated deca-

hedron; diamond, icosahedron; triangle up, octahedron; triangle down, tetrahedron;

cross, truncated octahedron. Potential energies per atom at T=100 K after simu-

lated annealing are shown in black stars. Adapted figure and caption from reference

63 .

using the Sutton-Chen potential. From this analysis it was found that the Ih was

lowest in energy for clusters containing less than 300 atoms and the truncated-

octahedron was lowest for sizes greater than 300 atoms. The energy of perfect

geometric structures (Oh, Dh, Ih,T-Oh,T-Dh, tetrahedron) was also calculated by

performing energy minimisation using the Sutton-Chen potential. It was found that
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the Ih is lowest in energy for sizes up to 3000 atoms, the truncated-Dh for sizes

between 3000 and 30,000 atoms and the truncated-Oh for sizes greater than 30,000

atoms. These results showed that the assumptions made when using Ino’s theory

led to inaccurate results for smaller cluster sizes. The results reported by Wang et

al predict very di↵erent crossover sizes to those of Baletto et al, which is likely due

to the di↵erent choice of potential. However both predict that Ih is stable at small

sizes, Dh at intermediate and fcc at larger sizes.

For smaller sized clusters there have been several molecular dynamic studies

that search for low energy, global minima structures [97, 98, 99, 100, 101, 102]. The

majority of studies report that in general, at very small sizes, the icosahedron is

lowest in energy and the decahedron lowest at intermediate sizes. For example,

Doye et al [98] reported that the most stable structures are 13 and 55 atom Mackay-

icosahedra, whilst generally Ih are most stable up to 63 atoms, and Dh between 63

and 80 atoms. Similarly, Angulo et al [101] reported that for Ag clusters ranging

in size from 7 to 561 atoms the majority of clusters have Dh and Ih structures;

principally Ih at small sizes and Dh at larger sizes. For magic sizes (13, 55, 147, 309

and 561), they found that the Ih is always lowest in energy.

References 97-99 show very good agreement; all predict a truncated octahedral

global minima for Ag38, a Mackay-icosahedron global minima at Ag55 and a Marks-

decahedron global minima for Ag75. Similarly to the result of Angulo, Huang et al

[102] found that, for clusters containing 141-310 atoms, the decahedron is the gener-

ally the lowest energy structure, with only a few local fcc global minima. However,

in contrast the only Ih global minimum was for Ag147.

Ab initio calculations were performed by Jennison et al [97] of Ag55, Ag135 and

Ag140. For Ag55 and Ag135 it is reported that Ih is the preferred structure, in

agreement with many of the studies above. However, at size 140 an fcc structure

was found to be lowest in energy and it is suggested that this represents a crossover

size from Ih to fcc.

Molecular dynamic studies of growth and freezing of Ag clusters can give some
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insight in to the experimental observation of large Ih and Dh structures that are

expected to be unstable. Baletto et al have performed several molecular dynamic

simulations relating to the growth and freezing of silver nanoparticles [103, 104, 105].

In a study of the growth of small (<150 atoms) clusters it was reported that a

combination of growth conditions and the lowest energy structures contribute to

the final structures obtained [103]. The simulations were performed starting with

a 7 atom cluster, atoms were added one by one for a range of di↵erent deposition

rates and temperatures (similar to those in a gas aggregation cluster source) and

the resultant structures were investigated. The result of their simulations can be

explained with reference to figure 1.18, which shows the excess energy per surface

atom of di↵erent structures up to 150 atoms. For all temperatures and growth rates

Figure 1.18: �, excess energy per surface atom as a function of the cluster size

N for some structures corresponding to magic numbers. The squares correspond to

Ih structures, and the circles to M-Dh structures. Figure and adapted caption from

reference 102.

investigated it was found that the M-Ih at 55 atoms and M-Dh(2,2,2) at 75 atoms is

formed. At lower temperatures the 75 atom M-Dh(2,2,2) grows into the similar 100

atom M-Dh(3,1,2). It does not have enough energy to rearrange to the lower energy
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101 atom M-Dh(2,3,2). Ih islands grow on the 100 atom M-Dh(3,1,2) and the 147

atom M-Ih is formed. For T=450-550K the cluster has enough energy to rearrange

in to the stable 101 atom M-Dh(2,3,2) and from this structure the metastable 146

atom M-Dh(3,2,2) is grown. At even higher temperatures (550-600K) the cluster

still has enough energy to rearrange at larger sizes (N=130 atoms) and so the lowest

energy structure, the 147 atom M-Ih is obtained.

Similar growth simulations were performed for Ag clusters with up to 600 atoms

[104]. In this study the deposition rate was kept constant and the temperature was

varied between 350 and 650K. Conditions were chosen to match experimental con-

ditions in gas aggregation cluster sources. It was found that at high temperatures

(650K) the growth of clusters follows the low energy structures as they have enough

energy to transform, this leads to the growth of energetically favourable fcc struc-

tures. At low temperatures (400K), layer-by-layer growth occurs on seed 147-Ih

clusters, resulting in the growth of large Ih. At 600K Dh structures are formed

by growth of Ih islands on a 147 Ih and rearrangement to form a stable 318 atoms

m-Dh. At slightly lower temperatures ( 450K) another mechanism for the growth

of large Ih was found. Island growth on the 146 atom m-Dh leads to the formation

of an Ih facet and new 5-fold axis resulting in transformation to an Ih. Because of

the low temperature, there is not enough energy for rearrangement to the 318 atom

m-Dh. The fact that there are two routes to the growth of large metastable Ih ex-

plains why they are seen more frequently than large metastable Dh in experimental

studies of Ag clusters produced using a gas aggregation cluster source, see reference

91.

In a later study, Baletto et al [105] report the result of a di↵erent growth mecha-

nism: freezing of Ag nanodroplets. Molecular dynamics simulations were performed

to determine the structure of Ag clusters formed by the freezing of liquid clusters

consisting of N=130-310, 561 and 923 atoms. It was found that for 147 atom clus-

ters, Ih structures form 100% of the time, and generally at small sizes (130-310

atoms), Ih and Dh are likely to be formed. In contrast, at larger sizes Dh and fcc
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structures are more likely, with only 10% of Ag923 clusters producing Ih. The results

of this study do not agree with the experimental results of Reinhard [92] and so it

was concluded that in gas aggregation sources clusters do not grow as liquid droplets

but from small seed structures.

It has also been shown that landing conditions can alter the final distribution of

structures in deposited Ag clusters. Thaler et al [106] performed molecular dynamics

simulations of the landing of Ag clusters designed to replicate conditions found in

a helium droplet cluster source [96]; the temperature of the clusters was 0.37 K,

whilst the substrate temperature was 300 K. They found that upon landing many

smaller Ih and Dh clusters (2-3nm) transformed to fcc structures, whilst larger

clusters (4nm) were more likely to retain their starting structure. The increase in

temperature of the clusters upon landing was a key factor in their rearrangement

to fcc structures; for soft landing conditions where the temperature of the cluster

increased less, structural transitions were less likely.

In summary, for both Au and Ag nanoclusters the literature supports the general

trend of Ih!Dh!fcc with increasing particle size. However, there is little agreement

(from experiment or theory) on the crossover sizes of the ground state structures.

Theoretical predictions of the crossover-sizes and ground state structure for a given

size vary dramatically depending on the choice of potential, and experimental studies

have not been able to clarify this due to kinetic trapping during growth and the

non-negligible Boltzmann weight of higher energy structures at room temperature.

Moreover, many of the experimental studies do not have the level of size control

required to address the issue of structure versus cluster size. The work presented in

this thesis aims to address the issue of determining the ground state structure for

a specific cluster size (concentrating on the catalytically active size regime). This

is achieved through the production of highly controlled cluster samples (specific

size and growth conditions), and the use of electron-beam manipulation and in-situ

heating in the aberration corrected STEM. It is the combination of these techniques

that allows the ground state structure for a specific size cluster to be determined
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both qualitatively and quantitatively. In particular, the quantitative determination

of the energy di↵erence between structural isomers may act as a bench-mark for

future theoretical calculations.

1.5 Scanning Transmission Electron Microscopy

It is well known the resolution of a microscope is di↵raction limited. The Rayleigh

criterion gives that for a wave with wavelength � in a material with refractive in-

dex n, with convergence angle ✓ the distance below which two points cannot be

distinguished, d, is [107]:

d =
0.612�

sin✓
(1.9)

Hence, for light microscopes, the wavelength of light ultimately limits the resolution

and atomic resolution is not possible. A solution to this problem is to use electrons,

which have a much smaller wavelength than light. The de Broglie equation states

that the wavelength of an electron is given by

� =
h

mv
. (1.10)

Where m is the mass of the particle and v is the velocity of the particle. By

accelerating electrons to high speeds, wavelengths in the order of 1pm are obtained

making atomic resolution imaging possible [108] (note: in a (S)TEM electrons are

accelerated to close to the speed of light (⇡ 90% for 200kV accelerating voltage)

meaning that relativistic e↵ects should also be accounted for).

The first TEM was developed in 1931 by Ernst Ruska and he was subsequently

awarded the 1986 Nobel prize in physics for his contribution [109]. Ardenne devel-

oped the STEM shortly afterwards, in 1938 [108]. The basic principle of the TEM is

that a beam of high-energy electrons illuminates a thin specimen and the transmit-

ted beam is detected to form an image. By comparison, in a STEM a high-energy

electron beam is focused to form a small probe that is rastered across the sample scan
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area. Various detectors then collect the transmitted and scattered electrons and the

signal intensity at each raster point forms the image. A schematic of an ac-STEM

is shown in figure 1.19. Magnification is not achieved directly through the use of

lenses; however, the electron beam probe is formed by electron lenses. This means

that the probe will have aberrations that limit the resolution (size of probe). These

aberrations can now be corrected for and modern ac-STEM’s routinely achieve <1Å

resolution.

Figure 1.19: Schematic of an aberration corrected STEM.

A benefit of the STEM is that multiple signals can be obtained simultaneously;

the direct beam can be collected by a bright field (BF) detector, electrons scattered

at low angles by an annular dark field (ADF) detector, and those electrons scat-

tered through high angles by a high angle annular dark field (HAADF) detector.

Analytical information on chemical composition can also be obtained by analysis

of characteristic x-rays produced when the electron beam interacts with the sample

(EDX) and electron energy loss spectra (EELS).

1.5.1 Electron Guns

Electron guns are comprised of an electron source (a cathode) followed by an anode

to accelerate the electrons to high energies. There are several di↵erent variations
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used in (S)TEM’s; thermionic emission sources, Schottky emission sources and field

emission sources.

Thermionic electron guns are made of either W or LaB6 crystals filaments. When

heated they produce electrons because the increase in temperature provides enough

energy for electrons to overcome the material work function and leave the surface.

Following the filament there is an annular metal electrode with a negative potential

(called a Whenelt cylinder) that controls the beam current via the aperture size

and negative bias voltage. A variation on this design is to apply an electric field

to a tungsten filament to lower the potential barrier at the surface so that the

temperature required for electrons to escape is lowered. Often a ZrO film coats

the tip to further lower the work function of the tip. This is called a Schottky

type gun. For both of these designs the high temperature results in a spread in

the electron energies, increasing the e↵ect of chromatic aberration. For cold field

emission electron guns the energy spread is much narrower. This type of gun is

made from a thin tungsten needle and relies on the principle that the electric field

strength is larger at a sharp point; if a tip of radius r has a voltage, V, applied to

it then the electric field E = V/r, so a smaller radius leads to a larger electric field.

When a strong electric field is applied between the tungsten needle and an anode,

as long as the potential barrier is narrow enough, the electrons tunnel from the tip

to the vacuum. The surface must be free of contaminants for tunnelling to occur,

this means that the electron gun must be in UHV. [107] [108]

1.5.2 Electron Lenses

The electron beam in a STEM (and TEM) is focused using magnetic lenses. The

basic design of a magnetic lens is shown in figure 1.20, taken from reference 106. The

lens consists of a current carrying copper coil surrounded by soft iron to contain the

magnetic field. In the centre of the coil, the bore, there is a gap where the magnetic

field is strongest. Polepieces (ferromagnetic soft iron with a small diameter hole)

either side of the gap confine the field to a smaller region in the bore, creating a thin
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lens with a radial change in magnetic field. The electron trajectories are determined

by the strength of the magnetic field, which is weakest at the axis and stronger

further towards the polepieces. It should be noted that electrons actually follow a

helical trajectory, not straight lines as shown in figure 1.20. [107, 108].

Figure 1.20: A cross-sectional diagram of a magnetic lens. Diagram taken from

reference 106 .

1.5.3 Electron Lens Aberrations

Electron lenses su↵er from several aberrations; as a result the resolution of the

microscope is reduced. In the case of the STEM, the image is formed by the probe

and so it is the probe-forming lenses that introduce these aberrations. Three of

the main aberrations: spherical, chromatic, and astigmatism will be discussed here,

along with methods for correction.

Spherical Aberration

Spherical aberration occurs when electrons towards the edge of the lens are refracted

more than those at the lens axis. As a consequence of this, the electrons do not

converge at the same point (see figure 1.21). In a STEM the electron beam is

focused to a small probe by electron lenses, the e↵ect of aberrations in the lenses is
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to increase the probe size (the beam is focused to a finite sized disk rather than a

point), resulting in a decrease in image resolution. Spherical aberration in STEM’s

can be corrected by using a system of either quadrapole and hexapole or quadrapole

and octupole lenses, controlled by computer, to re-converge the beam to a point. It

has been shown that a probe size of 0.74Å can be achieved by using an aberration

correction system consisting of four quadrapoles separated by three octupoles [110].

Figure 1.21: a) a schematic of a perfect lens and b) a schematic of a lens with

spherical aberration. The plane of least confusion is the location where the smallest

image of the source is formed.

Chromatic Aberration

Chromatic aberration results from the energy spread of the electrons in the beam;

the electron lenses deflect the electrons with lower energy more than those with

higher energy. This leads to a point object being imaged as a finite sized disk. This

e↵ect is largely reduced by using a field emission electron gun because the electrons

emitted are more monochromatic.
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Astigmatism

The electron lenses used to deflect the electron beam create a non-uniform magnetic

field, this is because it is not possible to create completely spherical and symmetric

polepieces. As a result, the focal length of the beam changes depending on the

location around the lens axis. This defect can be corrected for using octupoles to

balance out the field inhomogeneities. [107]

1.5.4 HAADF Z-contrast imaging

Z-contrast imaging is achieved in the STEM by only collecting the electrons scat-

tered at high angles (>50 mrad), using a HAADF detector as shown in figure 1.22.

Generally, when electrons are scattered from the nucleus, high angle scattering oc-

curs, whereas when electrons are scattered by other electrons (the electron cloud)

low angle scattering is more likely. The scattering cross section, �
R

, for electron

scattering by the nucleus is given by the Rutherford equation, in which �
R

/ Z2

if electron screening is ignored. Equation 1.11 shows the Rutherford equation, cor-

rected to include electron screening and relativistic e↵ects.

�
R

(✓) =
Z2�4

R

64⇡4a20

d⌦
⇣
sin2 ✓

2 +
✓

2
0
4

⌘2 (1.11)

E0 is the energy of the electrons (in keV), �
R

is the relativistically corrected electron

wavelength, a0 is the Bohr radius, ✓ is the scattering angle of the electrons, ⌦ is

the solid angle and the screening parameter ✓0 = 0.117Z1/3/E1/2
0 [107]. At lower

electron scattering angles the electron screening e↵ect is larger and Bragg di↵rac-

tion (coherent elastic scattering) of electrons dominates over Rutherford scattering

(incoherent elastic). It is the incoherent nature of the high-angle scattered electrons

that enables Z-contrast imaging. Each electron scattered by the nucleus (Rutherford

scattering) can be considered as a single scattering event, hence electrons scattered

through high angles have no phase relationship with the incident electron beam -

they are incoherent. This means that the intensity in HAADF STEM images is only
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dependent on the atomic number, and not on the orientation or crystalline structure

of the sample. Using an annular detector that only collects electrons scattered at

very high angles (>50 mrad) means that coherent scattering (Bragg scattering) does

not contribute to the image, instead incoherent scattering (Rutherford scattering)

dominates and Z-contrast imaging is achieved.

The value of n in the relationship I / Zn for HAADF STEM imaging has

been determined experimentally in reference 110. The calibration was performed

by measuring the HAADF intensity of size selected Au923 and Pd923 nanoclusters.

The relationship I
Au

/I
Pd

= (Z
Au

/Z
Pd

)n was then used to calculate the value of the

exponent n. It was found that for an inner collection angle of 62 mrad and outer

collection angle of 164mrad, n = 1.46±0.18. This value increased to ⇡1.8 when the

inner collection angle was increased to 103mrad. It is noted that this value for the

exponent is much less than the expected n=2 for solely Rutherford scattering and

that electron screening is likely the reason for this.

Figure 1.22: Schematic of HAADF and BF detector collection angles. ✓
c

is the

beam convergence semi-angle, ✓
BF

is the collection semi-angle of the bright field

detector, ↵
inner

is the inner collection semi-angle of the HAADF detector and ↵
outer

is

the outer collection semi-angle of the HAADF detector. Generally, ✓
BF

is <10mrad

and ↵
inner

is > 50mrad.
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As explained above, the HAADF intensity is proportional to the atomic number,

Z (I / Zn). Using a range (55-1500 atoms) of size-selected gold nanoclusters it

has been shown that the relationship between cluster size and HAADF intensity is

linear [51]. Therefore, if a cluster is made of a single chemical element, the HAADF

intensity of an atomic column will be proportional to the number of atoms in that

atomic column. In this sense the 3D atomic structure can be determined [51].

Generally, HAADF STEM is only used to study high-Z materials because of the

higher electron scattering signal for these materials. However, it has been shown by

Krivanek et al [112] that, using a low voltage (60kV) form of aberration corrected

ADF STEM, the chemical identity and position of boron and nitrogen atoms in a

hexagonal boron nitride monolayer can be determined. With this method, despite

the low atomic number, the intensity di↵erence between boron and nitrogen atoms

could easily be distinguished.

1.5.5 Energy-Dispersive X-ray Spectroscopy

EDX provides analytical information on the chemical composition of a sample.

When a high-energy electron beam of particles is incident on a material charac-

teristic x-rays are produced. Figure 1.23 shows a schematic of characteristic x-ray

production for a single atom. A high-energy electron excites an inner shell electron

and it is ejected from the atom, an electron in a higher energy level then de-excites,

dropping down to fill the gap and emits an x-ray photon with energy equal to the

gap between the two energy levels. The di↵erence between electron energy levels is

specific to a particular chemical element; hence the energy of emitted x-ray photons

gives information on chemical composition.

In the STEM, it is the high-energy electrons from the beam probe that excite

inner-shell electrons in the sample resulting in characteristics x-ray emission. Be-

cause the beam probe is focused to a small point on the sample, spatial information

is gained. The small probe size of aberration corrected machines means that it is

possible to achieve atomic resolution with STEM-EDX, although this has only been
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demonstrated using multiple detector set-ups to optimize the signal alongside simu-

lation [113]. Di↵erent modes can be employed such that the beam rests on a single

point of the sample, to obtain a point spectra or rasters across an area to produce

a spectral map containing chemical and spatial information. EDX mapping can be

particularly useful for determining the chemical composition of core shell bimetallic

and oxide particles [113, 114].

Figure 1.23: Characteristic x-ray production. Schematic shows an electron from

the beam displacing an electron from the K-shell and a L-shell electron filling the

vacancy and emitting a K
↵

x-ray.

1.5.6 Electron Energy Loss Spectroscopy

In EELS the energy lost by a beam of electrons that interacts with a sample is

measured, this gives information on the electronic structure of the sample. Electrons

that are inelastically scattered by inner-shell electrons will lose a certain amount

of energy, given by the inner shell ionization energy. The energy lost is specific

to a particular element. This creates energy edges in the EELS spectra that are
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characteristic of a certain element. As well as elemental composition, information

on valence states can be extracted from the fine structure of spectra, related to inter

and intra band transitions, whilst inelastic scattering from outer shell electrons

means that plasmons can also be detected in the low energy (<50eV) region of the

EELS spectra [108]. Figure 1.24 shows a typical EELS spectra with various regions

labelled.

Figure 1.24: A typical EELS spectra indicating the zero-loss peak, low energy loss

region and high energy loss region. The low energy loss region contains the plasmon

signal and the high energy region contains core-loss ionisation edges. Figure from

reference 106.

In the STEM the beam probe can be used as the beam of electrons for EELS

measurements. A schematic of a STEM-EELS system is shown in figure 1.25. After

the electrons are transmitted through the sample, they enter a spectrometer. The

spectrometer uses a magnetic field to spatially separate electrons with di↵erent en-

ergies. Once separated according to energy the electrons are then focused on to a

detector and their energies determined according to position. A narrower spread

in energy will result in higher energy resolution; therefore cold field emission elec-

tron sources are preferable. Monochromators can also be used to reduce the energy

spread but this results in loss of signal.
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Figure 1.25: Schematic of EELS spectrometer in the STEM.
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Chapter 2

Experimental Methods

For all the results presented in this thesis, size-selected clusters were produced using

a magnetron sputtering gas aggregation cluster beam source [1] with lateral time

of flight mass filter [2], and characterised using aberration corrected STEM. For

the in-situ heating of Au clusters a DENS Solutions Wildfire heating holder was

used. Ag samples, due to their sensitivity to air, were transferred in inert gas, using

a specially designed glove box. All of these pieces of apparatus and methods for

their use are discussed in detail below. The method for characterisation of atomic

structure, involving comparison of HAADF STEM images with multi-slice simulated

images, is also described.

2.1 Cluster Beam Deposition

2.1.1 Magnetron Sputtering Gas Aggregation Cluster Beam

Source

A schematic of the magnetron sputtering gas aggregation source used in this work is

shown in figure 2.1. It consists of four regions: a condensation chamber for sputtering

and cluster growth, ion optics for focusing of the cluster beam, a lateral time of flight

mass filter, and a deposition chamber. Each region is pumped using turbomolecular

pumps backed by rotary pumps to obtain a base pressure of ⇡10�7mbar.
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Figure 2.1: The magnetron sputtering, gas aggregation cluster source with lateral

time-of flight mass filter. a) magnetron gun with target inserted, b) adjustable-

diameter nozzle, c) electrostatic skimmer, d) high voltage lens, e) einzel lens, f) X-Y

deflector plates, g) einzel lens h) post LTOF einzel lenses. The LTOF mass filter is

shown in the mass selection region, with red arrows indicating cluster trajectories.

The deposition chamber is located to the right hand side of the mass filter, directly

after the post LTOF einzel lenses. Figure and adapted caption from reference 1.

The condensation chamber contains a magnetron gun with a 2-inch target of the

required cluster material (e.g. Au, Ag) inserted. At the exit of the condensation

chamber is a nozzle that can be adjusted from 0 to 10mm, to control the pressure

in the chamber. The magnetron gun is mounted on a liner shift so that the distance

from the gun to the nozzle can be varied between 150 and 250 mm. Argon gas is

flowed into the chamber with the magnetron gun and an argon plasma is ignited by

applying a high voltage to the sputter target. The potential of the plasma is more

positive than ground due to screening e↵ects, and the target is biased; hence an

electric field is created between the plasma and the target. As a result Ar ions are

accelerated towards the target and sputter atoms o↵ the target material. Magnets

in the magnetron gun further enhance the plasma. The injection of helium gas

into the chamber gives rise to cluster condensation; sputtered material undergoes 3-

body collisions with the He gas to form small cluster seeds and collisions of clusters

with He atoms cool the clusters leading to condensation, hence growth, of larger

clusters. The condensation chamber is also cooled by liquid nitrogen to further
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cluster condensation. Two mass flow controllers allow for separate control of the Ar

and He gas flow rates up to 200 sccm and the magnetron power can also be adjusted

from 1-200W.

It has been shown in a previous study [1] that the size range of clusters produced

by the source is dependent on the formation conditions; most important are the Ar

and He gas pressures. The Ar gas pressure determines the sputter rate, and thus

the amount of sputtered material. For a small cluster to form, a 3-body collision

between two sputtered atoms and one helium atom must occur (to remove kinetic

energy from the sputtered material), this is much more likely to happen if there

is a higher density of sputtered material. By changing the He gas pressure it is

possible to directly influence the size range of the clusters produced. At much larger

He pressure the size distribution was found to be narrower and smaller clusters

were produced; this is explained by the fact that increasing the amount of He, as

well as increasing condensation of larger clusters, also increases the formation of

small cluster seeds. When this process dominates, the cluster size will decrease as

long as the amount of sputtered material remains constant. Other factors, such

as gas flow rate and deformation of the target have also been shown to e↵ect the

size distribution. With increasing gas flow rate the mass of clusters produced also

increases. This is explained in terms of clusters being more e↵ectively removed from

the chamber. When the target has been sputtered for a length of time a trench

is formed due to the magnet that is used to increase the sputtering. Initially, this

results in a higher sputter rate and increased cluster size because the magnetic field

is stronger where the target has been depleted. However, after further deformation

of the targets surface the plasma becomes distorted, less material is sputtered and

thus the amount of clusters produced decreases.

The sputtering process results in approximately 30% of clusters being ionised in

the plasma [1]. The ion optics which focus the beam are negatively biased, so it

is the positive particles which are transmitted through the source to the deposition

chamber. The ion optics consists of a variable voltage skimmer, a high voltage
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extraction lens to accelerate the cluster beam, two variable einzel lenses to focus the

beam and deflection plates to allow alignment of the beam position into the mass

filter. The lateral time of flight filter allows for mass selection of the clusters and

will be discussed in detail in the following section.

Following mass selection the cluster beam is guided into the deposition chamber.

The deposition chamber contains a sample holder mounted on a linear shift, and a

mask containing several apertures to ensure controlled cluster deposition. A negative

bias voltage applied to the substrate determines the deposition energy of the clusters

such that clusters can be soft landed or pinned to the substrate [3, 4, 5]. To measure

the cluster current on the sample holder, a picoammeter is used, allowing for control

of the deposited cluster density by knowledge of the beam current on the sample

holder (through the mask) and subsequent alteration of the deposition time.

2.1.2 Lateral Time of Flight Mass Filter

A lateral time of flight mass filter, developed by Issendorf and Palmer [2], is attached

to the cluster beam source, figure 2.2 shows a schematic of its design.

Figure 2.2: A schematic of the lateral time of flight mass filter. x is the lateral

displacement of the cluster beam, L is the segment of the cluster beam used in each

pulse series, x1 is the size of the entrance aperture and x2 is the size of the exit

aperture.

62



CHAPTER 2

The cluster beam enters the mass filter through an aperture at the bottom left,

focused to a point opposite at the bottom right wall (this ensures the beam is focused

when leaving the filter resulting in higher mass resolution). Initially the beam is

accelerated upwards by a high voltage pulse applied to the bottom plate, the clusters

then travel vertically through a field free region. The vertical displacement of the

clusters is dependent on their mass (as well as pulse magnitude and timing), therefore

clusters of di↵erent masses separate spatially into parallel beams. A second pulse

is then applied to the top plate, identical to the first, to stop the vertical motion.

Clusters of the selected size exit the filter through an aperture at the top right. By

changing the timing of the pulses a particular mass can be selected, this is because

the time a cluster takes to travel from the bottom to the top of the mass filter is

dependent on its mass. If the cluster beam is well focused the theoretical mass

resolution, R, is given by:

R =
M

�M
=

x

�x2
(2.1)

where M is the mass of the ion, �M is the width of masses that pass through the

exit aperture, x is the lateral displacement of the selected mass and �x2 is the width

of the exit aperture [2]. However, if the beam is not well focused then the size of

the entrance aperture, x1 will determine the beam size and the resolution is given

by [6]:

R =
M

�M
=

xp
�x1 +�x2

. (2.2)

2.1.3 Practical Operation of the Cluster Beam Source

In preparation for cluster production the cluster beam source must be vented to

change the target material and then pumped back down to 10�7mbar. The conden-

sation chamber must then be cooled by passing liquid nitrogen through its hollow

outside, generally cooling takes approximately 2 hours and a temperature of ⇡ -

160�C is reached. A thermocouple is fitted inside of the condensation chamber so

that the temperature can be monitored.
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Once a stable temperature is reached, tuning for cluster production begins. To

ignite the plasma and begin sputtering, the Ar gas flow into the condensation cham-

ber is set to ⇡100 sccm and a high voltage is applied to the target. Generally, for

gold and silver, a magnetron power of 10W is used and the nozzle of the condensa-

tion chamber is fully open. Under these conditions it should be possible to detect

a current of single atoms on the sample holder (using the picoammeter). To obtain

larger clusters He gas is injected into the chamber, and gradually larger sizes of

cluster are tuned for by adjusting the Ar and He gas flows, the condensation cham-

ber pressure (via the nozzle size), and the ion optics voltages to obtain a maximum

cluster current. Cluster currents in the order of 100pA are normal once tuning is

complete.

The LTOF mass filter can be used for tuning either by selecting a specific size

or by scanning over a size range to produce a mass spectrum. Figure 2.3 shows two

mass spectra obtained for Au. A) shows a mass spectrum recorded between 100 and

500 amu, the Au1 (197 amu) and Au2 (394 amu) signal can be seen. A gaussian fit

to the Au1 signal gives a peak value of 196 ±11 amu. In this case the ion optics and

formation conditions had been tuned to obtain a maximum Au1 current. B) shows

a mass spectrum recorded between 0 and 2000 amu. In this case the ion optics and

formation conditions were tuned to obtain a maximum Au923 current. Table 2.1

shows the formation conditions corresponding to the mass spectra in figure 2.3.
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Figure 2.3: Mass spectra produced by the LTOF mass filter whilst a Au sputter

target was inserted in the magnetron head. a) A mass spectra taken between 100

and 500 amu showing peaks for Au1(197 amu) and Au2(394 amu), in this case the

ion optics and magnetron parameters were tuned for Au1. b) A mass spectra taken

between the amu of 0 and 2000 Au atoms, in this case the ion optics and magnetron

source parameters were tuned for Au923.
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Formation parameter Standard value

Magnetron power 10 W

Ar gas flow 100 sccm

He gas flow 0 sccm

Condensation chamber pressure 0.1 mbar

Condensation length 250 mm

Substrate voltage 1500 V

(a) Formation conditions used to obtain the mass spectra in 2.3A.

Formation parameter Standard value

Magnetron power 10 W

Ar gas flow 200 sccm

He gas flow 180 sccm

Condensation chamber pressure 0.8 mbar

Condensation length 250 mm

Substrate voltage 1500 V

(b) Formation conditions used to obtain the mass spectra in 2.3B.

Table 2.1: Formation conditions corresponding to mass spectra in figure 2.3

Generally, to obtain larger sized clusters, higher Ar and He gas flows and higher

pressures must be used. Typical conditions used for the production of Au561 clusters

are shown in table 2.2.

Once the maximum cluster current has been tuned for, the resolution of the

mass filter can be increased by inserting smaller entrance and exit apertures. For

the majority of experiments the entrance aperture was kept fully open (8mm) and

the exit aperture was 3mm, resulting in a mass resolution of M/�M = 21. To

deposit a sample, the pulses to the mass filter and the sample holder bias voltage

are momentarily turned o↵ while the sample is inserted. Sample substrates are

attached to a sample plate and inserted on to a transfer arm in a load-lock chamber

to be pumped down. Once the turbomolecular pump to the load lock is up to speed,
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Table 2.2: Standard formation conditions for Au561 clusters.

Formation parameter Standard value

Magnetron power 10 W

Ar gas flow 180-200 sccm

He gas flow 180-200 sccm

Condensation chamber pressure 0.8 mbar

Condensation length 250 mm

Substrate voltage 1000 V

the sample is transferred to the deposition chamber and inserted into the sample

holder. The sample substrate should align with one of the apertures in the mask so

that only the cluster current hitting the substrate is detected. To start deposition

the sample holder bias voltage and mass filter are turned back on and the deposition

is timed to allow for a controlled density of clusters to be deposited.

For standard STEM characterisation, samples were deposited onto 3mm Cu mesh

TEM grids, coated with thin films (⇡10-20 nm) of amorphous carbon or holey car-

bon. These substrates were chosen because the thin film and low atomic number

means good contrast will be achieved in HAADF STEM. For in-situ heating ex-

periments MEMS-based heating chips were used, these will be discussed in more

detail in section 2.2. In all cases the deposition density was chosen such the clusters

would be monodisperse (negligible aggregation), but high enough for ease of imag-

ing in the STEM. Typically, the deposition density was between 0.2 and 0.4 clusters

per 100nm2. Figure 2.4 shows a typical low magnification STEM image of a Au561

sample.
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Figure 2.4: A HAADF STEM image of a typical Au561 cluster sample (amorphous

carbon substrate). The deposition density used in this case was 0.2 clusters per

(10nm)2.

2.2 Sample Characterisation: Aberration Corrected

STEM

For all imaging a JEOL2100F with spherical aberration corrector (CESOR) was

employed, operated solely in STEM mode. Figure 2.5 shows a photograph of the

instrument with some of the main components indicated, alongside a schematic ray

diagram for the instrument in STEM mode.

A ZrO/W Schottky electron gun located at the top of the microscope column

generates the electron beam and a series of acceleration tubes accelerate the beam

to 200kV. The electron beam is then focused and collimated by the condenser lens

system and aperture assembly before entering the aberration corrector optics. The

aberration corrector removes the majority of the spherical aberration introduced by

the condenser lenses and ultimately results in a resolution (probe size) of⇡ 1Å. Post-

aberration corrector the pre-field objective lens forms the probe, which is rastered
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Figure 2.5: Key components of the JEOL 2100F aberration corrected STEM. A

photograph of the instrument is on the left and a schematic ray diagram on the

right.

across the sample by scan coils. BF, ADF, HAADF, EDX and EELS detectors are

available for imaging and chemical analysis.

The vacuum system of the microscope is maintained by a selection of rotary,

turbo, di↵usion, and ion pumps. The electron gun chamber is maintained at 10�8

Pa to reduce contaminants on the gun’s filament, whilst the rest of the microscope

column is at 2⇥10�5Pa. Figure 2.6 shows the valve status display for the mi-

croscope. This display shows a schematic of the microscopes pumps, valves, and

gauges, alongside readings for the ion gauges. To further reduce contamination of

the sample, an anti contamination device (cold trap) is employed, which must be
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filled with liquid nitrogen prior to imaging.

Figure 2.6: The valve status display for the JEOL 2100F, indicating the location

of all valves, pumps and gauges. V: valve, PI: pirani guage, PE: penning gauge, RP:

rotary pump, RT: turbomolecular pump, DP: di↵usion pump and SIP: ion pump.

2.2.1 Practical Operation

Alignment

The resolution in the STEM is determined by the probe size. The probe size is ulti-

mately determined by the aberrations of the electron lenses used to form the probe.

Therefore, it is important to minimize aberrations prior to imaging, to ensure that

atomic resolution imaging is possible and that fine details can be resolved. Initially,

observing and correcting the Ronchigram provides a rough check of the aberration

corrector alignment. The Ronchigram is a projection image of the specimen that

can give an indication of the probe aberrations and of the aberration free portion

of the probe [7]. Figure 2.7a shows a schematic of the Ronchigram formation. At

under and over focus a shadow image of the specimen is seen, as the inflection point

of the beam gets close to the sample plane, the magnification of the shadow image
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increases. When the inflection point of the beam (the probe) is exactly in-line with

the sample, the magnification is infinite and a pattern is seen, as shown in figure

2.7b. The size of the ‘flat’ region in the centre of the pattern gives a measure of

the aberration free range of the probe (measure in mrad). The ‘star’ shape of the

Ronchigram is a result of the double hexapole system of the spherical aberration

corrector [8].

Figure 2.7: a) A schematic of the Ronchigram formation. b) An image of the

ronchigram on the JEOL2100F instrument when the sample is in line with the inflec-

tion point of the electron beam. The blue dashed line indicates the flat, featureless

region at the centre of the Ronchigram.

On a daily basis, whilst observing the Ronchigram the axial coma and 2-fold

astigmatism can be corrected for. If after these corrections the flat region is very

small or the pattern is not uniform, a full alignment of the aberration corrector must

be performed. The full alignment of the aberration corrector is computer controlled;

it is an iterative process that corrects for not only the spherical aberration but also

the ‘parasitic’ aberrations induced by the corrector itself. Before starting a high

density Au nanoparticle on a-carbon sample must be inserted. The software works

by building a Zemlin tableau: a series of under and over focus images of a sample

that enables the software to create an estimation of the probe shape and measure
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the aberration free area of the probe. Figure 2.8 shows a screenshot of the CEOS

software and the result of the Zemlin tableau. After each iteration of the Zemlin

tableau, the software suggests which aberration should be corrected for, the user

then accepts this suggestion (or choses another aberration to correct) and repeats

the process until a reasonable value for the aberration free region is obtained.

Figure 2.8: A screenshot taken from the CEOS GUI showing a calculated Zemlin

tableau

Imaging

After alignment of the Ronchigram, a condenser aperture is inserted. This removes

electrons scattered through large angles in the condenser lenses, collimating the

beam. The aperture size inserted is chosen such that there is good resolution (less

aberration), but still enough signal. For all imaging experiments in this thesis the

20µm aperture was used. The aperture is inserted such that it is aligned with the

centre of the flat, featureless region of the Ronchigram (indicated in figure 2.7),

this ensures that the coherent portion of the electron beam is used for imaging.

For the majority of imaging performed in this thesis, a HAADF detector was em-

ployed. This is because it enables Z-contrast imaging; providing information on the
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3D atomic structure of elemental clusters (when compared to simulations) [9] and

determination of the size distribution in number of atoms. In cases where it was

useful to observe lighter elements, the carbon substrate for example, a BF detector

was used simultaneously with the HAADF detector. Figure 2.9 shows an example

of a HAADF and a BF image of Au nanoparticles on a-carbon acquired simultane-

ously; the Au particles and Au single atoms are clearly visible in the HAADF image

whilst the BF image shows the detail of the a-carbon substrate.

Figure 2.9: Au nanoparticles on amorphous carbon at 1000�C. a) A HAADF

STEM image and b) a BF STEM image acquired simultaneously.

Throughout all experiments, a camera length of 10cm was used. The camera

length refers to the e↵ective distance between the sample and the detector; hence

for an annular detector it controls the collection angle. For the HAADF detector

used here, a 10cm camera length corresponds to an inner collection angle of 62mrad.

This camera length was chosen because the corresponding inner collection angle

means that Rutherford scattering will be dominant (criteria suggested is >50mrad

[10]), but there will still be enough signal from the electrons scattered through high

angles. During imaging the sample scan area is determined by the position of the

sample stage (peizo controlled) and the magnification selected. The dwell time of

the beam on each pixel can also be adjusted. A high dwell time will give more signal
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but will also cause more damage to the sample; this may result in the structure of

the sample changing during imaging or moving position. A lower dwell time will

give a worse signal to noise ratio, however it is less damaging and faster, making

it better suited for imaging beam sensitive materials. The imaging conditions used

most commonly for the structural analysis work presented in this thesis are shown

in table 2.3. This results in a dose of 4.2⇥ 104e�/Å
2
/frame (see calculation of dose

in appendix A). For video imaging of clusters a faster dwell time was regularly used

and the magnification altered depending on the required dose.

Table 2.3: Standard imaging conditions used to collect atomic structure HAADF

STEM data

Imaging condition Standard value

Image size 15.74 ⇥ 15.74 nm

Pixels 512 ⇥ 512

Beam dwell time per pixel 20 µs

Dose 4.2⇥10�4Å�1frame�1

Hydrocarbon contamination can cause serious degradation of images [11, 12, 13].

The electron probe attracts hydrocarbon molecules to the scan area resulting in

a build up of hydrocarbons under the beam and loss of image quality. To solve

this problem, a beam shower can be performed. A beam shower involves exposing

a large area of the sample to a weak beam for 10-30 minutes to pin down the

hydrocarbon molecules [11] and stop them building up under the electron beam.

However, exposing a sample to the electron beam for a long period of time can also

cause damage to the sample, so the sample should be monitored before and after to

check for signs of damage (e.g. sputtered atoms from clusters). Beam showers were

used to reduce the e↵ects of contamination on many of the samples studied in this

thesis. Where possible short beam showers were used and any e↵ect was monitored.

For silver clusters, which were particularly beam sensitive, beam showering was
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avoided as much as possible and results discounted if the samples underwent any

significant changes.

STEM-EELS Operation

The basic principle of STEM-EELS was explained in chapter 1. Here, the practical

operation of STEM-EELS, and analysis of spectra will be described.

The JEOL2100F microscope used in this study is fitted with a Gatan Enfina

EELS spectrometer. This is located directly below the microscope column. Prior

to acquiring EELS spectra of a sample, the BF detector must be removed to allow

the transmitted beam of electrons to enter the spectrometer and a suitable camera

length selected.

The zero loss peak is then used to align the transmitted beam with the spec-

trometer. Focus is adjusted to obtain a narrow peak and the energy is shifted so

that the centre of the zero loss peak is aligned with 0 eV. An example of a zero loss

peak (obtained for a carbon nanotube and iron nanoparticle sample) is shown in

figure 2.10. The width of the zero loss peak at its half maximum gives the energy

resolution of the spectrum. For the instrument used here, the energy resolution is

approximately 1eV.

Figure 2.10: A typical example of the zero loss peak. Obtained for a carbon

nanotube and iron nanoparticle sample.
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For acquisition of spectra, a suitable energy range, aperture size and exposure

time are selected. A larger aperture size will increase the signal but decrease spatial

resolution. For the data collected in chapter 6 an aperture size of 3 mm and acqui-

sition time of 1 second were used. To acquire a point spectra the beam is moved

to the desired location and the spectra is recorded (using digital micrograph). For

all EELS data collected in chapter 6 an average over 5 spectra was taken for each

point. To record an EELS map the desired area of the sample is selected and the

number of pixels and pixel dwell time are chosen. An EELS spectra is then recorded

at each pixel to build up a spatial map of EELS spectra. For acquisition of maps it

is particularly important that the sample has low drift, as the map acquisition re-

quires much more time (>10 minutes). Automatic drift correction can be employed

by selecting a well defined feature of the sample, however if the drift is too large

this will not work.

All analysis of spectra presented in chapter 6 was performed using digital mi-

crograph. Firstly, the edges in the core loss region of the spectrum are located with

reference to known energies and features. The background is then subtracted for

each edge using a power law background model [14]:

J(E) = AE�r (2.3)

where J(E) is the (pre-edge) background, A is a scaling constant and r is exponent

of the background (generally 2-6 [14]). The parameter fit (r, A) is performed in

digital micrograph by selecting a suitable background window preceding the edge in

question. The signal of the edge is then quantified by selecting a signal integration

window that includes the main feature of the edge and is approximately 10% of the

edge energy in width. For delayed edges (such as Ag), the start of the signal window

should be o↵set slightly to include the main feature. The signal is then quantified by

digital micrograph using the Hartree-Slater model [15] for calculation of the partial

inelastic scattering cross section to obtain the relative proportion of various elements

in the spectrum. Figure 2.11 shows a typical spectrum of an a-carbon substrate,
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with the background subtraction and extracted carbon signal indicated.

Figure 2.11: An EELS spectrum for a-carbon. The background and signal windows

are indicated.

In-Situ Heating

For experiments conducted in chapters 4 and 5, a DENS solutions wildfire D6 heating

holder was used in conjunction with DENS solutions MEMS heater-chips. This

enabled in-situ heating of samples in the JEOL 2100F.

The heater-chips consist of a metal heater coil embedded in silicon nitride with

imaging windows in-between. The imaging windows comprise of a thin (⇡ 5 nm for

a-carbon, ⇡ 20nm for a-silicon nitride), electron transparent film of either amorphous

carbon or silicon nitride. A schematic of the chip design is shown in figure 2.12, with

the heater coil and imaging windows indicated.

A 4 point probe system is used for resistive heating of the metal coil and mea-

surement of its resistance. Figure 2.12 shows the electrical connections to the heater

coil, two of the contacts provide a current to heat the coil, and the other two mea-

sure the voltage. This allows the resistance to be measured. The method provides

an accurate measure of the resistance, una↵ected by the contact or wire resistances.

From the measured resistance the temperature can be deduced. This gives a live

measurement of the temperature of the heater coil and allows feedback control of

77



CHAPTER 2

Figure 2.12: Left: a schematic of the DENS solutions heater chip design, indi-

cating the electrical connections of the heater coil (for heating and 4-point probe

measurement), the imaging windows and the research area in which the temperature

uniformity is guaranteed. Figure adapted from reference 16. Right: a photograph

of one of the DENS solutions XT heater chips used for heating experiments.

the applied heating current to maintain a steady temperature. The manufacturer

calibrates each set of chips by measuring the resistance as a function of temperature.

A calibration value is provided with the chips, which must be input into the heater

software before starting the experiment.

For all experiments conducted in this thesis the DENS solution XT nanochips

were used, which have a maximum temperature of 1300�C. Some general specifica-

tions of the XT-nanochips are shown in table 2.4.

Table 2.4: DENS solutions XT nano chip specifications [16].

Property Value

Temperature range Room temperature - 1300�C

Temperature accuracy <5%

Temperature stability <1�C at 1300�C

Heat/quench rate 200�C/ms

Resolution Equivalent to that of the microscope

Settle time <2s
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Deposition of clusters onto the nanochips was performed in the same way as

described above for a TEM grid, ensuring that the heater coil was aligned with the

centre of the mask. This resulted in clusters being uniformly deposited over the

entire central region of the nanochip.

For all experiments performed with the heating holder, the temperature was set

manually on the digiheater software, which creates a log file of temperature ver-

sus time. When the temperature was increased or decreased the specimen height

and/or focus were adjusted prior to recording images. This was to negate the bul-

geing/contraction of the chip, as the temperature is increased/decreased.

For results collected in chapter 4, the temperature was increased incrementally;

at each temperature a large number of clusters (⇡100) were imaged to determine

the relative proportion of atomic structures. For results collected in chapter 5, the

temperature was increased incrementally and the same group of clusters was imaged

to determine the surface melting temperature. To keep track of the particles as the

temperature was increased (and to reduce the e↵ect of the electron beam), a lower

magnification was used whilst adjusting the temperature (1M⇥, 157.41⇥157.41nm

field of view) than whilst imaging (10M⇥, 15.74⇥15.74 nm field of view). Focusing

was also performed on a di↵erent area to ensure that the electron beam did not

have too large of an e↵ect on the sample. For analysis of both these data sets, the

digiheater log file was referred to and each recorded image was assigned a specific

temperature.

2.3 Sample Transfer in Inert Gas

For transfer of samples in inert gas between the cluster source and the microscope,

a specially designed glovebox was used. Figure 2.13 shows a labelled picture of the

glovebox; one side is attached to the loadlock of the cluster source via a gate valve

and the other side opens to air for tools to be inserted. Two valves allow argon gas

to flow into and out of the box.

79



CHAPTER 2

The procedure for transferring samples between the cluster source and the mi-

croscope is as follows. All relevant tools and the STEM sample holder are inserted

into the box. Argon is then allowed to flow through for several minutes to flush

air from inside. The outlet valve is closed and the loadlock of the cluster source

is vented with argon through the glovebox by opening the gate valve. A specially

designed tool is used to retrieve the sample, which is inserted into the STEM holder.

The glovebox is then disconnected from the loadlock and taken to the STEM lab.

Throughout, the glovebox is over pressured with argon. The side is then opened and

the sample holder inserted into the microscope. At this point the sample is exposed

to air for a couple of seconds.

Figure 2.13: A labelled photograph of the specially designed glove box used to

transfer samples from the magnetron cluster source to the STEM. The gate valve

indicated connects the glove box to the load lock of the magnetron cluster source.
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2.4 Image Analysis

2.4.1 Identification of Atomic Structure: Simulation Atlas

Method

To determine the atomic structure of the size-selected clusters investigated in this

thesis, HAADF STEM images of individual clusters were compared with simulated

HAADF STEM images of model structures. Simulations were performed by Ray Hu,

using QSTEM software [17]. The parameters used for the simulations are shown in

table 2.5. The QSTEM software enables simulation of STEM (including HAADF)

Table 2.5: Parameters used in the QSTEM simulations of cluster structures (sim-

ulations performed by Ray Hu (Laboratory of Solid State Physics and Magnetism,

University of Leuven).

Parameter Value

High voltage 200kV

Defocus -1.9nm

Astigmatism 0nm

Spherical aberration 0.001mm

Temperature 300K

Chromatic aberration 1.0mm

Beam energy spread, dE 1eV

Convergence angle 19mrad

Inner detector angle 62mrad

Outer detector angle 164mrad

images using a multislice algorithm [18]. A model is input along with the electron

microscope properties (for example inner and outer detector angles, energy spread

of the source and spherical aberration), and the electron scattering is calculated.

The multislice method works by dividing the model in to a number of thin slices
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perpendicular to the beam direction. Each slice is projected onto a single plane,

this is called the projected potential of the slice. The amplitude and phase of the

incident electron beam passing through the first projected potential are calculated.

The scattered beams are then propagated through free space to the second projected

potential and so on. The scattered electron wave is a convolution of the electron

probe wavefunction multiplied by a transfer function, and the projected potential.

[10]

As discussed in chapter 1, metal clusters generally present one of 3 structural

motifs: TO, Dh or Ih. The majority of cluster sizes investigated in this thesis

are magic numbers (309, 561, 923) meaning that the number of atoms corresponds

to a geometrical shell closing for the cuboctahedron (fcc), Ino-Decahedron (Dh)

and Icosahedron (Ih). For this reason geometrical models of the cuboctahedron,

Ino-decahedron and icosahedron were used to create a simulation ‘atlas’ in which

a complete range of the cluster rotation angles are simulated. Figure 2.14 shows

the simulation atlas used for identification of Au561 structures. HAADF STEM

images obtained of clusters were compared by eye against the simulation atlas im-

ages to identify the atomic structures. Clusters were classified more generally as

Icosahedron, decahedron or fcc; these classifications include all various truncations

of decahedra and fcc type structures. For example a decahedron with a Marks-

type re-entrance is classified generally as a decahedron. Clusters that could not be

matched to the atlas images were classified as unidentified or amorphous (UI/A).

Figure 2.14 shows several examples of experimental HAADF STEM images matched

to simulation atlas images.
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(a) The cuboctahedron atlas
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(b) The Ino-decahedron atlas
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(c) The icosahedron atlas

Figure 2.14: The Au561 simulation atlas with experimental image matches indi-

cated.

2.4.2 HAADF Intensity Measurement

As discussed in chapter 1, HAADF intensity is proportional to Zn [19]. Moreover,

for an elemental material, it has been shown that the relationship between HAADF

intensity and number of atoms is linear up to approximately 6000 atoms (for ap-

proximately spherical particles) [20]. This can be useful for determining the size

distribution of samples, particularly if used in combination with size-selected ele-
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mental clusters. There are three key ways that HAADF intensity can be used to

gain information on the size distribution of samples, all of which are detailed below.

1. Size distribution of size-selected clusters

For samples of size-selected clusters, measurement of the HAADF intensity can

give the size distribution. The lateral time of flight mass filter used to size-select

the clusters has a resolution dependent on the entrance and exit aperture sizes (as

described in section 2.2). Measuring the HAADF intensity of a large number of

these clusters, producing a histogram and assuming the peak (of a gaussian fit) is at

the size selected by the mass filter, the distribution can be represented in terms of

number of atoms. The FWHM of a Gaussian fit to the data gives an indication of the

size distribution of these clusters, which can be compared with the theoretical size

distribution based on the TOF settings. Figure 3.1 in chapter 3 shows an example

of a typical size distribution of a Au561 size-selected cluster sample calculated in this

way.

2. Size-selected clusters as mass balances

Size-selected clusters can be used as mass balances to determine the number of

atoms in nanoparticles of an unknown size [20, 21, 22, 23]. For this analysis to

work the atomic number of the ‘unknown mass’ nanoparticles must be known and

the particles must consist of a single element. Size-selected clusters are prepared on

a TEM grid and the nanoparticle of unknown mass is co-deposited. The HAADF

intensity of the size-selected clusters and the nanoparticle of unknown mass are then

be measured. The ratio of intensities of two (single element) nanoparticles is given

by [19]:
I1
I2

=
N1

N2

✓
Z1

Z2

◆
↵

(2.4)

where I1/2 is the intensity of the size-selected cluster/nanoparticle of unknown mass,

N1/2 is the number of atoms in the size-selected cluster/nanoparticle, Z1/2 is the

atomic mass of the size-selected cluster/nanoparticle, and ↵ is the exponent relating

HAADF intensity to atomic number for a given camera length [19, 24]. Rearranging

this equation enables the number of atoms in the nanoparticle to be calculated so
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long as the exponent, ↵ is known for the chosen camera length.

3. Atom counting

The number of atoms in an elemental nanoparticle can also be determined by

measuring the HAADF intensity of single atoms of the same element [25, 26]. In

this case, a large number of single atoms should be measured to determine the

HAADF intensity corresponding to a single atom (and the associated error from the

FWHM of the distribution). The number of atoms in a given nanoparticle of the

same element can then be determined simply by measuring its HAADF intensity

and dividing this by the HAADF intensity of a single atom.

For the results presented in this thesis, method 1 was regularly used to check

the size distribution of samples and method 2 was used to determine the size of

unknown aggregate particles in chapter 5. Method 3 was also used in several cases

to confirm that the number of atoms was as expected from the size-selected cluster

samples.

To measure the HAADF intensity of an individual cluster, an imageJ macro was

used to integrate the intensity of an area including the cluster and subtract the

background intensity. Figure 2.15 shows a schematic of the intensity measurement.

Initially a threshold is applied to the image to determine the location of the clusters.

Two concentric rings, of radius r1 and r2, are then drawn around each cluster. The

intensity, I1, of the area A1 and the intensity, I2, of the ring A2 are measured. The

intensity of the background, I3 is then calculated by:

I3 =
I2A1

A2
(2.5)

and subtracted from the total intensity I1 to give the cluster intensity, I
c

:

I
c

= I1 � I3 = I1 � I2
A1

A2
. (2.6)
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Figure 2.15: A schematic of the HAADF intensity measurement, to be viewed

alongside equations 2.5 and 2.6. On the left hand side is a HAADF STEM image of

a cluster with two rings of radius r1 and r2 drawn around it for measurement of the

HAADF intensity. On the right hand side is a schematic of the rings and associated

areas used for the HAADF intensity measurement. A2 is the area of the dark green

ring, A1 is the area associated with the largest circle (radius r1), and the inner circle

(radius r2) has an area given by A1-A2.

Generally, the variation in the intensity of the background is negligible; it is

approximately 1% of the intensity of a single atom, provided that the sample is free

from contamination during imaging. If images are taken at di↵erent magnifications,

contain a di↵erent number of pixels, or have di↵erent acquisition times, the HAADF

intensity has to be calibrated. Equation 2.7 gives the conversion between intensities

for images taken with di↵erent conditions.

I =
M2 ⇥ P

x

⇥ P
y

⇥ t

M2
0 ⇥ P

x0 ⇥ P
y0 ⇥ t0

⇥ I0 (2.7)

Where I0 is the intensity of an image taken at magnifiation M0, with P
x0 ⇥ P

y0

pixels and a dwell time t0, and I is the equivalent intensity if the image is taken at

magnification M, with P
x

⇥ P
y

pixels and a dwell time of t.
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Chapter 3

Atomic Structure and Gas Phase

Growth of Size-Selected Au

Clusters

In this chapter results on the atomic structure and growth of clusters containing 309,

561 and 742 atoms are presented. A magnetron sputtering gas aggregation cluster

source with LTOF mass filter was used for production of size-selected clusters and

samples were characterised using HAADF ac-STEM. In section 3.1 the gas phase

growth mechanism of Au clusters between 561 and 923 atoms is investigated and for

size 561 the relative stability of competing structural isomers is determined by elec-

tron beam manipulation experiments. The majority of these results are published

in reference 1. In section 3.2 the e↵ect of condensation length on the gas phase

growth of Au309 clusters is considered and electron beam manipulation experiments

are used to determine the ground state structure at this size.

Production of size-selected cluster samples, STEM imaging, and structural anal-

ysis was performed by the author. The simulation atlases used to identify the

atomic structure of clusters were created by Ray Hu (Laboratory of Solid State

Physics and Magnetism, University of Leuven) using the QSTEM software, struc-

tural assignments in section 3.1 were double checked by Ray Hu and Alex Pattison
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(NPRL, University of Birmingham), and the molecular dynamic simulations of clus-

ter growth presented in sections 3.1 and 3.2 were performed by Guilia Rossi and

Riccardo Ferrando (INFM and IMEM/CNR, University of Genoa).

3.1 Metastability and Growth of Size-Selected Au

Clusters

3.1.1 Methods

For this work size-selected Au clusters were produced using a magnetron sputtering

gas aggregation cluster source [2] with a lateral time of flight mass filter [3] oper-

ated at a resolution of M/�M=22 (�M=FWHM). In all cases the clusters were

produced using slow growth conditions: long condensation length (250mm) and low

magnetron power (10W), with the aim of reducing kinetic trapping [4]. The pressure

in the condensation chamber and Ar and He gas flows were also kept constant. This

was important because all of these factors have the potential to alter the growth,

hence atomic structure of the resultant clusters. Clusters containing 561±13 atoms

and 742±17 atoms (error given by ±HWHM) were deposited on amorphous carbon

coated TEM grids for imaging with HAADF STEM. The atomic structure of the

clusters were then determined by comparison with simulation atlases of the cuboc-

tahedron, Ino-decahedron and Mackay Icosahedron (see methods for more details).

Size 561 was chosen because it is a magic number and size 742 was chosen because it

lies directly between magic number sizes 561 and 923 (for which there is previously

published data [4]) and so could give information on the growth mechanism.

3.1.2 Results and Discussion

Figure 3.1 shows a histogram of the HAADF intensity of a typical Au561 sample,

measured using the background subtraction method (discussed in chapter 2). The

HAADF intensity is proportional to the number of atoms [5], hence figure 3.1 can
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be considered a size distribution. Assuming that the main peak is representative of

Au561, a standard deviation of 8% is determined from the gaussian fit. This value

is larger than the 5% expected from the mass filter, which is likely due to error in

the HAADF intensity measurement. This may be a result of errors in the HAADF

intensity measurement resulting from and uneven background (used for background

subtraction) or inclusion/exclusion of single atoms surrounding the cluster. Another

possibility is that the cluster beam entering the LTOF mass filter is not convergent,

and diverges such that the beam profile is larger than the entrance aperture - the

calculated resolution uses the entrance aperture size as an estimation of the beam

profile at the exit aperture. The subsequent peaks represent dimers and trimers that

may be a result of aggregation or double/triple mass, double/triple charge clusters

transmitted through the mass filter. Structural analysis was only performed for

clusters within the first (Au561) peak.

Figure 3.1: Size distribution of a deposited Au561 sample measured by HAADF

STEM. The HAADF intensity (proportional to the number of Au atoms) of 149

clusters is plotted as a histogram. Peaks representing monomers, dimers and trimers

are indicated.

Figure 3.2 shows typical HAADF STEM images of Au561 clusters matched by

eye to multislice electron scattering simulations [6]; the experimental images are
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on the top and the corresponding simulated images are underneath. (a, f) shows

a Mackay icosahedron at a (27, 5) rotation, (b, g) a cuboctahedron at a (15, 60)

rotation, (c, h) an Ino-decahedron at a (0, 0) rotation and (d, i) a decahedron at a

(18, 10) rotation. The rotation angles of the clusters can be found in chapter 2. Not

all clusters can be matched to the simulations, e) shows and example of a cluster

that is amorphous.

The multislice simulations are performed for the cuboctahedron, Ino-decahedron

and Mackay icosahedron for which 561 is a magic number. In reality the clusters

produced have a finite size distribution (⇡5%) and so many variations on these

structures will exist; including di↵erent truncations and partial facets. Therefore,

when matching the experimental images to the simulation atlas images, it is the

core atomic structure that is focused upon and the atomic structure of the clusters

are identified generally as fcc, Dh, Ih. This is even more pertinent when identifying

Au742 structures, because it is not a magic number size. Structures that do not fall

into any of these categories, including clusters that have no observable structure,

are classified as unidentified/amorphous (UI/A).

Figure 3.2: HAADF STEM images and corresponding electron scattering simula-

tions [6] for Au561 clusters. (a)-(e) show HAADF STEM images of Au561 clusters

with corresponding electron scattering simulations in (f)-(i). The specific orienta-

tions (✓,↵) of the model clusters used in the simulated images are given in chapter

2. The clusters shown in (c) and (d) both show signs of re-entrant facets, indicating

a Marks-decahedron structure. Adapted figure and caption from reference 1.
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Figure 3.3 shows the proportions of structural isomers for Au561 and Au742 com-

pared with results for Au923 from reference 4 (averaged from 2 sets of data presented

at 250mm condensation length, 10 W magnetron power). This is based on 189 clus-

ters for Au561 and 147 clusters for Au742. In all cases the same slow growth formation

conditions were employed. For Au561 the Dh is the dominant isomer (43%), in close

competition with fcc (36%), whilst very few Ih were observed (2%). Similarly, for

Au742 46% of clusters were Dh, 37% fcc and 3% Ih and for Au923 41% were Dh, 31%

fcc and 4% Ih. The proportions of structural isomers for these three di↵erent sized

clusters are almost identical: the ratios of fcc to Dh isomers for Au561, Au742 and

Au923 are 0.83±0.16, 0.79±0.18 and 0.74 respectively. The errors stated are based

on statistical counting errors.

Figure 3.3: Percentages of structures observed for Au561 and Au742 compared with

Au923. (a)-(c) show the percentage of structures observed for Au561 and Au742 com-

pared with Au923 [4]. Clusters are classified as face-centered-cubic (fcc), Decahedron

(Dh), Icosahedron (Ih) or unidentified or amorphous (UI/A). The magnetron power,

10W, and condensation length, 250 mm, were the same in all cases. For Au561 189

clusters were imaged, for Au742 147 clusters were imaged. Figure and adapted cap-

tion from reference 1.

There are three possible explanations for why the same proportion of structural

isomers are observed at these three di↵erent sizes. Firstly, if the clusters are assumed

to be in equilibrium, then the obvious conclusion is that the Dh is the lowest energy

structure, followed by fcc, with Ih being much higher in energy. Assuming this is

the case, there must be no size dependence on the atomic structure between 561
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and 923 atoms, otherwise the proportion of structural isomers would not be equal

at all three sizes. This seems unlikely based on the literature of size dependent

atomic structure [7, 8, 9, 10]. Another possibility is that the finite size range of the

clusters studied results in both ground state Dh and fcc structures being present; it

has been predicted by Goedecker et al [11] that the addition of just one atom can

alter the ground state structure. In this scenario the Dh and fcc must be in close

competition over the size range, and it is purely coincidental that the proportions

of isomer are almost identical. The third explanation is that, despite slow growth

conditions, the clusters are kinetically trapped during growth in the condensation

chamber. Beyond a certain size the clusters will not have enough energy to rearrange

to the ground state structure, hence they become trapped and continue to grow on a

smaller, stable, seed structure - template growth. This growth mechanism is widely

predicted for metal clusters [12, 13, 14, 15]. To investigate this further electron beam

manipulation experiments were performed, which show that the clusters observed

are not in equilibrium but are kinetically trapped. These results are presented below.

Table 3.1: Results of electron beam irradiation experiments on Au561 clusters.

The frequency of structural transformations from an initial state to a final state,

and in one case an intermediate state, is shown. Videos were recorded at a dose of

1.4-3.1⇥104 e� per Angstrom2 per frame for a minimum of 50 frames, field of view

15.74 ⇥ 15.74nm or 13.12 ⇥ 13.12nm

Initial State Intermediate State Final State Frequency

Dh - fcc 17/19

Dh - Dh 2/19

fcc - fcc 13/15

fcc Dh fcc 2/15

Table 3.1 shows the result of electron beam manipulation experiments on Au561

clusters. These experiments were performed by continually imaging individual clus-

ters (for a minimum of 50 frames with an acquisition time of 2.9 seconds per frame
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and a dose of 1.4-3.1⇥104 e� per Angstrom2 per frame) and observing the resultant

structural transformations, ’video imaging’. For clusters that were initially deca-

hedral, 17/19 transformed to fcc and 2/19 remained decahedral. For clusters that

were initially fcc, 13/15 remained fcc whilst 2/15 briefly transformed to an interme-

diate decahedral structure before transforming back to fcc. Figure 3.4 shows two

examples of a Dh cluster transforming to fcc due to the irradiation of the electron

beam during imaging.

Figure 3.4: Examples of the Dh-fcc transition seen in electron beam irradiation

experiments. (a-f) shows frames 1, 20, 35, 37, 57 and 89 of an e-beam irradiation

video, the cluster has Dh structure in (a-c) and fcc structure in frames (d-f). In this

case the structural transition took place at frame 36. (g-l) shows frames 2, 17, 37,

42, 51 and 74 of another e-beam irradiation video, the cluster has Dh structure in

(g-i) and fcc structure in (j-l). In this case the structural transition took place at

frame 42.

These results demonstrate that the Dh is not the ground state structure at

this size; it is metastable, transforming to fcc under e-beam irradiation. fcc is

most likely the ground state structure because it is stable under the electron beam.

The metastability of the Dh, the most commonly observed structure, confirms the
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kinetic trapping hypothesis. The general trend expected for Au nanoclusters is

from Ih!Dh!fcc with increasing size due to competition between internal strain

and surface energy. Assuming this to be true, for Au, fcc is already the most

stable structure by 561 atoms. This is in agreement with several theoretical studies

[8, 10, 16] but in contradiction to results by Barnard et al [7] who predict fcc are only

stable at much larger sizes (>15nm). The growth of clusters on seed Dh structures

also indicates that the decahedron is most stable at a smaller size, earlier on in the

growth of the cluster. For example this could be a 434 atom Marks-Dh. Similarly,

the absence of Ih in the experimental data can be explained by the fact that they

are only stable at very small sizes, early on in the growth process, when the clusters

still have enough energy to rearrange. This is corroborated by the manipulation

experiments of Wang et al [17] that show the Ih to be metastable at size 923,

transforming to Dh under e-beam irradiation.

Continuous irradiation with the electron beam can cause atom loss [18]. To con-

firm that structural changes were not as a result of the size of the cluster changing,

figure 3.5 shows a plot of HAADF intensity vs frame number for the cluster shown

on the left of figure 3.4. Although the resolution of this plot is not high enough to

identify the loss of a single atom, it can rule out a continuous atom loss over the

time frame of the structural transformation. The HAADF intensity only drops after

about 90 frames, whereas structural transformation takes place at frame 36. The

high contrast images in figure 3.5 show several single atoms surrounding the cluster

surface, indicating that single atoms are ejected from the cluster. However, single

atoms are not observed further away from the cluster, suggesting that atoms are

ejected and then re-join the cluster during irradiation. Depending on the distance

of the single atoms from the cluster, these atoms may contribute to the background

intensity measurement.
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Figure 3.5: Left hand side: a plot of HAADF intensity versus frame number for

the Au561 cluster shown in (a-f) of figure 3.4. Right hand side: high contrast images

of the same Au561 cluster (frames 35 and 57) with several single atoms indicated by

yellow circles.

To further explore the growth mechanism of Au clusters, molecular dynamic

simulations were performed by Guilia Rossi and Riccardo Ferrando [1]. The growth

of Au clusters from 13 to 923 atoms was simulated for 3 di↵erent temperatures:

400K, 500K and 600K, and the atomic structure determined by common-neighbour

analysis [19]. In all cases they found that the clusters were liquid at small sizes and

solidified during growth, the size at which they solidified being temperature depen-

dent. For all but one case (35/36 simulations), there were no structural transitions

observed during growth whilst the cluster was solid. This result is in good agree-

ment with the idea that Au clusters are kinetically trapped and grow on smaller

seed structures. Table 3.2 shows the results of the growth simulations. The Dh was

the most commonly grown structure (50%), followed by fcc (36%) and Ih (6%). It

was found that whilst the Dh and fcc structures di↵er in energy by less than 1eV,

the Ih are much higher in energy. These results show very good agreement with the

proportions of structural isomers observed for Au561, Au742 and Au923.
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Table 3.2: Results of the growth simulations. The proportion of Dh, fcc, Ih and

unclassified clusters at T = 400 K, T = 500 K, T = 600 K, and the overall percentage

of structures is shown. Data and caption from reference 1.

Growth Temperature (K) Decahedral fcc Icosahedral Unclassified

400 6 3 1 2

500 7 4 0 1

600 5 6 1 0

Total 18 (50%) 13 (36%) 2 (6%) 3(8%)

3.1.3 Summary

In conclusion, the gas phase growth of Au clusters between 561 and 923 atoms was

investigated. It was found that sizes 561, 742 and 923 present the same proportion

of structural isomers when produced under the same conditions, this is attributed

to kinetic trapping and template growth on a seed structure. For Au561 the most

abundant Dh structures were found to be metastable with respect to fcc structures,

confirming the idea that the clusters were kinetically trapped during growth. The

fcc structure was determined to be the ground state structure for Au561, due to its

stability under electron beam irradiation. Molecular dynamic simulations of cluster

growth are in excellent agreement with the experimental results, showing no solid-

solid structural transitions during growth and similar final isomer proportions.

3.2 Control of the Atomic Structure of Au309 Clus-

ters: The E↵ect of Condensation Length

3.2.1 Methods

Clusters consisting of 309 ± 8 atoms were produced with a magnetron sputtering,

gas aggregation cluster source with LTOF mass filter and soft-landed ( 2 eV/atom)
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onto amorphous carbon coated TEM grids. In all cases the magnetron power (10W),

condensation chamber pressure ( ⇡0.5 mbar) and Ar and He gas flows (180 ± 10

sccm) were kept constant, whilst the condensation length was varied between 150

and 250 mm. The samples were characterised using HAADF ac-STEM and the

atomic structure of the clusters were identified by comparison with a simulation

atlas for Au309 (for details of method see section 3.1).

3.2.2 Results and Discussion

Figure 3.6 shows typical HAADF STEM images of Au309 clusters (top) and cor-

responding multislice electron scattering simulations (bottom) from the simulation

atlas of the cuboctahedron, Ino-decahedron and Mackay-icosahedron. (a, b) shows

an on axis (0, 0) Ino-decahedron, (c, d) a cuboctahedron at a (0, 30�) rotation, (e,

f) an icosahedron at a (9�, 15�) rotation and g) an example of an amorphous cluster.

As in section 3.1, the atomic structure of the Au309 clusters were classified more

generally as fcc, Dh, Ih or UI/A .

Figure 3.6: HAADF STEM images and corresponding electron scattering simula-

tions [6] for Au309 clusters. (a, c, e, g) show HAADF STEM images of Au309 clusters

with corresponding electron scattering simulations in (b, d, f): (a, b) Ino-decahedron

(0, 0) orientation (Dh family), (c, d) cuboctahedron (15�, 60�) orientation (fcc fam-

ily). (e, f) Icosahedron (9�, 15�) (Ih family), and (g) an amorphous cluster. The

specific orientations (✓, ↵) of the model clusters used in the simulated images are

given in chapter 2.
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For each condensation length employed (150, 170, 190, 220, 250 mm) more than

150 clusters were imaged for structural analysis. The proportion of structural iso-

mers at each condensation length is shown in figure 3.7, straight line fits to the data

are shown as a guide to the eye. The error on the isomer proportions is a statistical

counting error and the error on the condensation length is half the smallest division

on the linear drive of the magnetron (±0.5 mm). As the condensation length is

decreased from 250 mm to 150 mm the proportion of fcc isomers increases linearly

from 30% to 58% and the proportion of UI/A clusters decreased linearly from 42%

to 17%. The proportion of Ih isomers also increases slightly (0 to 6%) whilst the Dh

portion remains fairly constant (between 22 and 25%).

Figure 3.7: Proportion of structural isomers versus condensation length. Clusters

classified as fcc, Dh, Ih or UI/A. Data is indicated by scatter points and straight

line fits are shown. Error bars are shown for the isomer proportions.

To confirm that the large proportion of UI/A clusters were not masking an

underlying trend, further analysis of the UI/A clusters was undertaken. Clusters

that appeared truly amorphous were separated and the remaining UI structures were

identified as most likely fcc, Dh or Ih. For this analysis general motifs, common to

these structure groups, were used for identification. For example ‘ring-dot’ features
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that are only observed in Ih structures [20] were used and an indicator of Ih structure,

and clusters that consisted of straight lines across the majority of the image were

identified as fcc.

Figure 3.8 shows the proportion of structural isomers for each condensation

length after the extended UI/A analysis. As the condensation length is decreased

from 250 mm to 150 mm the proportion of fcc isomers increased linearly from 43%

to 65%, the proportion of amorphous clusters and Ih decreased linearly from 14% to

3% and 10% to 1% respectively, and the proportion of Dh was constant at ⇡30%.

The general trend remains the same; with a decrease in condensation length there

is a corresponding increase in Ih and amorphous structures.

Figure 3.8: Proportion of structural isomers versus condensation length: data after

UI/A amorphous analysis. Clusters are classified as fcc, Dh, Ih, or Amorphous. Data

is shown as scatter points and straight line fits are also shown. Error bars are shown

for the isomer proportions.

The condensation length is the distance between the magnetron and the exit

nozzle of the condensation chamber, this is shown by a schematic in figure 3.9. It is

the distance over which the clusters grow and so is representative of the growth time.

Logically, a longer growth time would result in more equilibrated clusters, with a
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higher proportion of low energy structures, and a shorter growth time would result

in a greater proportion of higher energy structures, far from equilibrium. This logic

was successfully used to explain the change in the proportion of Ih isomers for Au923

clusters as the condensation length was varied [4]. As the condensation length was

decreased it was found that there was a decrease in Ih structures, that are known

to be unstable at this size [17]. This was explained by the trapping of unstable Ih

structures during short growth times.

Figure 3.9: Schematic showing the condensation length in the condensation cham-

ber of the magnetron sputtering gas aggregation cluster source. Diagram not to

scale.

Interpreting the data shown in figure 3.8 in the same way leads to the conclusion

that fcc is a high energy structure at this size, its proportion being larger for shorter

growth times, and Ih and amorphous structures are lower in energy, their proportion

increasing at longer growth times. However, if this is the case then why is fcc the

most abundant isomer? Even if kinetic trapping is considered it seems unlikely

that a smaller stable fcc structure acts as a seed, because this would contradict the

generally accepted stability from Ih-Dh-fcc with increasing size (although it is not

inconceivable that a particularly low energy fcc structure exists at a smaller size

[11]). Furthermore, by comparison with the results from section 3.1, it appears that

Au309 is not kinetically trapped - its proportion of structural isomers at 250 mm
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condensation length being di↵erent to those at sizes 561, 742 and 923. Au309 is

the smallest size cluster studied, this means that it is more likely to have enough

energy to rearrange to the ground state structure. Given that fcc is the ground state

structure for Au561 it is probable that this is also the case for Au309.

To be able to interpret the condensation length data, further investigation into

the relative stability of structural isomers at size 309 was undertaken. ‘Video imag-

ing’ of individual Au309 clusters was performed at a dose of between 1.3 � 10.0 ⇥

104/e�/Å
2
/frame, for a minimum of 100 frames. In contrast to Au561 and Au923

[1, 4], continuous fluctuations between di↵erent structural isomers were observed.

The structural fluctuations are assumed to be a result of electron beam heating. The

e↵ect of knock-on damage and cluster charging are assumed to be negligible because

the electron beam energy is much lower than the knock-on damage threshold for Au

(the threshold for surface sputtering of Au is 400kV [21]), and the substrate is a good

conductor of electricity. Figure 3.10 shows an example of an individual Au309 cluster

fluctuating between di↵erent structural isomers. The cluster continually fluctuates

between di↵erent orientations of fcc and Dh structures, amorphous or unidentified

arrangements (as seen in frames 88 and 139) and structures with local Ih symmetry

(frame 143).

Figure 3.10: A selection of HAADF STEM images from a video of Au309. The

frame number is shown in the top right of each image and the atomic structure

classification in the top left.
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Because no clear transformation from one structure to another occurred, a dif-

ferent approach was taken to determine the ground state structure. 11 videos were

recorded, consisting of a total of 1293 frames, and a frame by frame analysis was

conducted whereby each video frame was identified as fcc, Dh, Ih or UI/A. The

continuous irradiation with the STEM electron beam should allow the clusters to

explore the potential energy surface. The structure most commonly observed (iso-

mer with longest total residence time) is then considered the ground state (or lowest

free energy) structure. This method was used previously to determine the atomic

structures of Au20 and Au55 clusters [22, 23]. The results of the frame by frame

analysis are shown in figure 3.11. UI/A structures are excluded because the nature

of the experiment leads to many transitional amorphous and UI structures as well

as out of focus frames (66% of frames fall into this category). It was found that 56%

of identifiable structures were fcc, 37% Dh and 7% Ih.

Figure 3.11: The proportion of structural isomers identified as fcc, Dh or Ih from

the frame by frame analysis of all Au309 structural fluctuation videos. A total of 434

identified frames.

This result confirms that fcc is the ground state structure at size 309 (similarly to

size 561) and implies that kinetic trapping was not a dominant growth mechanism

for N309 atoms under these formation conditions. Curley et al [24] reported a

di↵erent proportion of structural isomers for Au309 based on static HAADF STEM

images of Au309 clusters produced by a magnetron sputtering gas aggregation cluster

source (Ino-decahedral 32%, cuboctahedral 25%, icosahedral 8%). The di↵erence

between the two seemingly similar experimental investigations is most likely due to
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di↵ering formation conditions in the magnetron sputtering, gas aggregation cluster

source. The video imaging technique employed in this thesis means the formation

conditions (resulting in kinetic trapping) do not contribute to the overall result of

the investigation. Considering the result of section 3.1, that metastable Dh are

formed by kinetic trapping, it follows that at 250mm condensation length kinetic

trapping must occur between 309 and 561 atoms. The abundance of metastable Dh

being a result of a particularly stable Dh in this size range (possible Marks-Dh-434).

The implication of fcc being the ground state structure on the condensation

length data in figure 3.8, is that it cannot be interpreted in terms of longer growth

time resulting in more equilibrated, ground state structures. Instead, other inter-

pretations must be considered. One possibility is related to temperature. Due

to the plasma formed in front of the magnetron gun, there will be a temperature

gradient between the magnetron and the exit nozzle, with the temperature being

higher at the magnetron and much lower at the nozzle [25]. This means that for

shorter condensation lengths the clusters will be hotter than at longer condensation

lengths. The result of a higher average cluster temperature would likely be a more

equilibrated system; clusters having enough energy to rearrange to the ground state

structure. In the case of Au309 this would lead to an increase in the proportion in

fcc at shorter condensation lengths, in agreement with the experimental data. The

increase in proportion of amorphous and Ih structures may also be explained by

the fact that they are higher energy structures and so take less thermal energy to

rearrange to ground state fcc, whereas Dh are expected to be much closer in energy

to fcc [8, 16] so would take more thermal energy to rearrange. This e↵ect would

be more prominent for smaller clusters, for which less energy (lower temperature) is

required for structural transformation, which can explain why this e↵ect is not seen

for Au923.

Another interpretation involves the consideration of di↵erent growth routes within

the condensation region. Initially small seed structures are formed by 3 body colli-

sions between two metal atoms and one helium atom [2, 26, 27, 28]. Following this,
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there are two mechanisms by which clusters may grow; atom by atom addition on

smaller seed structures and coalescence of two or more larger sized clusters. Given a

certain amount of sputtered material, smaller sized clusters should take less time to

grow than larger clusters. Therefore, the condensation length at which the majority

of Au309 clusters is formed will be shorter than for Au923. If the atom by atom

growth mechanism is not dominant at longer condensation lengths then the coales-

cence mechanism may start to become noticeable in the form of more UI/A and Ih

structures. Coalescence of two or more clusters may lead to more unusual, uniden-

tifiable (or amorphous) structures. Considering the case of Au309, this would likely

involve the coalescence of Ih clusters, which are expected to be most favourable at

small sizes [8, 10, 16].

Molecular dynamics simulations of coalescence were performed by Giulia Rossi

and Riccardo Ferrando. They investigated the atomic structures formed by the

coalescence of clusters with di↵erent starting structures, and at di↵erent tempera-

tures. The resultant cluster having approximately 309 atoms. Table 3.3 shows a

summary of their results. In some cases perfect structures are obtained, in others

unusual composite structures are formed that are unlikely to be identifiable using

our simulation atlas method.
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Table 3.3: Result of molecular dynamics simulations of cluster coalescence. The

initial structures, final size in number of atoms, temperature, and final structure

is shown. Results from unpublished data produced by Giulia Rossi and Riccardo

Ferrando.

Cluster 1 Cluster 2 Total Size Temperature (K) Final Structure

Au147-Ih Au147-Ih 294 300 Part Ih, part Dh

Au147-Ih Au147-Ih 294 400 Part Ih, part Dh

Au147-Ih Au147-Ih 294 500 Part Ih, part Dh

Au147-Ih Au147-Ih 294 600 Liquid

Au147-Ih Au162-Dh 309 400 Structure with 2 5-fold axis

Au147-Ih Au162-Dh 309 400 Structure with 2 5-fold axis

Au147-Ih Au162-Dh 309 500 Dh

Au147-Ih Au162-Dh 309 500 Dh

Au147-Ih Au162-Dh 309 600 Liquid

Au147-Ih Au162-TO 309 400 fcc

Au147-Ih Au162-TO 309 400 Distorted Dh

Au147-Ih Au162-TO 309 500 twinned fcc

Au147-Ih Au162-TO 309 500 twinned fcc

Au147-Ih Au162-TO 309 600 liquid

Au147-Dh Au162-TO 309 400 twinned fcc

Au147-Dh Au162-TO 309 500 twinned fcc

3.2.3 Summary

In conclusion, the e↵ect of condensation length on the atomic structures of Au309 has

been investigated. It has been shown that the proportions of atomic structures can

be controlled by changing the condensation length; significantly more fcc structures

were generated at short condensation lengths (43% at 250mm to 65% at 150mm).

This may be useful for catalysis studies where atomic structure is thought to play
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an important role. Electron beam manipulation experiments showed that fcc is

the ground state structure, followed by Dh, with Ih being highest in energy. The

reason for the increased proportion of ground state fcc structures and decrease of

high energy Ih and amorphous structures at shorter condensation lengths/ shorter

growth times is unclear. Two possible reasons have been suggested, one relating to

the e↵ect of the temperature in the condensation region and the other relating to

the dominance of di↵erent growth routes.
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Chapter 4

Experimental Determination of

the Energy Di↵erence Between

Competing Isomers in Deposited,

Size-Selected Gold Clusters

In this chapter the proportion of structural isomers for Au561 clusters is determined

for temperatures between 20�C and 500�C. Based on this data, an experimental

method for determination of the energy di↵erence between competing Dh and fcc

isomers is presented. A magnetron sputtering gas aggregation cluster source with

LTOF mass filter was used for production of size-selected clusters. Heating of the

samples was performed in-situ using a DENS solutions Wildfire heating holder for

the STEM, and samples were characterised using HAADF ac-STEM. Production of

size-selected cluster samples, STEM imaging, and structural analysis were performed

by the author. The method for determination of the energy di↵erence between

isomers resulted from discussions with Riccardo Ferrando (INFM and IMEM/CNR,

University of Genoa) and Hannes Jonsson (Faculty of Physical Sciences, University

of Iceland). The content of this chapter is taken largely from a draft version of a

paper written by the author.
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4.1 Introduction

Nanoclusters can be used in a wide variety of applications from catalysis [1] to drug

delivery [2, 3] and chemical sensing [4]. Understanding the energy di↵erence between

structural isomers is important not only for the design of well defined materials but

also for understanding how these materials will work in-situ. For example, if a par-

ticular structural isomer is unstable, application of high temperature is likely to

drive it toward the ground state, altering (and potentially degrading) the charac-

teristics of the system. There has been a significant theoretical e↵ort to determine

the ground state structures and energy di↵erences between competing isomers in

nanoclusters [5]. In particular, gold has received much attention due to the role of

structure in its catalytic performance [6].

Experimentally the atomic structure of nanoclusters can be determined by trapped

ion electron di↵raction [7], x-ray scattering [8], TEM tilt series [9], and HAADF

STEM [10]. However, the formation conditions often lead to trapping of higher ly-

ing isomers and the population of clusters observed does not represent the ground

state (or lowest free energy) structure [11]. Previous studies have gained some in-

sight in to the potential energy surface of clusters through e-beam transformation

experiments in the STEM and through ex-situ annealing. By continual irradiation

with the e-beam larger (Au561 [12] and Au923) clusters have been shown to transform

one-way to the ground state structure [11] and smaller clusters have been shown to

fluctuate continually [13, 14, 15] - allowing potential low energy structures to be

identified. With these experiments it is not possible to quantify the energy dif-

ference between isomers because the temperature to which the e-beam heats the

cluster to is unknown. Annealing experiments performed by Koga et al [16] found

that annealing of small and medium sized (<14nm) Au clusters below the melting

point (<1273K), resulted in the transformation of Ih to Dh and annealing above

the melting point (1373K) resulted in fcc structures. Based on these results the

conclusion drawn was that the energy barrier between Dh and fcc must be much

larger than between Ih and Dh. No quantitative measure of the energy di↵erence or
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barrier height can be made via this method because the size distribution is broad

and the structural analysis is performed after annealing, ex-situ. To determine the

energy di↵erence between isomers, the proportion of structural isomers has to be

determined at a range at temperatures for a system in thermodynamic equilibrium,

this is discussed in more detail below.

Here we use a heating stage in the aberration corrected STEM to determine

the proportion of structural isomers for size-selected Au561 clusters at a range of

temperatures. This enables the energy di↵erence between competing fcc and Dh

isomers to be calculated for Au561. We identify two regimes: a low temperature

regime in which metastable Dh transform to fcc and a high temperature regime in

which the Dh isomer is repopulated. From the high temperature region data we

find that the Dh and fcc are very close in energy with the Dh only 0.04±0.02eV

higher than fcc. This analysis is based on the idea that, for an equilibrium system,

at higher temperatures a greater proportion of clusters will occupy higher energy

states (higher energy structural isomers), following Boltzmann statistics.

4.2 Methods

Au clusters consisting of 561±14 atoms were produced with a magnetron sputtering

gas aggregation cluster source [17], with lateral time of flight mass filter (M/�M=20)

[18]. The clusters were deposited onto amorphous silicon nitride films of heating

chips in the soft-landing regime (<2eV/atom) [19] to preserve their original atomic

structure.

A JEOL 2100F scanning transmission electron microscope (STEM) with spheri-

cal aberration corrector (CEOS) and inner high angle annular dark field (HAADF)

detector collection angle of 62 mrad was employed for atomic resolution imaging of

the nanoclusters. In-situ heating was performed using a DENS solutions wildfire

heating holder and DENS solutions MEMS based heating chips. The heating chips

consisted of a metal heater coil embedded in silicon nitride, surrounded by imaging

‘windows’ of silicon nitride. A current was applied to the metal coil to heat the chips

115



CHAPTER 4

whilst the resistance was measured in-situ using the four point probe method. The

temperature was known from the chip calibration, performed by the supplier using a

pyrometer. The error on the temperature measurement is 5%, and the temperature

stability <1�C.

Experiments were conducted by setting the temperature to a constant value and

taking static HAADF images of a population of clusters. At each temperature �

100 clusters were imaged. The atomic structure of the clusters was then identified

by comparison with multi-slice electron scattering simulations of the cuboctahedron,

Ino-decahedron and icosahedron at di↵erent orientations using the simulation atlas

method [11].

4.3 Results

4.3.1 Atomic Structure Versus Temperature

Figure 4.1 shows HAADF STEM images of Au561 clusters and corresponding multi-

slice simulations from a simulation atlas. Images A) and B) were recorded at 20�C.

A) shows a cuboctahedron at a (15, 60) rotation, B) shows an Ino-decahedra at a (18,

10) rotation. Images C) and D) were recorded at 500�C. C) shows a cuboctahedron

at a (15, 60) rotation, and D) an on-axis Ino-decahedron.

The clusters investigated here contain 561±14 atoms, consequently the observed

structures will deviate from the perfect cuboctahedron, Ino-decahedron and icosahe-

dron and will instead contain a range of di↵erent truncations. Therefore we concen-

trate on the core atomic structure; HAADF STEM images matched to the cubocta-

hedron simulations are classified more generally as face-centred-cubic (fcc), images

matched to the Ino-decahedron as decahedra (Dh).

Figure 4.2 shows the proportions of structural isomers observed for Au561 clus-

ters at temperatures ranging from 20�C to 500�C. The same sample was used for

all measurements so that formation conditions would not a↵ect the results [20].

Cluster structures are identified as either face-centred-cubic (fcc), decahedra (Dh),
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icosahedra (Ih) or unidentified/ amorphous (UI/A). The error on the proportion of

structural isomers is a statistical counting error and the error on the temperature is

5%, due to the heating chip calibration as is discussed in the methods section.

Figure 4.1: HAADF STEM images of Au561 clusters and matching multi-slice

HAADF STEM simulations of the cuboctahedron and Ino-decahedron at di↵erent

orientations. A) and B) show images recorded at 20�C and C) and D) show images

recorded at 500�C.

At all temperatures investigated the majority of structures are fcc, followed by

Dh, and Ih with a very low proportion (0-3%). The percentage of UI/A structures is

fairly constant across the temperature range. We find that the clusters still provide

a good match with the simulated structures at high temperature and there is no

evidence of melting, as can be seen from figure 4.1. Between 20�C and 150�C the

increase in temperature results in a increase in fcc. At temperatures �150�C the

proportion of fcc gradually decreases. Complimentary to this, between 20�C and

125�C the proportion of Dh decreases and at temperatures �125�C there is a slight

increase in Dh.
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Figure 4.2: The proportion of structural isomers for Au561 at 20�C, 50�C,

75�C,100�C, 125�C, 150�C, 200�C, 300�C, 400�C, and 500�C. The clusters are clas-

sified as either face-centred-cubic (blue), decahedral (red), icosahedral (yellow) or

unidentified/amorphous (green).

Figure 4.3 shows a plot of the Dh:fcc ratio versus temperature. Two temperature

regimes are clearly visible. Between 20�C and 125�C the Dh:fcc ratio decreases from

0.81 to 0.24. Between 125�C and 500�C the Dh:fcc ratio increases from 0.24 to 0.45.

The underlying data for this plot and associated errors are the same as for figure

4.2.

The increase in the proportion of fcc from 20�C to 125�C, and corresponding

decrease in proportion of Dh, can be explained in terms of the release of trapped

metastable Dh to ground state (or lowest free energy) fcc structures. It has previ-

ously been reported that Au561 clusters undergo a one-way transition from Dh to fcc

when continuously exposed to the STEM electron beam [12] which can be considered

similar to heating of the sample. Considering this explanation, one would expect

the proportion of fcc to increase continually with temperature until all clusters are

in the ground state. In contrast to this we see an increase in fcc from 20-150�C
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followed by a slight decrease from 150-500�C.

Figure 4.3: The Dh:fcc ratio of Au561 clusters versus temperature. The low temper-

ature regime (20-125�C) is in light blue and the high temperature regime (125-500�C)

in darker blue. Lines between markers are a guide to the eye.

There are several possible explanations for this behaviour. The first is a conse-

quence of the population of clusters ranging in size from 547-575 atoms. It can be

argued that the addition or subtraction of one or more atoms changes the ground

state structure [21], such that within the size range of 547-575 atoms there may

be multiple ground state structures (Dh-type and fcc-type). Hence, for the data

presented here, it could be argued that by 100�C all the clusters are in the ground

state and the isomer proportions are representative of the proportion of ground state

structures within this size range. It is unlikely that this is the case, in the previous

e-beam study the size distribution was also 547-574 atoms and Dh-fcc transforma-

tions were seen 90% of the time, indicating that fcc is the ground state structure

over the entire size range. In addition this does not explain the reversal of the trend

in the high temperature region. A second possibility is that as the temperature
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of the clusters increase, atoms are lost through sublimation resulting in a smaller

cluster size at higher temperatures. If the decahedron is more stable at smaller clus-

ter sizes, then this could explain the slight increase in Dh at higher temperatures.

Whilst it is not possible to rule out the loss of tens of atoms, it is unlikely that

this is the cause of the increase in Dh. We know from previous studies on Au309

and Au435 [22] that fcc is the ground state structure at these sizes, indicating that

a crossover to the Dh occurs at a size <309 atoms. Based on the diameter of the

clusters at 500�C (see fig 4.1), it is obvious that such a large loss of atoms has not

occurred. The final explanation assumes that fcc is the ground state (lowest free

energy as T> 0) structure; from 20�C to 125�C the proportion of fcc increases as

clusters (Dh) transform to the ground state (lowest free energy structure), whereas

at higher temperatures (>125�C) a proportion of the clusters are excited to a higher

energy, metastable structure - the Dh. According to this explanation the Ih must

have a significantly greater energy, as we do not see repopulation of this isomer even

at 500�C. This is in agreement with experimental observations of Ih Au923 clusters

under the electron beam, which were found to transform to Dh or fcc structures

after very short exposure times [11].

4.3.2 Determination of the Energy Di↵erence Between Iso-

mers

If the increase in Dh in the high temperature region is a result of excitation of

clusters to a higher energy metastable state, then the energy di↵erence between the

Dh and fcc structural isomers can be calculated. This is explored in more detail

below.

If a system is in thermodynamic equilibrium at a given temperature, T, then the

partition function is given by:

Q(�) =
X

↵

n
↵

Q
↵

(�) (4.1)
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where �=1/K
B

T, Q
↵

is the partition function of isomer ↵ and n
↵

is the number

of permutational isomers [5, 23]. The harmonic superposition theorem gives the

simplest expression for the partition function of isomer ↵, Q
↵

:

Q
↵

(�) = e��E↵
Y

i

2

sinh(�h̄!
↵i

/2)
(4.2)

where E
↵

is the potential energy minimum of isomer ↵ and !
↵i

represents the vibra-

tional frequencies (i) in minimum ↵ [23]. Considering the classical limit (valid for

T> ✓
D

, ✓
D

= Debeye temperature [5]), whereby h̄�!
↵i

!0, equation 4.2 becomes:

QClassical

↵

(�) =
e��E↵

(�h̄!̄
↵

)
(4.3)

where !̄

↵

is the geometrical average of the vibrational frequencies and  is the

number of degrees of freedom [23]. If state ↵ has n
↵

permutational isomers, the

probability of being in isomeric state ↵ is [5]:

P
↵

=
n
↵

Q
↵

(�)

Q(�)
. (4.4)

Figure 4.4: A schematic of the Dh and fcc minima to accompany the derivation

of the energy di↵erence between Dh and fcc isomers

If we examine the simple case of cluster isomers with only 2 minima correspond-
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ing to Dh and fcc isomers (as shown in figure 4.4), the ratio of the probabilities

is:
P
Dh

P
fcc

=
Q

Dh

n
Dh

Q
fcc

n
fcc

=
e��EDh

e��Efcc

(�h̄!̄
fcc

)

(�h̄!̄
Dh

)
n
Dh

n
fcc

. (4.5)

Taking the natural logarithm and simplifying:

ln

✓
P
Dh

P
fcc

◆
= �(E

fcc

�E
Dh

)+ ln

✓
n
Dh

n
fcc

◆
+ ln

✓
!̄
fcc

!̄
Dh

◆


= �(E
fcc

�E
Dh

)+ constant.

(4.6)

Hence, by making a plot of ln(Dh/fcc) versus 1/T, the energy di↵erence between

the Dh and fcc isomers can be determined from the gradient:

Gradient = 1/K
B

(E
fcc

� E
Dh

) ! �E
fcc�Dh

= gradient⇥K
B

(4.7)

The Dh:fcc ratio determined from the experimental results presented above is anal-

ogous to P
Dh

/P
fcc

. Therefore, this analysis can be applied to the data presented

in this chapter to determine the energy di↵erence between the Dh and fcc isomers

for Au561. However, there are two key assumptions made that must be considered.

The partition function for each isomer is given by the harmonic superposition ap-

proximation, for which the vibrational frequencies are assumed to be harmonic and

independent of temperature. In many cases this approximation has been shown to

be valid for temperatures below the melting point [5]. If the vibrational frequencies

are anharmonic, there would be a temperature dependence [5], resulting in non-

linearity or a change of slope in the plot of ln(Dh/fcc) versus 1/T. Secondly, we

have assumed that for each basin (Dh-basin, fcc-basin) in the potential energy sur-

face of the cluster, there is only a contribution from one structural isomer - only one

isomer partition function has been considered per structural basin. This assumption

is discussed in more detail below with reference to the experimental data.

Figure 4.5 shows a plot of the natural log of the Dh to fcc ratio versus the

reciprocal of the temperature. We interpret the low temperature region as the release

of trapped metastable Dh to ground state fcc structures, therefore the system is not
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in equilibrium and the above analysis cannot be performed. In the high temperature

region we see the repopulation of of higher lying Dh isomers (dynamic behaviour)

and can therefore assume equilibrium. The green dashed line shows a weighted

linear least squares fit to the high temperature region of the plot. The gradient of

this line is -510±240 K. Based on the method and assumptions stated above, this

gives a value of 0.04±0.02 eV for the energy di↵erence between Dh and fcc isomers

(�E
Dh�fcc

).

Figure 4.5: The natural logarithm of the Dh:fcc ratio for Au561 plotted against the

reciprocal of the temperature measured in Kelvin. The green dashed line shows a

weighted least squares fit to the high temperature region. The equation of this line

is: y=mx+c where m=-510±240 K and c=-0.2±0.4

The calculated energy di↵erence of 0.04 eV is very small (corresponding to

⇡190�C) and means that within this size range, 561±14, the Dh and fcc isomers

are closely competing. This is in qualitative agreement with several [21, 24, 25]

theoretical calculations which predict the Dh and fcc isomers to be competing at

this size. Molecular dynamic simulations by Baletto et al [24] determined that the
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crossover size for Dh-fcc is 500 atoms and that the Dh and fcc isomers remain close

in energy whilst the Ih is not favoured above 100 atoms. Chen et al [25] also found

that fcc is the lowest energy structure for this size range; the truncated octahedron

is the lowest energy structure with the octahedron, truncated decahedron and Ih

only ⇡ 0.01 eV higher in energy. In a global optimisation study by Goedecker et al

[21] similar di↵erences in energy between isomers were calculated to what we have

determined experimentally. For example, it was found that a truncated octahedron

Au cluster with 201 atoms is 0.007 eV higher in energy than a 192 atom Marks

decahedron cluster and similarly, that a 140 atom Au truncated octahedral cluster

is equal in energy to a 146 atom Marks decahedron cluster. These very small di↵er-

ences in energies between isomers explains the experimental observation of Dh and

fcc isomers at room temperature.

When comparing the experimental result to theoretical calculations, the assump-

tion that structures can be classified generally as Dh or fcc must be carefully consid-

ered. In the majority of the theoretical calculations discussed above, the energy of a

specific structure and size is calculated. By comparison, for the experimental work

discussed here there is a range of sizes (547-575 atoms), and within the classification

of Dh or fcc there may be many di↵erent truncations and arrangements of atoms

on the surface. If in fact our fcc or Dh ‘basin’ consists of many di↵erent structural

isomers, then the experimental determination of the energy di↵erence between Dh

and fcc as described here, becomes less meaningful.

Decahedral particles can be considered as multiply twinned fcc domains. This

should not impact the determination of the energy di↵erence between Dh and fcc

structures because the twinning of fcc domains results in increased internal strain,

hence the energy associated with Dh and fcc particles will be di↵erent. It is im-

portant to note that in this thesis, where a cluster is classified as fcc, it refers to

single crystal fcc (truncated-octahedra) and not twinned or multiply twinned fcc

structures.
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4.4 Summary

In summary, we have used a heating stage in the aberration-corrected STEM to

make variable temperature measurements of the proportion of structural isomers

in a population of Au561 clusters. We have identified two distinct regions. In the

low temperature region, from 20-125�C, there is a decrease in the Dh:fcc ratio. We

attribute this to the transformation of trapped metastable Dh to ground state (lowest

free energy) fcc structures. In the high temperature region, from 125-500�C, the Dh:

fcc ratio increases; the Dh isomer is repopulated and the system is in equilibrium.

By considering the ratio of the partition functions of Dh and fcc basins, we were

able to calculate the energy di↵erence between Dh and fcc isomers from the high

temperature region of the data. We found that the Dh isomer is 0.04±0.02eV higher

in energy than the fcc for Au561. This result is in good qualitative agreement with

the theoretical studies of Baletto et al [24] and Chen et al [25] that both report that

fcc (T-Oh) and Dh structures are closely competing in this size regime. Ultimately,

this method allows for a direct comparison with theoretical studies and provides

an experimental method for quantitatively mapping the potential energy surface of

size-selected clusters.
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In Situ ac-STEM of Surface

Melting in Supported Au

Nanoclusters Below 5nm

In this chapter surface melting of Au clusters between 2 and 5 nm on an amorphous-

carbon support is investigated and interpreted in relation to models of melting point

suppression. A magnetron sputtering gas aggregation cluster source with LTOF

mass filter was used for production of size-selected clusters. Heating of the samples

was performed in-situ using a DENS solutions Wildfire heating holder for the STEM

and samples were characterised using HAADF and BF ac-STEM. The content of this

chapter is taken largely from a draft version of a paper written by the author (with

suggestions from R Palmer). Production of size-selected cluster samples, STEM

imaging, and structural analysis was performed by the author.

5.1 Overview

The behaviour of Au nanoparticles at elevated temperatures is interesting from

a fundamental perspective and is also relevant to the topic of catalysis. It is well

known that gold nanoparticles exhibit catalytic activity at the nanoscale [1]. Under-

standing their morphology and surface structure under relevant reaction conditions,
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such as elevated temperature, may prove useful in the design of catalyst materials.

Melting point suppression at the nanoscale [2] is a well established phenomenon.

First predicted by Pawlow in 1908 [3] and detected experimentally by Takagi in

1954 via shape changes in the di↵raction rings of a nanoparticle ensemble [4], a 1/r

dependence of melting temperature at the nanoscale holds true for all but a few

materials [5, 6]. Early experimental observations of melting point suppression in

supported Au nanoparticles were reported in the seminal electron di↵raction study

by Bu↵at and Borel [7], as well as in a TEM evaporation rate investigation by

Sambles [8]. Subsequently there have been several experimental studies of the high

temperature behaviour of gold nanoparticles. However, at present there is only very

limited [9] single particle, time resolved data on the melting point, with no data be-

low 5nm - a catalytically relevant size regime [10]. Additionally, because previously

reported experimental studies of Au nanoparticle melting do not track the particles

in real space as the temperature is increased (instead they use static temperature

evaporation or di↵raction methods), the exact mechanism by which melting occurs

(homogeneous/liquid shell/LNG) remains unknown.

There are several theoretical models for melting point suppression at the nanoscale.

Pawlow’s theory is a thermodynamic model based on the triple point equilibrium of

spherical solid and liquid particles of the same material and equal mass, surrounded

by their vapour. The liquid shell model, LNG model and numerous molecular dy-

namics studies of Au [11, 12, 13, 14, 15] and other metal [16, 17, 18] nanoparticles

predict the formation of a liquid shell as a mechanism for nanoparticle melting. The

liquid shell model, first suggested by Reiss and Wilson [19] and developed by others

[20, 21] including Sambles [8], is a thermodynamic model that assumes a solid core

surrounded by a liquid shell of constant thickness in the proximity of the melting

temperature. The LNG model, proposed by Couchman and Jesser [22], is based

on nucleation theory and describes melting as the nucleation of a liquid shell on

the surface of the nanoparticle that spreads into the core until a critical radius is

reached and the whole particle melts. The model predicts a melting region in which
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there is solid-liquid coexistence. There has been no experimental observation of

the existence of a liquid shell prior to melting for Au nanoparticles. Young et al

[23] reported surface roughening (amorphous regions) in 10.2nm diameter Au par-

ticles at >600�C, however a liquid shell was not observed in this case. Such a solid

core, liquid shell structure and solid-liquid coexistence have been reported for lead

[24], platinum [25] (not with atomic resolution), and most recently for large gallium

nanoparticles at room temperature [26].

Here we observe the behaviour of individual, size-selected Au nanoclusters (5nm)

in real space with atomic resolution as their temperature is increased up to 1000�C

using in-situ heating in the ac-STEM. Shape changes observed in the nanoparticles

as the temperature is ramped are used as an indicator of the surface melting tem-

perature for individual particles. Prolonged loss of core atomic structure is used,

where possible, to estimate the core melting temperature. The results are compared

with Pawlow’s model, the liquid shell model and the LNG model for melting point

suppression. It was found that the complete cluster (core) melting temperature is

much higher than predicted by all the models of melting point suppression. The

STEM images reveal the formation of a quasi-liquid shell that wets the substrate

and persists over a range of temperatures, supporting the theory of a liquid shell

melting mechanism and the coexistence of solid and liquid phases.

5.2 Experimental Methods

Size-selected Au nanoclusters were prepared using a magnetron sputtering, gas ag-

gregation cluster source [27] with lateral time of flight mass filter [28]. (M/�M=22).

Clusters containing either 309±7 or 561±13 Au atoms were deposited onto amor-

phous carbon membranes of the heating chips, using low deposition energy (soft

landing [29]) to preserve their original structures.

STEM imaging was performed using a 200keV JEOL 2100F instrument with spheri-

cal aberration corrector (CEOS). A high angle annular dark field (HAADF) detector

with inner collection angle of 62 mrad, and a bright field detector were employed
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for imaging. Use of the HAADF detector enabled any aggregate particles to be

accurately sized by using the size-selected clusters as ‘mass-standards’ [30].

For in-situ heating a DENS solutions Wildfire heating holder was used in conjunc-

tion with MEMS-based heating chips. The chips featured ⇡5 nm thick amorphous

carbon membranes, on which the Au nanoparticles were deposited. Heating exper-

iments were performed by STEM imaging of individual particles at incrementally

increasing temperatures. The surface melting temperature of the nanoparticles was

deduced by observing shape changes that were not consistent purely with rotations

of the particle (compared against simulation atlases [31] showing particles at dif-

ferent angles of orientation). For example, when a shape change is observed, the

surface melting temperature for that particle is recorded as directly in-between the

temperature of the last observed ‘original-shape’ particle and first ‘shape-changed’

particle.

The error on the surface melting temperature is a function of the temperature win-

dow in which the shape change occurred and the temperature stability of the MEMS

heating chip, which is essentially negligible in comparison (<0.1�C). Another source

of error arises from the calibration of the heating chip; there may be a systematic

error - an o↵set of up to 5% on the stated temperature. This systematic error e↵ects

the accuracy of all temperature measurements. However, so long as measurements

are made using the same heating chip the general trend (melting temperature vs

particle size) should not be a↵ected.

5.3 Results

Figures 5.1 and 5.2 both show examples of shape changes that occur in the Au

nanoparticles at high temperatures. Figure 5.1 shows a Au561 particle which is

heated incrementally from 550�C to 1000�C. The selection of frames shown in the

figure is taken from a series of 22 HAADF STEM images of this particle. The first

observation of a shape change is at 657�C where there is a protrusion from the

cluster surface, indicative of surface melting. Beyond 657�C, one can see that the
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shape of the nanoparticle is continually changing and is no longer consistent with

the shape of an ‘as deposited’ cluster at room temperature (see images in chapter

3 for reference). Despite the shape changes in the nanoparticle, the core atomic

structure is still visible up to 962�C.

Figure 5.1: Selected images from a series of HAADF STEM images of an individual

Au561 particle at high temperature (550�C - 1000�C).

Similarly, Figure 5.2 shows a Au2530 particle heated from 650�C to 1000�C. Again,

the selection of frames shown here are taken from a series of 22 HAADF STEM im-

ages. This particle has been formed by aggregation and its size has been determined

using the size-selected Au561 clusters as mass balances (using the HAADF intensity).

In this case the first shape change is seen at 801�C. Beyond this temperature, small

fluctuations in the shape of the nanoparticle surface can be seen. The core atomic

structure is still present at 1000�C, although certain regions around the cluster sur-

face appear amorphous.
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Figure 5.2: Selected images from a series of HAADF STEM images of an individual

Au2530 particle at high temperature (650�C - 1000�C).

The size-selected clusters used in this experiment are deposited onto an amor-

phous carbon film and this may e↵ect the melting temperature and/or mechanism.

BF images of the clusters were recorded simultaneously with the HAADF images in

this work so that changes to the a-carbon substrate could be observed. Figure 5.3

shows two bright field ac-STEM images of a Au561 cluster (the same particle is shown

in figure 1) taken at 550�C and 962�C, before and after surface melting. At 550�C

the cluster shape and structure is consistent with that of a free Ino-decahedron, im-

plying that the cluster is in minimal contact with the carbon substrate, at 962�C the

cluster has wet the substrate and several layers of carbon appear to have nucleated

on the cluster surface.

Figure 5.3: Bright field STEM images of a Au561 nanoparticle taken at 550�C (left)

and 962�C (right).
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Figures 5.4 and 5.5 show two examples of the formation of a quasi-liquid layer

at the cluster surface and the coexistence of solid and liquid phases at high temper-

atures. Figure 5.4A shows a series of HAADF STEM images of an Au1110 particle

at high temperature. At 704�C and 749�C the particle appears to be solid and is

consistent with the shape of a cuboctahedron. At 799�C the particle still appears

to be solid but the shape is consistent with that of a decahedron, indicating that

a structural transition has occurred. The particle’s shape changes dramatically at

801�C, indicating that the surface is molten. One can see that a solid core-liquid

shell structure is formed, with the liquid layer wetting the substrate. Figure 5.4B

shows a profile plot of the HAADF intensity of the Au1110 particle at 1000�C. The

arrow indicates the drop in intensity (hence in projected atom density) at the edge of

the solid core. Figure 5.5A shows a series of HAADF STEM images of a Au561 par-

ticle beyond the temperature at which shape changes are first observed. At 650�C

a protrusion on the surface of the particle indicates that the surface is partially

molten, however by 801�C a visible complete liquid shell-solid core structure has

formed and the liquid shell has wet the substrate resulting in the dramatic shape

change. The shape of the liquid shell appears to fluctuate, with a near spherical

shape being temporarily recovered at 899�C. Figure 5.5B shows a profile plot of the

HAADF intensity of the Au561 particle at 857�C.

For both the particles in figures 5.4 and 5.5 it can be seen that the core atomic

structure of the particle persists after both surface melting and after the wetting

of the liquid layer on the substrate. For the Au561 particle (Fig 5.5) the atomic

structure is only present in the core and the shell appears amorphous. However, for

the larger Au1110 particle the fcc structure persists up to 900�C and is present in

both the core and shell with only small amorphous regions existing at the very edges

of the particle (indicated by arrows in fig 5.4A). The high contrast images shown in

5.4C further highlight the structure of the liquid shell. At 850�C both amorphous

and structures regions exist at surface, whilst at 899�C the entire outer shell appears

amorphous.
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Figure 5.4: HAADF STEM images and corresponding profile plots of an Au1110

nanoparticle, showing the formation of a liquid shell at high temperatures. A)

HAADF STEM images of an Au1110 particle at between 704�C and 1000�C). Amor-

phous regions at the edges of the particle are highlighted by yellow arrows. B) A line

profile plot of the HAADF intensity across the particle in A at 1000�C. The yellow

arrow on the HAADF image indicates the direction and location of the line profile

(image smoothed by a mean filter). C) High contrast images for viewing amorphous

regions and single atoms (marked by yellow rings).
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Figure 5.5: HAADF STEM images and corresponding profile plots of Au561

nanoparticle, showing the formation of a liquid shell at high temperatures. A)

HAADF STEM images of an Au561 particle between 650�C and 1000�C. B) A line

profile plot of the HAADF intensity across the particle in A at 857�C. The yellow

arrow on the inset HAADF image indicates the direction and location of the line

profile.

Throughout all the experimental data, structural transitions during heating were

observed, but there was no evidence of an Ih or Ih solid-liquid csoexistence state prior

to melting - a widely predicted phenomenon [12, 32, 33]. Nor was there evidence

of a rapidly fluctuating quasi-molten state as has been predicted and observed in

several studies [23, 34, 35, 36]. All experimental reports of quasi-melting in the

literature were observed with HRTEM. It is possible that the geometry of imaging in

HRTEM promotes quasi-melting. In the HRTEM, although the beam is spread, the

overall dose received by the cluster may be higher because the sample is continually

irradiated. By comparison, in the STEM the cluster is only irradiated whilst the
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convergent beam scans over it during imaging, which may result in a lower overall

dose being delivered to the cluster. The di↵erence in the continuity of the electron

beam irradiation of the cluster, or the overall dose, could explain why quasi-melting

is not seen in the STEM study presented in this thesis. This would suggest that it

is the electron beam irradiation that promotes quasi-melting and not purely sample

heating.

After heating to 1000�C the Au561 sample was then slowly cooled (over ⇡ 15

minutes) to room temperature (23�C). Several of the particles were then imaged

again. Figure 5.6 shows 3 examples of particles at 1000�C and after cooling back

down to room temperature. The particle in A/D is the same as in fig 5.1, the

particle in B/E is the same as in fig 5.4 and the particle in C/F is the same as in fig

5.7. The particle shown in figure 5.8 disappeared upon cooling, and it is clear from

the figure that the size of the particle in A/D has significantly decreased. This is

most likely due to sublimation, Ostwald ripening, or in the case of the disappeared

particle, coalescence. It can also be seen, that upon cooling, the clusters regain a

near-spherical shape and visible lattice structure across the entirety of the particles.

Figure 5.6: HAADF STEM images of Au clusters at 1000�C and after slowly

cooling to 23�C. A, B and C show 3 di↵erent particles at 1000�C and D, E and F

show the same 3 particles at 23�C .

137



CHAPTER 5

5.4 Discussion

There are two ways in which the melting temperature of a nanoparticle can be

measured using in-situ heating in the STEM. The first would be to use the loss

of lattice structure in the images as an indication of melting [9]. The second is

to use changes in shape - a method that arises directly from the data collected

here (although shape changes have been used to describe melting previously in field

emission experiments [37]. For our study the criteria of the loss of atomic structure

was not suitable due to the time resolution of the experiments (each image taking

5.4s to record); the phenomenon of quasi-melting below the melting point, where

the particle structure rapidly fluctuates, has been reported in both experimental and

theoretical studies [34, 35]. If this were to occur the rapidly fluctuating particle is

likely to appear amorphous in the recorded STEM image and could be misinterpreted

as being molten. Therefore, for this work, shape changes in the particles will be used

to identify surface melting; whereas a free particle should become spherical when

molten, the particles studied here are on a substrate, meaning that as the cluster

surface melts the liquid surface layer wets the substrate resulting in the dramatic

shape changes such as those seen in figures 5.1-5.5.

Looking back at figure 5.1, the shape changes are observed at temperatures

�657 �C. Therefore, for this particle the surface melting temperature is estimated

as 654±4�C, directly halfway between the temperature of the last ‘original-shape’

particle and the first ‘shape-changed’ particle. Similarly, for the particle in figure 5.2,

the surface melting temperature is recorded as 800±1�C (between images recorded

at 799�C and 801�C). The error stated here does not include the potential systematic

error of <5% arising from the heating chip calibration. This analysis was applied to

all of the 9 clusters studied. To avoid a cluster rotation or structural transformation

being misinterpreted as a shape change, simulation atlases for fcc, Ih and Dh clusters

at di↵erent angles of orientation were referenced.

Figure 5.7 shows the results of our single particle analysis of the surface melting

temperature as a function of the reciprocal of the cluster radius, r. Where possible,
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Figure 5.7: Experimental, single particle measurements of surface and core melting

temperatures in Au nanoparticles, plotted alongside several models for melting point

suppression. The experimental data is represented by scatter points: circles show

surface melting temperatures and squares show core melting temperatures. The

cluster sizes in number of atoms are indicated on the plot and the corresponding

core and surface melting temperatures have the same colour. The solid green line is

Pawlow’s model from reference 38, the solid red line is the liquid shell model from

reference 8 and the blue region is the liquid nucleation and growth model melting

sector from references 22 and 39.

core (complete) cluster melting temperatures are also shown, measured by observing

the loss of core atomic structure by eye from the HAADF images and their FFT’s.

Pawlow’s triple point model [3], the liquid shell model [8] and the LNG model

[22] are also plotted for comparison. The equations and parameters used to plot

these models are presented in appendix B. For the liquid shell model the smallest

possible shell thickness of 2.7Å (the atomic diameter) is used. The circular points are

measurements of the surface melting temperature of size-selected Au309 and Au561

particles, and aggregated Au1110, Au2530 and Au3390 particles. The squares show

core melting temperatures, where such a measurement was possible, and the colours
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indicate the corresponding surface and core measurements for an individual particle.

The error on the surface melting temperature includes both the error arising from

the temperature window and the 5% heating chip calibration error, both of which are

described in more detail in the methods section. The particle radius was calculated

by making four separate measurements of the average particle diameter, then taking

the mean value; the error is given by the maximum and minimum of these values.

Both are shown by error bars in the figure.

Pawlow’s model is for complete particle melting, therefore it is reasonable to

assume that our surface melting measurements should fall below those predicted by

this model. Indeed this is the case for all but one particle (Au1110). However, the

experimentally measured core melting temperatures are much higher than predicted

by Pawlow’s model. The liquid shell model predicts significantly lower whole particle

melting temperatures than Pawlow’s model across our size range, as well as a shifting

down of the curve for small particles. The melting temperatures predicted by this

model are much lower than those observed in the experimental data for both surface

and core melting. Furthermore, our ac-STEM images (see figures 5.4 and 5.5) show

that the liquid shell thickness varies between particles and is generally greater than

1 atomic layer. Increasing the atomic shell thickness in the liquid shell model results

in a greater degree of melting point suppression for small particles sizes, something

which is not mirrored by the experimental data - to which a straight line is a good fit

(T
m

=-904/r+1245�C, R2=0.9). The liquid nucleation and growth model predicts

a melting region (see fig 5.7), where the lower boundary is representative of the

onset of surface melting and the upper boundary is the point by which the complete

particle should be molten. Within this region solid and liquid phases coexist, and

complete melting may occur at any point. Again, both our surface and core melting

temperature measurements are higher than those predicted by this model. However,

the liquid nucleation and growth model is in good qualitative agreement with our

data; our repeated single particle measurements show that surface melting and solid-

liquid coexistence occurs over a temperature range (see fig 5.4).
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When comparing the experimental data with the theoretical models it is impor-

tant to consider the influence of the substrate. Naturally, wetting of liquid surface

at high temperatures will result in an increase in contact between the cluster and

the carbon substrate. Additionally, figure 5.3 showed that at high temperatures

layers of carbon may nucleate around the cluster. This level of contact with the

carbon substrate may e↵ect the cluster’s melting temperature; for the cluster shown

in the figure, the atomic structure of the core is still visible at 962�C, much higher

than the complete melting temperature predicted by all three models. Similarly, for

the other Au561 clusters, core atomic structure is still visible at 749�C and 847�C,

for the Au1110 at 957�C and for the Au2530 and Au3390 clusters up to 1000�C (the

highest measured temperature), implying a core melting temperature much higher

than predicted by the models discussed above. One explanation for this is that

after surface melting (and wetting), the increased contact with the carbon substrate

stabilises the cluster. It is also possible that the carbon and gold are mixing at

the surface of the particles, thus altering the melting temperature. In the future,

the role of gold and carbon mixing could be further investigated by STEM-EELS

measurements and analysis of the carbon K-edge before and after surface melting

of the clusters.

It is important to note that the degree of formation of the solid core-liquid shell

structure (as seen in fig 5.4) does vary from cluster to cluster, yet it is clear in all

cases that melting initiates at the surface of the particle. This mechanism for melting

is consistent with the liquid nucleation and growth model, however a comparison of

our experimentally measured critical core radii (see figure 5.8) with those predicted

by the model show some significant di↵erences. Experimentally, we observe a much

lower limit on the critical core radius and a much higher upper limit on the core

melting temperature. More generally, we find a much larger solid-liquid coexistence

region compared with the liquid nucleation and growth model (see figure 5.7).
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Figure 5.8: The LNG model critical radius is plotted (green line), the region below

the curve (filled green) is the liquid region (core and surface) as predicted by the

model. Experimental measurements of the smallest solid core sizes observed are also

plotted (blue scatter points).

5.5 Summary

In summary, in situ heating experiments on 2-5nm Au clusters have been performed

in the aberration corrected STEM, demonstrating melting point suppression and

surface initiated melting. Surface melting has been directly observed in real space,

and the formation of a solid core liquid shell structure at high temperatures has been

discovered. Whilst the results are in good qualitative agreement with the liquid

nucleation and growth model, the experimental solid liquid coexistence region is

found to be much larger than predicted by the model.
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Atomic Structure and Ageing of

Size-Selected Ag Clusters

In this chapter, the atomic structure of size-selected Ag clusters and the e↵ect

of exposure to air on atomic structure and chemical composition are investigated.

Samples of size-selected Ag clusters were produced using a magnetron sputtering

gas aggregation cluster source with LTOF mass filter. The atomic structure of the

clusters was characterised using HAADF STEM and chemical composition investi-

gated by STEM-EELS. In section 6.1, results are presented on the atomic structure

of Ag clusters containing 309, 561, 742 and 923 atoms, for comparison with similar

results obtained for Au in chapter 3. In section 6.2, ageing of size-selected clusters

is investigated. Section 6.2.1 looks at the atomic structure of size-selected Ag clus-

ters for di↵erent durations of air exposure and section 6.2.2 presents EELS chemical

composition results for size-selected Ag clusters before and after air exposure. The

motivation behind this work is related to the importance of understanding how Ag

nanomaterials evolve in the environment. Ag nanoparticles are used widely as an

antibacterial, meaning they are both in direct contact with humans and released

into the environment; understanding how their structure and chemical composition

develops is a first step to understanding and avoiding toxicity. More generally, the

corrosion of silver nano-structures is of general interest due the use of silver and
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silver alloys in electronics.

Production of size-selected cluster samples, STEM characterisation (HAADF

imaging, EELS) and structural and chemical analysis was performed by the author.

The simulation atlas used to identify the atomic structure of clusters was created

by Ray Hu (University of Leuven) using the QSTEM software.

6.1 Atomic Structure of Size-selected Ag Clusters

Size-selected clusters were produced using a magnetron sputtering gas aggregation

cluster source [1] with LTOF mass filter [2], operated at a resolution of M/�M=22.

Samples containing 309 ±7, 561±13, 742±17 and 932±21 atoms were produced for

comparison with results presented for Au in chapter 3. The formation conditions

known to e↵ect atomic structure were kept the same as for Au in chapter 3; 10W

magnetron power, 250mm condensation length and 0.8mbar condensation chamber

pressure. In all cases the clusters were soft-landed onto amorphous carbon coated

TEM grids to preserve the free gas phase structure as far as possible [3]. Due to the

known sensitivity of silver to air (namely sulphur-containing compounds), samples

were transferred between the load-lock vacuum chamber of the cluster source and

the STEM in inert gas. This was done using the glovebox described in chapter 2.

HAADF STEM imaging was performed for all samples, with a minimum of 100

images being taken for each cluster size. The resulting images were analysed using

the simulation atlas method [4], to determine the proportion of di↵erent classes of

atomic structures.

Figure 6.1 shows experimental HAADF STEM images of Ag clusters, matched to

simulated HAADF STEM images from the Au simulation atlas [5]. Fig 6.1A shows

experimental images of Ag561 clusters on the left and the corresponding simulation

atlas images on the right. i-ii) shows a cuboctahedron at a (15, 60) rotation, iii-iv)

an Ino-decahedron at a (9,10) rotation and v-vi) an Ino-decahedron at a (0, 60)

rotation. The final panel (vii) shows a cluster that does not directly match to the

simulation atlas. However, it does display a ring-dot feature characteristic of the
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Ih structure, and is therefore classified as a partial Ih structure. Similarly, fig 6.1B

shows experimental images of Ag923 clusters on the left and corresponding simulated

images on the right. i-ii) shows a cuboctahedron at a (45,60) rotation, iii-iv) shows

a cuboctahedron at a (45,0) rotation, v-vi) shows an Ino-decahedron at a (18,70)

rotation and vii) an icosahedron at a (0,20) rotation. For both Fig 6.1a and b the

more general classification of the cluster structure (fcc, Dh or Ih) is also shown in

the top right hand corner.

Figure 6.1: Typical HAADF STEM images of size-selected Ag clusters matched

to Au simulation atlas images. a) Size 561 and b) size 923

The decision to use the Au simulation atlas was based on a consideration of

whether it was necessary to compute a new atlas for Ag. The same geometri-

cal structures are expected for silver as for gold (Cuboctahedron, Ino-decahedron,

icosahedron) and it is assumed that the HAADF intensity is linear in atom number

for all samples, hence the main di↵erence expected between simulations of Ag and

148



CHAPTER 6

Au structures is in the overall scaling of the intensity (Ag has a lower atomic number

than Au). Because comparisons between experimental images and the simulation

atlas are made by eye, a di↵erence in intensity would not alter a structural identifi-

cation. Indeed, figure 6.1 shows that experimental images of Ag clusters match well

to the Au atlas. To confirm that there are no significant di↵erences (by eye) between

simulated images of Au and Ag clusters, several sample rotations of the Ag cuboc-

tahedron, Ino-decahedron and icosahedron were simulated using QSTEM software

[5]. It was found that there were no qualitative di↵erences between the simulations.

Based on these factors it was deemed unnecessary to produce a new simulation atlas

based on Ag models of cuboctahedron, Ino-decahedron and icosahedron.

Figure 6.2a shows the proportion of atomic structures for size-selected Ag clusters

containing 309±7, 561±13, 742±17 and 923±21 atoms. Similarly to the Au analysis,

the structures are classified generally as fcc, Dh, Ih and UI/A. For sizes 309, 561 and

742, fcc is the dominant isomer, followed by Dh, with very few Ih (Ih classification

includes partial-Ih). For size 923, the Dh is the dominant isomer, closely followed

by fcc (36% vs. 38%), with very few Ih. The proportion of UI/A clusters is almost

identical for sizes 561, 742 and 923, but more than double for size 309. This is most

likely due to the small size resulting in increased instability (rotations and structural

changes) of the clusters under the electron beam. Fig 6.2b shows the Dh:fcc ratio

versus cluster size; there is a gradual increase in this value from 0.3±0.1 at size 309

to 1.1±0.2 at size 923.

The Dh:fcc ratio increases with size, this is notably di↵erent from gold for which

(under the same formation conditions) the Dh:fcc ratio was constant between 561

and 923 atoms. This result shows that for Ag, kinetic trapping of structures does

not occur by atom by atom growth on a seed structure - or at least that it is not the

dominant mechanism. Could it be the case that the structures we observe represent

the equilibrium structures at this size? Looking at the proportions of the structural

isomers this seems unlikely; the relative proportion of fcc decreases with size and

the proportion of Dh and Ih increases with size. This is completely contradictory to
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Figure 6.2: a) The proportion of structural isomers observed for size-selected Ag

clusters containing 309, 561, 742 and 923 atoms. b) A schematic plot of the Dh:fcc

ratio versus cluster size. The error on the Df:fcc ratio is indicated.

the generally accepted trend of Ih!Dh!fcc with increasing size [6, 7, 8]. A more

likely explanation is an alternative growth mechanism resulting in kinetic trapping

of Dh and Ih at larger sizes.

The observation of large metastable Ih produced from gas aggregation sources is

well documented [9, 10, 11]. The presence of these metastable structures is explained

by kinetic trapping, largely dependent on the temperature of formation. Reinhard

et al reported that increasing the evaporation temperature in a gas aggregation

source results in fewer large Ih and more fcc structures - indicating that fcc is the

equilibrium structure and that the Ih are formed due to kinetic e↵ects [9]. Molecular

dynamics simulations of the growth of Ag clusters also show the formation of large

metastable Dh and Ih during growth; not only by seed growth (as is reported for

Au) but also by solid-solid transitions during growth [12]. Solid-solid transitions

describe a growth mechanism whereby the atomic structure of a solid cluster changes

during growth, often leading to the formation of metastable structures. For results

presented here it seems likely that this alternative growth mechanism, whereby
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metastable structure are formed through solid-solid transitions during growth, is

resulting in the increase of Dh and Ih at larger sizes.

6.2 Ageing: the E↵ect of Air Exposure on Size-

Selected Ag Clusters

In this section the e↵ect of di↵erent durations of air exposure (from 20 mins to 24

days) on the atomic structure and chemical composition of Ag clusters is investigated

by HAADF STEM and STEM EELS. Unlike the Au clusters described in chapters

3-5, Ag clusters are not stable in air. It is shown here that both atomic structure

and chemical composition evolve with increased air exposure time.

6.2.1 Results on the Atomic Structure of (Initially) Size-

Selected Ag Clusters After Exposure to Air

Figure 6.3 shows experimental images of Ag923 clusters that have been exposed

to air for 10 days and the corresponding simulation atlas images. a,d) shows a

cubotahedron, b,e) an ino-decahedron and c,f) and icosahedron. In the experimental

images a core-shell type structure can been seen, in which the core has an ordered

structure and the shell appears amorphous. This is characteristic of many of the

air exposed clusters, with the proportion of core shell structures increasing with

increased air exposure.

In the air exposed clusters another structural type was commonly observed -

a partial icosahedron. These clusters contain certain features characteristic of the

icosahedron, such as the ‘ring-dot’, but do not match directly to the atlas for the

icosahedron. Figure 6.4 shows experimental images of the partial Ih structures and

examples of the ring-dot motif commonly observed in the icosahedron simulation

atlas. Figure 6.4A shows shows two examples of partial Ih structures in Ag923

clusters exposed to air for 10 days; in both cases there appears to be an o↵-centre

icosahedron core - a feature that is present in many of these structures. The right
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Figure 6.3: a-c) Typical HAADF STEM images of size-selected Ag923 clusters

exposed to air for 10 days. d-f) simulation atlas images matched to the core atomic

structure of the air exposed Ag923 clusters.

hand side cluster appears to be a ‘half-icosahedron’, a structure that seems unlikely

to be stable for a pure Ag cluster. Figure 6.4B shows a further two examples of

partial Ih structures in Ag561 clusters (exposed to air for 4 days); the left-hand side

particle contains several ring-dot features and the right-hand side particle seems to

have an o↵-axis Ih core.

Figure 6.4: a) Example HAADF STEM images of partial icosahedra structures

in Ag923 clusters exposed to air for 10 days. b) Example HAADF STEM images of

partial icosahedra structures in Ag561 clusters exposed to air for 4 days. c) Examples

of ‘ring-dot’ features in the Ag923 simulation atlas.
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In figure 6.5 the proportion of structural isomers before and after exposure to

air is presented. As before, structures are classified generally as fcc, Dh and Ih.

This ‘core-structure’ analysis is particularly important when analysing the air ex-

posed clusters due the formation of a disordered shell around the cluster. It is the

core structure that is being used to identify the atomic structure. The partial Ih

structures discussed above are grouped with the Ih for the purpose of the struc-

tural analysis. The general trend observed in all cases is an increase in Ih and p-Ih

structures upon exposure to air. Figure 6.5A shows results for Ag561 after transfer

Figure 6.5: The proportion of structural isomers in size-selected Ag samples after

exposure to air for varying amounts of time. Structures are classified as face-centred

cubic (fcc), decahedral (Dh), Icosahedral/ partial-icosahedral (Ih/p-Ih), or uniden-

tified/amorphous (UI/A). a) Ag561, b) Ag742, c) Ag923.
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in inert gas, exposure to air for 2 days and exposure to air for 4 days. The pro-

portion of fcc gradually decreases with increased air exposure and the proportion of

Ih/partial Ih increases. Figure 6.5B shows results of Ag742 after transfer in inert gas

and after 14 days air exposure. The proportion of fcc decreases and the proportion

of Dh and Ih/partial-Ih increases. Figure 6.5C shows results for Ag923 after transfer

in inert gas, 20 minutes air exposure, 10 days air exposure and 19 days air exposure.

Up to 10 days air exposure there is a decrease in fcc and and increase in Ih/partial

Ih, at 19 days there is a slight increase in fcc and a decrease in Ih/partial Ih.

After air exposure there were also a number of clusters which displayed no atomic

structure and appeared to be broken up to some degree - ‘shell only’ clusters. Figure

6.6 shows several examples of these ‘shell only’ clusters. In the structural analysis

these clusters were classified as UI/A. For Ag561, after 2 days air exposure 5% of

the UI/A structures consist of ‘shell only’ clusters, and 7% after 4 days. For Ag742,

after exposure to air for 2 weeks there are no ‘shell only’ clusters. For Ag932, after 20

minutes air exposure and 10 days exposure to air there are no ‘shell only’ clusters,

but after 19 days air exposure 18% of the UI/A structures are formed of ‘shell only’

clusters. If the ‘shell only’ cluster form from Ih and p-Ih structures, it could explain

why there is a decrease in Ih/p-Ih for Ag923 after 19 days air exposure.

Figure 6.6: Examples of ‘shell only’ clusters in Ag923 clusters exposed to air for 19

days.

From the data presented in this section it can be seen that exposure of Ag clusters

to air results in a significant structural change. It is known that silver corrodes in
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air; the black tarnish formed on silverware after longterm air exposure is a result

of the formation of silver sulphide [13]. As well as silver sulphide there are several

other possible products of silver corrosion; namely silver sulphate and silver oxide

[14, 15]. Therefore, it is possible that the core shell structures formed here and the

change in atomic structure are a result of the formation of silver sulphide, silver

sulphate, silver oxide or some combination of these.

6.2.2 Results on the Chemical Composition of (initially)

Size-Selected Ag Clusters after Exposure to Air

To further understand the origin of the structural changes the Ag clusters undergo

upon exposure to air, the chemical composition of the clusters must be studied after

air exposure. Chemical analysis should confirm if the structural changes are due to

formation of an oxide, sulphide, sulphate or some other compound. Based on the

literature of silver corrosion, a silver-sulphur compound of some type is expected

[14, 15, 16, 17, 18, 19], either Ag2S or Ag2SO4.

To study the chemical composition after air exposure, size-selected Ag2057 clus-

ters were produced (as before) and STEM-EELS measurements performed before

and after air exposure. A larger cluster size (2057 atoms) was chosen so that the

clusters did not break apart due to prolonged e-beam exposure during STEM-EELS

acquisitions. This is particularly important for EELS mapping, where clusters are

exposed to the beam for much longer periods of time (10-15 minutes). EELS point

spectra measurements were performed after transfer of samples in inert gas from the

cluster source, and on the same sample after 24 days air exposure.

Figure 6.7A shows an EELS point spectra for a Ag2057 particle. A HAADF

STEM image of the particle is inset. There is a small sulphur L-edge signal (165eV),

and a silver M-edge signal (367eV). The peak at 284eV is the carbon-edge from

the amorphous carbon substrate. No oxygen K-edge (532eV) is present, as can

be seen from the spectra. The Ag M-edge has a delayed maximum feature and

has been identified with reference to EELS atlas data from Gatan’s website [20].
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Figure 6.7B shows a point EELS spectra of the amorphous carbon background, for

comparison with figure 6.7A. A small sulphur signal, carbon signal and small Ag

signal are visible, no oxygen signal is present. In addition there is a peak onset at

approximately 650eV. This is thought to be due to manganese contamination (L3

640eV, L2 651eV) on the substrate and it is not present in any of the EELS spectra

of clusters.

Figure 6.7: a) A point EELS spectra taken of a Ag2057 cluster (HAADF image

inset) after transfer in inert gas. b) A point EELS spectra of the amorphous carbon

substrate. In both cases the positions of the S L-edge, Ag M-edge and O-K edge are

indicated. The red lines show the background subtraction and the green show the

signal extracted after background subtraction.
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There are two possible reasons for the presence of sulphur in the Ag clusters.

The first is that during the inert gas transfer process, there is a short exposure to

air (⇡ 5 seconds). Depending on the level of sulphur present in the air, it is possible

that this is the source of the sulphur. However, due to the very short exposure

time and the low level on sulphur present in the atmosphere, this seems unlikely; it

has been shown that for a thin film of silver it takes approximately 1 hour for a 1

Å silver sulphide film to form [21]. It is also noted that, in the clusters produced

here, there is what appears to be the start of a shell formation which was not seen

for the samples in section 6.1. Another possibility is sulphur contamination in the

cluster source deposition chamber, which was not present when the samples studied

in section 6.1 were produced. Finally, the TEM grids themselves may contain a

source of sulphur.

Figure 6.8 shows an example of an EELS spectrum taken in the shell of an Ag2057

cluster exposed to air for 24 days. In this case the position of sulphur, carbon

(substrate material), silver and oxygen edges are indicated and the background

subtraction is shown so that it is clear if these edges exist in the spectrum. One can

see that sulphur, carbon and silver edges are present whilst there is no signal for

oxygen. This was the case for all spectra recorded (exposed to air and transferred

in inert gas).

Figure 6.8: A point EELS spectrum the shell of a silver cluster exposed to air for

24 days. The background subtraction for sulphur, carbon, silver and oxygen edges

is shown to indicate which elements are present.
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Figure 6.9 shows two EELS point spectra taken of a Ag cluster after 24 days

exposure to air. Figure 6.9A shows a HAADF STEM image of the cluster with the

locations of the two point spectra acquisition points labelled. Figure 6.9B shows

a point spectra taken in the core of the cluster (location 1) and C shows a point

spectra taken in the shell of the particle (location 2). It should be noted that the

point spectra acquired at location 1 also transverses the shell surrounding the core.

In both cases silver M-edge and sulphur L-edge signals are present. However, the

sulphur signal is much more prominent in the shell of the cluster than in the core.

No oxygen K-edge signal is detected. This indicates that the core shell structure is

formed of a Ag core and Ag
x

S
x

shell.

Figure 6.9: Point EELS spectra of a silver cluster exposed to air for 24 days. A) A

HAADF STEM image of an Ag cluster after 24 days air exposure, the locations of

two point EELS spectra acquisitions are indicated. B) A point EELS spectra taken

at location 1, the cluster core. C) A point EELS spectra taken at location 2, the

cluster shell.
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Table 6.1 shows the ratio of the silver M-edge to the sulphur L-edge signal after

inert gas transfer, and after 24 days air exposure. Respectively comparing the

ratio before and after air exposure reveals the change in the sulphur content of

the particles. For the sample transferred in inert gas, the core value represents

measurements made of the Ag clusters, as they do not possess a core-shell structure.

For the sample exposed to air for 24 days, core shell structures were formed and so

the silver to sulphur ratio is shown for both the core and the shell (note that the

core value also includes a contribution from the shell either side of the core). In

the case of the inert gas transferred sample, the value given is an average over the

value from 9 point spectra. For the sample exposed to air, the value for the core

ratio is an average over 9 point spectra acquired from cluster cores and the shell

value is an average over 8 point spectra acquired from cluster shells. The error on

each individual quantified value is ⇡10%, as calculated by the digital micrograph

software and is largely composed of the error on the calculated partial scattering

cross section (calculated using the Hartree-Slater model). The error shown in table

6.1 is the standard deviation of the data.

Table 6.1: Sulphur L-edge to Silver M-edge ratio before and after air exposure

Inert gas transfer 24 days air exposure

Core 0.14±0.03 0.20±0.06

Shell - 0.27±0.07

Overall, the results in table 6.1 show that there is an increase in the sulphur

content of the clusters upon exposure to air (assuming the Ag content is constant).

For the clusters exposed to air for 24 days there is a higher proportion of Ag in the

core than in the shell. This supports the idea that upon exposure to air, an Ag-core,

Ag
x

S
x

-shell structure is formed.

To further investigate the distribution of Ag and S in the clusters, several EELS

maps of the air-exposed clusters were recorded. Figures 6.10 and 6.11 show EELS
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maps of Ag, S and O for two di↵erent clusters. HAADF STEM images of the clusters

before and after the mapping are also shown; it can be seen that in both cases the

prolonged exposure to the electron beam damages the clusters, causing changes to

the core and shell shapes.

The EELS mapping reveals that the Ag is concentrated in the core of the clusters.

For the sulphur, there is a more even distribution over the cluster, with only slightly

more present in the core. As before, no oxygen is detected in the particle. The

fact that the sulphur signal is slightly more concentrated in the core of the clusters

indicates that either sulphur has penetrated the core of the cluster to some extent

or that the shell is thicker in this region.

Figure 6.10: a) An EELS map of an Ag cluster exposed to air for 24 days. From

left to right: HAADF STEM image of the mapped area, silver signal, sulphur signal,

oxygen signal and combined sulphur and silver signals. b) A HAADF STEM image

of the cluster mapped in a) before the mapping was performed. c) A HAADF STEM

image of the cluster mapped in a) after the mapping was performed.
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Figure 6.11: a) An EELS map of an Ag cluster exposed to air for 24 days. From

left to right: HAADF STEM image of the mapped area, silver signal, sulphur signal,

oxygen signal and combined sulphur and silver signals. b) A HAADF STEM image

of the cluster mapped in a) before the mapping was performed. c) A HAADF STEM

image of the cluster mapped in a) after the mapping was performed.

6.2.3 Discussion

The corrosion of silver has been the subject of many experimental studies due to

its relevance to degredation in electronic systems [22]. Ag2S is reported to be the

main product of corrosion [14, 15, 16, 18, 19]. When exposed to air, several sulphur

containing species have been identified as causing corrosion: H2S, OCS, SO2 and

CS2. H2S and OCS are thought to be the main species responsible [16]. In the case

of H2S the reaction is reported to be either direct:

2Ag +H2S ! Ag2S +H2. (6.1)
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or involving oxygen:

2Ag +H2S +
1

2
O2 ! Ag2S +H2O. (6.2)

The humidity level (and oxygen level) has also been shown to enhance the sulphida-

tion of silver because it allows the atmospheric gases to be dissolved at the surface

of the metal [17, 19]. Water also enables the production of more H2S from OCS by:

OCS +H2O ! H2S + CO2. (6.3)

Another species that has been found to be involved in the corrosion of Ag in air is

NO2. A combination of NO2 and H2S can lead to the formation of Ag2S by:

2Ag +H2S + 2NO2 ! Ag2S + 2HNO2. (6.4)

If NO2 is present in air, this corrosion pathway is dominant [18]. Several other

products of atmospheric silver corrosion have been reported [14, 15, 19], including

Ag2O, AgCl (in high chloride environments), AgNO3 and Ag2SO4. However, the

main species produced is expected to be Ag2S.

The STEM EELS results presented in section 6.2.2 show that after air exposure,

the clusters consist of silver and sulphur. This is in agreement with the literature on

silver corrosion which states that silver sulphide is the main product of atmospheric

silver corrosion. The ratio of suphur to silver for the shell of the air exposed clusters

is 0.27, indicating that the shell has not completely sulphidised to form Ag2S, for

which a value of 0.50 would be expected. This could explain why many of the shell

structures observed are amorphous rather than crystalline (acanthite, monoclinic),

as would be expected for Ag2S at room temperature.

The results of section 6.2.1 showed that exposure of Ag clusters to air results in a

distinct structural change, namely there was a significant increase in the proportion

of Ih and p-Ih structures after air exposure (see fig 6.5). In section 6.2.2 it was
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found that upon air exposure, Ag clusters form a Ag core, Ag
x

S
x

shell. There are

two possible mechanisms by which the formation of a core shell structure may lead

to an increase in Ih structures. The first is by the reduction of the Ag core size as

the shell thickness increases; at a smaller core size it is possible that the Ih is a stable

structure (it is expected that the Ih is a stable structure at small sizes). However,

the size of the cores formed in all cases are larger than an Ag309 cluster for which

only 2% of structures were determined to be Ih (see results of section 6.1, fig6.2).

This indicates that a reduction in core size is unlikely the reason for an increased

proportion of Ih structures. Furthermore, this does not explain why many of the

structures are partial Ih with o↵-centre cores.

The second explanation is that the formation of Ag-S bonds reduces the internal

strain of the Ih structure. For Ag-Cu and Ag-Ni bimetallic core-shell particles it

has been reported [23] that the polyicosahedral structure, consisting of several inter-

locking 13-atom Ih, is particularly stable. Generally, for pure clusters the structure

is highly unstable (especially at larger sizes), due to the high internal strain caused

by compressed nearest-neighbour distances. However, in the case of the core shell

alloy clusters, the introduction of smaller sized atoms into the core a↵ords optimal

nearest-neighbour distances, resulting in a thermodynamically stable structure with

low internal strain [23]. For the results presented here, it is possible that the for-

mation of Ag-S bonds at the surface of the Ag cluster results in the nucleation of a

polyicosahedral structure at the surface. The smaller sized sulphur atoms lowering

the internal strain of Ih-like structures. This formation mechanism could explain

the high proportion of clusters presenting local Ih features and also the observation

of o↵-centre Ih cores.

6.3 Summary

The atomic structure of size-selected silver clusters containing 309, 561, 742 and 923

atoms has been investigated by HAADF STEM. In contradiction to the generally

accepted stability of fcc at larger sizes, it was found that the Dh:fcc ratio increases
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with size. It is suggested that kinetic trapping through solid-solid transitions during

growth is responsible for the increase in Dh (and Ih) with size. By comparison, it

was shown in chapter 3 that Au clusters produced under the same growth conditions,

grow by template growth on small stable seed structures, with no solid-solid struc-

tural transitions. This result highlights the di↵erence between growth mechanisms

of Ag and Au clusters in gas aggregation sources.

The e↵ect of air exposure on the atomic structure and chemical composition

was studied by HAADF STEM and STEM-EELS. It was found that increased air

exposure results in the formation of core shell clusters and an increase of Ih and

partial-Ih structures. STEM-EELS measurements revealed that upon exposure to

air, an Ag
x

S
x

shell is formed. Hence it is deduced that the increase in Ih/ partial-

Ih is related to the formation of Ag-S bonds at the surface of the cluster. It is

suggested that Ag-S bond formation may locally reduce the internal strain of the

Ih structure; similarly to the case of bimetallic clusters in which the introduction

of smaller sized atoms in the cluster core has been reported to reduce the internal

strain of polyicosahedral structures.
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Chapter 7

Conclusions and Outlook

In this thesis, aberration corrected HAADF STEM has been used to examine the

atomic structure of size-selected Au and Ag nanoclusters produced by a magnetron

sputtering gas aggregation cluster beam source. In this chapter, the major con-

clusions resulting from the work are summarised and prospective future studies

considered.

7.1 Template Growth in Au Clusters

In the first part of chapter 3, the gas phase growth of Au clusters between 561 and 923

atoms was investigated. It was found that the proportion of structural isomers are

essentially identical for sizes 561, 742 and 923 (produced under identical conditions).

Electron beam manipulation experiments also revealed that the most abundant Dh

structure is metastable, converting to fcc under electron beam irradiation, whilst

fcc isomers are stable. It was concluded that Au clusters grow by template growth

on smaller seed structures, resulting in kinetic trapping of metastable structures.

This conclusion was supported by molecular dynamics simulations of cluster growth

(performed by G. Rossi and R. Ferrando), which show that no solid-solid structural

transitions occur during the growth of Au clusters within this size range.
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7.2 Atomic Structure Control of Au309 Clusters

In the second part of chapter 3, atomic structure control of Au309 clusters was

demonstrated. It was shown that decreasing the condensation length (e↵ective

growth time) results in a significant increase in the proportion of fcc isomers, and

a decrease in Ih and UI/A isomers. To better understand the control mechanism,

electron beam manipulation experiments were performed. It was found that the

relative order of stability for Au309 is fcc!Dh!Ih. Based on these findings, two

possible mechanisms for the atomic structure control were proposed. The first is

that the higher average temperature associated with shorter condensation lengths

results in a more equilibrated system (i.e. more fcc). The second explanation is that

a coalescence growth mechanism becomes dominant at longer condensation lengths,

resulting in more UI/A structures and fewer fcc structures. It should be noted that

the control mechanism at this size is di↵erent from that previously reported at size

923.

Control of atomic structure, such as that presented here, opens up the possibility

to study other properties as a function of atomic structure. In particular, it would

be interesting to correlate the catalytic activity of Au clusters with their atomic

structure. To better understand the control mechanism, further studies could be

performed to investigate the e↵ect of the temperature of the condensation zone dur-

ing growth and a wider range of condensation lengths could be studied. Ultimately,

this could lead to the production of single isomer samples.

7.3 Experimental Determination of the Energy

Di↵erence Between Isomers

In chapter 4, a heating stage was used to perform in-situ heating experiments on

size-selected clusters in the ac-STEM. The proportion of structural isomers for Au561

was determined for a range of temperatures, and two distinct regions were identified.

In the low temperature region (20�C-125�C) it was found that metastable Dh convert
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to fcc structures, similarly to the electron beam manipulation experiments of chapter

3. In the high temperature region (125�C-500�C) it was found that the Dh isomer

is repopulated. This is attributed to the higher thermal energy allowing ‘excitation’

of clusters to higher energy states (higher energy isomers), reflecting Boltzmann

statistics.

Based on these observations, a method for determining the energy di↵erence

between isomers was presented and applied to the high temperature region of the

data. The energy di↵erence between Dh and fcc isomers (size 561), �E
Dh�fcc

, was

calculated to be 0.04±0.02 eV.

The method presented here allows for a quantitative comparison between theo-

retical and experimental studies, for the first time. In the future, this method could

be applied to numerous cluster systems to experimentally map their potential energy

surfaces. With further improvement to the structural identification from HAADF

STEM (or by other methods), variations to the perfect Dh and fcc isomers could be

accounted for, allowing a much more accurate understanding of the potential energy

surface. Furthermore, in-situ STEM measurements could also be used to determine

the barrier height between isomers by measurements of the transition rates between

isomers at a range of temperatures.

7.4 Surface Melting in Au Clusters

In chapter 5, results on surface melting and melting point suppression in size-selected

Au clusters on amorphous carbon were presented. In-situ heating in the ac-STEM

allowed for direct, atomic resolution imaging of surface melting and elucidation of

the melting mechanism. The formation of a solid-core liquid-shell structure was

observed at high temperatures, with solid-liquid coexistence persisting over a range

of temperatures. The data collected was compared with various melting models. It

was found that results are in good qualitative agreement with the liquid nucleation

and growth model. However, the core atomic structure persisted to much higher

temperatures than predicted by this model (or Pawlow’s triple point model and the
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liquid shell model).

More generally, with precise control over cluster size and temperature, and

atomic resolution imaging, size-selected clusters and ac-STEM are an ideal com-

bination for determination of melting mechanisms at the nanoscale. In the future

this combination could be applied to study nanoscale melting in a wide variety of

(supported) materials. Ultimately, understanding of the surface structure in nano-

materials at high temperatures (and/or relevant reaction conditions) may be applied

to future catalyst design.

7.5 The Atomic Structure and Ageing of Ag Clus-

ters

In the first section of chapter 6, the proportion of structural isomers are determined

for Ag clusters consisting of 309, 561, 742 and 923 atoms. In all cases clusters

were produced with the same formation conditions. It was shown that there is a

gradual increase in the Dh:fcc ratio with increasing size. This is attributed to kinetic

trapping due to solid-solid transitions during growth. Conversely, in chapter 3 it was

shown that Au clusters do not undergo solid-solid transitions during growth. This

result is in agreement with growth simulations in the literature which show that Ag

undergoes solid-solid transitions during growth resulting in trapping of metastable

structures and Au does not. Both the experimental result, and the theory from

literature, indicate a di↵erent growth mechanism for Au and Ag clusters in the gas

phase.

In the second section of chapter 6, the e↵ect of air exposure on atomic structure

was investigated. For all sizes studied (561, 742 and 923), it was found that increased

air exposure leads to and increase in the proportion of Ih and partial-Ih structures.

Furthermore, prolonged exposure times resulted in core-shell structures in larger

clusters and ‘shell only’ structures in smaller clusters. STEM-EELS measurements

revealed that an Ag
x

S
x

shell is formed upon exposure to air. The correlation of the
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Ag
x

S
x

shell formation with the increase in Ih/ partial-Ih structures was discussed

and a potential mechanism for the structural change was suggested.

Ag nanoparticles are widely used as antibacterials so it is important to under-

stand how they will evolve in the environment and to determine their toxicity. In

the future it would be interesting to investigate how the toxicity of Ag nanoclusters

evolves with increased exposure to air and to study the e↵ects of longer term air

exposure. Particle size and shape has been shown to have an e↵ect on the uptake of

nanoparticles by cells, a further extension would be to investigate the uptake of Ag

nanoparticles as a function of both size and structure using size-selected clusters.

171



Appendix A

Calculation of the Electron Dose

During STEM Imaging

The electron dose is calculated using the following equation:

Electron dose(e�Å
�2
frame�1) =

Beam current (A)⇥Frame time (s)

Charge e�(C)⇥Frame area (Å
2
)

(A.1)

The current in amps multiplied by the time in seconds gives the charge per frame

in coulombs. Dividing by the charge of an electron and area of the frame gives the

charge in terms of the number of electrons per unit of area.

An example dose calculation

Below are standard values used for ‘video imaging’ experiments performed in Chap-

ter 3:

Beam Current density*=3.0 pA·cm�2

Frame time=2.88s

Frame size=157.4Å⇥157.4Å

*The calibration of the fluorescent screen in the STEM requires that the current
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density be multiplied by 10 (not by the area of the screen) to obtain the beam cur-

rent.

The dose is then calculated by:

Electron dose =
3.0⇥10�12⇥10⇥2.88

1.602⇥10�19⇥157.4⇥157.4
= 21769e�Å

�2
frame�1

⇡2.2⇥104e�Å
�2
frame�1 (A.2)
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Models of Melting Point

Suppression

Below are the equations and constants used for plotting melting models in chapter 5.

Pawlow’s triple point model

T
m

= T0

 
1� 2V

s

Lr

 
�
s

� �
l

✓
⇢
s

⇢
l

◆2/3
!!

. (B.1)

Equation from reference 1.

Liquid shell model

T
m

= T0

✓
1� 2V

s

L

✓
�
sl

r � t
+

�
l

r

✓
1� ⇢

s

⇢
l

◆◆◆
(B.2)

Equation from reference 1.

LNG model lower limit

T
m

= T0

✓
1� 3�

sl

V
s

Lr

◆
. (B.3)

174



APPENDIX B

Equation from reference 2.

The upper limit is given by Pawlow’s model, references 1 and 3.

LNG model critical radius

r
c

=
2�

sl

V
s

T0

L(T0 � T )
. (B.4)

Equation from reference 3.

T
m

=Melting temperature

T0=Bulk melting temperature

V
s

=Molar volume of the solid

L=Molar latent heat

r=Particle radius

�
s

=Surface tension of the solid

�
l

=Surface tension of the liquid

�
sl

= �
s

� �
l

⇢
s

=Mass density of the solid

⇢
l

=Mass density of the liquid

t=Liquid shell thickness

r
c

=Critical radius
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Table B.1: Constants used for plotting the above models in chapter 5

Symbol Value Reference

T0 1336 K [1]

V
s

10.7109⇥10�6m3/mol [3]

L 12362 J/mol [1]

�
s

1.4 J/m2 [1]

�
l

1.13 J/m2 [1]

⇢
s

18400 kg/m3 [1]

⇢
l

17280 kg/m3 [1]
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