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Summary 

 

Microorganisms are instrumental to the structure and functioning of marine 

ecosystems and to the chemistry of the ocean due to their essential part in the 

cycling of the elements and in the recycling of the organic matter. Two of the most 

critical ocean biogeochemical cycles are those of nitrogen and sulfur, since they can 

influence the synthesis of nucleic acids and proteins, primary productivity and 

microbial community structure.  

Oxygen concentration in marine environments is one of the environmental variables 

that have been largely affected by anthropogenic activities; its decline induces 

hypoxic events which affect benthic organisms and fisheries. Hypoxia has been 

traditionally defined based on the level of oxygen below which most animal life 

cannot be sustained. Hypoxic conditions impact microbial composition and activity 

since anaerobic reactions and pathways are favoured, at the expense of the aerobic 

ones. Naturally occurring hypoxia can be found in areas where water circulation is 

restricted, such as coastal lagoons, and in areas where oxygen-depleted water is 

driven into the continental shelf, i.e. coastal upwelling regions. 

Coastal lagoons are highly dynamic aquatic systems, particularly vulnerable to 

human activities and susceptible to changes induced by natural events. For the 

purpose of this PhD project, the lagoonal complex of Amvrakikos Gulf, one of the 

largest semi-enclosed gulfs in the Mediterranean Sea, was chosen as a study site. 

Coastal upwelling regions are another type of environment limited in oxygen, where 

also formation of oxygen minimum zones (OMZs) has been reported. Sediment in 

upwelling regions is rich in organic matter and bottom water is often depleted of 

oxygen because of intense heterotrophic respiration. For the purpose of this PhD 

project, the chosen coastal upwelling system was the Benguela system off Namibia, 

situated along the coast of south western Africa.   

The aim of this PhD project was to study the microbial community assemblages of 

hypoxic ecosystems and to identify a potential link between their identity and 

function, with a particular emphasis on the microorganisms involved in the nitrogen 
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and sulfur cycles. The methodology that was applied included targeted 

metagenomics and RNA stable isotope probing (SIP). 

It has been shown that the microbial community diversity pattern can be 

differentiated based on habitat type, i.e. between riverine, lagoonal and marine 

environments. Moreover, the studied habitats were functionally distinctive. Apart 

from salinity, which was the abiotic variable best correlated with the microbial 

community pattern, oxygen concentration was highly correlated with the predicted 

metabolic pattern of the microbial communities. In addition, when the total number 

of Operational Taxonomic Units (OTUs) was taken into consideration, a negative 

linear relationship with salinity was identified (see Chapter 2).  

Microbial community diversity patterns can also be differentiated based on the 

lagoon under study since each lagoon hosts a different sulfate-reducing microbial 

(SRM) community, again highly correlated with salinity. Moreover, the majority of 

environmental terms that characterized the SRM communities were classified to the 

marine biome, but terms belonging to the freshwater or brackish biomes were also 

found in stations were a freshwater effect was more evident (see Chapter 3).  

Taxonomic groups that were expected to be thriving in the sediments of the 

Benguela coastal upwelling system were absent or present but in very low 

abundances. Epsilonproteobacteria dominated the anaerobic assimilation of acetate 

as confirmed by their isotopic enrichment in the SIP experiments. Enhancement of 

known sulfate-reducers was not achieved under sulfate addition, possibly due to 

competition for electron donors among nitrate-reducers and sulfate-reducers, to the 

inability of certain sulfate-reducing bacteria to use acetate as electron donor or to 

the short duration of the incubations (see Chapter 4). 

Future research should focus more on the community functioning of such habitats; 

an increased understanding of the biogeochemical cycles that characterize these 

hypoxic ecosystems will perhaps allow for predictions regarding the intensity and 

direction of the cycling of elements, especially of nitrogen and sulfur given their 

biological importance. Regulation of hypoxic episodes will aid the end-users of these 

ecosystems to possibly achieve higher productivity, in terms of fish catches, which 

otherwise is largely compromised by the elevated hydrogen sulfide concentrations. 

 



 

Περίληψη 

 

Οι μικροοργανισμοί συμβάλλουν στη δομή και λειτουργία των θαλάσσιων 

οικοσυστημάτων και στη χημεία του ωκεανού λόγω του ουσιαστικού τους ρόλου 

στους κύκλους των χημικών στοιχείων και στην ανακύκλωση της οργανικής ύλης. 

Δύο από τους πιο σημαντικούς θαλάσσιους βιογεωχημικούς κύκλους είναι αυτοί 

του αζώτου και του θείου, καθώς μπορούν να επηρεάσουν τη σύνθεση των 

νουκλεϊκών οξέων και πρωτεϊνών, την πρωτογενή παραγωγικότητα και τη δομή της 

μικροβιακής κοινότητας. 

Η συγκέντρωση του οξυγόνου στα θαλάσσια περιβάλλοντα είναι μία από τις 

περιβαλλοντικές μεταβλητές που έχουν επηρεαστεί σε μεγάλο βαθμό από τις 

ανθρωπογενείς δραστηριότητες. Η μείωση του οξυγόνου προκαλεί υποξικά 

φαινόμενα που επηρεάζουν τους βενθικούς οργανισμούς και την αλιεία. Η υποξία 

έχει παραδοσιακά οριστεί με βάση το επίπεδο οξυγόνου κάτω από το οποίο δε 

μπορεί να διατηρηθεί η ζωή των μακροπανιδικών οργανισμών. Οι υποξικές 

συνθήκες επηρεάζουν τη σύνθεση και δραστηριότητα της μικροβιακής κοινότητας, 

εφόσον ευνοούνται αναερόβιες αντιδράσεις και οδοί, σε βάρος των αερόβιων. Η 

φυσική υποξία μπορεί να παρατηρηθεί σε περιοχές όπου υπάρχει περιορισμός στην 

κυκλοφορία του νερού, όπως οι παράκτιες λιμνοθάλασσες, και σε περιοχές όπου 

υδάτινες μάζες αποστερημένες από οξυγόνο οδηγούνται στην ηπειρωτική 

υφαλοκρηπίδα, δηλαδή σε περιοχές παράκτιων ανοδικών αναβλύσεων. 

Οι παράκτιες λιμνοθάλασσες είναι δυναμικά υδάτινα συστήματα, ιδιαίτερα 

ευάλωτα στις ανθρωπογενείς δραστηριότητες και ευαίσθητα στις αλλαγές που 

προκαλούνται από φυσικά φαινόμενα. Για το σκοπό της διδακτορικής διατριβής 

επιλέχθηκε ως περιοχή μελέτης το συγκρότημα λιμνοθαλασσών του Αμβρακικού 

κόλπου, ενός εκ των μεγαλύτερων ημί-κλειστων κόλπων της Μεσογείου. 

Οι περιοχές παράκτιων ανοδικών αναβλύσεων είναι ένας άλλος τύπος 

περιβάλλοντος με περιορισμένη συγκέντρωση οξυγόνου, όπου έχουν επίσης 

αναφερθεί σχηματισμοί ζωνών ελαχίστου οξυγόνου. Τα ιζήματα στις περιοχές 

ανοδικών αναβλύσεων είναι πλούσια σε οργανική ύλη και το νερό του πυθμένα 

είναι συχνά αποστερημένο από οξυγόνο εξαιτίας της έντονης ετερότροφης 
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αναπνοής. Για το σκοπό της διδακτορικής διατριβής, η επιλεγμένη περιοχή 

παράκτιων ανοδικών αναβλύσεων ήταν το σύστημα της Μπενγκουέλα στη 

Ναμίμπια, που βρίσκεται κατά μήκος των ακτών της νοτιοδυτικής Αφρικής. 

Σκοπός αυτής της διδακτορικής διατριβής ήταν η μελέτη των μικροβιακών 

συνευρέσεων των υποξικών οικοσυστημάτων και ο εντοπισμός μιας πιθανής σχέσης 

μεταξύ της ταυτότητας και της λειτουργίας τους, με ιδιαίτερη έμφαση στους 

μικροοργανισμούς που εμπλέκονται στους κύκλους του αζώτου και του θείου. Η 

μεθοδολογία που εφαρμόστηκε περιελάμβανε στοχευόμενη μεταγονιδιωματική και 

σήμανση του RNA με χρήση σταθερών ισοτόπων. 

Έχει δειχθεί ότι το πρότυπο ποικιλότητας της μικροβιακής κοινότητας μπορεί να 

διαφοροποιηθεί με βάση τον τύπο του οικοτόπου, δηλαδή μεταξύ ποταμιού, 

λιμνοθάλασσας και θαλάσσιου περιβάλλοντος. Επιπλέον, τα ενδιαιτήματα που 

μελετήθηκαν ήταν λειτουργικά διακριτά. Εκτός από την αλατότητα, η οποία ήταν η 

αβιοτική μεταβλητή που συσχετίζεται καλύτερα με το πρότυπο της μικροβιακής 

κοινότητας, η συγκέντρωση του οξυγόνου ήταν σε μεγάλο βαθμό συσχετισμένη με 

το προβλεπόμενο μεταβολικό πρότυπο των μικροβιακών κοινοτήτων. Επιπλέον, 

όταν ελήφθη υπόψη ο συνολικός αριθμός των λειτουργικών ταξινομικών μονάδων, 

εντοπίστηκε μια αρνητική γραμμική σχέση με την αλατότητα (βλ. Κεφάλαιο 2). 

Τα πρότυπα ποικιλότητας της μικροβιακής κοινότητας μπορούν επίσης να 

διαφοροποιηθούν με βάση τη λιμνοθάλασσα, δεδομένου ότι κάθε μία φιλοξενεί 

μια διαφορετική μικροβιακή ομάδα θειοαναγωγικών βακτηρίων, που επιπλέον 

συσχετίζεται σε μεγάλο βαθμό με την αλατότητα. Επιπλέον, οι περισσότεροι 

περιβαλλοντικοί όροι που χαρακτήρισαν τις κοινότητες των θειοαναγωγικών 

βακτηρίων ταξινομήθηκαν στο θαλάσσιο περιβάλλον, αλλά βρέθηκαν όροι που 

ανήκουν σε περιβάλλοντα γλυκού ή υφάλμυρου νερού στους σταθμούς όπου ήταν 

πιο εμφανής η επιρροή του γλυκού νερού (βλ. Κεφάλαιο 3). 

Οι ταξινομικές ομάδες που αναμενόταν να προσδιοριστούν στα ιζήματα της 

παράκτιας ανοδικής ανάβλυσης της Μπενγκουέλα απουσίαζαν ή υπήρχαν αλλά σε 

πολύ χαμηλές αφθονίες. Τα ε-πρωτεοβακτήρια κυριαρχούσαν στα πειράματα 

σήμανσης σταθερών ισοτόπων και ειδικότερα σε αυτά που περιελάμβαναν 

αναερόβια αφομοίωση οξικού οξέος, όπως επιβεβαιώνεται από τον ισοτοπικό 

εμπλουτισμό τους. Η ενίσχυση των γνωστών θειοαναγωγικών βακτηρίων δεν ήταν 
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δυνατή υπό την προσθήκη θειικού άλατος, πιθανώς λόγω ανταγωνισμού για δότες 

ηλεκτρονίων μεταξύ θειοαναγωγικών και νιτροαναγωγικών βακτηρίων, στην 

αδυναμία ορισμένων θειοαναγωγικών βακτηρίων να χρησιμοποιούν οξικό οξύ ως 

δότη ηλεκτρονίων ή στη σύντομη διάρκεια των πειραμάτων (βλ. Κεφάλαιο 4). 

Η μελλοντική έρευνα πρέπει να επικεντρωθεί περισσότερο στη λειτουργία των 

μικροβιακών κοινοτήτων τέτοιων οικοτόπων. Η ενισχυμένη κατανόηση των 

βιογεωχημικών κύκλων που χαρακτηρίζουν αυτά τα υποξικά οικοσυστήματα θα 

επιτρέψει πιθανώς προβλέψεις σχετικά με την ένταση και την κατεύθυνση των 

κύκλων των στοιχείων, ιδιαίτερα του αζώτου και του θείου, δεδομένης της 

βιολογικής τους σημασίας. Η ρύθμιση των υποξικών επεισοδίων θα βοηθήσει τους 

τελικούς χρήστες αυτών των οικοσυστημάτων να επιτύχουν πιθανότατα υψηλότερη 

παραγωγικότητα, όσον αφορά τα ιχθυαλιεύματα, τα οποία διαφορετικά βλάπτονται 

σε μεγάλο βαθμό από τις αυξημένες συγκεντρώσεις υδρόθειου. 

 



 

Samenvatting 

 

Micro-organismen zijn essentieel voor de structuur en het functioneren van mariene 

ecosystemen en voor de chemie van de oceaan door hun essentiële rol in de cycli 

van chemische elementen en bij het recycleren van organisch materiaal. Twee van 

de meest kritische biogeochemische cycli in de oceaan zijn de cycli van stikstof en 

zwavel, aangezien zij de synthese van nucleïnezuren en eiwitten, primaire 

productiviteit en microbiële gemeenschapsstructuur kunnen beïnvloeden. 

De concentratie aan zuurstof in mariene systemen is één van de 

omgevingsvariabelen die grotendeels beïnvloed wordt door menselijke activiteiten; 

de afname van zuurstofconcentratie veroorzaakt hypoxische condities die 

benthische organismen en visserij beïnvloeden. Hypoxia wordt traditioneel 

gedefinieerd op basis van het zuurstofniveau waarbij het merendeel van het dierlijk 

leven niet kan worden behouden. Hypoxische omstandigheden beïnvloeden de 

microbiële samenstelling en hun activiteit omdat anaërobe reacties en chemische 

cycli worden bevorderd ten koste van de aërobe stoffen. Natuurlijk voorkomende 

hypoxia komt voor in gebieden met beperkte watercirculatie, zoals kustlagunes, en 

in gebieden waar zuurstofarm water in de continentale shelf wordt gedreven, 

namelijk in opwellingsgebieden aan de kust. 

Kustlagunes zijn zeer dynamische aquatische systemen, maar zijn ook bijzonder 

kwetsbaar voor menselijke activiteiten en vatbaar voor veranderingen veroorzaakt 

door natuurlijke gebeurtenissen. Voor dit doctoraatsonderzoek werd het 

lagunecomplex van de Amvrakikos-Golf, één van de grootste semi-omsloten baaien 

in de Middellandse Zee, gekozen als studieplaats. 

Opwelling regio’s langs de kust zijn een andere situatie die tevens beperkt zijn in 

zuurstof en waar ook zuurstof minimale zones (OMZ's) gevormd kunnen worden. 

Sediment in opwellingsgebieden is rijk aan organisch materiaal en bodemwater is 

vaak zuurstofarm door intense heterotrofe respiratie. Voor dit doctoraatsproject 

werd het opwellingsysteem van het Benguela-systeem gelegen langs de kust van 

Zuidwest-Afrika ter hoogte van Namibië gekozen. 
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Het doel van dit doctoraatsonderzoek was om de microbiële gemeenschappen van 

hypoxische ecosystemen te bestuderen en om een potentiële link tussen hun 

identiteit en functie te identificeren, met bijzondere nadruk op de micro-organismen 

die betrokken zijn bij de stikstof- en zwavelcycli. De toegepaste methodologie 

omvatte gerichte metagenomics en RNA stabiele isotopenonderzoek (SIP). 

de bekomen resultaten tonen aan dat het diversiteitspatroon van de 

microbiologische gemeenschap gedifferentieerd kan worden op basis van habitat 

type, d.w.z. tussen rivier-, lagune- en mariene systemen. Bovendien waren de 

bestudeerde habitats functioneel verschillend. Naast de saliniteit, de abiotische 

variabele die het beste correleerde met het microbiële gemeenschapspatroon, was 

zuurstofconcentratie sterk gecorreleerd met het voorspelde metabolische patroon 

van de microbiële gemeenschappen. Daarenboven, werd een negatieve lineaire 

relatie met zoutgehalte geïdentificeerd (zie hoofdstuk 2) wanneer het totale aantal 

operationele taxonomische eenheden (OTU's) in aanmerking werd genomen. 

Microbiële gemeenschapsdiversiteitspatronen kunnen tevens gedifferentieerd 

worden op basis van de lagune die wordt onderzocht, aangezien elke lagune een 

andere sulfate-reducerende microbiële (SRM) gemeenschap herbergt, die opnieuw 

sterk gecorreleerd is met saliniteit. Bovendien werden de meeste 

milieuomstandigheden (ENVO  termen) die de SRM-gemeenschappen kenmerkten 

ingedeeld in het mariene bioom, maar ook de omstandigheden die eigen zijn aan 

zoetwater of brakwater biomen werden gevonden in stations waar een effect van 

zoetwater duidelijker was (zie hoofdstuk 3). 

Taxonomische groepen die verwacht werden om goed te gedeien in de sedimenten 

van het Benguela Coast opwellingssysteemwaren afwezig of werden gevonden in 

zeer geringe hoeveelheden. Epsilonproteobacteriën domineerden de anaërobe 

assimilatie van acetaat, zoals bevestigd door hun isotopische aanrijking in de SIP-

experimenten. Verbetering van gekende sulfaat-reductoren werd niet bereikt bij de 

toevoeging van sulfaat, mogelijks door de concurrentie voor elektronendonoren 

onder nitraatreduceerder- en sulfaatreduceerders, door het onvermogen van 

bepaalde sulfaatreducerende bacteriën om acetaat als elektrondonor te gebruiken 

of door de korte duur van de incubaties (zie hoofdstuk 4). 
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Toekomstig onderzoek zou nog meer moeten richten zijn op het functioneren van de 

gemeenschap in dergelijke habitats; beter inzicht in de biogeochemische cycli die 

deze hypoxische ecosystemen karakteriseren kunnen voorspellingen toelaten over 

de intensiteit en de richting van de cycli van de elementen, in het bijzonder van 

stikstof en zwavel, gelet op hun biologisch belang. controle van hypoxische 

afleveringen zal de eindgebruikers van deze ecosystemen helpen om eventueel een 

hogere productiviteit te bereiken met name wat de visvangst betreft, die in grotere 

mate wordt gecompenseerd door de verhoogde concentraties aan waterstofsulfide. 

 



 

Zusammenfassung 

 

Mikroorganismen sind maßgeblich an der Struktur und dem Funktionieren der 

marinen Ökosysteme und der Chemie des Ozeans aufgrund ihres wesentlichen 

Anteils am Elementkreislauf und beim Recycling der organischen Substanz beteiligt. 

Zwei der kritischsten bioneochemischen Kreisläufe sind diejenigen von Stickstoff und 

Schwefel, da sie die Synthese von Nukleinsäuren und Proteinen beeinflussen 

können; primäre Produktivität und mikrobielle Gesellschaftsstruktur. 

Die Sauerstoffkonzentration in marinen Umwelten ist eine der Umweltvariablen, die 

weitgehend von anthropogenen Aktivitäten betroffen ist; ihr Rückgang verursacht 

hypoxische Ereignisse, die benthische Organismen und Fischereigründe beeinflussen. 

Hypoxie wurde traditionell als der Sauerstoffgehalt definiert, unter dem nahezu kein 

tierisches Leben mehr möglich ist. Hypoxische Bedingungen beeinflussen die 

mikrobielle Zusammensetzung und Aktivität, da anaerobe Reaktionen und 

Stoffwechselwege begünstigt werden, auf Kosten der aeroben Organismen. 

Natürlich auftretende Hypoxie findet sich in Gebieten, in denen die 

Wasserzirkulation beschränkt ist, wie Küstenlagunen und jene Gebiete, in denen 

sauerstoffarmes Wasser Richtung Festlandsockel strömt, d.h. küstennahe 

Auftriebsgebiete. 

Küstenlagunen sind hochdynamische aquatische Systeme, welche besonders anfällig 

für menschliche Aktivitäten sind und empfindlich auf Veränderungen reagieren, die 

durch Naturereignisse verursacht werden. Für dieses Promotionsvorhaben wurde 

der Lagunenkomplex des Amvrakikos-Golfs, eine der größten halbgeschlossenen 

Lagunen im Mittelmeer, als Untersuchungsgebiet gewählt. 

Küstennahe Auftriebsgebiete sind spezielle Habitate, die sich durch Sauerstoff-

Limitierung auszeichnen und bei denen auch über das Auftreten von Sauerstoff-

Minimumzonen (engl. Oxygen Minimum Zones, OMZs) berichtet wurde. Das 

Sediment in Auftriebsgebieten ist reich an organischer Substanz und Bodenwasser ist 

oft Sauerstoff-arm wegen der intensiven Atmungstätigkeit heterotropher 

Organismen. Für diese Doktorarbeit wurde das Benguela Auftriebsgebiet von 

Namibia ausgewählt, das sich entlang der Küste des südwestlichen Afrikas befindet. 
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Ziel dieser Doktorarbeit war es, die mikrobiellen Zusammenhänge von hypoxischen 

Ökosystemen zu untersuchen und eine mögliche Verknüpfung zwischen Identität 

und Funktion zu identifizieren, mit besonderem Augenmerk auf die 

Mikroorganismen, die an  den Stickstoff- und Schwefelkreisläufen beteiligt sind. Die 

angewandte Methodik beinhaltete gezielte Metagenomik und stabile 

Isotopenbeprobung von RNA (SIP; Stable Isotope Probing). 

In dieser Arbeit konnte gezeigt werden, dass mikrobielle Diversitätsmuster auf der 

Grundlage des Lebensraums (Fluss-, Lagunen- und Meeresumgebungen) differenziert 

werden können. Darüber hinaus waren die untersuchten Lebensräume funktional 

einzigartig. Abgesehen vom Salzgehalt, welcher eine abiotische Variable war, die am 

besten mit dem mikrobiellen Diversitätsmuster korreliert war, war die 

Sauerstoffkonzentration hochgradig korreliert mit dem vorhergesagten 

Stoffwechselmuster der mikrobiellen Gemeinschaften. Darüber hinaus wurde bei der 

Berücksichtigung der Gesamtzahl der Operational Taxonomic Units (OTUs) eine 

nicht-lineare Beziehung zum Salzgehalt festgestellt (siehe Kapitel 2). 

Mikrobielle Diversitätsmuster konnten auch auf der Grundlage der untersuchten 

Lagune  unterschieden werden, da jede Lagune eine andere Sulfat-reduzierende 

mikrobielle (SRM) Gemeinschaft beherbergt, die wiederum mit dem Salzgehalt stark 

korreliert war. Darüber hinaus wurde die Mehrheit der Umweltbedingungen, die die 

SRM-Gemeinschaften charakterisierten, in das marine Biom eingeordnet, aber auch 

Bedingungen, die normalerweise für Süßwasser- oder Brackwasser-Biome gelten, 

wurden in Stationen gefunden, wo ein Süßwasser-Einfluss  deutlicher war (siehe 

Kapitel 3). 

Taxonomische Gruppen, von denen erwartet wurde, dass sie in den Sedimenten des 

Benguela-Küstenauftriebsgebiet vorkommen, waren abwesend oder vorhanden, 

aber in sehr niedrigen Häufigkeiten. Epsilonproteobakterien dominierten die 

anaerobe Assimilation von Acetat, was durch ihre isotopische Anreicherung in SIP-

Experimenten bestätigt wurde. Die Zunahme der bekannten Sulfat-Reduzierer 

konnte nicht durch Sulfat-Zugabe erreicht werden. Gründe dafür könnten sein, a) die 

Konkurrenz um Elektronendonatoren zwischen Nitrat-Reduzierern und Sulfat-

Reduzierern, b) die Unfähigkeit bestimmter sulfatreduzierender Bakterien Acetat als 
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Elektronendonator nutzen zu können und c)  die vielleicht nicht ausreichende  

Inkubationsdauer (siehe Kapitel 4). 

Die zukünftige Forschung sollte sich stärker auf die Funktionsweise solcher 

Lebensräume konzentrieren; ein besseres Verständnis der biogeochemischen 

Kreisläufe, die diese hypoxischen Ökosysteme charakterisieren, wird vielleicht 

Vorhersagen über die Bedeutung des Elementkreislaufs zulassen, insbesondere was 

die biologische Bedeutung des Stickstoff- und Schwefelkreislauf angeht. Die 

Regulierung hypoxischer Episoden wird den Endnutzern dieser Ökosysteme helfen, 

möglicherweise eine höhere Produktivität in Bezug auf Fischfänge zu erreichen, die 

ansonsten weitgehend durch die erhöhten Schwefelwasserstoffkonzentrationen 

gefährdet sind. 

 

 



 

Chapter 1: General introduction 

 

1.1 Marine Microbial Ecology: Biodiversity, Microbial Activity and 

Metabolism under low oxygen availability  

 

Microorganisms are a phylogenetically diverse group of organisms that are classified 

mainly by size which can range from less than a μm up to a few cm; they include 

both simple unicellular forms, as well as multicellular forms. More often the term 

microorganisms is used to refer to prokaryotes, i.e. Bacteria and Archaea, and it will 

be used as such throughout this document. In a wider sense, it can also refer to 

eukaryotic organisms, such as Fungi, Protozoa, Algae, Rotifers etc., and viruses. 

Based on the type of energy source (Figure 1.1A), on the carbon source (Figure 1.1B) 

and the electron source (Figure 1.1C), microorganisms can be divided in certain 

categories. Practically, all these terms can be combined; for example, 

chemolithoautotrophic bacteria, e.g. nitrifying and sulfur-oxidizing bacteria, as well 

as photoautotrophic bacteria, e.g. purple bacteria and Green sulfur bacteria, can be 

found in nature. Also, mixotrophy can be either photochemotrophic (e.g. SAR11, 

SAR86) or lithoorganotrophic (e.g. many marine Alphaproteobacteria). 

Microorganisms are instrumental to the structure and functioning of marine 

ecosystems and to the chemistry of the ocean due to their essential part in the 

cycling of the elements and in the recycling of the organic matter (Falkowski et al., 

2008). They also play an essential role in trophic networks by perpetually interacting 

with other biological components (Glöckner et al., 2012). 

The metabolic pathways that are catalyzed by microbes include all the major 

elements that are the necessary prerequisites for the construction of biological 

macromolecules, i.e. carbon, hydrogen, oxygen, phosphorus, nitrogen and sulfur 

(Falkowski et al., 2008). Despite the fact that, over the last decades, our knowledge 

on the specific enzymatic reactions that regulate these pathways has increased, 

there are still more to be discovered (Arrigo, 2005) especially in the light of projected 

climate changes (Singh et al., 2010).  
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Figure 1.1: Overview of the metabolic categories of microorganisms. Division based 

on: A: the energy source, B: the carbon source, C: the electron source. 

 

Two examples of biogeochemical cycles that interact and can act complementary are 

the nitrogen (Figure 1.2) and sulfur cycle (Figure 1.3). Both include aerobic as well as 

anaerobic metabolic reactions, with oxygen being the final electron acceptor in the 

former and nitrate or sulfate in the latter. 

Sediment diagenetic reactions, i.e. processes that change a sediment subsequent to 

its deposition from water while excluding metamorphism and weathering processes 

(Berner, 1980), generate sources and sinks of elements, such as nitrogen and sulfur 

(Emerson and Hedges, 2003). Nitrate is produced during oxic and consumed during 

anoxic diagenesis (Emerson and Hedges, 2003). It has been estimated that in 

sediments the global denitrification rate, i.e. the consumption of nitrate during 

anoxic diagenesis, is ~18 x 1012 mol N yr-1 (Middelburg et al., 1996). This is double the 

rate of water-column denitrification, thus demonstrating the crucial role of marine 

sediments as sink for fixed nitrogen (Emerson and Hedges, 2003). In addition, since 

oceans constitute the largest pool of sulfur (~1.3 x 109 teragrams) (Schidlowski, 
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1989), it is indisputable that sedimentary-sulfur transformations are an important 

part of the sulfur cycle (Vairavamurthy et al., 1995).  

 

1.1.1 Nitrogen cycle in the ocean 

 

Nitrogen is the fourth most abundant element in organic matter, after hydrogen, 

oxygen and carbon, but at the same time it is often limited in marine environments 

(Zehr and Kudela, 2011). Because of this, nitrogen cycling is one of the most critical 

ocean biogeochemical cycles since it can influence primarily the synthesis of nucleic 

acids and proteins, primary productivity (Vitousek et al., 2002) and, subsequently, 

the structure of microbial communities (Ward and Jensen, 2014).  

Nitrogen sources in the environment are mainly ammonia (NH3), nitrate (NO3
-) and 

nitrogen gas (N2), with the latter being used only by nitrogen-fixing prokaryotes 

(Madigan et al., 2003). Nitrogen undergoes several transformations, with the major 

ones being nitrogen fixation and ammonification (resulting in the production of 

ammonia (NH3)), denitrification and anammox (resulting in the production of 

nitrogen (N2)) and nitrification (resulting in the production of nitrate (NO3
-)) (Figure 

1.2) (Bernhard, 2010). Under nitrate limited conditions and in anoxic environments, 

dissimilative reduction of nitrate to ammonia (DRNA) can also contribute to nitrate 

and nitrite reduction (Madigan et al., 2003). The above processes are catalyzed 

primarily by microbes (Zehr and Ward, 2002) which, undoubtedly, are vital for global 

nitrogen cycling (Bernhard, 2010).  

During oxic conditions, nitrate (NO3
-) is produced by nitrification in a two step 

process, with the formation of nitrite (NO2
-) as an intermediate (Madigan et al., 

2003). In the anoxic respiration of nitrate (NO3
-) to nitrite (NO2

-), nitrous oxide (N2O) 

and nitrogen (N2), the redox potential is positive (E0΄ = +0.4 V), thus the energy 

balance is favourable. This process is commonly referred to as denitrification 

because all the end products are gas and thus “escape” from the environment 

(Madigan et al., 2003). In oxygen-deficient marine environments, organic matter can 

be oxidized by facultative anaerobic microorganisms which use nitrate as an electron 

acceptor. This process is referred to as heterotrophic denitrification, and results in 
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the release of N2 (Kuypers et al., 2005) and ammonium is expected to remain as such 

and not further oxidized due to the absence of oxygen (Devol, 2003). Anammox can 

also lead to the production of nitrogen (N2), since ammonia (NH3) is oxidized 

anaerobically, with nitrite (NO2
-) being the electron acceptor (Madigan et al., 2003).  

 

 
Figure 1.2: Overview of the nitrogen cycle (Bernhard, 2010; © 2010 Nature 

Education1). 

 

Denitrification occurs in the presence of nitrate and low oxygen concentration (Zehr 

and Kudela, 2011), conditions that can be found in environments like OMZs and the 

oxic-anoxic interface of benthic sediments (Naqvi et al., 2008). The balance of 

oceanic nitrogen budget is strongly dependent on the coupling between nitrogen 

fixation and denitrification, with the former representing the input of and the latter 

representing the output of nitrogen (Zehr and Kudela, 2011).  

 

 

                                                           
1 Terms of Use: You may reproduce this material, without modifications, in print or 
electronic form for your personal, non-commercial purposes or for non-commercial use in 
an educational environment. 
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1.1.2 Sulfur cycle in the ocean 

 

The largest quantities of sulfur on Earth are found in the form of sulfate and 

sedimentary minerals (e.g. pyrite), with oceans being its major reservoirs (Sievert et 

al., 2007). Sulfur is also a vital element for life as it is required for protein synthesis, 

coenzymes etc. although it is rarely limited (Sievert et al., 2007). Cells can 

incorporate several forms of sulfur, including sulfide (HS-) and sulfate (SO4
2-) 

(Madigan et al., 2003). 

Sulfur undergoes several transformations (Figure 1.3), with the most important ones 

being oxidation of elemental sulfur and inorganic sulfur compounds (e.g. hydrogen 

sulfide, sulfite, thiosulfate) to sulfate (SO4
2-), catalyzed by chemoautotrophic and 

photosynthetic bacteria and reduction of sulfate, which can be either assimilatory or 

dissimilatory (Madigan et al., 2003). The large number of oxidation states, along with 

the fact that certain sulfur transformations can also occur abiotically, render the 

microbial transformations of sulfur more complex than those of nitrogen (Madigan 

et al., 2003). 

 

 
Figure 1.3: Simplified overview of the sulfur cycle (from Tang et al. (2009); 

reproduced with permission © Elsevier2). 

                                                           
2 License Number: 4135990839081; Order date: Jun 25, 2017 
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Under oxic conditions, oxidation of sulfide and elemental sulfur (S0) is catalyzed by 

sulfur-oxidizing chemolithotrophic bacteria; however, anoxic oxidation of sulfide can 

also occur by phototrophic purple and green sulfur bacteria (Madigan et al., 2003). 

The anaerobic respiration of sulfate (SO4
2-) to hydrogen sulfide (HS-) is referred to as 

dissimilatory sulfate reduction; due to negative redox potential of this reaction (E0΄ = 

-0.22 V), i.e. the less favourable energy balance, the growth of an organism using 

sulfate is slower than that of organisms using oxygen or nitrate (Madigan et al., 

2003). Severe hypoxia and total lack of oxygen (anoxia) can lead to the production of 

hydrogen sulfide, resulting from anaerobic mineralization of organic matter by 

sulfate-reducing bacteria (Grote et al., 2012). However, chemolithotrophic oxidation 

of sulfide with nitrate can be observed in OMZs, thus leading to the detoxification of 

sulfidic waters (Lavik et al., 2009). 

 

1.2 Oxygen deficiency in marine environments 

 

Oxygen concentration in marine environments is one of the environmental variables 

that have been largely affected by anthropogenic activities, such as eutrophication 

(Diaz, 2001). The decline of oxygen concentration has induced seasonal hypoxic 

events in areas where this was not reported previously, thus affecting benthic 

organisms and fisheries. These events are mainly driven by water column 

stratification and decomposition of organic matter in the sediment (Diaz, 2001). 

Hypoxia has been traditionally defined based on the level of oxygen below which 

most animal life cannot be sustained (Diaz, 2001). As a general perception, hypoxia 

occurs where oxygen concentration is less than 2 mg/l (or 63 μM or 1.4 ml/l) 

(Middelburg and Levin, 2009), although the existence of a single universal threshold 

cannot sufficiently reflect the metabolic needs of all the different macroorganisms 

(Dimitriou et al., 2015). Alternative states of oxygen concentration in the water 

column have also been used in the literature, such as the oxic, dysoxic (20–90 

μmol/kg) and suboxic (1–20 μmol/kg) states (Wright et al., 2012). It is clear that the 

thresholds used to define oxygen conditions are quite inconsistent; for example, the 

term suboxic has been proposed to be used in conditions where oxygen is no longer 
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present (Yakushev and Newton, 2012), although this state was traditionally referred 

to as anoxia (Diaz, 2001) and despite the fact that others proposed the term suboxic 

to be characterized as obsolete (Canfield and Thamdrup, 2009). 

Hypoxia, apart from being human-induced, can be naturally occurring or it can be a 

result of the combination of natural and anthropogenic processes (Middelburg and 

Levin, 2009). Independently of its occurrence, modifications in hydrology and global 

warming will enhance hypoxic incidents, and their subsequent adverse effect on 

survival and functioning of organisms (Middelburg and Levin, 2009), since increase in 

water temperature results in decrease of oxygen solubility (Wright et al., 2012). 

Except from the obvious impact on macroorganisms, the impact on microbial 

composition and activity cannot be neglected; anaerobic reactions and pathways are 

favoured, at the expense of the aerobic ones. Hypoxia alters the availability of 

electron acceptors in the water column, which subsequently affects the oxidative 

pathways of microbial metabolism in the sediments; an example of a group that is 

expected to be affected by hypoxic conditions includes the chemolithoautotrophic 

microbes (Lipsewers et al., 2017). 

Naturally occurring hypoxia can be found in areas where water circulation is 

restricted, such as fjords (Nordberg et al., 2001), estuaries (Abell et al., 2011) and 

coastal lagoons (Kristiansen et al., 2002). Two of the most pronounced examples of 

hypoxic ecosystems with restricted water circulation are the Baltic Sea (Conley et al., 

2002) and the Black Sea (Kuypers et al., 2003). Black Sea has been characterized as 

the largest anoxic basin of the world, with high ammonium concentration in the 

suboxic zone (Kuypers et al., 2003). Baltic Sea on the other hand, is an example of a 

semi-enclosed basin where hypoxia has been enhanced by cultural eutrophication 

(Conley et al., 2002). In addition, naturally occurring hypoxia can be developed in 

coastal upwelling regions where oxygen-depleted water is driven into the 

continental shelf (Monteiro et al., 2008; Roegner et al., 2011). Microbial 

communities inhabiting oxygen deficient environments have been found to have 

similar composition (Wright et al., 2012), although each of these environments is 

characterized by distinct features. 
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The study sites that were chosen for the PhD project (coastal lagoons and coastal 

upwelling region) are naturally hypoxic environments of high economic value, since 

they host a variety of anthropogenic activities.  

 

1.2.1 Coastal lagoons: biogeochemistry and diversity of microorganisms 

 

Coastal lagoons are highly dynamic and extremely unpredictable aquatic systems 

due to the fluctuation of their environmental variables (Barnes, 1980), while being 

particularly vulnerable to human activities (Guelorget and Perthuisot, 1992; Benlloch 

et al., 1995). This is due to confinement, i.e. the time of renewal of the elements of 

marine origin at any given point (Guelorget and Perthuisot, 1983), and their shallow 

depth (Bellan, 1972; Guelorget and Perthuisot, 1992). In addition, coastal lagoons 

are ecosystems of great economic value, because of their high productivity 

(Knoppers, 1994) which leads to their intensive exploitation through aquaculture and 

fisheries activities (Pérez-Ruzafa and Marcos, 2012). Furthermore, human induced 

eutrophication can occur in coastal lagoons due to the excessive use of fertilizers for 

agricultural purposes in their watersheds and drainage basins (Cloern, 2001). 

Apart from human interference, lagoons are also susceptible to changes induced by 

natural events, such as storms and river flooding (Avramidis et al., 2013). The 

structure and function of lagoonal ecosystems is largely affected by the input of 

organic matter from land, the marine environment and the atmosphere 

(Reizopoulou et al., 1996; Arvanitidis et al., 1999; Viaroli et al., 2008; Tagliapietra et 

al., 2009) and its subsequent decomposition and removal (Tagliapietra et al., 2012). 

Lagoons may suffer dystrophic crises due to the accumulation of excessive 

concentrations of organic matter and subsequent increase in microbial 

heterotrophic activities, leading to consumption of the dissolved oxygen (Guelorget 

and Perthuisot, 1992; Avramidis et al., 2013). Hypoxia, or even anoxia in certain 

cases, induced by the increased rate of microbial respiration, leads to sulfate 

reduction and subsequent accumulation of hydrogen sulfide (Danovaro and 

Pusceddu, 2007). 
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Microbial communities in lagoonal environments are different compared to 

freshwater and marine environments (Ghai et al., 2012); although they are located in 

an intermediate salinity regime with pronounced temporal variations which poses a 

significant stress in biota, which is added to the stress induced by hypoxia, coastal 

lagoons exhibit high microbial diversity (Danovaro and Pusceddu, 2007). Apart from 

salinity, nutrient availability (Segnini de B et al., 2015) and level of eutrophication (de 

Wit, 2008) seem to influence microbial activity in lagoonal sediments. 

For the purpose of this PhD project, the lagoonal complex of Amvrakikos Gulf was 

chosen as a study site, due to its characteristics and since previous knowledge on the 

ecosystem was available. 

 

1.2.1.1 Amvrakikos Gulf  

 

Amvrakikos Gulf is a semi-enclosed embayment located in the northwestern part of 

Greece (Ionian Sea, Western Greece) (Figure 1.4). It is about 35 km long and 15 km 

wide with a maximum depth of 65 m (Ferentinos et al., 2010), and it is one of the 

largest semi-enclosed gulfs in the Mediterranean Sea. The wetlands of Amvrakikos 

Gulf, i.e. lagoons, reed-beds and marshes (Avramidis et al., 2013), are protected by 

the international Ramsar convention and included in the Natura 2000 network 

(Vasileiadou et al., 2016). The Gulf is connected with the Ionian Sea via a narrow 

channel, the Preveza (Aktio) Strait, of minimum 600 m width, 3 km length and 8.5 m 

depth (Kapsimalis et al., 2005). Recent sedimentation patterns in the Gulf are related 

to the terrigenous inputs primarily from the Arachthos River, located in the 

northeast of the Gulf, and secondarily from the Louros River, located in the 

northwest (Poulos et al., 1993, 1995; Kapsimalis et al., 2005).  

Oxygen depletion events are not unusual for Amvrakikos Gulf, as hypoxic and anoxic 

conditions have been recorded since the Holocene both due to natural geologic 

processes (Ferentinos et al., 2010), as well as due to human activities (Avramidis et 

al., 2013). In addition, H2S and CH4 gas charged sediments and eutrophication have 

been recorded in the Gulf (Papatheodorou et al., 1993; Ferentinos et al., 2010; 

Kountoura and Zacharias, 2011). About 20% of the total area of the Gulf is 
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characterized by dysoxic conditions, while about 30% is characterised by anoxic 

conditions (Ferentinos et al., 2010). 

 

 
Figure 1.4: Map of Amvrakikos Gulf, showing the location of the two rivers and of the 

channel connecting the Gulf to the Ionian Sea (Map data: Google).  

 

1.2.2 Oxygen minimum zones: biogeochemistry and diversity of 

microorganisms 

 

Coastal upwelling regions are another type of environment limited in oxygen, where 

also formation of OMZs has been reported. Exceptional physicochemical conditions, 

such as reduced ventilation and stagnant circulation, lead to the reduction of bottom 

water oxygen concentration and to the formation of OMZs (Cassman et al., 2012). 

OMZs are formed when the respiratory oxygen demand, during organic matter 

degradation, exceeds its availability (Wright et al., 2012). Although there is no exact 

definition of an OMZ, the upper threshold of 20 μM of oxygen has been proposed; as 

such, the global ocean volume that can be characterized as OMZ is about 1% of the 

total ocean volume (Lam and Kuypers, 2011). 
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Sediment in upwelling regions is rich in organic matter and bottom water is often 

depleted in oxygen because of intense heterotrophic respiration, thus leading to 

high sulfide production rates (Ferdelman et al., 1997). As the second-most favorable 

electron acceptor (after oxygen), nitrate may be used for the oxidation of sulfide, 

which results in a close coupling of the sulfur and the nitrogen cycles in such areas 

(Schulz et al., 1999). As oxygen concentration decreases, other terminal electron 

acceptors are used sequentially, starting with manganese, iron, sulfate and ending 

with carbon dioxide (Wright et al., 2012). OMZs occur in the Pacific Ocean, the 

Atlantic Ocean and the Arabian Sea and they are distinct between the different 

oceans; for example, they are more voluminous in the Pacific (Wright et al., 2012), 

but in the other two oceans they are more oxygen deficient (Estrada and Marrasé, 

1987). 

Coastal upwelling systems react directly to changes in external (climatic) forcing 

(Lahajnar, 2011) and hydrodynamic conditions influence directly the supply of 

oxygen to the continental shelf (e.g. Emeis et al., 2009; Leduc et al., 2010). 

Fluctuating oxygen levels over the continental shelf have significant consequences 

for nutrient levels, for rates of exchange at the sediment-water interface, for gas 

exchange between the ocean and the atmosphere, and for biological production 

(e.g. Bakun et al., 2010; Finney et al., 2010). 

It has been shown that taxonomic, phylogenetic and functional diversity of 

microorganisms declines with the reduction of oxygen concentration, i.e. from the 

oxygen-rich surface water to the OMZ (Bryant et al., 2012). Microbial communities in 

OMZs are considered unique, since they use alternative electron donors and 

acceptors for respiration (Lam and Kuypers, 2011; Cassman et al., 2012). Globally, 

OMZs and in particular heterotrophic denitrification occurring in these areas are 

responsible for 30–50% of the total nitrogen loss (Gruber and Sarmiento, 1997; 

Codispoti et al., 2001). However, the extremely low concentration of ammonium 

indicate that anammox, i.e. anaerobic ammonium oxidation, can be responsible for 

massive losses of fixed nitrogen as gaseous N2 from OMZ waters (Kuypers et al., 

2005). Physicochemical conditions prevailing in OMZs allow for the completion of 

nitrogen cycling, leading to subsequent nitrogen depletion (Lam and Kuypers, 2011). 

In addition, an active coupling between nitrogen and sulfur cycles has been 
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suggested to exist in nitrate-rich OMZs, with the latter being directly linked to 

anammox and other nitrogen cycling processes (Canfield et al., 2010). Apart from the 

important role of OMZs in the global nitrogen cycle, the existence of microbial 

communities involved in methane production and oxidation in OMZs has been 

investigated, without any conclusive evidence for such an existence so far (Lüke et 

al., 2016).  

For the purpose of this PhD project, the chosen coastal upwelling system was the 

Benguela system off Namibia, one of the two main coastal upwelling systems of the 

southern hemisphere (Moloney et al., 2005) and one of the five coastal upwelling 

regions globally (Summerhayes, 2015).  

 

1.2.2.1 Benguela coastal upwelling system 

 

The Benguela coastal upwelling system is situated along the coast of south western 

Africa, with its south boundary located east of the Cape of Good Hope and the north 

reaching Angola waters, thus it is encompassing the full extent of Namibia’s marine 

environment (Shannon and O’Toole, 2003) (Figure 1.5). 

The Benguela Current flows equatorward along the western coast of southern Africa 

forming the eastern boundary current segment of the subtropical gyre of the South 

Atlantic Ocean (Weeks et al., 2004). The Benguela system off Namibia is the most 

productive of the subtropical eastern boundary current regions (Carr, 2001), i.e. 

Peru-Humboldt, California and Canary, although this productivity is not referring to 

the low fish catch yields (Lavik et al., 2009) which have been attributed to the 

episodic occurrence of hydrogen sulfide gas (Brüchert et al., 2009), a potent 

respiratory toxin to aquatic organisms (Bagarinao, 1992).  
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Upwelling occurs all along the coast of Namibia, but it is most intense, irrespective of 

the season, between 26o and 25o S (Brongersma-Sanders, 1983). The intensity 

decreases with latitude, particularly north of Walvis Bay (23o S), where upwelling is 

only important in winter and early spring and the intensity of the process decreases 

even to insignificance in the warmer time of the year (Stander, 1964). The principal 

upwelling centre is situated near Lüderitz in southern Namibia and it creates a 

natural internal divide within the Benguela, with the domains to the north and south 

of it functioning rather differently (Shannon and O’Toole, 2003). High fluidity and 

instability of sediments is characterizing the upwelling locations (Schulz et al., 1999). 

In the sediments underneath the coastal upwelling system off central Namibia, 

bacterial sulfate reduction rates near the sediment surface exceed the capacity of 

the sediment to oxidize and precipitate sulfide; this leads to a net hydrogen sulfide 

flux across the sediment-water interface (Brüchert et al., 2003). In addition, episodic 

advective transport of sulfide from the methanogenic zone has been suggested to 

contribute to the water column concentration of hydrogen sulfide (Brüchert et al., 

2003). 
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Figure 1.5: Boundaries of the Benguela Current Large Marine Ecosystem, 

bathymetric features and surface (upper layer) currents (adapted from Shannon and 

O’Toole (2003)). (1 Sv = 106 m3 s-1). 

 

1.3 Identification and characterization of microbial communities  

 

Traditionally, microbial ecology was based on enrichment cultures and isolation in 

monocultures (e.g. Gich et al., 2005; Plante et al., 2008). However, only the minority 

of microorganisms can be cultured using the media that have been developed so far 

(Glöckner and Joint, 2010). This led to the development of different methods based 

on molecular analysis of microbial communities (DeLong and Pace, 2001); the state-
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of-the-art method for years was cloning and subsequent Sanger sequencing of the 

16S rRNA gene (e.g. Polymenakou et al., 2009). Similar methodologies were also 

being used complementary to cloning, such as denaturing gradient gel 

electrophoresis (DGGE) (Muyzer, 1999), terminal restriction fragment length 

polymorphisms (tRFLPs) (Liu et al., 1997), automated ribosomal intergenic spacer 

analysis (ARISA) (e.g. Ranjard et al., 2001) and others. However, the aforementioned 

methods were providing an overview of the microbial community profile in a non-

qualitative way.  

The “gap” in the molecular analysis techniques was filled in by the advent of 

pyrosequencing (Ronaghi et al., 1998), which allowed high-throughput sequencing, 

initially of the 16S rRNA gene but also of protein coding genes, and characterization 

of microbial communities. Despite the power of pyrosequencing and its 

establishment at the state-of-the-art for the next few decades, this power came with 

a price which was the introduction of sequencing biases and the reduction of the 

sequencing length. In order to deal with the previously mentioned issues, 

bioinformatic pipelines were developed and standardized for the sequence 

processing  (Xu, 2006; Scholz et al., 2012).  

Although the gain of information that emerged from pyrosequencing cannot be 

disputed, the rate of biodiscovery was not linearly correlated with that gain as pure 

cultures are a prerequisite for the advancement of marine biodiscovery (Joint et al., 

2010). The need for development of more elaborate methodologies that would 

permit the in situ assessment of microbial functioning, led to the emergence of 

stable isotope probing (SIP) techniques (Radajewski et al., 2003). The SIP approach 

can provide a direct link between biogeochemical processes and the identity of 

microbial populations that catalyze those processes (Kreuzer-Martin, 2007). It is 

based on (i) the incorporation of a labelled substrate, e.g. 13C, 15N or 18O, into 

microbial biomarkers, such as nucleic acids (Whiteley et al., 2006), proteins (Jehmlich 

et al., 2008) and phospholipid fatty acids (Murase et al., 2011), (ii) the separation of 

the labelled and unlabelled biomarker by density gradient centrifugation, and (iii) the 

subsequent molecular characterization of microbial communities from the separated 

template (Lueders et al., 2016).  
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SIP can characterize microbes based on their potential to respire and utilize an 

added substrate. One of the most commonly used labelled substrates, which is most 

difficult to ferment for thermodynamic reasons and therefore an ideal substrate for 

identifying anaerobic respiratory microbes, is acetate (CH3COO−) (Gutierrez-Zamora 

and Manefield, 2010; Hori et al., 2010). Although acetate is one of the most 

important metabolites in anoxic environments, certain sulfate-reducing bacteria are 

not capable of acetate oxidation (e.g. Desulfovibrio, Desulfobulbus, 

Desulfomicrobium and others), thus they use lactic acid, pyruvate, ethanol and some 

fatty acids as electron donors. However, many sulfate-reducing bacteria can oxidize 

acetate (e.g. Desulfobacter, Desulfobacterium, Desulfosarcina, Desulfococcus and 

others) and, in fact, they can oxidize it completely to CO2 (Madigan et al., 2003). In 

addition, acetate has been widely used as a carbon source for the identification of 

denitrifying bacteria (Ginige et al., 2005; Osaka et al., 2006), and it has been 

compared with other carbon substrates such as propionate, butyrate (Paul et al., 

1989) and methanol (Hallin et al., 1996). 

 

1.4 Aims and objectives 

 

The importance of hypoxia on the biogeochemical cycling of crucial elements, such 

as nitrogen and sulfur, has been presented in the previous sections. Therefore, it is 

evident that, since microbes mediate the majority of the transformations of these 

elements, understaning of microbial diversity and function in hypoxic ecosystems is 

crucial. Moreover, since sediments act as sinks for nitrogen and sulfur, undoubtedly 

the focus should be drawn in the processes occurring in hypoxic sediments.  

The aim of this PhD project was to study the microbial community assemblages in 

sediments of hypoxic ecosystems and to identify a potential link between their 

identity and function, with a particular emphasis on the microorganisms involved in 

the nitrogen and sulfur cycles. The methodology that was applied included targeted 

metagenomics, i.e. 16S rRNA and dsrB sequencing, and RNA stable isotope probing.  

In chapter 2, microbial communities of a gradient river-lagoon-open sea were 

studied and the relationship of those communities with salinity was investigated, 
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both in terms of diversity as well as in terms of function. The tested hypothesis was 

that microbial communities in the three different habitats would change according 

to the main environmental variable characterizing such a gradient, which is salinity. 

In chapter 3, sulfate-reducing microorganismic communities were assessed in a 

Mediterranean lagoonal complex. The tested hypothesis was that sulfate-reducing 

microorganismic communities would be different across the complex since there are 

distinct environmental conditions prevailing in each of the tested lagoons. 

In chapter 4, the existence and activity of sulfate-reducing and denitrifying 

microorganisms was investigated in the Namibian oxygen minimum zone. The tested 

hypothesis was that 13C labelling would characterize the communities actively 

reducing nitrate and sulfate and that it would produce different microbial 

community patterns, based on the different sampling stations as well as the chosen 

terminal electron acceptors.  

In chapter 5, an overview of tools developed for analyzing next-generation 

sequencing data derived from biodiversity studies was provided, along with some 

general recommendations on the employment of metagenomics. In the previous 

chapters, different pipelines and algorithms were used in each case. Τhis chapter, on 

metagenomics methods and data analyses, builds in the different methodologies 

that were applied, while presenting and discussing the usage of other methods for 

analyses of metagenomic data. 

Finally, chapter 6 includes the general discussion and conclusions that have derived 

from this research.  
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Abstract 

 

Several models have been developed for the description of diversity in estuaries and 

other brackish habitats, with the most recognized being Remane’s Artenminimum 

(“species minimum”) concept. It was developed for the Baltic Sea, one of the world’s 

largest semi-enclosed brackish water bodies with a unique permanent salinity 

gradient, and it argues that taxonomic diversity of macrobenthic organisms is lowest 

within the horohalinicum (5 to 8 psu). 

The aim of the present study was to investigate the relationship between salinity and 

sediment microbial diversity at a freshwater-marine transect in Amvrakikos Gulf 

(Ionian Sea, Western Greece) and assess whether species composition and 

community function follow a generalized concept such as Remane’s.  

DNA was extracted from sediment samples from six stations along the 

aforementioned transect and sequenced for the 16S rRNA gene using high-

throughput sequencing. The metabolic functions of the OTUs were predicted and the 

most abundant metabolic pathways were extracted. Key abiotic variables, i.e. 

salinity, temperature, chlorophyll-a and oxygen concentration etc., were measured 

and their relation with diversity and functional patterns was explored.  

Microbial communities were found to differ in the three habitats examined (river, 

lagoon and sea) with certain taxonomic groups being more abundant in the 

freshwater and less in the marine environment, and vice versa. Salinity was the 

                                                           
3 Modified version of the accepted manuscript. 
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environmental factor with the highest correlation to the microbial community 

pattern, while oxygen concentration was highly correlated to the metabolic 

functional pattern. The total number of OTUs showed a negative relationship with 

increasing salinity, thus the sediment microbial OTUs in this study area do not follow 

Remane’s concept. 

 

2.1 Introduction 

 

Salinity is considered as one the most influential environmental factors, not only for 

the distribution of benthic and pelagic organisms (Remane, 1934; Rolston and 

Dittmann, 2009; Palmer et al., 2011; Darr et al., 2014), but also for microbial 

community composition (e.g. Barcina et al., 2006; Wu et al., 2006; Lozupone and 

Knight, 2007; Logares et al., 2009). Bacterial abundance, activity and growth can be 

affected by salinity (Ben-Dov et al., 2007; Caporaso et al., 2011) and, in certain cases 

salinity can induce mortality of bacteria, thus regulating bacterial abundance in some 

estuaries (Painchaud et al., 1995). Specifically, salinity fluctuations, and their 

subsequent effect on aquatic biota, are more noticeable in estuaries and other 

brackish water bodies, as these habitats are characterized by a more or less 

pronounced salinity gradient (Telesh et al., 2013). 

It has been suggested that in brackish water ecosystems, taxonomic diversity of 

macrobenthic organisms is lowest within the horohalinicum, which occurs at salinity 

5 to 8 psu, because the number of brackish specialist species does not compensate 

for the decline of the marine and freshwater species richness (Remane, 1934). This 

concept, referred to as the Remane’s Artenminimum (‘species minimum’) concept 

originated from the Baltic Sea, one of the world’s largest semi-enclosed, brackish 

water bodies with a unique permanent salinity gradient (Telesh et al., 2011). Despite 

being developed for the Baltic Sea, Remane’s concept became the recognized model 

for the description of diversity in estuaries and other brackish habitats (McLusky and 

Elliott, 2004). However, alternative models challenging Remane’s concept have also 

been developed. In certain cases a reverse curve has been observed, with the peak 

of species occurring in the horohalinicum (Telesh et al., 2011) while in others a linear 



                                                                             Chapter 2: Remane’s curve in Amvrakikos Gulf 

43 
 

decrease (Attrill, 2002) or even no change (Herlemann et al., 2011) in the number of 

species across the salinity gradient were observed. 

Remane’s concept can be projected in other aquatic bodies with similar evolution to 

the Baltic Sea, such as the Amvrakikos Gulf (Ionian Sea, Western Greece) (Ferentinos 

et al., 2010). The Gulf was formed in the Middle Quaternary period (Anastasakis et 

al., 2007); the marine transgression took place at approximately 11 ka BP and the 

Gulf attained its present shape at approximately 4 ka BP (Kapsimalis et al., 2005). In 

addition, the low tidal range (on average 5 cm) and the low energy wave regime 

prevailing in Amvrakikos Gulf (Ferentinos et al., 2010), render the latter as a Baltic 

Sea analogue in the Mediterranean Sea. 

In the light of projected climate changes, and the subsequent sea level rise and 

saltwater intrusion that will occur, microbial populations in freshwater wetlands 

near the coast will be subjected to elevated salinities (Chambers et al., 2011). Due to 

the long-term effect of sea level rise, saltwater intrusion can affect ecosystems on 

timescales of decades (Neubauer et al., 2013). It is therefore crucial to explore the 

current status of microbial communities in wetlands in order to comprehend the 

impact of such acute changes in their diversity patterns, since they are involved in 

biogeochemical processes that are crucial for maintaining the planet in a habitable 

state (e.g. Falkowski et al., 2008). 

Currently, state-of-the-art studies of microbial communities through high 

throughput sequencing of the 16S rRNA gene, i.e. marker gene metagenomics (Oulas 

et al., 2015), allow documentation of the high diversity of microbial communities in a 

variety of habitats, e.g. wetlands (Yu Wang et al., 2012; Jiang et al., 2013), estuaries 

(Bobrova et al., 2016), lakes (Zhang et al., 2015), rivers (Staley et al., 2013) and 

coastal lagoons (Highton et al., 2016). The substantial data derived from such 

techniques can be used to test ecological hypotheses, on which sound conclusions 

can be drawn; for example if microorganisms have a biogeography (Zinger et al., 

2011) or if their biodiversity is driven by changes in elevation (Fierer et al., 2011).  

The aim of the present study was to investigate the sediment prokaryotic diversity 

along a transect river-lagoon-open sea, i.e. from freshwater to marine, in Amvrakikos 

Gulf in order to test whether it follows a generalized concept, such as Remane’s, 

both in terms of Operational Taxonomic Unit (OTU) composition as well as on 
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distribution of metabolic functions. If the applicability of the concept is confirmed in 

Amvrakikos Gulf, it would enhance its transferability to other brackish water bodies 

than the Baltic Sea. In addition, confirmation of Remane’s concept for prokaryotes 

would mean that small-bodied, fast-developing and rapidly evolving microbes 

respond in a similar way as benthic macroorganisms in a salinity gradient. 

 

2.2 Materials and Methods 

 

2.2.1 Field sampling 

 

The transect river-lagoon-open sea, i.e. from freshwater to marine, chosen for the 

present study is naturally occurring at Amvrakikos Gulf (Ionian Sea, Western Greece) 

(Figure 2.1). The Gulf is a semi-enclosed embayment connected with the Ionian Sea 

via a narrow channel, the Preveza (Aktio) Strait (Kapsimalis et al., 2005) and is 

characterized by a fjord-like oceanographic regime (Ferentinos et al., 2010). The 

wetlands of Amvrakikos Gulf are listed in both the Ramsar international convention 

and the Natura 2000 Network. 

The northwest part of the Amvrakikos Gulf is formed by the rivers Arachthos and 

Louros (Poulos et al., 1993, 1995; Vasileiadou et al., 2012). Arachthos river is the 

main source of freshwater from November to April (Poulos et al., 1993) and its flow 

is controlled by two hydroelectric dams: the first being an earthfill dam, of 107 m 

height, mainly built for flood control and the second being a concrete dam, of 42 m 

height, primarily having a regulatory role, that is to ensure the constant flow of 

water throughout the year. 
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Figure 2.1: Map showing the location of the six sampling stations and the location of 

the river dams (Map data: Google). 

 

Two stations were chosen at the Arachthos river, thus representing the freshwater 

conditions: one being close to its mouth (39.029690 N, 21.025880 E) and one in the 

upper limit of saltwater intrusion when the dams are closed, closed to the village of 

Neochori (39.070770 Ν, 21.025060 Ε). One more station was chosen at the 

Arachthos delta (39.039199 Ν, 21.094200 Ε), as an intermediate between the 

freshwater and the marine realm. In addition, two stations were chosen in the 

Logarou lagoon, due to its vicinity to Arachthos, representing the brackish stations: 

one at the inner part of the lagoon (39.045528 N, 20.902283 E), closer to the 

terrestrial end, and one near the channel connecting the lagoon to the Gulf 

(39.037458 N, 20.878626 E). Finally, Kalamitsi station (38.966250 Ν, 20.690783 Ε) 

was chosen from the marine realm, i.e. outside of the Amvrakikos Gulf.  

Sampling was carried out in winter of 2014 (November - December), as described in 

Pavloudi et al. (2016). For the Logarou lagoon and Arachthos river stations, salinity, 

water temperature and dissolved oxygen concentration were measured in the water 

overlaying the sediments by means of a portable multi-parameter (WTW Multi 3420 

SET G). For the Arachthos delta and Kalamitsi station, water abiotic variables 
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(fluorescence, salinity, water temperature and dissolved oxygen concentration) were 

recorded with a Sea-Bird Electronics 25 CTD probe. Fluorescence was regarded as a 

proxy for chlorophyll-a concentration. 

Sediment samples from the Logarou lagoon and the Arachthos river were collected 

by means of a modified manually-operated box-corer, with sampling surface 156.25 

square centimeters and sediment penetration depth of 25 centimeters, deployed 

from fishing boats specifically used at the lagoons. Samples from the Arachthos delta 

and Kalamitsi stations were collected with a Smith McIntyre Grab operated from the 

R/V Philia. The permission to conduct the field study was provided by the 

Amvrakikos Wetlands Management Body. 

Cylindrical sampling corers (internal sampling surface 15.90 square centimeters) 

were placed inside the box-corer and the Smith McIntyre Grab in order to collect 

sub-samples of the sediment’s upper layer (0-2 cm). Three replicate units, each 

retrieved from a different box-corer to avoid pseudoreplication, were taken for each 

analysis from each sampling station, in order to determine variability within and 

between stations. Samples for molecular analysis (about 15 cm3 each), i.e. DNA 

extractions, were placed in 50 ml falcon tubes (Sarstedt, Nümbrecht, Germany) and 

were stored at -20 oC, until further processing in the laboratory. 

Samples were also collected from cylindrical corers for the measurement of the 

Particulate Organic Carbon (POC), chloroplast pigments concentration (chlorophyll-a 

and phaeopigments) and sediment granulometry (for the latter, the sampling depth 

was four centimeters to allow comparison with previously published data on the 

study area). To quantify chloroplast pigments concentration in the water column, 

three replicate water samples were collected from the Logarou lagoon and the 

Arachthos river by means of Niskin bottles (5 lt). The aforementioned samples were 

processed at the Chemistry Lab of the IMBBC (HCMR), based on standard techniques 

(chloroplast pigments: Yentsch and Menzel, 1963; POC: Hedges and Stern, 1984; 

granulometry: Gray and Elliott, 2009). Sampling was conducted in winter 

(November-December) of 2014. 
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2.2.2 DNA extraction, PCR amplification and 16S rRNA sequencing  

 

DNA was extracted using the PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc., 

Carlsbad, CA, USA), as recommended by the manufacturer. About 0.5 (± 0.2) grams 

of wet sediment were used from each sample and the quality of the extracted DNA 

was evaluated by gel electrophoresis. 

PCR amplification was performed targeting the V3-V4 region of the 16S rRNA gene 

using the bacterial primer pair S-DBact-0341-b-S-17 (or 341F) and S-D-Bact-0785-a-A-

21-B (or 805RB), which has been referred to as the most promising primer pair 

(Herlemann et al., 2011; Klindworth et al., 2013), with a revision for detection of 

SAR11 bacterioplankton (Apprill et al., 2015).  

The Two-Step PCR Approach was used for this study. The first-step PCR was 

performed with the aforementioned primers containing a universal 5’ tail as 

specified in the Nextera library protocol from Illumina. The amplification reaction 

mix of the first PCR contained 6 μl 5x KAPA HiFi Fidelity buffer, 0.9 μl BSA (2 μg/μl), 

0.75 μl KAPA dNTP Mix (10 mM), 1.5 μl from each primer (10 μM), 0.75 μl KAPA HiFi 

HotStart DNA polymerase (1 U/μl) in a final volume of 30 μl per reaction. DNA 

template concentration was about 10 ng/μl. The first PCR protocol used was the 

following: 95 oC for 5 minutes; 25 cycles at 98 oC for 20 seconds, 57 oC for 2 minutes, 

72 oC for 1 minute; 72 oC for 7 minutes. 

The resulting PCR amplicons (~531 bp) were purified using Agencourt AMPure XP 

magnetic beads (Beckman Coulter, Brea, CA, USA), quantified using Qubit 

fluorometric quantitation (Thermo Scientific Fisher, USA) and were used as 

templates for the second-step PCR in order to include the indexes (barcodes), as well 

as the Illumina adaptors. The amplification reaction mix of the second PCR contained 

6 μl 5x KAPA HiFi Fidelity buffer, 0.75 μl KAPA dNTP Mix (10 mM), 3 μl from each 

primer (10 μM), 0.75 μl KAPA HiFi HotStart DNA polymerase (1 U/μl) in a final 

volume of 30 μl per reaction. DNA template concentration was about 20 ng/μl. The 

second PCR protocol used was the following: 95 oC for 3 minutes; 8 cycles at 98 oC 

for 20 seconds, 55 oC for 30 seconds, 72 oC for 30 seconds; 72 oC for 5 minutes. 

Amplifications were carried out using T100 Thermal Cycler (BIORAD). Again, the 
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resulting PCR amplicons (~600 bp) were purified and quantified as mentioned 

previously, mixed in equimolar amounts and sequenced using a MiSeq Reagent Kit 

v3 (2 x 300 cycles) at the IMBBC (HCMR).  

All the raw sequence files of this study were submitted to the European Nucleotide 

Archive (ENA) (Leinonen et al., 2011) with the study accession number PRJEB20211 

(available at http://www.ebi.ac.uk/ena/data/view/PRJEB20211).  

 

2.2.3 Data analyses 

 

The raw sequence reads retrieved from all the sediment samples were quality 

trimmed using sickle (Joshi and Fass, 2011), to where the average quality score 

dropped below 20 (-q 20) as well as where read length was below 10bp (-l 10). 

SPAdes assembler (Bankevich et al., 2012), that incorporates BayesHammer 

(Nikolenko et al., 2013), was used for the creation of error-corrected paired-end 

reads, since this strategy along with overlapping paired-end reads reduces errors for 

MiSeq (Schirmer et al., 2015). According to the pipeline options used for the SPAdes 

assembler, read error correction only was performed (--only-error-correction) along 

with reduction of the number of mismatches and short indels with 

MismatchCorrector, a post processing tool (--careful).  

Afterwards, pandaseq (Masella et al., 2012) was used to overlap the paired-end 

reads using a minimum overlap of 20 (-o 20). The overlapped sequences were 

combined and dereplicated. Then, using USEARCH (Edgar, 2010), reads were sorted 

based on abundance, singletons were discarded and OTU clustering and de novo 

chimera removal were performed. Following the relevant recommendation, a 

reference-based chimera filtering step was performed using UCHIME (Edgar et al., 

2011) using the "Gold" database as a reference.  

Reads, including singletons, were then mapped back to OTUs, using the 97% 

similarity threshold level. Afterwards, they were aligned using MAFFT (Katoh et al., 

2005) and a phylogenetic tree was created using FastTree (Price et al., 2010). Finally, 

taxonomic profiles of the OTUs were generated using RDP classifier (Wang et al., 

2007).  
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The metabolic function of the OTUs was predicted using the Tax4Fun package 

(Aßhauer et al., 2015), which transforms the SILVA-based OTUs into a taxonomic 

profile of organisms which have a metabolic profile in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database (fctProfiling = T), normalized by the 16S rRNA 

copy number (normCopyNo = T). The method for pre-computing the functional 

reference profiles was the ultrafast protein classification tool (Meinicke, 2015) 

(refProfile = UProC) and the functional reference profiles were computed based on 

400 bp reads (shortReadMode = F). The 100 most abundant metabolic pathways 

were extracted. 

The number of sequences assigned to an OTU represented its relative abundance at 

a given replicate sample of each sampling station. A matrix containing the microbial 

OTUs as variables and sampling stations as samples was constructed. A second 

matrix was constructed, with the predicted metabolic functions of the microbial 

OTUs as variables and sampling stations as samples. Both matrices were 

subsequently used to calculate triangular similarity matrices using the Bray-Curtis 

similarity coefficient (e.g. Clarke and Warwick, 1994). In order to test whether the 

microbial community pattern and the metabolic function pattern could be 

differentiated based on the sampled habitat, we performed non-metric 

multidimensional scaling (nMDS) (Clarke, 1993) and permutational multivariate 

analysis of variance (PERMANOVA) (Anderson, 2001). The design considered two 

factors: “habitat” and “location” (999 permutations), with the latter being nested in 

the former.  

A third matrix was also constructed, with the respective abiotic parameters as 

variables and the sampling stations as samples, which was normalized (i.e. the values 

for each variable had their mean subtracted and were divided by their standard 

deviation) and used as an input for the BIO-ENV analysis (Clarke and Ainsworth, 

1993) by employing the Spearman’s rank coefficient. The analysis was performed to 

identify the subsets of abiotic parameters that were associated with the community 

(i.e. OTU) and the metabolic function matrices. In order to account for factor 

confounding, and estimate the amount of variation each factor might explain in the 

community as well the metabolic function similarity matrices, variation partitioning 

analysis was performed. The amount of variation in both matrices that was due to 
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salinity uniquely, while taking the other environmental factors into consideration, 

was estimated and its significance was tested using distance-based redundancy 

analysis (db-RDA) and Analysis of Variance (ANOVA). 

A suite of diversity indices (Margalef’s species richness, Pielou's evenness, Shannon-

Wiener (Pielou, 1969), Chao-1, Abundance Coverage Estimator (ACE)) was calculated 

for each sampling station. The indices were subsequently tested for significant 

differences between the different locations and habitats using the Kruskal-Wallis 

test. The Mann-Whitney U test (Mann and Whitney, 1947) was used for the post-hoc 

pairwise comparisons; a Bonferroni-correction was applied and the level of 

significance for the results was lowered to 0.008, in the case of the locations, and to 

0.017, in the case of the habitats. 

Linear regression was used to examine the significance of relationships between OTU 

diversity, i.e. the average number of OTUs as well as the average values of diversity 

indices, and salinity. Shapiro-Wilk test was used to assess normality in the residuals 

(Shapiro and Wilk, 1965), while homoscedastistic residual variances were confirmed 

by examining plots of the standardized residuals (Draper and Smith, 1981). 

The non-parametric Kruskal-Wallis test (Kruskal and Wallis, 1952) was used to 

determine which of the predicted metabolic pathways were statistically significant 

between the different habitats, i.e. “lagoon”, “river” and “sea”. The p value 

threshold was adjusted from the initial 0.05, using the Benjamini-Hochberg 

procedure (Benjamini and Hochberg, 1995). In addition, the relative abundance 

values of the main microbial taxa were compared among the locations and habitats 

of the sampling stations, using the Kruskal-Wallis test.  

The vegan package (Oksanen et al., 2008) was used for the nMDS (metaMDS 

function), PERMANOVA (adonis function), BIO-ENV (bioenv function), variation 

partitioning analysis (varpart function) and db-RDA (capscale function), for the 

calculation of diversity indices and for the generation of rarefaction curves. Groups 

in the nMDS plots were displayed using the ordiellipse and veganCovEllipse 

functions; in particular, ordiellipse function was used to retrieve the spread of points 

based on the chosen grouping (e.g. habitat) using standard deviations of points (kind 

= sd) and confidence limit for ellipses (conf = 0.95), while veganCovEllipse function 

calculated a covariance matrix of each group (e.g. habitat) to generate the ellipse 
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points4. Linear regressions, Shapiro-Wilk, Mann-Whitney, Kruskal-Wallis and ANOVA 

tests were conducted using stats package (R Core Team, 2015). Graphs were 

constructed using the ggplot2 package (Wickham, 2009). The aforementioned 

analyses were performed using R version 3.2.1 (R Core Team, 2015).   

 

2.3 Results 

 

2.3.1 Microbial community composition 

 

The results of the processing of the sequences are shown in Table S2.1. The 

1,893,500 overlapped reads were dereplicated (1,578,523 remained) and singletons 

were removed (111,223 remained). After de novo chimera removal (7,088 OTUs) and 

chimera removal using the “Gold” database as a reference, the final number of OTUs 

was 7,050. The corresponding rarefaction curve is shown in Figure S2.1; all samples 

have reached a plateau, with the riverine samples having reached a higher OTU 

abundance followed by the lagoonal and the marine ones. 

The nMDS of the microbial OTUs (Figure 2.2) showed that their spatial pattern differs 

both by habitat and location, which was also confirmed by the PERMANOVA results 

(habitat: F.Model = 19.416, p < 0.01; location: F.Model = 10.647, p < 0.01).  

 

                                                           
4 More information can be found in: 
http://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/ecological.html  
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Figure 2.2: nMDS of the similarity matrix of the sampling stations based on the 

microbial OTUs abundances. Ellipses according to habitat, signs according to 

location. AR: Arachthos. ARO: Arachthos Neochori. ARDelta: Arachthos Delta. LOin: 

Logarou station inside the lagoon. LOout: Logarou station in the channel connecting 

the lagoon to the gulf. Kal: Kalamitsi. 

 

An alternative representation of the sampling stations, where the Arachthos Delta 

sampling station was grouped with the lagoonal samples, is shown in Figure S2.2; 

this representation was also statistically significant (PERMANOVA; habitat: F.Model = 

9.071, p < 0.01; location: F.Model = 14.155, p < 0.01) but it was not chosen as the 

primary one. Arachthos Delta station was combined with the riverine samples (from 
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Arachthos and Arachthos Neochori) due to its vicinity with the river mouth and the 

subsequent continuous influence from the river outflow. 

The relative abundance percentages of the microbial taxa, at the phylum level, did 

not show a significant differentiation between the different locations or habitats 

(Kruskal-Wallis: p > 0.05 for all cases). However, as shown in Figure 2.3 where the 

relative abundance percentages of each replicate sample have been averaged per 

sampling station, there are certain differences that can be observed. For example, 

the Bacteroidetes showed an increasing abundance when moving from the inner 

station of the river (~9%) to the more brackish stations (~28%), and decrease again in 

the marine station (~11%). A similar trend was observed for the Proteobacteria, but 

in this case the higher abundance was found in the marine environment (~49%). The 

abundance of Archaea was quite low in all the sampling stations; higher values were 

observed at the inner station (~17%) of the river and decrease towards the marine 

station. Cyanobacteria/Chloroplasts were more abundant in the marine station 

(~10%) and were also found in the Arachthos delta and inner station of Logarou 

lagoon at lower abundance (~5%). 
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Figure 2.3: Bar chart showing the abundances of the main microbial taxa, at the 

phylum level, at the sampling stations. AR: Arachthos. ARO: Arachthos Neochori. 

ARDelta: Arachthos Delta. LOin: Logarou station inside the lagoon. LOout: Logarou 

station in the channel connecting the lagoon to the gulf. Kal: Kalamitsi. 

 

When the most abundant phyla are examined in more detail, again using the relative 

abundance percentages of each replicate sample averaged per sampling station, 

there are certain differences observed at the sampling stations, although non-

significant (Kruskal-Wallis: p > 0.05 for all the cases). In the case of Bacteroidetes 

(Figure S2.3), Flavobacteria were less abundant at the inner station of the river 

(~17%); their abundance was higher in the other riverine stations (~37%) and in the 

lagoonal stations (~54%) while remaining stable at the marine station (~49%). 

Sphingobacteria exhibited the lower abundance in the Arachthos delta (~7%) and the 

highest in Kalamitsi (~28%).  

Regarding the Proteobacteria phylum (Figure S2.4), Alphaproteobacteria exhibited 

higher abundances at the mouth of the Arachthos river (~49%) and at the marine 

station (~56%). Betaproteobacteria were almost exclusively present in the inner 

station and mouth of the Arachthos river (~30% and ~11% respectively). 
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Gammaproteobacteria were mostly abundant in the lagoonal stations (~54%) and 

Deltaproteobacteria in the Arachthos delta (~49%) which was the station with the 

lowest oxygen concentration in the water overlaying the sediment (0.24 mg/l; Table 

2.2).  

Diversity measured as Shannon-Wiener, Pielou's evenness and Margalef’s species 

richness indices (Table 2.1) was significantly different between the locations and 

habitats (Kruskal-Wallis test, Table S2.2). In addition, the number of OTUs, Chao-1 

and ACE were also significantly different between the different habitats (Kruskal-

Wallis test, Table S2.2). The results of the values of the Mann-Whitney U tests for the 

post-hoc comparisons (Table S2.3), show that the main driver for the difference 

between the habitats is the difference of the riverine and the marine environment 

and secondly the difference of the former with the lagoonal environment.   

 

2.3.2 Functional community composition 

 

The retrieved KEGG metabolic profiles, and their abundance in each sample, are 

provided in Table S2.4. For certain microbial OTUs a KEGG profile could not be 

retrieved, thus these OTUs constitute the fraction of unexplained taxonomic units 

(FTU) (Aßhauer et al., 2015), i.e. the amount of sequences assigned to a taxonomic 

unit and not transferable to KEGG reference organisms. As shown in Figure S2.5 and 

Table S2.5, this fraction was highest in the lagoonal samples (67.51 %) and lowest in 

the marine samples (38.91 %). From the riverine samples (56.85 %), the highest FTU 

was observed at the Arachthos Delta (71.32 %). Due to the aforementioned FTU 

values, the interpretation of the results should be done cautiously as there are many 

OTUs for which retrieval of a metabolic profile was not possible.  

However, the metabolic profiles retrieved from the OTUs were significantly different 

between the three habitats (Kruskal-Wallis, p < 0.05). Specifically, as shown in Figure 

2.4, there were 13 enzymes that could be linked to certain metabolic pathways, 

which were responsible for the between-habitat dissimilarity.  

In the nMDS of the KEGG metabolic profiles (Figure 2.5), it is depicted that the 

different habitats were functionally distinctive. This was supported by the 
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PERMANOVA results (habitat: F.Model = 10.743, p < 0.01; location: F.Model = 

11.206, p < 0.01).  

 

Τable 2.1: Diversity indices of the samples. OTUs: total number of OTUs. N: total 

microbial relative abundance values. H΄: Shannon-Wiener. J΄: Pielou's evenness. d: 

Margalef’s species richness. ACE: Abundance Coverage Estimator. R: River. L: Lagoon. 

S: Sea. AR: Arachthos. ARO: Arachthos Neochori. ARDelta: Arachthos Delta. LOin: 

Logarou station inside the lagoon. LOout: Logarou station in the channel connecting 

the lagoon to the gulf. Kal: Kalamitsi. A, B, C: replicate samples.   

 OTUs N H΄(ln) J΄ d  Chao-1 ACE 
R_AR_A 2414 51617      6.64 0.85 222.36 2771.31 2736.48 
R_AR_Β 3070 74057      7 0.87 273.71 3450.95 3353.58 
R_AR_C 2810       87640      6.77 0.85 246.82 3145.4 3109.94 
R_ARO_A 2271       49793      6.66 0.86 209.88 2643.01 2570.08 
R_ARO_Β 2419       77520      6.66 0.86 214.78 2625.88 2582.98 
R_ARO_C 2480       74292      6.59 0.84 221.03 2773.28 2717.73 
R_ARDelta_A 2098       42365      6.66 0.87 196.83 2388.94 2319.51 
R_ARDelta_Β 2479       49442      6.61 0.85 229.26 2821.49 2737.81 
R_ARDelta_C 2247       38209      6.57 0.85 212.87 2614.22 2565.73 
L_LOin_A 2510       70514      6.39 0.82 224.75 2849.83 2770.58 
L_LOin_B 2082       64400      5.9 0.77 187.94 2445.6 2399.07 
L_LOin_C 2237       57953      6.16 0.8 203.88 2567.4 2532.17 
L_LOout_A 1850       60250      5.66 0.75 168 2271.05 2200.13 
L_LOout_B 2487       80942      6.38 0.82 219.97 2841.38 2766.75 
L_LOout_C 2088 83935 5.95 0.78 184.07 2365.67 2323.44 
S_Kal_A 1732       52975      5.9   0.79 159.13 1906.93 1903.36 
S_Kal_B 2004       48280      6.40 0.84 185.72 2278.12 2237.63 
S_Kal_C 1974 51129 6.34 0.84 181.98 2211.46 2182.35 
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Figure 2.4: The enzymes that were significantly different between the three habitats. 

 



                                                                             Chapter 2: Remane’s curve in Amvrakikos Gulf 

58 
 

 
Figure 2.5: nMDS of the similarity matrix of the sampling stations based on the 

abundances of KEGG metabolic profiles. Ellipses according to habitat, signs according 

to location. AR: Arachthos. ARO: Arachthos Neochori. ARDelta: Arachthos Delta. 

LOin: Logarou station inside the lagoon. LOout: Logarou station in the channel 

connecting the lagoon to the gulf. Kal: Kalamitsi. 

 

2.3.3 Correlation with abiotic parameters 

 

The average values of the physicochemical variables per sampling station are 

provided in Table 2.2.  
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Table 2.2: The average values of the physicochemical variables of the sampling 

stations. R: River. L: Lagoon. S: Sea. AR: Arachthos. ARO: Arachthos Neochori. 

ARDelta: Arachthos Delta. LOin: Logarou station inside the lagoon. LOout: Logarou 

station in the channel connecting the lagoon to the gulf. Kal: Kalamitsi. Chl-a: 

Chlorophyll-a concentration (ug/l) and Fluorescence. O2: Oxygen concentration. Chl-

a sediment: Chlorophyll-a concentration in the sediment (ug/g). CPE: Chloroplastic 

pigment equivalents. POC: Particulate Organic Carbon. silt & clay: percentage of silt 

and clay. sand: percentage of sand. 

    R_AR R_ARO R_ARDelta L_LOin L_LOout S_Kal 

Water 

Chl-a 0.46 0.38 1.1  * 1.25 3.56 0.99  * 
Salinity (psu) 0.2 0.2 36.47 27.8 30.1 38.82 
O2 (mg/l) 10.24 9.99 0.24 8.42 8.42 6.81 
Temperature (oC) 14.1 14.9 19.06 11.1 14.2 19.77 

Sediment 

Chl-a sediment 1.12 3.35 2.11 8.22 24.02 2.83 
Phaeopigments (ug/g) 1.27 3.09 22.01 10.98 41.1 2 
CPE (ug/g) 2.38 6.44 24.12 19.2 65.12 4.83 
POC (ug/g) 10868.53 7217.63 22875.81 22797.08 30756.93 5100.95 
silt & clay 21.32 0.85 1.56 3.29 1.68 1.52 
sand 78.68 99.15 98.44 96.71 98.32 98.48 
Depth (m) 1.5 0.5 20 0,5 0.7 40 

* Fluorescence values were regarded as a proxy for chlorophyll-a concentration 
 

According to the results shown on Table 2.3, the abiotic variable that was best 

correlated with the microbial community pattern is salinity (ρ = 0.88). When the 

metabolic function pattern is considered, oxygen concentration was the variable 

showing the highest correlation with the former (ρ = 0.73), although the 

combination of salinity and oxygen concentration was also highly correlated with the 

metabolic pattern (ρ = 0.63). In addition, as shown by the variation partitioning 

analysis for all the combinations physicochemical variables of that resulted in models 

with adjusted R2 of residuals less than 0.60 (Table 2.4), the combination of salinity, 

POC and temperature explained 56% of the total variation in the community 

similarity matrix. When the explanatory variables were regarded separately, salinity 

accounted for 27% of the variation, followed by POC (21%) and temperature (14%). 

In metabolic function pattern, 50% of the variation was explained by salinity and 
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oxygen concentration; salinity alone accounted for 12% of the variation while oxygen 

concentration for 33%. 

Regarding the relationship between the number of OTUs and the salinity values, as 

shown in Figure 2.6, a linear decrease of the former was observed from the 

freshwater to the marine stations; salinity explained over 65% of the variation in the 

number of OTUs. Robust models were also evident when the data were divided into 

taxonomic groups (Table S2.6), with salinity explaining from 70% up to 98% of the 

variation of the OTUs diversity, in the case of Firmicutes and TM7 respectively. The 

residuals of all significant models presented in Table S2.6 showed no evidence of 

heteroscedasticity and were found to be normally distributed. 

 

 
Figure 2.6: Linear regression between the number of OTUs (averaged per sampling 

station) and the salinity of the sampling stations. Colour according to habitat. AR: 

Arachthos. ARO: Arachthos Neochori. ARDelta: Arachthos Delta. LOin: Logarou 

station inside the lagoon. LOout: Logarou station in the channel connecting the 

lagoon to the gulf. Kal: Kalamitsi. 
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Table 2.3: The environmental variables best correlated with the community and the metabolic function pattern, as provided by the BIO-ENV 

analysis. Each row represents the correlation of the microbial community pattern or the metabolic community pattern with a different set of 

environmental variables, indicated by the plus sign. ρ: Spearman rank correlation coefficient. POC: Particulate Organic Carbon. CPE: 

Chloroplastic pigment equivalents. Chl-a: Chlorophyll-a concentration (ug/l) and Fluorescence.  

  Water Sediment 

 ρ Salinity 

(psu) 

O2 

(mg/l) 

Chl-a Temperature 

(oC) 

POC 

(ug/g) 

Sand (%) Silt & 

Clay (%) 

Phaeopigments 

(ug/g) 

CPE 

(ug/g) 

Community pattern 

0.88 +         

0.85 +    +     

0.79 + +   +     

0.72 + +   +  +   

0.66 + +   +  +  + 

0.64 + +  + +  + +  

0.58 + +  + + + + +  

0.54 + + + + + + + +  

Metabolic function 

pattern 

0.73  +        

0.63 + +        

0.57  +  +   +   

0.54 + +    + +   
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Table 2.4: The percentage of variation explained (adjusted R2) of each explanatory physicochemical variable, as well as their combinations. 

POC: Particulate Organic Carbon. *: p < 0.05. **: p < 0.01. ***: p < 0.001.  

 

 

 

  

 Community pattern  Metabolic function pattern 
Salinity  27% *** 12% * 
O2  33% ** 
Temperature  14% **  
POC  21% ***  
Salinity + O2   50% *** (residuals: 50%) 
Salinity + Temperature  47% *** (residuals: 53%)  
Salinity + POC  45% *** (residuals: 55%)  
POC + Temperature  36% ***  
Salinity + POC + Temperature  56% *** (residuals: 44%)  
Salinity with Temperature as condition variable  32% ***  
Salinity with POC as condition variable 24% ***  
Salinity with O2 as condition variable  16% ** 
Salinity with Temperature and POC as condition variables 20% ***  
Temperature with Salinity as condition variable 20% ***  
Temperature with POC as condition variable 15% ***  
Temperature with Salinity and POC as condition variables 11% **  
POC with Salinity as condition variable 18% ***  
POC with Temperature as condition variable 22% ***  
POC with Salinity and Temperature as condition variables 10% **  
O2 with Salinity as condition variable  37% *** 
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2.4 Discussion  

 

2.4.1 Microbial community composition  

 

Based on the results of the present study, it is suggested that the microbial 

community diversity pattern differs by habitat and location, thus indicating that, at 

least to some extent, each habitat hosts a different microbial community from the 

others, regarding both the number of OTUs and their composition, as has been also 

shown from similar studies in the Baltic Sea (Herlemann et al., 2011). Furthermore, 

the abiotic variable that is best correlated with the microbial community pattern is 

salinity, as it has been shown from studies on bacterioplankton (e.g. Kirchman et al., 

2005; Nemergut et al., 2011; Fortunato et al., 2012), as well as sediment bacterial 

communities (Bolhuis and Stal, 2011; Severin et al., 2012; Bolhuis et al., 2013; 

Pavloudi et al., 2016).  

The majority of the observed OTUs was classified as Bacteroidetes and 

Proteobacteria. Bacteroidetes have been found to be omnipresent along estuarine 

gradients (e.g. Bouvier and del Giorgio, 2002) although in certain cases they 

dominated higher salinity communities (Campbell and Kirchman, 2013; Dupont et al., 

2014) which has been attributed to their ability for degradation of complex organic 

matter (Blümel et al., 2007). In the present study, their abundance indeed increased 

in the brackish stations but decreased in the marine station, which could be due to 

the lower availability of organic matter in the latter, as reflected in the concentration 

of particulate organic carbon.  

Alphaproteobacteria dominate marine communities (Edmonds et al., 2009; Campbell 

and Kirchman, 2013; Herlemann et al., 2016) but they are also ubiquitous in 

freshwater habitats (Zhang et al., 2014), which justifies their high abundance in both 

the mouth of the Arachthos river and the Kalamitsi stations. Betaproteobacteria 

were almost exclusively present in the inner station and mouth of the Arachthos 

river; this complies with the general trend of Betaproteobacteria dominating 

freshwater habitats (Campbell and Kirchman, 2013; Zhang et al., 2014) and declining 

with increasing salinity (Wu et al., 2006). Their absence from the other sampling 
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stations can be explained by the fact that they are typical freshwater bacteria (e.g. 

Bie et al., 2001), adapted to live in low salt concentrations and low osmotic pressure 

(Zhang et al., 2014). 

Gammaproteobacteria are generally more abundant in higher salinities (Wu et al., 

2006; Zhang et al., 2014b; Herlemann et al., 2016), which has been attributed to 

their opportunistic life strategies (Pinhassi and Berman, 2003) and the low salinity 

conditions being unfavorable for their growth (Zhang et al., 2014b). However, 

Gammaproteobacteria can dominate brackish habitats (Edmonds et al., 2009) as has 

also been shown from previous studies in the same sampling stations (Pavloudi et 

al., 2016) and from the results of the present study.  

Deltaproteobacteria were mostly abundant in the Arachthos delta; this can be 

attributed to the hypoxic conditions prevailing in this sampling station (Crump et al., 

2007) and to their generally documented abundance in brackish habitats (Edmonds 

et al., 2009; Pavloudi et al., 2016).  

The low abundance of Archaea could be attributed to the bacterial primers used for 

the present study, which were not specific for amplification of the archaeal 

communities. In addition, the low abundances found can be traced to their inability 

to grow under estuarine environmental conditions since they are primarily of 

allochthonous origin (Bouvier and del Giorgio, 2002). However, the abundances of 

Archaea were decreasing with increasing salinity; in the marine environment, 

Archaea are generally limited to shallow or deep-sea anaerobic sediments and 

extreme environments (DeLong, 1992), which could explain their absence from the 

marine station in the present study.  

It is evident that sea level rise, and the subsequent saltwater intrusion that it will 

cause, will impose an osmotic stress in microbial populations in the riverine stations 

(Chambers et al., 2011). This may eventually shift the community in a more brackish 

state, although this will depend on the time-scale and intensity of saltwater 

intrusion. Microbial communities in fluctuating environments have been shown to 

be rather resilient, which causes variations in their expected functional response to 

change (Hawkes and Keitt, 2015). However, saltwater intrusion may induce an 

indirect effect in microbial communities, for example by causing changes in 
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vegetation (Nelson et al., 2015) or by increasing sulfate concentrations, thus by 

stimulating its reduction (Chambers et al., 2011). 

As far as the relationship between the number of OTUs and salinity values is 

concerned, it has been shown that it is negative, i.e. diversity decreases with the 

increase of the salinity. Thus, the sediment microbial communities in the Amvrakikos 

Gulf salinity gradient do not appear to follow Remane’s concept but rather the linear 

model proposed by Attrill (2002) with the species minimum at the point of maximum 

salinity range. This is in contrast with the constant relationship observed by 

Herlemann et al. (2011) for the Baltic Sea bacterioplankton along the salinity 

gradient. The divergence from the species-minimum concept could be attributed to 

the different life strategies of micro- and macroorganisms, as has been suggested by 

Telesh et al. (2013). In addition, microorganisms can be transported with water 

movement, apart from experiencing adaptation only at the molecular and cellular 

level (Telesh et al., 2015). Thus, they experience salinity stress differently from 

benthic animals with reduced mobility (Skarlato and Telesh, 2017), which causes 

their deviation from the recognized models for macrobenthic organisms. 

Although a decreasing trend of microbial diversity along gradients of increasing 

salinity has been observed (Rodriguez-Valera et al., 1985; Benlloch et al., 2002), the 

results of our study showed that this was only evident for the total number of OTUs; 

the other diversity indices did not show a statistically significant negative 

relationship with salinity (data not shown). 

 

2.4.2 Functional community composition   

 

The higher number of FTU observed in the lagoonal samples is indicative of the high 

microbial community diversity of this habitat. It also reflects the need for more 

extensive studies in order for an enhanced taxonomic resolution to be achieved for 

sequences found in lagoons. Similarly, the lower FTU was found in the marine 

samples, thus reflecting the number of studies that have been conducted in the 

marine environment so far which allowed for more OTUs to be transferred to KEGG 

reference organisms. However, despite the potential of the chosen method on the 
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metabolic profile retrieval of 16SrRNA sequences, its results should be regarded with 

caution since only through shotgun metagenomics the functional potential of a 

microbial community can be revealed. Nevertheless, in the next few years, as the 

software will become more elaborate and the queried databases will be enriched, 

better results will be derived from such methods and more trustworthy conclusions 

will be drawn.  

Analogous studies in Chesapeake Bay, which is also a large water body with a 

pronounced salinity gradient, have also suggested that protein identification in 

environmental samples is rather challenging. Sequence databases have derived from 

cultured organisms and thus, it is unlikely that significant matches can be found 

between the bacterioplankton metaproteome and the queried databases (Kan et al., 

2005). Hence, more studies on isolation and cultivation of microorganisms from 

these habitats are needed in order to enrich the available information on KEGG and 

similar databases.  

Although retrieval of a metabolic profile was not possible for the majority of the 

OTUs in certain cases, it is shown that different habitats were functionally distinctive 

and that salinity and oxygen concentration were highly correlated with the retrieved 

metabolic pattern. This is in accordance with studies suggesting that the actual 

patterns of composition and metabolism transition are strongly linked to 

hydrological conditions (Bouvier and del Giorgio, 2002). Furthermore, salinity has 

been found to be the main factor explaining almost all differences in the key 

metabolic capabilities of the Baltic Sea bacterial communities (Dupont et al., 2014), 

so a similar relationship could be expected for the Mediterranean analogue of the 

Baltic Sea. In addition, salinity has been shown to influence proteome profiles from 

bacterioplankton communities of the Chesapeake Bay, since samples with higher 

salinity, i.e. closer to marine origin, are more similar and, at the same time distinct 

from inner Bay samples (Kan et al., 2005). Similar results have been found for the 

San Francisco Bay, where salinity is one of the key variables influencing the 

abundance and activity of ammonia-oxidizing prokaryotes and denitrifiers (Mosier 

and Francis, 2008; 2010). 
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2.5 Conclusions 

 

From the results of the present study, it can be concluded that the sediment 

microbial OTUs of the Amvrakikos Gulf salinity gradient do not follow the Remane’s 

concept, i.e. there is no decrease in the intermediate salinities, but rather a negative 

trend. In addition, different taxonomic groups were more abundant in the 

freshwater stations while others were more abundant in the marine environment. 

Salinity was also found to influence the metabolic function patterns that were 

retrieved for the sampling stations. However, future studies are needed to decipher 

the metabolic capabilities of all the OTUs found at the habitats under study and 

investigate in depth the impact of salinity at their functional potential. Furthermore, 

experimental studies are needed in order to directly examine the effect of salinity on 

microbial community composition and investigate how the latter will respond when 

subjected to salinities varying from freshwater to marine in the light of climate 

change and sea level rise. 
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Abstract 

 

Sulfate-reducing microorganisms (SRMs) are a phylogenetically and physiologically 

diverse group of microorganisms, responsible for the dissimilatory reduction of 

sulfate. SRMs thrive under anaerobic conditions with high availability of organic 

matter. Such conditions characterize lagoonal ecosystems which experience regular 

dystrophic crises. The aim of the present study was to explore the biodiversity 

patterns of SRMs and to examine the extent to which these patterns are associated 

with biogeographic and environmental factors. Sediment samples were collected 

from 5 lagoons in the Amvrakikos Gulf (Ionian Sea, western Greece). DNA was 

extracted from the sediment and was further processed through pyrosequencing of 

a region of the dissimilatory sulfite reductase β-subunit (dsrB). The results of this 

exploratory study show that the majority of the observed operational taxonomic 

units (OTUs) belong to the Deltaproteobacteria supercluster and more specifically, to 

the Desulfobacteraceae family. Salinity and ammonium ions are the environmental 

factors that best correlated with the SRM community pattern. Furthermore, the SRM 

                                                           
5 Reproduced with permission from Inter-Research. The copyright in the article is not 
transferred by this license and remains with. This license permits the article copyright to 
Inter-Research to be further reproduced and distributed in print or electronically as an 
embedded part of the thesis. Modified version of the published paper. 
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community of the brackish lagoons is differentiated from that of the brackish-marine 

lagoons and the studied lagoons have distinct SRM communities. 

 

3.1 Introduction 

 

Sulfate-reducing microorganisms (SRMs) are a taxonomically diverse group involved 

in the biogeochemical cycles of carbon, sulfur (Jørgensen, 1982) and mercury 

(Gilmour et al., 1998). They are anaerobically respiring microorganisms, which 

couple the degradation of organic compounds to the reduction of sulfate as a 

terminal electron acceptor (Rabus et al., 2006), resulting in the production of sulfide 

(Muyzer and Stams, 2008). SRMs have been found in a variety of ecosystems, 

including freshwater wetlands (Li et al., 1999; Pester et al., 2012), estuarine 

sediments (Jiang et al., 2009) and extreme environments (Dhillon et al., 2003; 

Fishbain et al., 2003); they have also been found in high abundances in polluted sites 

(Pérez-Jiménez and Kerkhof, 2005) and associated with metals (Nakagawa et al., 

2002). 

Six phylogenetic lineages constitute the cultured representatives of known SRMs, 

with 4 of them belonging to the bacterial (Deltaproteobacteria, Nitrospirae, 

Firmicutes, Thermodesulfobacteria) and 2 to the archaeal domain (Euryarchaeota, 

Crenarchaeota) (Muyzer and Stams, 2008; Müller et al., 2015). Due to their 

polyphyletic nature, 16S rRNA gene based analysis cannot sufficiently describe the 

SRMs and functional gene markers should be used instead for the assessment of 

their abundance and diversity (Wagner et al., 2005). 

Sulfate reduction is a reaction found in sulfate-reducing prokaryotes and other 

organisms, such as plants, algae and fungi, and it can be further distinguished into 

assimilatory and dissimilatory sulfate reduction (Madigan et al., 2012). The final step 

of the latter, namely the reduction of (bi)sulfite to sulfide, is catalyzed by the 

dissimilatory (bi)sulfite reductase (dsr) which is encoded by the dsrAB gene (Kondo 

and Butani, 2007; Liu et al., 2009). Therefore, the dsrAB gene is considered a key 

functional marker for molecular analysis and detection of SRMs (Wagner et al., 1998; 

Dar et al., 2007) and its application has revealed a great diversity of organisms that 
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are not closely related to known and recognized SRMs. However, it should be 

interpreted with caution since dsrAB, in reverse, is also involved in the oxidative 

steps of the biogeochemical sulfur cycle (Müller et al., 2015). 

In the present study, the chosen technique for the identification and enumeration of 

SRMs was pyrosequencing (Ronaghi et al., 1998) of the dissimilatory sulfite 

reductase β-subunit (dsrB) gene. Pyrosequencing is a molecular technique that has 

been widely applied in the field of microbial ecology, mostly targeting hypervariable 

regions of the 16S rRNA gene (e.g. Thompson et al., 2011; Yu Wang et al., 2012) 

instead of functional marker genes (e.g. Pelikan et al., 2016). 

The site under investigation was the lagoonal complex of the Amvrakikos Gulf (Ionian 

Sea, western Greece), one of the largest semi-enclosed embayments of the 

Mediterranean Sea, which is characterized by a fjord-like oceanographic regime 

(Ferentinos et al., 2010). The structure and function of lagoonal ecosystems is largely 

determined by the input of organic matter from terrestrial and marine 

environments, as well as from the atmosphere (e.g. Viaroli et al., 2008). The 

subsequent decomposition and removal of organic matter (Tagliapietra et al., 2012) 

defines the structure and function of lagoonal ecosystems. 

The study aimed to identify SRMs, and specifically to test (1) whether the SRM 

communities in the studied lagoons exhibit biogeographic patterns and (2) the 

extent to which these patterns are associated with environmental factors. 

 

3.2 Materials and Methods 

 

3.2.1 Location and general characteristics of the lagoons and sampling 

sites 

 

The lagoons of the Amvrakikos Gulf (38° 59’ N, 20° 57’ E) are protected by the 

Ramsar convention and are listed in the Natura 2000 network. The Gulf is connected 

with the Ionian Sea via a narrow channel, the Preveza (Aktio) Strait (Kapsimalis et al., 

2005). The lagoonal complex at the northwest part of the Amvrakikos Gulf is formed 

by the rivers Arachthos and Louros (Poulos et al., 1995). 
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Five lagoons of the Amvrakikos Gulf were sampled for the purposes of this study: 

Logarou, Rodia, Tsoukalio, Mazoma and Tsopeli. In each lagoon, 2 sampling stations 

were chosen at the extremes of the confinement gradient: the first station was 

located at the inner part of the lagoon and the second near the channel connecting 

the specific lagoon with the Gulf (Figure 3.1). Sampling was carried out in February 

2011. 

 

 
Figure 3.1: Amvrakikos Gulf in the Ionian Sea, indicating the location of lagoons 

(Logarou, Rodia, Tsoukalio, Mazoma and Tsopeli) and sampling stations (2 per 

lagoon) used for study of the diversity and abundance of sulfate-reducing 

microorganisms. Filled symbols are stations inside the lagoons; empty symbols are 

stations in the channel connecting each lagoon to the gulf. 

 

3.2.2 Sampling methodology 

 

Sediment samples were collected from all stations by means of a modified manually 

operated boxcorer, with a sampling surface of 156.25 cm2 and a sediment 

penetration depth of 25 cm. Cylindrical sampling corers, with an internal sampling 
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surface of 15.9 cm2, were placed inside the box-corer and sub-samples of the 

sediment’s upper layer (0 to 0.2 cm) were collected from them. Three replicate units 

were taken from each sampling station, to determine variability within and among 

stations. Samples for molecular analysis (each consisting of about 15 cm3 of 

sediment) were placed in 50 ml falcon tubes (Sarstedt) and were stored at −20 °C 

until further processing in the laboratory. 

In addition, a variety of environmental variables were measured both in the 

sediment and in the water column (for a detailed description see Vasileiadou et al., 

2016; Pavloudi et al., 2016). 

 

3.2.3 DNA extraction, PCR amplification and pyrosequencing of the dsrB 

gene 

 

DNA was extracted using the UltraClean® Soil DNA Isolation Kit (MO BIO 

Laboratories), according to the ‘alternative protocol for maximum yields’, as 

recommended by the manufacturer. About 0.5 g (± 0.2 g) of wet sediment from each 

sample were used. 

PCR amplification was performed with newly designed primers, based on genomes 

of known SRMs and targeting part of the dsrB gene. Primer design was done in 

accordance with the recommendations of Roche (manufacturer of the GS FLX 

Titanium) and specifically guided by the advice that amplicons should cover the 

sequence of interest within the first 400 bp of sequencing. Primer coverage was 

tested a posteriori with the ARB Probe Match tool (Ludwig et al., 2004) against the 

1292 core nucleotide sequences from the reference database (Müller et al., 2015), 

using perfect match and one weighted mismatch. 

The primers used were 1595f (5’-YCA YGA RAT CCT BGA RCC-3’) and 1905r (5’-CTG 

GGT RTG RAC GAT RTT G-3’). The primers were complemented with the 454 adapters 

(Lib-A Chemistry) and with sample-specific 5 bp barcodes (nucleotide ‘keys’) 

downloaded from VAMPS (Huse et al., 2014). Six different primer pairs were used, 

each one bearing a specific barcode which enabled the separation of the different 

samples after the sequencing (demultiplexing). 
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The amplification reaction mix contained 6 μl 5X KAPAHiFi Fidelity buffer, 0.9 μl 

KAPA dNTP Mix (10 mM), 1.5 μl from each primer (10 μM), and 0.6 μl KAPAHiFi 

HotStart DNA polymerase (1 U/μl) in a final volume of 30 μl per reaction. DNA 

template concentration was about 50 ng/μl. The PCR protocol used as follows: 95°C 

for 5 min; 30 cycles at 98°C for 20 s, 54°C for 15 s, 72°C for 30 s; 72°C for 5 min. 

Amplifications were carried out using MyCycler (BIORAD) and DNA Engine DYAD 

(Peltier Thermal Cycler, MJ Research). Samples were purified using Agencourt 

AMPure XP (Becker Coulter). Amplicons were quantified with the Picogreen assay 

(Molecular Probes), mixed in equimolar amounts and sequenced using the 454 GS 

FLX Titanium Series (Roche) hosted at IMBBC (HCMR), in compliance with the 

recommendations of the manufacturer and using 4 lanes of the sequencing plate. 

Sequencing of one amplicon (sample M_01_A; see Table S3.1) was considered to be 

faulty, resulting in a high number of errors. Therefore this sample was not included 

in further analyses. 

All raw sequence files of this study were submitted to the European Nucleotide 

Archive (ENA) (Leinonen et al., 2011) with the study accession number PRJEB3370 

(available at www.ebi.ac.uk/ena/data/view/PRJEB3370). 

 

3.2.4 Sequence processing 

 

The raw sequence reads retrieved from all sediment samples were processed with 

the AmpliconNoise algorithm for removal of 454 sequencing errors, PCR single base 

errors and chimeras (Quince et al., 2011), as described in Pavloudi et al., (2016). 

In addition to filtering and denoising, a further level of error correction was 

employed by translating nucleotide sequences into amino acids. The clustered high 

quality nucleotide sequences, using the 90% nucleotide similarity cut-off (Kjeldsen et 

al., 2007; Angermeyer et al., 2016), were translated to protein using FrameBot 

(Qiong Wang et al., 2013); detection and correction of frameshift errors in the reads 

were done using a set of known dsrB protein sequences. 

As described in Pelikan et al. (2016), the translated amino acid sequences of the 

present study were aligned to the dsrAB reference sequence alignment in MEGA 6 
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(Tamura et al., 2013) using MUSCLE (Edgar, 2004) and they were placed into the 

reference tree using the Evolutionary Placement Algorithm (EPA; Berger and 

Stamatakis, 2011) in RAxML (version 8.0.23) (Stamatakis, 2014) and the 

PROTGAMMA -AUTO option which automatically chooses the best protein model for 

the data provided. The EPA derived OTUs classification was compared to the 

classification of the core dsrAB dataset of Pelikan et al. (2016) for the taxonomic 

inference of the OTUs. 

Furthermore, the nucleotide sequences of the OTUs that were translated into 

protein were used as an input to the Seqenv pipeline (Sinclair et al., 2016), using the 

unique isolation option, in an attempt to link the 100 most abundant OTUs with 

descriptive environmental terms and determine in which environments they have 

been previously observed. 

 

3.2.5 Statistical processing 

 

Lagoons were assigned to salinity categories based on their salinity ranges following 

the Venice system (International Symposium on the Classification of Brackish 

Waters, 1958), with the (mixo-) mesohaline domain (salinity 5 to 18 psu) further 

divided as described by Pavloudi et al. (2016). Hence, the 3 categories comprised the 

(1) (mixo-) polyhaline (salinity 18-30 psu), (2) (mixo-) b-mesohaline (salinity 8 to 18 

psu) and (3) (Mixo-) a-mesohaline (salinity 5 to 8 psu) domains. 

The number of sequences belonging to each OTU was considered representative of 

OTU relative abundance. Subsequently, a matrix of the OTU abundance was 

constructed, with the microbial OTUs as variables and sampling stations as samples. 

Nucleotide sequences that failed to translate to amino acids were excluded from the 

matrix. The OTU abundance matrix was used for the calculation of the triangular 

similarity matrix using the Bray-Curtis similarity coefficient (e.g. Clarke and Warwick, 

1994). In order to investigate the bacterial community pattern in the area under 

study, non-metric multidimensional scaling (nMDS) (Clarke, 1993) and permutational 

multivariate analysis of variance (PERMANOVA) (Anderson, 2001) were performed. 

The design considered 4 factors: ‘lagoon’, ‘location’, ‘lagoon and location’ and 
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‘salinity category’ (999 permutations). Due to data limitations that did not allow for a 

successful 4-factor design to be tested, each factor was tested separately (under a 

design of unrestricted permutation of raw data). 

In order to test the second hypothesis, an abundance matrix was constructed with 

the sampling stations as samples and the 38 environmental terms found associated 

with the OTUs as variables, which was also treated as mentioned previously. In 

addition, BIO-ENV analysis was applied, thus permitting investigation of all potential 

correlations between the biotic and abiotic matrices, by employing the weighted 

Spearman rank coefficient ρw (Clarke and Ainsworth, 1993). Environmental variables 

that were highly correlated (−0.9 > ρw > 0.9, p < 0.05) were excluded from further 

analyses (Clarke and Ainsworth, 1993). The RELATE routine (Clarke and Gorley, 2006) 

was applied to test for the significance of the correlated patterns, as calculated by 

the BIOENV analysis. This was performed between the biotic similarity matrices and 

those produced by subsets of the environmental parameters, as identified by the 

BIO-ENV analysis in each case. 

OTU richness was estimated via extrapolation using the Chao-1 (Chao, 1987; Chiu et 

al., 2014) and the Abundance Coverage Estimator (ACE) (O’Hara, 2005). In addition, a 

suite of diversity indices (Margalef’s species richness, Pielou’s evenness, Shannon-

Wiener; (Pielou, 1969)) was calculated. The diversity indices, as well as the relative 

abundance percentages of the SRM OTUs, were tested for significant differences 

between the different salinity categories and lagoons by means of the 

nonparametric analysis of variance Kruskal-Wallis test (Kruskal and Wallis, 1952). The 

nonparametric Mann-Whitney U-test (Mann and Whitney, 1947) was used for the 

post hoc pairwise comparisons; a Bonferroni-correction was applied and the level of 

significance for the results of the Mann-Whitney pairwise tests was lowered from 

0.05 to 0.017 in the case of the salinity categories, and from 0.05 to 0.01 in the case 

of the lagoons. In addition, the Mann-Whitney U-test was used to test for significant 

differences between the locations. 

The DIVERSE routine (Clarke and Warwick, 1994) of the PRIMER (v.6) package (Clarke 

and Gorley, 2006) was used for the calculation of diversity indices. The same 

software was used for the BIO-ENV analysis and the RELATE routine. nMDS and 

PERMANOVA were performed with the R virtual laboratory (RvLab) (Varsos et al., 
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2016). Chao-1 and ACE estimator were calculated using the EstimateR function of 

the vegan package (Oksanen et al., 2016). Mann-Whitney U and Kruskal-Wallis tests 

were conducted with the IBM SPSS Statistics for Windows (Version 22.0). The Venn 

diagrams were constructed using the jvenn JavaScript library (Bardou et al., 2014). 

 

3.3 Results 

 

The average values of the environmental variables per sampling station are provided 

in Table 3.1. As it can be seen from this table, oxygen concentration levels in the 

sampling stations, as measured in the water overlying the sediments, were similar; 

thus, SRM community patterns should be expected to be influenced by other 

environmental variables.  

The coverage of the primers is presented in Table 3.2. The forward primer did not 

have as many positive hits as the reverse one; however, a substantial percentage of 

the dsrAB core dataset could have been amplified when tested in silico. Therefore, 

one could make the assumption that the results of the present study are indicative 

of the SRM community in the study area, although representatives of the community 

may exist for which amplification was not successful. A set of recommended primers 

for the dsrAB has been recently proposed and in silico evaluated (Müller et al., 

2015); however, it was not available during our study. 
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Table 3.1: The average values of the environmental variables of the sampling stations. M: Mazoma lagoon, L: Logarou lagoon, S: Tsopeli lagoon, T: Tsoukalio lagoon, R: 

Rodia lagoon. 01: Station inside the lagoons, 02: Station in the channel connecting each lagoon to the gulf. (from Pavloudi et al. (2016); reproduced with permission © 

Elsevier6). NH4
+: ammonium ion. PO4

3-: phosphate ion. NO3
-: nitrate ion. NO2

-: nitrite ion. Chl-a: chlorophyll a. POC: particulate organic carbon. TRIS: Total Reduced 

Inorganic Sulfur. Eh: redox potential. MD: median particle diameter. σ1: sorting coefficient. Sk1: skewness.  

   M_01 M_02 L_01 L_02 S_01 S_02 T_01 T_02 R_01 R_02 

Water 

Depth (m) 2 0.7 0.5 0.7 0.3 1.5 0.7 0.5 1.5 3 
NH4

+ (uM) 1.89 0.19 2.79 5.1 8.65 10.69 10.28 6.95 4.7 10.59 
NO3

- (uM) 4.88 2.64 1.53 1.33 4.94 4.38 7.96 15.76 3.85 6.41 
NO2

- (uM) 0.35 0.2 0.2 0.34 0.96 0.98 0.69 0.73 0.35 0.74 
Chl-a (ug/l) 34.1 59.31 9.13 11.36 5.48 4.04 6.16 0.96 3.04 1.75 
Phaeopigments (ug/l) 7.11 7.89 4.93 11.67 1.09 1.28 3.84 1.16 2.61 1.13 
POC (ug/l) 4856 5780 2141 2233 1055.25 862 1286.5 607.5 687 967.5 
Temperature (°C) 11 11.8 12.2 12.4 12.1 12.8 12.4 11.9 11.5 11.6 
Salinity (psu) 14.6 15.2 16.9 22 14.6 14.9 7.2 5.7 6.6 7.3 
pH 8.58 8.73 8.2 7.95 8.2 8.25 8.08 7.98 8.22 8.2 
O2 (mg/lt) 9.43 8.73 7.8 7 8.39 8.03 8 7.45 7.96 8.1 

Sediment 

TRIS (uM/gr) 208.33 180.74 149.52 165.42 177.96 173.36 161.83 174.27 162.43 154.07 
Chl-a (ug/g) 80.27 43.44 85.17 34.89 51.01 36.3 20.5 63 56.42 65.89 
Phaeopigments (ug/g) 115.3 50.74 71.63 26.27 58.51 80.54 22.16 68.11 50.39 17.32 
POC (ug/g) 48721.71 26092.65 26122.93 13646.28 23778.05 33568.62 28445.72 32908.14 34381.61 30504.07 
% labile Organic Matter 12.78 5.98 6.74 3.63 5.46 7 5.36 6.65 7.18 6.22 
Sediment temperature (°C) 12 12 13 13.01 13 13 13 12.5 12 12 
Eh (mV) -61.33 -89 17.33 286.67 96.67 -87.67 -13 152.67 -89 258.33 
Median Diameter (MD) 0.73 0.66 0.54 0.67 0.41 0.41 0.36 0.51 0.33 0.66 
σ1 1.11 1.07 1.52 0.96 1.61 1.45 1.42 1.26 1.37 1.18 
silt & clay (%) 1.3 1.74 3.32 2.85 3.51 3.46 0.3 5.82 5.90 2.59 
sand% 98.7 98.26 96.68 97.15 96.49 96.54 99.7 94.18 94.10 97.41 

                                                           
6 License Number: 4178780829412; Order date: Aug 30, 2017; The raw data have been submitted at the MedOBIS Data Repository and can be accessed (available at 
http://ipt.medobis.eu/resource?r=zoobenthos_in_amvrakikos_wetlands). 
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Table 3.2: Coverage of the primers used to detect the presence of sulfate-reducing 

microorganisms (SRMs) in the lagoons of Amvrakikos Gulf (Ionian Sea).7  

Primer 
name 

Direction Sequence (5΄- 3΄) Length 
(nt) 

Degeneracy Coverage of 
core data-set 
dsrAB (%) 

Average coverage of 
core data-set 
dsrAB (%)  

1595f Forward YCAYGARATCCTBGARCC 18 48 3.17 - 14.86 8.01 
1905r Reverse CTGGGTRTGRACGATRTTG 19 8 12.93 - 40.94 23.90 

 

The results of the processing of the sequences during the noise removal are shown in 

Table S3.1. The 148,626 initial raw sequences were clustered into 18,655 high quality 

sequences, which corresponded to 5912 OTUs at the 90% similarity cutoff; out of 

those, 2167 were translated to amino acid sequences. The automatic protein model 

assignment algorithm of RAxML resulted in a log likelihood of −247,061.75. The 

labelled reference tree including branch labels and query sequences and the 

classification results show that the majority of the observed OTUs (74%) belong to 

the Deltaproteobacteria supercluster, within which the most abundant is the family 

Desulfobacteraceae (33%), with the Environmental supercluster 1 being second in 

terms of abundance (25%) (Figure 3.2a). However, when the abundance of the OTUs 

was taken into consideration, the difference between the groups was augmented 

(Figure 3.2b); the most abundant OTUs belong, as expected, to the 

Deltaproteobacteria supercluster (83%) followed by the Environmental supercluster 

1 (16%). 

This pattern was similar when each lagoon was regarded separately (Figure S3.1). 

Although representatives from the Environmental supercluster 1 were present in all 

lagoons (21 to 25%), their abundance was relatively lower (11 to 20%), while the 

Deltaproteobacteria supercluster showed higher abundance, which reached 88% in 

the case of Rodia lagoon. In addition, although the Desulfatiglans anilini lineage was 

present in similar percentages in all lagoons (18 to 27%), its abundance was greater 

in the a-mesohaline lagoons, i.e. in Tsoukalio and Rodia, and especially in the latter 

(40%), while levels were the same in the polyhaline and b-mesohaline sampling 

                                                           
7 Design of the primers was based on genomes of known SRMs, targeting the β-subunit of 
the dissimilatory sulfite reductase gene (dsrB). Coverage of the primers was calculated using 
the ARB Probe Match Tool. Degeneracy is given as the number of oligonucleotides that 
comprise the primer. Coverage is calculated as the percentage of positive hits against the 
1,292 core dataset. 
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stations. In the case of the Desulfobacteraceae family, the lowest presence (25 to 

28%) and abundance (12 to 17%) were found in the a-mesohaline lagoons; by 

contrast, in the other sampling stations the aforementioned family exhibited a 

higher presence (33 to 38%) and abundance (22 to 39%). Although the presence of 

the Syntrophobacteraceae family was very low in all lagoons (1 to 2%), it showed 

higher abundance in Logarou (11%) and Rodia (8%) lagoons. The abundance of the 

unclassified OTUs of the Deltaproteobacteria supercluster was higher in all lagoons 

(12 to 27%) than their presence (7 to 9%). However, none of the aforementioned 

variations in the relative abundance percentages of the SRM OTUs were statistically 

significant (Kruskal-Wallis: p > 0.05 for all cases); this could be attributed to the use 

of data at the phylum level for the Kruskal-Wallis test while differences may be 

exhibited at a lower taxonomic level. 
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Figure 3.2: Taxonomic classification of the sulfate-reducing microorganism 

operational taxonomic units (SRM OTUs) retrieved from all the samples based on (a) 

the presence/absence and (b) the abundance of OTUs. 

 



                                                Chapter 3: Sulfate-reducing microorganisms in Amvrakikos Gulf 

81 
 

The number of OTUs that were commonly shared among the lagoons (90% similarity 

cut-off) is shown in Figure 3.3. A total of 149 OTUs were commonly shared by all 5 

lagoons, corresponding to less than 7% of the total number of observed OTUs. 

 

 
Figure 3.3: Number of OTUs commonly shared among all possible combinations of 2 

or more of the 5 studied lagoons (see Figure 3.1) (90% similarity cut-off). The bar 

chart indicates the total number of OTUs retrieved from each lagoon. 

 

nMDS of the bacterial OTUs spatial pattern (Figure 3.4) showed that the bacterial 

community pattern differs by lagoon and salinity category. The PERMANOVA test 

produced significant results for the factors ‘lagoon’ (F.Model = 3.5936, p < 0.01), 

‘lagoon and location’ (F.Model = 3.3443, p < 0.01) and ‘salinity category’ (F.Model = 

4.0402, p < 0.01). This is also depicted in the Venn diagram for the 3 salinity 
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categories (Figure 3.5). In addition, salinity and ammonium ions (NH4
+) (Table 3.3) 

were the abiotic variables with the highest correlation to the SRM community 

pattern (ρw = 0.575). However, oxygen concentration was not included in the 

environmental variables that showed significant correlations with the SRM 

community pattern. 

 

 
Figure 3.4: Multidimensional scaling of the SRM OTUs (90% similarity cut-off). 

Symbols indicate sampling stations (2 per lagoon in 5 lagoons; see Figure 3.1). 

Salinity categories are encircled (see ‘Materials and methods: Statistical processing’).  
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Table 3.3: Environmental variables best correlated with the sulfate-reducing 

microorganism community diversity pattern, as provided by the BIO-ENV analysis (p 

< 0.01). Each row represents the correlation of the microbial community pattern 

with a different set of environmental variables, indicated by the plus sign. ρw: 

weighted Spearman rank correlation coefficient. NH4
+: ammonium ion. NO2

−: nitrite 

ion. MD: median diameter. σ1: sorting coefficient.  

ρw Water Sediment 

 Salinity NH4
+ NO2

- MD Phaeopigments σ1 

0.575 + +     

0.558 +      

0.537 + +  +   

0.523 + + +    

0.521 + + + +   

0.519 +  +    

0.518 + + + + +  

0.518 + +   +  

0.513 + +    + 

0.510 + +  + +  
 

Based on nMDS of the environmental terms that are associated with the SRM OTUs 

(Figure S3.2), and according to the PERMANOVA test, the samples can be 

differentiated by all tested factors (lagoon: F.Model = 2.2625, p < 0.01; location: 

F.Model = 2.5827, p < 0.05; lagoon and location: F.Model = 4.0728, p < 0.01; salinity 

category: F.Model = 5.0393, p < 0.01). This is also evident from Table 3.4, where it is 

shown that the abundance of the associated environmental terms varied among the 

sampling stations. Undoubtedly, the most abundant term in all the lagoons was 

‘sediment’ (~44%). The SRM OTUs found in the a-mesohaline lagoons, i.e. in 

Tsoukalio and Rodia, were associated with the term ‘wetland’ in higher abundances 

(~14 to 25%) compared with the other lagoons (~1 to 3%). Similarly, the terms 

‘hydrothermal vent’ and ‘acid mine drainage’ were found in much lower abundance 

in the polyhaline and b-mesohaline lagoons (~2 to 5%) than in Tsoukalio and Rodia 

(~16 to 25%). In addition, Tsopeli lagoon was the only lagoon associated with the 

terms ‘lake’ and ‘reservoir’ (~12%). 
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Figure 3.5: Number of OTUs of each salinity category shared with those of the other 

categories (90% similarity cut-off). The bar chart indicates the total number of OTUs 

found in each salinity category. 

 

All diversity indices, except for the total SRM relative abundance values (N), were 

significantly different between the 3 salinity categories and the 5 lagoons (Kruskal-

Wallis: p < 0.05 for all cases) (Tables S3.2 and S3.3). The post hoc comparisons 

showed that the diversity indices, in the case of salinity categories, did not differ 

significantly between (mixo-) bmesohaline and (mixo-) poly haline samples (Table 

S3.4). However, only Pielou’s evenness index (J’) was significantly different between 

the 2 locations (Mann- Whitney: p < 0.05) (Table S3.5). 
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Table 3.4: Abundance percentages of the environmental terms based on 

Environment Ontology (ENVO) vocabulary associated with the SRM OTUs (90% 

similarity cut-off) at each lagoon and at all lagoons combined.8  

ENVO terms Mazoma  Logarou Tsopeli Tsoukalio Rodia Lagoons 
combined 

aquifer 7.24 5.75 3.66 9.65 5.19 6.05 
biofilter 0.28 0.62  0.08 0.06 0.19 
borehole 6.87 5.68 3.24 9.65 5.16 5.95 
coast 0.05 0.03 0.12 0.02  0.02 
depression 2.57 1.39 0.75 0.46 0.52 0.93 
seamount  0.23 0.18  0.02 0.07 
ground water  0.08 0.36 0.67 0.24 0.26 
harbor 0.78 0.23 1.26 2.15 0.29 0.68 
inlet 1.96  0.09 0.24 0.39 0.45 
landfill  0.08 0.36 0.67 0.24 0.26 
leachate  0.08 0.36 0.67 0.24 0.26 
lentic water body 0.78 0.04 12.20  0.36 1.26 
lotic water body 3.57 1.72 5.40 16.11 24.92 15.21 
Marine 
biome/sediment/
water body 10.51 4.00 2.25 4.14 1.41 3.40 
microbial mat 0.23 0.04  0.40  0.09 
gold mine 6.87 5.68 3.24 9.65 5.16 5.95 
mud 0.16 0.08    0.03 
saline water 0.16    0.03 0.03 
sea coast 1.96 0.16 0.09 0.24 0.42 0.49 
sediment 52.35 72.47 64.54 31.05 30.41 43.76 
sludge  0.04   0.15 0.08 
soil 0.08   0.10 0.22 0.13 
terrestrial 
biome/habitat 0.72 0.16 0.84  0.06 0.21 
wetland 2.87 1.45 1.08 14.04 24.52 14.24 
 

3.4 Discussion 

 

The majority of the observed OTUs were identified as uncultured; although there are 

known representatives of sulfate-reducing microorganisms for which sequence data 
                                                           
8 depression: includes the ENVO terms ‘canyon’, ‘continental shelf’, ‘drainage basin’, 
‘trough’, ‘back-arc basin’. lentic water body: includes the ENVO terms ‘lake’, ‘reservoir’. lotic 
water body: includes the ENVO terms ‘hydrothermal vent’, ‘acid mine drainage’. marine 
biome/sediment/water body: includes the ENVO terms ‘sea’, ‘marine habitat’, ‘ocean water’. 
saline water: includes the ENVO terms ‘saline water’, ‘sea water’. sea coast: includes the 
ENVO terms ‘bay’, ‘fjord’. wetland: includes the ENVO terms ‘saline marsh’, ‘fen’. 
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are deposited in public databases, there are still many more that remain to be 

cultured and described. As expected, the vast majority of SRMs were affiliated to the 

Deltaproteobacteria supercluster, and in particular Desulfobacteraceae, which have 

been shown to exhibit high abundances in marine (Leloup et al., 2009), saline and 

hypersaline (Foti et al., 2007) and deep sea sediments (Kaneko et al., 2007). 

However, the abundance of the Desulfobacteraceae family fluctuated according to 

the salinity, i.e. its abundance was lower in the a-mesohaline lagoons and higher in 

the more saline lagoons, although it has also been reported from freshwater 

sediments (Wang et al., 2012). 

The high abundance of sequences belonging to Environmental supercluster 1, which 

comprises sequences from uncultured microorganisms (Müller et al., 2015), is 

indicative of the lack of knowledge of SRM diversity in the sampling sites and in 

lagoonal habitats in general. In addition, the effect of salinity on the distribution of 

SRM in the studied habitat is evident from the abundance of family-level Lineage 9 

that is composed of many sequences from the marine environment (Müller et al., 

2015) and from the absence (Lineages 6 and 10) or very low abundance (Lineage 8) 

of lineages often detected from freshwater wetlands (Pester et al., 2012). Apart from 

these findings, when analyzing each lagoon separately, there were certain 

differences in the abundance of the groups present. Specifically, the Desulfatiglans 

anilini lineage exhibited greater abundance in lower salinities; it has been previously 

found in both riverine (Suzuki et al., 2014) and marine sediments (Schnell et al., 

1989; Ahn et al., 2009), although it has been isolated from marine enrichment 

cultures, inoculated with mud from the North Sea coast, using brackish water 

medium (Schnell et al., 1989). 

However, these results were undoubtedly affected by the reference dataset used for 

the classification of the sequences, where most of the included sequences are 

derived from marine environments, followed by freshwater and other environments 

(Müller et al., 2015). This succession of environments is also depicted in the 

retrieved environmental terms that were found to be associated with sequences 

similar of ones retrieved from the present study; samples were mainly characterized 

by environmental descriptive terms that could be broadly classified to the marine 

biome, while terms belonging to the freshwater or brackish biome were found to a 
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lesser extent. This could suggest that in environments of intermediate salinity 

concentrations, there is still an unknown component of the SRM diversity that 

remains to be investigated and incorporated to our knowledge of SRM communities. 

However, there were certain environmental descriptive terms, such as the term 

‘wetland’, that contributed more to the specificity of the lower salinity lagoons. In 

addition, the influence of Louros river in the SRMs of Tsopeli lagoon may be 

deciphered from the association of the OTUs found in this lagoon with the terms 

‘lake’ and ‘reservoir’. 

The SRM community diversity pattern seems to differ in each lagoon, a finding which 

is in accordance with previous reports of the total community diversity pattern from 

the same study sites (Pavloudi et al., 2016). This finding also concurs with those of 

previous studies, which have shown that SRM communities exhibit biogeographic 

distribution patterns at small spatial scales and that a homogeneous distribution is 

not unlikely (Pérez-Jiménez and Kerkhof, 2005). In addition, the SRM community 

diversity pattern can be clustered according to broad salinity categories; this 

indicates that salinity is one of the major factors influencing the SRM communities in 

this habitat which is at the interface of marine and freshwater. This can be also 

concluded from the significant differentiation of the diversity indices between the 

salinity categories. 

Although sulfate reducers are named after their ability to use sulfate as a terminal 

electron acceptor, they can in fact use many different electron acceptors, such as 

nitrate and nitrite (Dalsgaard and Bak, 1994; Moura et al., 1997) or other sulfur 

compounds (thiosulfate, sulfite and sulfur) (Muyzer and Stams, 2008). Therefore, the 

detection of dsrAB gene sequences in environmental samples should not be 

regarded per se as actual physiological capability for dissimilatory sulfate/sulfite 

reduction (Pester et al., 2012; Müller et al., 2015), i.e. the occurrence of high 

abundance of SRMs does not necessarily reflect the occurrence of sulfate reduction 

in the respective environment (Muyzer and Stams, 2008). This may be the reason 

why our results suggest that the concentration of nitrite ions is correlated to the 

SRM community pattern. In addition, SRMs might be linked to ammonium on a 

secondary level, by using products of anaerobic protein degradation, which releases 

acetate, H2 and ammonium. The lack of correlation with the concentration of total 
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reduced inorganic sulfur (TRIS), which was also among the tested variables, may be 

explained by the fact that it is the sum of hydrogen sulfide (H2S), iron sulfide (FeS), 

elemental sulfur (S0) and iron pyrite (FeS2) (Fossing and Jørgensen, 1989) and thus it 

cannot reflect only the biogenically produced sulfide (S2−) (Jong and Parry, 2003). 

However, although there is no conclusive evidence to support this, it can be 

suggested that the sulfate reducers found at this particular study site and at this 

particular time point, probably were using sulfate and/or nitrogen compounds as 

electron acceptors. 

 

3.5 Conclusions 

 

The results of this exploratory study show that the majority of the observed 

operational taxonomic units (OTUs) belong to the Deltaproteobacteria supercluster 

and more specifically, to the Desulfobacteraceae family. Salinity and ammonium ions 

are the environmental factors that best correlated with the SRM community pattern. 

Furthermore, the SRM community of the brackish lagoons is differentiated from that 

of the brackish-marine lagoons and the studied lagoons have distinct SRM 

communities. 

Further investigation is needed to shed light on the functionality of SRMs in lagoonal 

ecosystems, especially in terms of their viability and competition with each other for 

the available sulfate, when the latter is insufficient for complete oxidation of organic 

compounds. In addition, the seasonality of SRMs should be investigated given that 

the environmental variables that primarily influence the community pattern are 

subjected to seasonal changes. 
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Abstract 

 

The Benguela coastal upwelling system is characterized by the highest primary 

productivity compared to other upwelling regions, episodic occurrence of free 

hydrogen sulfide gas and formation of an oxygen minimum zone (OMZ). RNA-based 

stable isotope probing (SIP) was used to identify nitrate and sulfate reducing 

microorganisms from three different sediment sampling stations using 13C acetate as 

labelled substrate. 

Labelling patterns of microbial communities, as assessed by high-throughput 

sequencing of 16S rRNA, varied across SIP incubations and depended on sampling 

station. When no external electron acceptor was added, an increase in the 

abundance of Epsilonproteobacteria was observed at two stations but of 

Gammaproteobacteria at the third station, which had a much lower water depth. In 

addition, an increase in Epsilonproteobacteria was observed both when nitrate or 

sulfate were added. 

It can be concluded that nitrate stimulated nitrate-reducing, sulfide-oxidizing 

bacteria, and inhibited the growth of sulfate-reducing bacteria. Furthermore, sulfate 

addition did not enhance the abundance of known sulfate-reducers, such as 

Deltaproteobacteria. This could be attributed to the competition for electron donors 

between nitrate-reducers and sulfate-reducers, to the inability of certain sulfate-
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reducing bacteria to use acetate as an electron donor or to the short duration of the 

incubations. 

 

4.1 Introduction 

 

Upwelling is a common feature of the continental shelf, induced by wind, Coriolis 

effects and Ekman transport (Summerhayes, 2015). The Benguela coastal upwelling 

system is one of the two main coastal upwelling systems of the southern hemisphere 

(Moloney et al., 2005) and one of the five coastal upwelling regions globally 

(Summerhayes, 2015). It is situated along the coast of south western Africa, with its 

south boundary located east of the Cape of Good Hope and the north reaching 

Angola waters (Shannon and O’Toole, 2003). In terms of primary productivity, it is 

the most productive of the subtropical eastern boundary current regions (Carr, 

2001), i.e. Humboldt, California and Canary, although in terms of fish catch it is the 

least productive (Lavik et al., 2009) with Humboldt yielding more than 20 times the 

fish tonnage of Benguela system  (Carr, 2001). This has been attributed to the 

episodic occurrence of hydrogen sulfide gas (Brüchert et al., 2009) which is a potent 

respiratory toxin to aquatic organisms (Bagarinao, 1992). 

Enhanced primary productivity causes a subsequent increase of sinking organic 

matter, which in turn promotes increased microbial respiration rates; thus, bottom 

water in upwelling ecosystems is susceptible to oxygen deficiency (Monteiro et al., 

2006; Diaz and Rosenberg, 2008). In cases where oxygen concentration is lower than 

20 μM, oxygen minimum zones (OMZs) are formed (Lam and Kuypers, 2011; Wright 

et al., 2012). Such areas are characterized by unique microbial communities, due to 

the availability and usage of alternative electron donors and acceptors for 

respiration (Lam and Kuypers, 2011; Cassman et al., 2012). Heterotrophic 

denitrification and anaerobic ammonium oxidation (anammox) are prevailing in 

OMZs and are responsible for massive losses of fixed nitrogen (Gruber and 

Sarmiento, 1997; Codispoti et al., 2001; Kuypers et al., 2005). The intensity of sulfur 

cycling is also apparent in OMZs and it has also been argued that there is an active 

coupling between nitrate reduction and sulfide oxidation (Canfield et al., 2010).  
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The high concentration of organic carbon in the Namibian shelf (up to 15% in surface 

sediments; Inthorn et al., 2006b), combined with the low oxygen concentration, 

renders it an ideal location for the identification of microbial communities involved 

in anaerobic degradation of organic matter. Organic matter turnover in this area is 

thought to be mediated primarily by sulfate reduction according to Brüchert et al. 

(2003), with other anaerobic bacterial degradation processes being less significant.  

Microorganisms in OMZs have, undoubtedly, been at the forefront of microbial 

ecology research using different methodologies, such as quantitative PCR (Lam et al., 

2009; Pitcher et al., 2011) or cloning and sequencing of functional genes (Kong et al., 

2013), metatranscriptomics (Stewart et al., 2012) and metagenomics (Bryant et al., 

2012). To directly link microorganisms with their metabolic capabilities, stable 

isotope probing (SIP) (Friedrich, 2006) was employed in this study. 

SIP is based on the incorporation of a substrate enriched in isotopic composition into 

the cellular compounds of microorganisms that are active during the labelling 

process. Commonly used molecular markers for SIP are DNA (Radajewski et al., 2000) 

and RNA (Manefield et al., 2002); since the labelled substrate (e.g. 13C) is 

incorporated into nucleic acids, it increases their buoyant density and thus, isopycnic 

centrifugation can be used to separate the labelled from non-labelled molecules 

(Radajewski et al., 2003; Dumont and Murrell, 2005; Aoyagi et al., 2015). RNA can be 

synthesized in higher rates than DNA; this, along with the fact that RNA reflects the 

overall cellular activity while DNA reflects the rate of replication, render the former a 

more sensitive marker for SIP studies (Manefield et al., 2002).  
13C labelled acetate has been widely used as an electron donor in SIP studies in lake 

(Schwarz et al., 2007) and marine sediments (Vandieken and Thamdrup, 2013), 

activated sludge (Osaka et al., 2006) and soil (Chauhan and Ogram, 2006; Hori et al., 

2010). Acetate is a main product of microbial fermentation that has been shown to 

be an important substrate for anaerobic terminal electron-accepting processes (Hori 

et al., 2010; Vandieken and Thamdrup, 2013). One example of these processes is 

sulfate reduction (Fukui et al., 1997), where acetate and hydrogen are the major 

electron donors used (Finke et al., 2007), with the former accounting for 40 – 50% of 

the total sulfate reduced in marine sediments (Sørensen et al., 1981; Parkes et al., 

1989). Sulfate reducers and nitrate reducers have been shown to use a variety of 
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electron donors, such as acetate, propionate, butyrate, methanol, ethanol, glucose 

and sucrose (Achtnich et al., 1995; Paul et al., 1989; Hallin et al., 1996; Ginige et al., 

2005; Osaka et al., 2006; Baytshtok et al., 2009). However, acetate is rather difficult 

to ferment for thermodynamic reasons; therefore, it can be ideally used as a specific 

substrate for identifying anaerobic respiratory microbes (Hori et al., 2010). 

The aim of the present study was to identify sulfate-reducing and denitrifying 

microorganisms in the Benguela coastal upwelling system using RNA SIP with 13C 

labelled acetate. The combination of SIP with subsequent 16S rRNA sequencing was 

used to reveal the missing link between the structure and function of 

microorganisms involved in anaerobic degradation of organic matter in the Namibian 

shelf sediments. The tested hypothesis was that different microbial populations 

would become labelled, based on the different sampling locations and on the 

terminal electron acceptors used, which were nitrate and sulfate. 

 

4.2 Materials and Methods 

 

4.2.1. Study area and sampling strategy 

 

The Benguela upwelling area is part of the eastern boundary current system of the 

South Atlantic subtropical gyre (Lahajnar et al., 2015). The working area included the 

weak upwelling cell offshore Walvis Bay (23° S), the Terrace Bay (20° S) and Kunene 

cell (17°15΄ S) in the north and the very stable upwelling cell close to Lüderitz (25-

27°S) as well as oxygenated water areas at the Namibian - South African border 

(28°38΄ S) in the south. 

During R/V METEOR cruise M103/1 in the austral summer season (December 2013 - 

January 2014), when low to moderate upwelling conditions were prevailing (Lahajnar 

et al., 2015), sediment samples were collected using an OCTOPUS multicorer that 

was equipped with eight polyacryl tubes (60 cm length; 10 cm diameter). Samples 

for nucleic acid extraction were collected from 27 stations along the sampled 

transects (Table 4.1; Figure 4.1) from the upper 2 cm of sediment cores and stored at 

-80 oC until return to the laboratory. Wherever it was possible, replicate samples 
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were collected from each station. Physicochemical measurements at the sampling 

stations were conducted by other cruise participants and were submitted at 

PANGAEA Data Publisher (https://www.pangaea.de/) under the project label GENUS 

(unpublished datasets #859049 and #854182). 

 

 
Figure 4.1: Map showing the location of the sampling stations (Map data: Google). 

Colours are differentiating the sampling stations according to the sampled transect. 

Sampling stations were SIP was employed are underlined.  
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Table 4.1: Overview of the stations sampled. SIP: Stable-isotope probing. 

Station  Date Latitude Longitude Depth 
(m) 

Number of 
replicate samples  

1 1/1/2014 28° 38.00' S 16° 16.01' E 40.6 1 
2 1/1/2014 28° 38.15' S 15° 59.75' E 113.7 1 
4 2/1/2014 28° 37.96' S 15° 19.97' E 187.4 1 
5 2/1/2014 28° 38.00' S 14° 59.95' E 170.7 3 
7 2/1/2014 28° 38.41' S 14° 25.26' E 358.2 1 
8 3/1/2014 28° 37.99' S 14° 14.95' E 728 2 
9 3/1/2014 28° 38.02' S 13° 47.02' E 2032.8 2 
10 5/1/2014 23° 2.28' S 12° 18.59' E 2099.4 3 
14 6/1/2014 23° 0.98' S 13° 1.96' E 454.6 2 
18*** 7/1/2014 23° 0.74' S 13° 20.24' E 350.8 2 
20 7/1/2014 23° 0.18' S 13° 30.16' E 233.7 3 
34** 9/1/2014 23° 0.01' S 14° 21.98' E 39.3 2 
36 9/1/2014 21° 0.72' S 12° 49.96' E 302.3 2 
39 10/1/2014 19° 29.63' S 12° 9.99' E 233.2 3 
43 11/1/2014 17° 15.04' S 11° 39.84' E 80.9 2  
45 12/1/2014 17° 15.47' S 11° 23.94' E 243.9 2 
46 12/1/2014 17° 15.82' S 11° 18.06' E 453.8 2 
47 12/1/2014 17° 15.49' S 11° 10.04' E 1015.4 3 
48 13/1/2014 17° 15.01' S 10° 59.94' E 2115.2 2  
53 14/1/2014 19° 59.97' S 11° 49.92' E 408.4 2 
59 15/1/2014 19° 59.95' S 12° 19.97' E 212.5 2 
2281 28/12/2013 24° 0.02' S 14° 14.90' E 122.3 3 
2282 28/12/2013 24° 36.02' S 14° 11.98' E 144.6 3 
2285 29/12/2013 25° 11.95' S 14° 19.94' E 153.1 2 
2287 29/12/2013 25° 21.03' S 13° 53.79' E 250.1 1 
2289* 30/12/2013 25° 29.32' S 13° 30.01' E 700.2 2 
2291 31/12/2013 25° 39.99' S 13° 0.00' E 2225.9 1 
*: close proximity with station GeoB 12802 (25° 30' S, 13° 27' E) of Evans et al. 
(2017). **: close proximity with stations 1 (25° 51.9' S, 14° 28.9' S E) and 2 (22° 48.9' 
S, 14° 26.9' E) of Brüchert et al. (2003). ***: close proximity with station 8 (23° 11' S, 
13° 23.8' S E) of Brüchert et al. (2003). 
 

4.2.2. Stable isotope probing (SIP) experiment 

 

Samples from three stations (Table 4.2) from the upper 2 cm of sediment cores were 

collected for SIP experiments. Sediment slurries were prepared on board by mixing 

the sediment with autoclaved anoxic sulfate-free artificial seawater (ASW) 

(containing 26.4 g NaCl, 11.2 g MgCl2 • 6H2O, 1.5 g CaCl2 • 2H2O and 0.7 g KCl per 
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liter of deionized water) in a ratio of 1:2. The slurries were homogenized anoxically 

under a stream of N2 and 15 ml slurry each were transferred into serum bottles.  

 

Table 4.2: General characteristics of the stations were SIP was employed. 

Station  Sediment type Depth 
(m) 

Oxygen concentration 
(umol/l) 

Temperature 
(oC) 

Salinity 
(psu) 

18 brown grey fine 
sand (fS) 

350.8 59 9.2 34.78 

34 dark green mud, H2S 
smell, well layered 

39.3 32 12.76 35.15 

39 dark green mud, 
foraminifera, shell 
fragments 

233.2 29.5 * 14.17 * 35.39 * 

*: values are the average of those measured at the stations 38 (20° 0.64' S, 12° 
29.72' E) and 40 (19° 0.54' S, 12° 9.92' E), sampled the same day by the cruise and at 
about 50 km distance from station 39. 
 

Subsequently, substrates were added to microcosms. Two microcosm experiments 

were conducted per sampling station (in duplicates) either by adding nitrate or 

sulfate as electron acceptors, respectively (Table 4.3; Figure S4.1). Sulfate was added 

to a final concentration of 28 mM. Nitrate was added 4 times at a final concentration 

of 2.5 mM each time, to avoid the production of high toxic levels of nitrite. 

1,2 - 13C2 99% sodium acetate (CAS 56374-56-2, Cambridge Isotope Laboratories, 

USA) was added to the samples as an electron donor to a final concentration of 5 

mM. 

 

Table 4.3: Summary of the stable isotope experiments conducted on board.  

 Electron acceptor 
(substrate) Electron donor Sampling  Substrate 

addition  
Sample 
code 

Nitrate 
microcosms Nitrate 

13C - acetate 

Day 7  

Day 0, 2, 4, 6 
A 

12C - acetate D 
No addition (control) H 

Sulfate 
microcosms Sulfate 

13C – acetate 
Day 0 

B 
12C – acetate E 
No addition (control) I 

Control 
microcosms 

No addition 
(control) 

13C - acetate 
------- 

C 
12C – acetate F 
No addition (control) G 
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Along with the 13C labelled samples, a series with unlabelled sodium acetate was 

used as control (incubation with native substrate, i.e. 12C), as proposed by Dunford 

and Neufeld (2010); these samples provided a subsequent comparison to ensure 

that any apparent labelling of nucleic acid was not an artifact of the 

ultracentrifugation or G+C content density differences in RNA contributing to 

separation (Neufeld et al., 2007). 

In addition, another series of samples was used as a no substrate control, thus 

without acetate addition, to access background population changes during the SIP 

incubation (Table 4.3; Figure S4.1).  

Serum bottles were sealed with mushroom stoppers and the headspace was flushed 

with N2 to achieve incubation at anoxic conditions. Sediment slurries were incubated 

in the dark at a temperature of ~15 °C for 3 days, when half of the slurry was 

removed from bottles and stored at -80 °C. The headspace was again flushed with N2 

and the incubation was continued until six days were concluded. At the seventh day, 

the rest of the slurry was removed from the bottles and stored at -80 °C until further 

processing. 

 

4.2.2.1 Nucleic acid extraction 

 

RNA and DNA were co-extracted from the last day of all microcosm incubations, and 

all the other sediment samples, as performed by Henckel et al. (1999) and Lueders et 

al. (2004). Approximately 0.7 g of wet sediment were added to a 2-ml screw-cap vial, 

prefilled with ~0.7 g of baked (3 h, 180 °C) 0.1 mm (diameter) zirconia/silica beads 

(11079101z, BioSpec, USA). The vials were filled with 750 μl of 120 mM NaPO4 buffer 

(pH 8) and 250 μl TNS solution (Table S4.1) and placed in a bead beater for 45 s at 

6.5 m/s. Immediately after that the vials were centrifuged for 10 min at 20,800 rcf 

and 4 °C and the supernatants were transferred to new 2-ml vials. For nucleic acid 

extraction, one volume of phenol/chloroform/isoamylalcohol (P/C/I; 25:24:1; pH 5; 

Carl-Roth, Karlsruhe, Germany) was added to the aqueous supernatant. Vials were 

vigorously shaken for 20 s and centrifuged for 5 min at 20,800 rcf and 4 °C. 

Supernatants were transferred to new 2-ml vials, and one volume of 
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chloroform/isoamylalcohol (C/I; 24:1; Carl-Roth) was added. Vials were again 

vigorously shaken for 20 s and then centrifuged for 5 min at 20,800 rcf and 4 °C. 

Supernatants were transferred to new 2-ml vials and C/I extraction was repeated to 

successfully remove all phenol remnants. Supernatants were transferred to new 2-ml 

vials and 1.5 ml of polyethylene glycol (PEG; Table S4.1) was added to precipitate 

nucleic acids and the vials were centrifuged for 90 min at 20,800 rcf and 4 °C. 

Supernatants were discarded and the pellets were washed with 1 ml 70% ethanol (4 

°C) and centrifuged for 30 min. Supernatants were again discarded, pellets were left 

for air drying (~5 min) to remove leftover ethanol and resuspended with 50 μl 

nuclease free diethylpyrocarbonate (DEPC) treated water (Carl-Roth). Each replicate 

sample was extracted separately.  

In order to remove DNA contamination from the microcosm extractions, DNA was 

digested using RQ1DNase (Promega) using the manufacturer's protocol. The 

remaining RNA was precipitated with 1 ml PEG followed by centrifugation for 1 h at 

20,800 rcf and 4 °C. Supernatants were discarded and the pellets were washed with 

500 μl cold 70% ethanol (4 °C) and centrifuged for 30 min. Supernatants were again 

discarded, pellets were left for air drying (~5 min) to remove leftover ethanol and 

resuspended with 40 μl nuclease free DEPC treated water.  

The absence of DNA, i.e. the success of the DNAse digestions, was verified by failure 

of 16S rRNA gene targeting PCR amplification. Finally, the RNA extracts were 

quantified using RiboGreen assay (Invitrogen Quant-iT RiboGreen RNA assay kit, Life 

technologies). 

 

4.2.2.2 Pure culture standards 

 

Escherichia coli cells were grown on fully 13C-labelled or unlabelled medium (E. coli 

OD2 13C labelled- 110201102; E. coli OD2- 100002, Silantes, Munich, Germany) and 

RNA was extracted in order to be used as a known 13C-labelled and unlabelled 

gradient marker during the isopycnic centrifugations.  
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4.2.2.3 Isopycnic centrifugation 

 

RNA was separated on a density gradient using isopycnic centrifugations. Density 

gradient centrifugation was done as in Sztejrenszus (2016) who modified the Lueders 

et al. (2004) protocol. Briefly, ~375 ng of each replicate RNA sample, i.e. ~750 ng in 

total, were mixed with 240 μl of deionized formamide, 6 ml of cesium 

trifluoroacetate (CsTFA; illustra CsTFA- 17084702, GE Healthcare, UK) and Gradient 

Buffer (GB; Table S4.1) to a volume of 1.3 ml. For the E. coli standard, both labelled 

and unlabelled RNA were mixed in one sample. Starting density was adjusted to 

1.796 – 1.799 g/ml using an AR200 digital refractometer (Reichert Analytical, NY 

USA). Afterwards, ~6.5 ml of each mixture was transferred to a Beckman polyallomer 

Quick Seal 16 x 45 mm tube (Catalog number 345830, Beckman Coulter, USA) sealed 

and spun in a VTI 65.1 vertical rotor in an Optima XE-90 ultracentrifuge (both 

Beckman Coulter) at 124,000 rcf and 20 °C for 65 h.  

After ultracentrifugation, gradient fractions of ~400 μl were collected at a flow rate 

of 1 ml/min (Aladdin syringe pump, AL-1000, WPI, Berlin, Germany), and density of 

fractions was measured using a refractometer. Fractionation resulted in 13 – 14 

fractions with a density range of 1.77 – 1.84 g/ml. In order to precipitate RNA from 

fractions, 400 μl isopropanol and 80 μl sodium acetate 3M were added to each one 

and incubated at -20 oC overnight, followed by centrifugation at 20,800 rcf and 4 °C 

for 1 h. Supernatants were removed and 1.2 ml of 70% ethanol (4 °C) was added to 

each sample and centrifuged for 30 min at 20,800 rcf and 4 °C. Supernatants were 

again removed, pellets were left for air drying (~5 min), and RNA was resuspended 

with 20 μl nuclease free DEPC treated water. RNA was quantified fluorometrically 

using the RiboGreen assay. 

From each sample, the isotopically “light” and “heavy” fractions (~1.79 and ~1.82 

g/ml, respectively) corresponded to densities where 13C-labelled and unlabelled E. 

coli RNA were found (Figures S4.2-S4.4). RNA from those fractions was transcribed to 

cDNA using Applied Biosystems High Capacity cDNA Reverse Transcription Kit (Life 

technologies) following the manufacturer's protocol. 
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4.2.3 PCR amplification and sequencing of the 16S rRNA gene 

 

cDNA from the isotopically “light” and “heavy” fractions, as well as DNA from the 

other sediment samples, was amplified using S-DBact-0341-b-S-17 (or 341F) as a 

forward primer and S-D-Bact-0785-a-A-21-B (or 805RB) as a reverse primer 

(Herlemann et al., 2011; Klindworth et al., 2013), with a revision in the reverse 

primer for detection of SAR11 bacterioplankton (Apprill et al., 2015), thus targeting 

the V3-V4 region of the 16S rRNA gene. In certain cases, in order to enhance 

nucleotide diversity of the sequencing run and increase the available primer pair 

combinations, primers having an extra 5 bp barcode were used. 

For Illumina library preparation, the two-step PCR approach was used. The first-step 

PCR was performed with the aforementioned primers containing a universal 5’ tail as 

specified in the Nextera library protocol from Illumina (tail sequence for the forward 

primer: 5΄ - TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG - 3΄, tail sequence for the 

reverse primer: 5΄ - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG - 3΄). The 

amplification reaction mix of the first PCR contained 4 μl 5x KAPA HiFi Fidelity buffer 

(containing 2 mM Mg2+ at 1X), 2 μl trehalose (1 M), 0.5 μl KAPA dNTP Mix (10 mM), 1 

μl of each primer (10 μM), 0.5 μl KAPA HiFi HotStart DNA polymerase (1 U/μl) in a 

final volume of 20 μl per reaction. DNA template concentration was about 10 ng/μl. 

The first PCR protocol used was the following: 95 oC for 5 minutes; 30 cycles at 98 oC 

for 20 seconds, 57 oC for 2 minutes, 72 oC for 1 minute; 72 oC for 7 minutes. Negative 

control (PCR blank) samples, i.e. samples with no nucleic acid template, were also 

included in the first-step PCR in order to assess possible source of contamination in 

the amplification reactions.   

The resulting PCR amplicons (531 bp length), including the negative control samples, 

were purified using Agencourt AMPure XP (Beckman Coulter, Brea, CA, USA) and 

were used as templates for the second-step PCR in order to include the indexes 

(barcodes) as well as the Illumina adaptors. 

The amplification reaction mix of the second PCR contained 4 μl 5x KAPA HiFi Fidelity 

buffer, 0.5 μl KAPA dNTP Mix (10 mM), 2 μl from each primer (10 μM), 0.5 μl KAPA 

HiFi HotStart DNA polymerase (1 U/μl) in a final volume of 20 μl per reaction. DNA 
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template concentration was about 20 ng/μl. The second PCR protocol used was the 

following: 95 oC for 3 minutes; 8 cycles at 98 oC for 20 seconds, 55 oC for 30 seconds, 

72 oC for 30 seconds; 72 oC for 5 minutes. Amplifications were carried out using 

T100™ Thermal Cycler (BIORAD). Again, the resulting PCR amplicons (600 bp) were 

purified and mixed in equimolar amounts to construct the library that was 

sequenced using a MiSeq Reagent Kit v3 (600-cycles) at the IMBBC (HCMR).    

These raw sequence data were submitted to the Sequence Read Archive (SRA) 

(Leinonen et al., 2011) under the study accession number PRJEB20585 (available at 

http://www.ebi.ac.uk/ena/data/view/PRJEB20585).  

 

4.2.4 Sequence processing 

 

The raw sequence reads retrieved from all the sediment samples were submitted for 

processing, using the UPARSE based analysis pipeline (Edgar, 2013), to the Integrated 

Microbial Next Generation Sequencing (IMNGS) (Lagkouvardos et al., 2016), under 

the following options: a) number of allowed mismatches in the barcode: 2, b) 

minimum fastq quality score for trimming of unpaired reads: 3, c) minimum length 

for single reads or amplicons for paired overlapping sequences: 437, d) maximum 

length for single reads or amplicons for paired overlapping sequences: 656, e) 

maximum number of expected errors in paired sequences: 3, f) length of trimming at 

the forward side of the seqs: 10, g) length of trimming at the reverse side of the 

seqs: 10 and h) minimum relative abundance of OTU cutoff (0-1): 0.0050. 

Pairing, quality filtering and OTU clustering (97% identity) was done by USEARCH 8.0 

(Edgar, 2010). Chimera filtering was performed by UCHIME (Edgar et al., 2011) (with 

RDP set 15 as a reference database). RDP classifier version 2.11 training set 15 (Wang 

et al., 2007) was used for the taxonomic classification of the OTUs and MUSCLE 

(Edgar, 2004) was used for the sequence alignment. 
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4.2.5 Statistical processing 

 

OTUs that were found in the negative controls (Table S4.2) were removed from the 

samples, in order for a more accurate description of the microbial communities to be 

made.  

A matrix containing the microbial OTUs as variables and sampling stations as samples 

was constructed. The number of sequences assigned to a given OTU was considered 

to reflect its relative abundance at each of the 27 sampled stations. The matrix was 

subsequently standardized (i.e. sample values were divided by the total for each 

sample), transformed (square root), and used for the calculation of the triangular 

similarity matrices using the Bray-Curtis similarity coefficient (e.g. Clarke and 

Warwick, 1994). The similarity matrix was used as an input for the non-metric 

multidimensional scaling (nMDS) (Clarke, 1993) and permutational multivariate 

analysis of variance (PERMANOVA) (Anderson, 2001), under the null hypothesis that 

no differences among microbial assemblages exist. The design considered three 

factors: “transect”, “depth range” and “range of oxygen concentration” (999 

permutations). Each factor was tested separately (under a design of unrestricted 

permutation of raw data) because of data limitations that did not allow for a 

successful three-factor design to be tested.   

A second matrix containing the physicochemical measurements at the sampled 

stations was also constructed. The values were normalized (i.e. the values for each 

variable had their mean subtracted and were divided by their standard deviation) 

and used for the calculation of similarity patterns by the standardized Euclidean 

distance. In order to test whether the biotic and abiotic matrices were correlated, 

the RELATE routine (Clarke and Gorley, 2006) was used. In addition, BIO-ENV analysis 

was used to examine all potential correlations between the biotic and abiotic 

matrices by employing the weighted Spearman’s rank coefficient (Clarke and 

Ainsworth, 1993) and after the exclusion of highly correlated (-0.8 > ρw > 0.8) 

physicochemical variables.  

A suite of diversity indices (Margalef’s species richness, Pielou's evenness, Shannon-

Wiener (Pielou, 1969), Simpson) was calculated for each sampling station.  
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The aforementioned multivariate analyses were performed with the PRIMER (v.6) 

package developed in Plymouth Marine Laboratories (Clarke and Gorley, 2006). The 

vegan package (Oksanen et al., 2016) was used for the calculation of diversity indices 

using R version 3.2.1 (R Core Team, 2015). 

 

4.3 Results  

 

4.3.1 Microbial community composition 

 

In order to assess the composition of the microbial community in situ, prior to 

isotope probing incubations, sediment samples (upper 2 cms) from 27 stations 

(Figure 4.1) were subjected to 16S rRNA gene amplicon sequencing. An overview of 

the processing of the obtained sequences is available in Table S4.2. As shown in 

Figure 4.2, where the relative abundance percentages of each replicate sample have 

been averaged per sampling station, the majority of the OTUs were classified as 

Deltaproteobacteria, followed by Gammaproteobacteria and unidentified Bacteria. 

When the abundance of the taxonomic groups was compared among the stations 

(Figure 4.2), some clear patterns were observed. Epsilonproteobacteria were highly 

abundant at station 34 (~7%) and station 48 (~2%); in other stations they were found 

with much lower abundances. The highest abundances of Deltaproteobacteria were 

found at station 2287 (~33%), station 53 (~27%) and station 45 (~28%), while the 

lowest were found at station 9 (~4%), station 10 and station 34 (~9% in both cases). 

Regarding Gammaproteobacteria, station 9 and station 43 had the highest 

abundances (~24 and 25% respectively); the lowest was found at stations 8, 2285, 34 

and 39 (~7% on average). Alphaproteobacteria were most abundant at station 9 

(~30%) and station 10 (~15%). Actinobacteria were mainly present at stations 14, 1 

and 45 (~17% on average) while almost absent from stations 2282 and 34 (~2% on 

average). Flavobacteria were abundant at station 2281 (~20%) but decreased in 

abundance in all the other stations. Ignavibacteria were more abundant at station 

2285, station 2282 (~15% on average) and station 59 (~10%).  
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Figure 4.2: The relative abundances (%) of the main microbial taxonomic groups at 

the sampling stations. A: zonal transect at 28° 38΄S. B: cross shelf transect starting at 

25°S. C: stations between 23°S and 25°S. D: zonal transect at 23°S. E: stations 

between 19°S and 21°S. F: zonal transect off Kunene mouth at 17° 15΄S. Colours of A, 

B, C, D, E and F according to sampling transect, based on Figure 4.1. 

 

In terms of diversity (Table S4.3), there was no evidence of a general correlation 

pattern with the physicochemical measurements of the sampling stations. However, 

a negative correlation was observed in a few cases (Table S4.4), for instance, the 

relationship between salinity and total microbial relative abundance values. 

The nMDS of the microbial OTUs spatial pattern (Figure 4.3) showed a grouping 

according to the depth range of the sampling stations. This was also confirmed by 

the PERMANOVA test which produced significant results for all the tested factors 

(transect: Pseudo-F = 1.5161, p < 0.05, depth range:  Pseudo-F = 2.8826, p < 0.01, 

range of oxygen concentration: Pseudo-F = 2.9127, p < 0.01). Pairwise tests (Table 

S4.5) showed that there were significant statistical differences between the lowest 

ranges of bottom oxygen concentration (up to 30 μmol/l) and the highest ones (from 

50 up to 200 μmol/l). In addition, microbial communities of the deepest stations 
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(1000-2500 m) were significantly different from the ones that were up to 500 m 

deep.  

 

 
Figure 4.3: nMDS of the microbial OTUs. Symbols according to depth range of the 

sampling stations. Colour according to sampling transect, based on Figures 4.1 and 

4.2. 

 

The average values of the physicochemical variables measured at the sampling 

stations are presented in Table 4.4. The results of the RELATE routine showed that 

the biotic matrix is related to the abiotic one (ρw = 0.627, p < 0.01). In more detail, 

the combination of delta 15N, liquid water content (LWC) and bottom water oxygen 

concentration are best correlated with the microbial community pattern and are 

present in all the variable combinations (Table 4.5). 
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Table 4.4: The average values of the physicochemical variables of the sampling stations.              
  Surface Sediment Bottom Water  

Station 
Total 
Nitrogen (%) 

Total 
Carbon (%) 

Total Organic 
Carbon (%) 

Calcium 
Carbonate (%) 

Biogenic 
Silica (%) 

Lithogenic 
Silica (%) 

delta 15N 
(per mil) 

Liquid Water 
Content (%) 

Pressure 
(dbar) 

Oxygen 
(μmol/l) 

Temperature 
(oC) 

Salinity 
(psu) 

1 0.04 0.17 0.14 0.28 4.67 94.75 6.45 23.62 44 63 10.03 34.79 
2 0.14 1.42 0.89 4.39 4.44 90.51 6.11 32.51 117.5 78.5 9.61 34.76 
4 0.27 11.25 2.24 75.15 2.38 16.49 6.26 55.4 185 104 8.95 34.68 
5 0.22 11.95 1.83 84.33 0.92 10.56 6.08 55.91 173 111 9.4 34.73 
7 0.3 11.76 2.48 77.38 1.8 16.77 6.59 59.53 369 121 8.64 34.68 
8 0.35 11.01 2.79 68.54 3.55 23.3 6.56 55.94 720 150 4.64 34.41 
9 0.1 9.68 0.83 73.72 4.18 25.86 8.18 56.37 2043.5 198 3 34.87 
10 0.21 10.42 1.74 72.41 4.65 23.79 6.53 61.52 2107 191 3.14 34.9 
14 0.26 10.94 1.81 76.08 2.55 18.65 5.86 54.66 454 77 7.65 34.64 
18 0.33 11.59 2.53 75.5 3 15.74 5.66 55.75 351 59 9.21 34.78 
20 0.68 13.18 5.43 64.62 2 21.9 6.15 61.08 236 16 12.36 35.16 
34 1.02 7.8 7.47 2.75 34.21 51.22 7.1 86.72 40 32 12.76 35.15 
36 0.87 13.53 7.83 47.5 4.54 35.41 5.81 64.32 296 14 10.55 34.96 
39 0.7 9.69 5.94 31.24 10.31 55.33 4.77 65.39 139 29.5 14.17 35.39 
43 0.6 5.07 4.49 4.78 20.7 65.92 4.36 81.51 74 22 15.24 35.54 
45 0.06 1.86 0.55 10.97 18.22 70.28 5.71 28.92 242.5 23.5 11.63 35.12 
46 0.15 1.39 1.14 2.05 13.86 77.55 4.79 35.93 459 48 7.53 34.66 
47 0.23 2.41 1.73 5.67 13.18 76.46 5.16 51.89 1016 135 4.04 34.56 
48 0.42 3.83 3.07 6.41 17.63 71.54 5.2 69.56 2119 198 3.29 34.92 
53 0.59 12.63 4.68 66.29 4.96 23.68 5.11 61.55 410 44 8.07 34.7 
59 0.54 11.65 3.61 66.94 5.5 24.46 4.91 59.41 212 10 12.32 35.18 
2281 1.46 10.98 9.55 11.88 24.99 51.01 6.08 90.05 114 9 11.81 35.07 
2282 1.69 13.93 11.9 16.94 16.11 57.24 4.9 87.86 142.5 16 11.62 35.05 
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  Surface Sediment Bottom Water  

Station 
Total Nitrogen 
(%) 

Total 
Carbon (%) 

Total Organic 
Carbon (%) 

Calcium 
Carbonate (%) 

Biogenic 
Silica (%) 

Lithogenic 
Silica (%) 

delta 15N (per 
mil) 

Liquid Water 
Content (%) 

Pressure 
(dbar) 

Oxygen 
(μmol/l) 

Temperature 
(oC) 

Salinity 
(psu) 

2285 1.55 13.07 11.57 12.48 16.15 50.97 4.27 84.38 155 7 11.53 35.03 
2287 0.57 7.87 7.67 1.71 5.63 78.87 5.32 52.38 251 34 11.21 35.01 
2289 1.04 14.38 8.75 46.97 4.22 32.25 5.92 75.9 694 120.5 5.24 34.46 
2291 0.96 13.9 7.82 50.67 6.41 32.09 5.98 75.28 2243 197 2.98 34.89 

 

Table 4.5: Τhe environmental variables best correlated with the microbial community diversity pattern, as provided by the BIO-ENV analysis. Each row represents the  
correlation of the microbial community pattern with a different set of environmental variables, indicated by the plus sign. ρw: weighted Spearman rank correlation coefficient. 
 Bottom Water  Surface sediment      

ρw 
Oxygen 
(μmol/l) 

Salinity 
(psu) 

Total Carbon (%) Total Organic 
Carbon (%) 

Calcium 
Carbonate (%) 

Biogenic 
Silica (%) 

delta 15N 
(per mil) 

Liquid Water 
Content (%) 

0.687  +       +  + 

0.684  +      +  +  + 

0.669  + +    +  +  + 

0.661  + +      +  + 

0.657  +   +  +  +  + 

0.641  +   +    +  + 

0.633  +    +   +  + 

0.631  +  +   +  +  + 

0.630  + +   +    +  + 

0.627 +    + + + + 
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4.3.2. Identification of microorganisms incorporating 13C acetate 

 

In order to assess the composition of the microbial community using nitrate or 

sulfate as electron acceptors, two microcosm experiments were conducted (Table 

4.3; Figure S4.1) in three sampling stations (Table 4.2). Station 34 was 

physicochemically different from the other two stations, by having the lowest 

percentage of calcium carbonate (2.75 %) and pressure (40 dbar) and the highest 

percentage of liquid water content (86.72 %). The lowest oxygen concentration was 

found at stations 39 (29.5 μmol/l) and 34 (32 μmol/l). Also, station 18 had the lowest 

percentage of biogenic (3 %) and lithogenic silica (15.74 %) (Table 4.4). 

After six days of incubations, subsequent RNA extractions and isotopic separation by 

ultracentrifugation, all the isotopically “heavy” gradient fractions (e.g. with density 

of ~1.82 g/ml cesium trifluoroacetate) of the unlabelled control contained less RNA 

than the respective fractions of the 13C gradient (Figures S4.2-S4.4), thus confirming 

the isotopic enrichment and ensuring the successful completion of the SIP 

experiment (Neufeld et al., 2007). Sequencing of the selected fractions showed 

differences between the “heavy” and “light” fractions in the 13C acetate amended 

incubations (Figures 4.4; S4.5-S4.7); since certain taxonomic groups were found in 

the “heavy” fractions while they were less abundant or absent in the “light” 

fractions, the incorporation of the label in the 13C acetate amended incubations was 

verified. 

More specifically, in the SIP experiment at station 18, there was a clear increase in 

the abundance of Epsilonproteobacteria in the 13C “heavy” fraction when nitrate was 

added as an electron acceptor (~74%) compared to their abundance in the “light” 

fraction of this sample (~34%) (Figures 4.4; S4.5). In addition, Betaproteobacteria, 

Bacilli and Clostridia were found in the 13C labelled “heavy” fraction while they were 

absent from the “light” fraction. When sulfate was added as an electron acceptor, 

there was again an increase in the abundance of Epsilonproteobacteria (~57%) 

compared to the percentage found in the “light” fraction of this sample (~10%). 

When no external electron acceptors were added in the incubations, the same 
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increase in the abundance of Epsilonproteobacteria was observed (~76%) while in 

the “light” fraction their relative abundance was only 12%.  

The SIP experiment at station 34 (Figures 4.4; S4.6), under nitrate addition, resulted 

in an increase in the abundance of Gammaproteobacteria (~51%) and the 

appearance of Betaproteobacteria (~10%) and Clostridia (~23%) in the 13C labelled 

“heavy” fraction while the abundance of the former was only 10% in the “light” 

fraction of this sample. The same pattern was observed when no electron acceptors 

were added and, also, the control incubations were almost identical across the 

density range of the centrifugation gradient. However, under the addition of sulfate, 

no change was observed in the taxonomic composition of RNA in the “heavy” 

fraction when compared to the “light” fraction. 

The SIP experiment at station 39 (Figures 4.4; S4.7), with addition of nitrate as 

electron donor, yielded an increase in the abundance of Alphaproteobacteria, 

Betaproteobacteria, Flavobacteriia and Bacilli in the “heavy” fraction (~16, 20, 10 

and 13%, respectively) when compared to their abundance in the “light” fraction 

(~6% on average). Under the addition of sulfate, the increase in the abundance of 

Epsilonproteobacteria was evident (~89%) compared to the “light” fraction (~9%). 

When no electron acceptors were added, the “heavy” fraction had higher 

abundances of Epsilonproteobacteria, Actinobacteria, Sphingobacteriia and Bacilli 

(~32, 21, 10 and 6% respectively) while these groups had an average abundance of 

2% in the 13C “light” fraction.  

The aforementioned taxonomic groups were actively assimilating the 13C labelled 

acetate, which resulted in the differentiation of those samples from the ones that 

were incubated with the native substrate (natural isotopic composition) (Figures 

S4.5-S4.7). 

When compared with the community composition in situ, prior to the SIP 

incubations, it is evident that at station 18 the abundance of Epsilonproteobacteria 

increased from <1% to 57 – 76% depending on the electron acceptor used. Samples 

where no electron donor was added, i.e. samples H, I and G (Table 4.3; Figure S4.1), 

did not differ much from the community composition in situ; thus, there were no 

background population changes derived from the incubation process.  
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Regarding station 34, there was an apparent increase in the abundance of 

Gammaproteobacteria from ~7% at the in situ community to ~51% under nitrate 

addition. However, in the case of sulfate addition (samples B, E, I) and where no 

electron donor was added (H, I, G) the observed pattern was the same; the latter 

samples differ from the natural community, which might imply that the observed 

changes are due to the incubation process. 

Samples from station 39, under nitrate addition, differentiated from the in situ 

community regarding the increase in abundances of Alphaproteobacteria and 

Betaproteobacteria (from ~1 and <1% to ~16 and 20 %, respectively). Similarly, under 

sulfate addition, Epsilonproteobacteria showed an increase from <1% at the in situ 

community to ~89% and under no addition of electron acceptors there was again an 

increase of Epsilonproteobacteria (~32%) and Actinobacteria (~21% from the 6% of 

the natural community). As for station 18, samples H, I and G suggest that there 

were only slight background population changes derived from the incubation 

process. 

When the 13C labelled “heavy” and “light” RNA fractions are compared at the three 

stations (Figure 4.4), it seems that the patterns across the incubations are different, 

according to sampling station. Although the initial communities prior to the 

incubation did not differ much between the sampling stations (Figure 4.2), there are 

certain differences observed in the microbial communities of each experiment 

(Figure 4.4). For example, when no electron acceptor was added, an increase in the 

abundance of Epsilonproteobacteria was observed at stations 18 and 39 but of 

Gammaproteobacteria at station 34. In addition, the increase in 

Epsilonproteobacteria was observed both when nitrate or sulfate were added. 
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Figure 4.4: The relative abundances (%) of the main microbial taxonomic groups of 

the “heavy” and “light” fractions of the SIP experiment with addition of 13C labelled 

acetate at the three stations. Top graph: Incubations with nitrate as an electron 

acceptor. Middle graph: Incubations with sulfate as an electron acceptor. Bottom 

graph: Control incubations with no electron acceptor addition. 
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4.4 Discussion 

 

4.4.1 Microbial community composition in situ 

 

Previous studies on the sediment microbial communities of the Benguela upwelling 

system are very limited (Schippers et al., 2012; Evans et al., 2017). Archaea and 

Bacteria have been found to exist in equal abundances, while correlating with the 

sediment organic carbon content (Schippers et al., 2012); however, other studies 

have shown that Bacteria are more abundant in the surface sediments (Evans et al., 

2017). Other studies at the Namibian sediments have focused on the existence and 

high abundance of large sulfur bacteria, such as Beggiatoa spp. and Thiomargarita 

namibiensis, which couple the oxidation of sulfide using nitrate as the terminal 

electron acceptor (Schulz et al., 1999; Dale et al., 2009), leading to the detoxification 

of the sulfidic waters (Lavik et al., 2009). However, these bacteria are only present in 

considerable abundances north of 22°S (Lavik et al., 2009), which excludes four of 

the six sampled transects of the present study (i.e. transects A to D). Gamma- and 

Epsilonproteobacteria have been found to catalyze chemolithotrophic oxidation of 

sulfide with nitrate (Lavik et al., 2009) although the abundance of the latter was very 

low in the sampling stations of the present study. Epsilonproteobacteria were almost 

exclusively found at station 34 which was characterized by the highest percentage of 

biogenic silica and the lowest pressure. 

Furthermore, it has been shown that anaerobic ammonium oxidation (anammox), 

conducted by bacteria belonging to the order of Planctomycetales (Wang and Gu, 

2013), is a dominant pathway in the Benguela upwelling zone (Kuypers et al., 2005). 

However, this cannot be suggested from the results of the present study since the 

abundance of Planctomycetes, in general, was very low; thus, anammox does not 

seem to be an important process due to its scarce representatives in the chosen 

sampling stations. However, this can be attributed to the choice of primer pair which 

is not specific for Planctomycetales, such as the one used by Chouari et al. (2003). 

Overall, the majority of the OTUs were classified as Deltaproteobacteria, suggesting 

that sulfate reduction is occurring in the sampling stations, as has been observed by 
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Brüchert et al. (2003); however, this group of microorganisms can use other electron 

acceptors, such as nitrate and nitrite (Dalsgaard and Bak, 1994; Moura et al., 1997) 

or other sulfur compounds (thiosulfate, sulfite and sulfur) (Muyzer and Stams, 2008).  

Microbial communities seem to group according to the range of oxygen 

concentration and water depth. The relationship of microbial communities with 

depth is expected since previous studies in the area have shown a decrease in the 

size of the microbial community with the increase of water depth (Evans et al., 

2017). It has also been shown that organic carbon concentration decreases with 

depth (Inthorn et al., 2006), coinciding with a decrease in sulfate reduction rate 

(Brüchert et al., 2003). Therefore, this may affect the abundance of different 

microbial populations in the different sampling stations. However, from the results 

of the present study, percentages of total organic carbon and total carbon did not 

correlate with water depth (data not shown).  

Our results showed an evident correlation of the microbial community pattern with 

the physicochemical parameters, and in particularly with delta 15N, sediment water 

content and oxygen concentration. High values of delta 15N (8 to 15‰) have been 

found to occur in the diatomaceous mud and to coincide with the OMZ (Nagel et al., 

2016); they have been interpreted as a signal of nitrogen consuming anaerobic 

processes, such as heterotrophic denitrification and anammox, which enrich the 

residual nitrate in 15N (Pichevin et al., 2005; Emeis et al., 2009). However, there are 

still patterns of 15N that cannot be explained as such (Nagel et al., 2016). 

Different sediment types have shown to be characterized by different delta 15N 

values and also, delta 15N has shown to be higher in stations with greater depth 

(Nagel et al., 2016). This would suggest that the observed correlation could reflect an 

effect of sediment type on microbial composition, apart from dominance of certain 

nitrogen transformation processes.  

 

4.4.2 Metabolically active microbial populations 

 

SIP was employed to link function and identity of the microorganisms of the 

sediment samples from the Namibian oxygen minimum zone. SIP involves the 
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incorporation of “heavy” isotopes into newly synthesized nucleic acids, and can be 

used to separate newly synthesized from existing DNA or rRNA (Friedrich, 2006; 

Rettedal and Brözel, 2015). One important issue in SIP studies is the avoidance of 

cross feeding, i.e. consumption of dead labelled microbial biomass (Gallagher et al., 

2005), which results in labelling of microorganisms that did not feed on the provided 

substrate, i.e. non-acetotrophs in the case of the present study. However, the short 

duration of the microcosm incubations, and the use of RNA as molecular marker, 

were considered to have minimized, if not completely avoided, any potential cross 

feeding. Another important methodological consideration is that SIP inevitably 

introduces a level of disturbance from the natural conditions, which could favour 

specific microbial groups (Vandieken and Thamdrup, 2013) In order for safer 

conclusions to be drawn, control samples were also included in the experiments so 

that background population changes during the SIP incubation would be detectable.  

In all cases of external additions of electron acceptors at station 18, as well as in the 

case of no addition, an increase of Epsilonproteobacteria was observed; the latter is 

in accordance with previous studies showing that Epsilonproteobacteria dominated 

the anaerobic assimilation of acetate in estuarine sediment SIP incubations (Webster 

et al., 2010). Since the same pattern was observed when sulfate was added to the 

incubations, it can be suggested that nitrate, an electron acceptor with higher 

standard redox potential, was already available at station 18; thus, it could have 

been used for the oxidation of acetate to a lower threshold concentration than the 

one that would have been achieved under reduction of sulfate (Achtnich et al., 

1995). However, the low concentrations of nitrate in the sediment pore water 

(Lahajnar et al., 2015) could not have allowed for a complete depletion of the 

electron donor; hence, acetate would still have been available for sulfate reduction. 

Nitrate is a favourable electron acceptor in terms of thermodynamics that can 

stimulate nitrate-reducing, sulfide-oxidizing bacteria (Bentzen et al., 1995), while 

inhibiting the growth of sulfate-reducing bacteria (García de Lomas et al., 2006). This 

inhibition can be relieved with the addition of a suitable exogenous electron donor 

(Achtnich et al., 1995). Nitrate addition has been shown to alter microbial 

community composition and particularly, to increase the abundance of Beta-, 

Gamma- and Epsilonproteobacteria (Chen et al., 2013), which is in accordance with 
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the results of the present study. Increase of Beta- and Gammaproteobacteria was 

also observed under nitrate addition at station 34, while at station 39 an increase in 

Alpha- and Betaproteobacteria was observed, which is expected since several genera 

of denitrifiers are included in these classes (Zumft, 1997; Canfield et al., 2005; 

Hunter et al., 2006). Also, nitrate surplus has been shown to stimulate large sulfur 

bacteria, such as the gammaproteobacterium Thiomargarita namibiensis, which 

store nitrate and polyphosphate (poly-P) in their vacuoles (Goldhammer et al., 2010). 

As observed for station 18, station 39 under sulfate addition showed an increase in 

Epsilonproteobacteria. Sulfate addition did not enhance known sulfate-reducers, 

such as Deltaproteobacteria and Firmicutes (Muyzer and Stams, 2008; Müller et al., 

2015), although they exist as members of the in situ community representing the 

largest fraction of sequences. Apart from the competition for electron donors among 

nitrate-reducers and sulfate-reducers (Achtnich et al., 1995), this could be attributed 

to the fact that certain sulfate-reducing bacteria use lactic, pyruvate, ethanol and 

some fatty acids as electron donors, instead of acetate (Madigan et al., 2003; Rabus 

et al., 2006). Hence, increase in the abundance of such genera would not have been 

favoured by the used electron donor in this experiment. Also, sulfate reduction can 

be stimulated by alternative unidentified electron donors other than acetate, lactate, 

propionate and isobutyrate (Finke et al., 2007). In addition, incorporation of labelled 

acetate into known sulfate-reducers was not evident in similar SIP experiments with 

comparable duration, suggesting that sulfate reduction in the incubated sediments 

could be occurring between novel sulfate reducers and sulfur and/or sulfide-

oxidizing Epsilonproteobacteria (Webster et al., 2010). SIP experiments of longer 

duration or using deeper sediment layers could have possibly led to enrichment of 

different microbial communities, and in particular sulfate-reducers, although the 

highest sulfate reduction rates have been observed in the upper sediment layer 

(Brüchert et al., 2009). In addition, determining sulfate reduction rates in the 

presence and absence of acetate could have provided evidence for the existence of 

sulfate reducers and of their preferred electron donor in these sampling stations.   
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4.5 Conclusions 

 

It has been suggested that modifications in hydrology and global warming will 

enhance hypoxic incidents and will expand OMZs (Stramma et al., 2008), thus 

affecting survival and functioning of macro- and microorganisms (Middelburg and 

Levin, 2009). Chemolithoautotrophic microbes are expected to be affected by the 

expansion of hypoxic conditions (Lipsewers et al., 2017), since, in general, anaerobic 

reactions and pathways will be favoured, at the expense of the aerobic ones. 

Currently, sulfide-oxidizing bacteria have been shown to control the flux of hydrogen 

sulfide to the water column (Schulz et al., 1999); however, if sulfate reduction is 

enhanced, thus leading to increased hydrogen sulfide production, there is a chance 

that the latter will be largely diffused in the water column (Emeis et al., 2004) and 

not retained in the sediment in oxidized forms, i.e. as elemental sulfur or sulfate.  

Regulation of hypoxic episodes will aid the end-users of coastal upwelling 

ecosystems to possibly achieve higher productivity, in terms of fish catches, which 

otherwise is largely compromised by the elevated hydrogen sulfide concentrations. 

In order to formulate possible predictions on the future state of OMZs, more 

information is needed in regard to biogeochemical cycles and microbial community 

functioning, and especially concerning the coupling reactions between nitrogen and 

sulfur. 
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Abstract 

 

Advances in next-generation sequencing (NGS) have allowed significant 

breakthroughs in microbial ecology studies. This has led to the rapid expansion of 

research in the field and the establishment of “metagenomics”, often defined as the 

analysis of DNA from microbial communities in environmental samples without prior 

need for culturing. Many metagenomics statistical/computational tools and 

databases have been developed in order to allow the exploitation of the huge influx 

of data. In this review article, we provide an overview of the sequencing 

technologies and how they are uniquely suited to various types of metagenomic 

studies. We focus on the currently available bioinformatics techniques, tools, and 

methodologies for performing each individual step of a typical metagenomic dataset 

analysis. We also provide future trends in the field with respect to tools and 

technologies currently under development. Moreover, we discuss data management, 

distribution, and integration tools that are capable of performing comparative 

metagenomic analyses of multiple datasets using well-established databases, as well 

as commonly used annotation standards. 

 

                                                           
9 For author contributions, please refer to the relevant section. Modified version of the 
published review. 
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5.1 Introduction 

 

As has been seen from the previous chapters, there is a variety in the way of 

sequencing data analysis; different methods and software have been applied in each 

chapter. In this chapter, the main workflows for the analysis of metagenomic 

datasets will be presented, along with examples of software and pipelines. In 

addition, the terminology used in such studies will be discussed in detail in order to 

avoid confusion and misunderstandings between similar terms or between terms 

that have been used synonymously without justification.  

The advent of next-generation sequencing (NGS) or high-throughput sequencing has 

revolutionized the field of microbial ecology and brought classical environmental 

studies to another level. This type of cutting-edge technology has led to the 

establishment of the field of “metagenomics”, defined as the direct genetic analysis 

of genomes contained within an environmental sample without the prior need for 

cultivating clonal cultures. Initially, the term was only used for functional and 

sequence-based analysis of the collective microbial genomes contained in an 

environmental sample (Riesenfeld et al., 2004), but currently it is also widely applied 

to studies performing polymerase chain reaction (PCR) amplification of certain genes 

of interest. The former can be referred to as “full shotgun metagenomics” (Xia et al., 

2011), and the latter as “marker gene amplification metagenomics” (i.e., 16S rRNA 

gene), “targeted metagenomics” or “meta-genetics” (Handelsman, 2009). As the 

term “metagenomics” has been extensively used for both the aforementioned 

methods, despite their intrinsic differences, both “shotgun metagenomics” and 

“marker gene metagenomics” will be analyzed in detail in this chapter.    

Such methodologies allow a much faster and elaborative genomic/genetic profile 

generation of an environmental sample at a very acceptable cost. Full shotgun 

metagenomics has the capacity to fully sequence the majority of available genomes 

within an environmental sample (or community). This creates a community 

biodiversity profile that can be further associated with functional composition 

analysis of known and unknown organism lineages (i.e., genera or taxa) (Tringe et al., 

2005). Shotgun metagenomics has evolved to address the questions of who is 
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present in an environmental community, what they are doing (function-wise), and 

how these microorganisms interact to sustain a balanced ecological niche. It further 

provides unlimited access to functional gene composition information derived from 

microbial communities inhabiting natural ecosystems. 

Marker gene metagenomics is a fast and gritty way to obtain a 

community/taxonomic distribution profile or fingerprint using PCR amplification and 

sequencing of evolutionarily conserved marker genes, such as the 16S rRNA gene 

(Tringe and Hugenholtz, 2008). This taxonomic distribution can subsequently be 

associated with environmental data (metadata) derived from the sampling site under 

investigation. 

Several types of ecosystems have been studied so far using metagenomics, including 

extreme environments such as areas of volcanism (Benson et al., 2011; Xie et al., 

2011; Kilias et al., 2013; Urich et al., 2014) or other areas of extreme temperature 

(Bradford et al., 2008; Pearce et al., 2012), alkalinity (Xiong et al., 2012), acidity 

(García-Moyano et al., 2012; Johnson, 2012), low oxygen (Stevens and Ulloa, 2008; 

Bryant et al., 2012) and high heavy-metal composition (Chodak et al., 2013; 

Gołębiewski et al., 2014). This invaluable resource provides an infinite capacity for 

bioprospecting and allows the discovery of novel enzymes capable of catalyzing 

reactions of biotechnological commercialization (Segata et al., 2011). 

The first metagenomic studies were focused on environments that were believed to 

be characterized by low-diversity, such as an acid mine drainage (Tyson et al., 2004), 

human gut microbiome (Breitbart et al., 2003), and water samples from the Sargasso 

Sea (Venter et al., 2004), mainly due to the unavailability of both high-throughput 

sequencing technologies at that time and relevant software for the scaffolds’ 

assembly. As more and more researchers entered this new field of study, the need 

for powerful tools and software became apparent and therefore led to the creation 

of several such tools. 
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5.2 Sequencing Technologies 

 

Two commonly used NGS technologies utilized to date are the 454 Life Sciences and 

the Illumina systems, with the ratio of usage shifting in favor of the latter recently. 

Both technologies have been widely used in metagenomic studies, and hence it is 

important to briefly describe their advantages and disadvantages with respect to the 

sequencing of metagenomics samples. 

The 454 pyrosequencer was the first next-generation sequencer to achieve 

commercial introduction in 2004 (Mardis, 2008). Its chemistry relies on the 

immobilization of DNA fragments on DNA-capture beads in a water–oil emulsion and 

then using PCR to amplify the fixed fragments. The beads are placed on a 

PicoTiterPlate (a fiber-optic chip). DNA polymerase is also packed in the plate, and 

pyrosequencing is performed (Ronaghi et al., 1998; Ronaghi, 2001). Its main 

difference from the classic Sanger sequencing is that pyrosequencing relies on the 

detection of pyrophosphate release on nucleotide incorporation rather than chain 

termination with dideoxynucleotides. The release of pyrophosphate is conveyed into 

light using enzyme reactions, which is then converted into actual sequence 

information (Mardis, 2008). 

In the initial years of high-throughput sequencing, scientists embraced the new 

technology and hence discovered the existence of the “rare biosphere” (Sogin et al., 

2006), although the actual existence of the latter has been highly disputed ever since 

as differentiation between the “rare biosphere” and sequencing errors, i.e. artifacts, 

cannot be done easily (e.g. Kunin et al., 2010). However, in many cases the apparent 

assignment of a microbial operational taxonomic unit (OTU) was in fact an attribute 

of sequencing errors, which caused an overinflation of the diversity estimates 

(Brown et al., 2015). Noise generated by this 454 pyrosequencing technology 

affected different aspects of metagenomic data analysis and led to biased results 

(Rosen et al., 2012). 

PCR errors may lead to replicate sequence artifacts, which can cause overestimation 

of species abundance and functional gene abundance in 16S rRNA and full shotgun 

metagenomics, respectively. PCR can also generate noise in the form of single base 
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pair errors (i.e., substitutions, deletions) that can cause frame shifts for protein 

coding genes in shotgun metagenomics. Moreover, PCR chimeras (sequences 

generated by undesired end-joining of two or more true sequences) can also affect 

16S rRNA metagenomics results with respect to species distribution (Brodin et al., 

2013). Sequencing errors can also occur due to the actual chemistry underlining the 

technology. For example, there is an inherent difficulty in clearly identifying the 

intensity of 454 pyrosequencing-generated flowgrams. This task becomes even more 

difficult during the sequencing of homopolymers (Rothberg and Leamon, 2008). The 

relatively long read length generated by this technology (in comparison to other 

sequencing technologies) allows a significantly less error-prone assembly in shotgun 

metagenomics and permits greater annotation accuracy (Wommack et al., 2008; 

Thomas et al., 2012).  

Although 454 has seized being supported by Life Sciences, still one should take into 

account that there is a large number of existing unpublished datasets that have been 

generated via this technology. Therefore, it is important to include it in this review 

and compare it with the other sequencing services that have become more popular 

over the last years, namely Illumina. 

Illumina dye sequencing by synthesis begins with the attachment of DNA molecules 

to primers on a slide, followed by amplification of that DNA to produce local colonies 

(Mardis, 2008). This generation of “DNA clusters” is accompanied by the addition of 

fluorescently labeled, reversible terminator bases (adenine, cytosine, guanine, and 

thymine) attached with a blocking group (Bentley et al., 2008). The four bases then 

compete for binding sites on the template DNA to be sequenced, and the 

nonincorporated molecules are washed away. After each synthesis cycle, a laser is 

used to excite the dyes, and a high-resolution scan of the incorporated base is made. 

A chemical deblocking step ensures the removal of the 3’ terminal blocking group 

and the dye in a single step. The process is repeated until the full DNA molecule is 

sequenced. Illumina has a variety of sequencing instruments dedicated to different 

applications. MiSeq, for example, has an output of 15 GB and 25 million sequencing 

reads of 300 bp in length; clustered fragments can be sequenced from both ends 

(paired-end sequencing), which can be merged so that 600 bp reads can be obtained. 

HiSeq2500 has a much greater output (1,000 GB per run) but offers 125 bp reads. 
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The shorter read length produced by Illumina may increase errors during assembly 

and, subsequently, the annotation inaccuracies during shotgun metagenomics data 

analysis (Kircher et al., 2012). In contrast, when analyzing 16S rRNA metagenomics 

data, this technology obviates the need for time-consuming noise removal 

algorithms required for pyrosequencing and makes analysis less error-prone (Werner 

et al., 2011). The greater coverage/yield generally offered by Illumina allows 

significant decrease of systematic errors. This advantage and the low cost are the 

delineating factors that have turned Illumina into the preferred high-throughput 

sequencing technology for metagenomics studies. 

Additional sequencing technologies are available and can potentially be used for 

metagenomic studies. These include the Applied Biosystems SOLiD 5500 W Series 

sequencer, which offers higher coverage than 454 pyrosequencing but lower than 

Illumina (∼120 GB per run). It allows fragment or mate-paired sequencing; however, 

it can only guarantee a low error rate for sequencing reads of maximum 50 bp in 

length (Metzker, 2010). This reduces the possibility of generating a reliable and 

usable de novo assembly for shotgun metagenomics; but, on the other hand, this 

technology performs very well when utilizing a reference genome for mapping or 

assembly of reads. However, using the Exact Call Chemistry (ECC) module, the SOLiD 

system offers to boost the accuracy of its ligation-based sequencing. 

An emerging sequencing technology that may have high impact on the fields of 

genomics and metagenomics was recently developed by Pacific Biosciences (PacBio) 

(Metzker, 2010). This technology uses single-molecule real-time (SMRT) sequencing, 

which is a parallelized single-molecule DNA sequencing by synthesis. SMRT 

sequencing utilizes the zero-mode waveguide (ZMW), whereby a single DNA 

polymerase enzyme is fixed to the bottom of a ZMW with a single molecule of DNA 

as a template. The ZMW is a structure that creates an illuminated observation 

volume that is small enough to allow the observation of a single nucleotide of DNA 

(also known as a base) being incorporated by DNA polymerase. Each of the four DNA 

bases is attached to one of four different fluorescent dyes. When a nucleotide is 

incorporated by the DNA polymerase, the fluorescent tag is cleaved off, which 

diffuses out of the observation area of the ZMW where its fluorescence is no longer 

observable. A detector detects the fluorescent signal of the nucleotide 
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incorporation, and the base call is made according to the corresponding fluorescence 

of the dye. PacBio provides much longer read lengths (∼10,000 bp) compared to the 

aforementioned technologies, thus having obvious advantages when addressing 

issues of annotation and assembly for shotgun metagenomics. PacBio technology 

uses a process called strobing to perform paired-end read sequencing. Despite the 

high read length of PacBio, this technology is limited by high error rates and low 

coverage (albeit at higher throughput than Sanger sequencing). 

In addition to the aforementioned technologies, which are based on optics, 

technologies such as Ion Torrent’s semiconductor sequencing benchtop sequencer 

and Ion Proton are now coming into play. These technologies are based on the use of 

proton emission during polymerization of DNA in order to detect nucleotide 

incorporation. This system promises read lengths of >200 bp and relatively high 

throughput, on the order of magnitude achieved by 454 Life Sciences systems. 

Additionally, it offers higher quality than 454, especially when sequencing 

homopolymers, but at a similar cost. Looking into the future, and given that 454 will 

eventually stop being supported by Life Sciences, it is very likely that former users of 

the 454 pyrosequencing will switch to Ion Torrent sequencing chemistry, due to the 

similarities of both (eg, emulsion PCR step) and the significant advantages of the 

latter. 

An even more cutting-edge technology is currently under development by Oxford 

Nanopore technologies, which is developing “strand sequencing”, a method of DNA 

analysis that could potentially sequence completely intact DNA strands/polymers 

passed through a protein nanopore. This obviates the need for shotgun sequencing 

and aims to revolutionize the sequencing industry in the future. Oxford Nanopore 

intends to commercialize this technology with the Company's GridION™ and 

MinION™ systems. For metagenomics, this technology can have obvious advantages, 

as it will eliminate erroneous sequencing caused by shotgun metagenomics and 

exclude the need for the error-prone assembly step during data analysis (for details, 

see later). However, nanopore sequencing is at the moment noncommercialized 

(offered only through the MinION™ Access Program) and is still being optimized on 

case-by-case basis using specific template and sequencing needs. 
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Another example of an innovative and very promising technology is the Irys 

Technology (BioNano Genomics), which uses micro and nanostructures and offers 

new ways of de novo constructing genome maps. The input is DNA labeled at specific 

sequence motifs that can be used for imaging and identification in IrysChips. These 

labeling steps result in a uniquely identifiable, sequence-specific pattern of labels to 

be used for de novo map assembly or for anchoring sequencing contigs. 

The main characteristics of the different next generation sequencing technologies 

are summarized in Table 5.1.  

 

Table 5.1: Comparison of the main different next generation sequencing 

technologies. 

Sequencing Type Technology Chemistry Read Length 

(bp) 

Throughput 

(Gb) 

Runtime 

(h) 

Massively Parallel 

Sequencing 

454 Pyrosequencing 500-1200  1  23 

Illumina Sequencing By Synthesis 100-600 600-1000 72-192 

SOLiD Sequencing By Ligation 60 180  336 

Ion Torrent Proton detection 200-400 2 2-8 

Single Molecule 

Sequencing 

PacBio Real Time Sequencing 50,000 1 2 

Nanopore Strand sequencing 1,000 10-20 >6 

 

5.3 Shotgun Metagenomics 

 

5.3.1 Assembly of shotgun metagenomics data 

 

Metagenomics studies are commonly applied to investigate the specific genomes 

(known as well as unknown, both cultured and uncultured) that are present within 

an environmental community under study. Moreover, when performing full shotgun 

metagenomics, the complete sequences of protein coding genes (previously 

characterized or novel) as well as full operons in the sequenced genomes can offer 

invaluable knowledge on the functional potential of a microbial community. For 

these reasons, an assembly of shorter reads into genomic contigs and orientation of 

these into scaffolds is often performed to provide a more compact and concise view 
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of the sequenced community under investigation. Early attempts at metagenomic 

data assemblies utilized tools initially implemented for single genome data 

assemblies. They, therefore, fell short when forced to assemble reads into contigs 

for metagenomic samples. However, assembly tools have significantly evolved since 

then, and the current line of tools have been modified and specifically designed to 

assemble samples containing multiple genomes, thereby rendering them much more 

affective for the task in hand. 

The process of assembling shorter reads into contigs can take two different routes: i) 

reference-based assembly and ii) de novo assembly. The choice of which route to 

follow depends on the dataset that needs to be analyzed and on the specific needs 

of each research project. For example, de novo assembly could be, in theory, used 

even if a reference genome exists, if the computational power allows for it. 

Reference-based assembly refers to the use of one or more reference genomes as a 

“map” in order to create contigs, which can represent genomes or parts of genomes 

belonging to a specific species or genus. Tools such as Newbler (Roche), MIRA 4 

(Chevreux et al., 2004) or AMOS, as well as the recent MetaAMOS (Treangen et al., 

2013) are commonly used in metagenomics for performing referenced-based 

assemblies. These tools are not computationally intensive and perform well when 

metagenomic samples are derived from extensively studied and researched areas. In 

such cases, sequences from closely related organism would have already been 

deposited in online data repositories and databases, allowing them to be used as 

references for the assembly process. Often, assemblies are visually evaluated using 

genome browser tools such as Artemis (Rutherford et al., 2000). The observation of 

large gaps in the query genome(s) of the resulting assembly, when comparing to the 

reference genome(s), can be seen as an indication that perhaps the assembly is 

incomplete or that the reference genome(s) used are too distantly related to the 

community under investigation in order to perform optimally. 

De novo assembly refers to the generation of assembled contigs using no prior 

reference to known genome(s) (Paszkiewicz and Studholme, 2010). This task is 

computationally expensive and relies heavily on sophisticated graph theory 

algorithms, such as de-Bruijn graphs, which were specifically employed to tackle this 

job. Tools such as EULER (Pevzner et al., 2001), Velvet (Zerbino and Birney, 2008), 
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SOAP (Li et al., 2008) and Abyss (Simpson et al., 2009) were amongst the first to 

perform de novo assembly and are still widely used today. They require computers 

with large amounts of memory and generally long execution times (depending on 

the size of the dataset). However, these tools were built with the assumption of 

assembling a single genome and often underperform when used for metagenome 

assemblies. Problems arise from 1) variation between similar subspecies, 2) genomic 

sequence similarity between different species, and 3) difference in abundance for 

species in a sample also affected by different sequencing depths for individual 

species. These issues introduce kinks (or branches) in the de Bruijn graph, and have 

to be addressed in order to improve the assembly. 

The next generation of assembly tools, such as MetaVelvet (Namiki et al., 2012) and 

very recently MetaVelvet-SL (Afiahayati et al., 2014) and Meta-IDBA (Peng et al., 

2011) were developed to address these issues. MetaVelvet and Meta-IDBA employ a 

combined binning and assembly approach to create more accurate assemblies from 

datasets containing a mixture of multiple genomes. They make use of k-mer 

frequencies to detect kinks in the de-Bruijn graph and then use these k-mer 

thresholds to decompose the graph into subgraphs. These tools further assemble 

contigs and scaffolds based on the decomposed subgraphs, and thus perform a more 

efficient grouping/assembly of contigs, effectively separating those belonging to 

different species. 

The IDBA-UD algorithm (Peng et al., 2012) was recently developed to additionally 

address the issue of metagenomic sequencing technologies with uneven sequencing 

depths. It makes use of multiple depth-relative k-mer thresholds to remove 

erroneous k-mers in both low-depth and high-depth regions. Comparison of the 

performances of these tools is often performed using the N50 length score, which is 

defined as “the length for which the collection of all contigs of that length, or longer, 

contains at least half of the total of the lengths of the contigs in the assembly” 

(Miller et al., 2010; Earl et al., 2011). A recent comparison of the latest line of 

assembly tools shows that IDBA-UD can reconstruct longer contigs with higher 

accuracy (Peng et al., 2012). However, there is still much room for the improvement 

of metagenomic assembly algorithms in order for them to conceptually capture the 

task in hand. 
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5.3.1.1 Binning tools for metagenomes 

 

Binning is the process of grouping (binning) reads or contigs into individual genomes 

and assigning the groups to specific species, subspecies, or genus. Binning methods 

can be characterized in two different ways depending on the information used to 

group the sequences in hand: 1) Composition-based binning is based on the 

observation that individual genomes have a unique distribution of k-mer sequences 

(also denoted as genomic signatures). By making use of this conserved species-

specific nucleotide composition, these methods are capable of grouping sequences 

into their respective genomes. 2) Similarity- or homology-based binning refers to the 

process of using alignment algorithms such as BLAST or profile hidden Markov 

Models (pHMMs) to obtain similarity information about specific sequences/genes 

from publically available databases (eg, NCBI’s nonredundant database – nr or 

PFAM). Thereafter, sequences are binned according to their assigned taxonomic 

information. 

Available composition-based binning algorithms are included in tools such as TETRA 

(Teeling et al., 2004), S-GSOM (Chan, Hsu, Halgamuge, et al., 2008; Chan, Hsu, Tang, 

et al., 2008), Phylopythia (McHardy et al., 2007) and its successor PhylopythiaS (Patil 

et al., 2012), TACOA (Diaz et al., 2009), PCAHIER (Zheng and Wu, 2010), ESOM 

(Ultsch and Moerchen, 2005; Dick et al., 2009) and ClaMS (Pati et al., 2011), while 

examples of purely similarity-based binning software include tools such as CARMA 

(Krause et al., 2008), MetaPhyler (Liu et al., 2011) and SOrt-ITEMS (Monzoorul Haque 

et al., 2009). Some tools employ similarity-based binning algorithms in their 

metagenomics analysis pipelines. Examples of such tools are IMG/MER 4 (V M 

Markowitz et al., 2014), MG-RAST (Meyer et al., 2008; Glass et al., 2010) and MEGAN 

(Huson et al., 2007; Huson and Mitra, 2012; Huson and Weber, 2013) and will be 

described in more detail below in section 5.3.1.2. 

Certain binning tools employ a hybrid approach using both composition and 

similarity-based information to group sequences. Some examples of such tools are 

PhymmBL (Brady and Salzberg, 2009) and MetaCluster (Y Wang et al., 2012; Wang et 

al., 2014). More innovative binning approaches include co-abundance gene 
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segregation across a series of metagenomic samples, thus facilitating the assembly of 

microbial genomes without the need for reference sequences (Nielsen et al., 2014). 

This new method promises to overcome the usual computational challenges of other 

binning tools and has been tested for a human gut microbiome. 

 

5.3.1.2 Annotation of metagenomics sequences 

 

Annotation of metagenomes is specifically designed to work with mixtures of 

genomes and contigs of varying length. Initially, a series of preprocessing steps 

prepare the reads for annotation. These include: i) Trimming of low-quality reads 

using platform-specific tools such as the FASTX-Toolkit (Su et al., 2012). Additionally, 

FastQC (Huson et al., 2007) can provide summary statistics for FASTQ files. Both have 

been recently integrated into the Galaxy platform (Giardine et al., 2005; Blankenberg 

et al., 2010; Goecks et al., 2010). SolexaQA (Cox et al., 2010) and Lucy 2 (Li and Chou, 

2004) are also used for FASTQ files. Most of these tools make use of Phred or Q 

quality scores (Ewing and Green, 1998; Ewing et al., 1998), the thresholds of which 

depend on sequencing technology; ii) Masking of low-complexity reads performed 

using tools such as DUST (Morgulis et al., 2006); iii) A de-replication step that 

removes sequences that are more than 95% identical; iv) A screening step performed 

by some tools (i.e., MG-RAST) in which the pipeline provides the option of removing 

reads that are near-exact matches to the genomes of a handful of model organisms, 

including fly, mouse, cow, and human. This is done using mapping tools such as 

Bowtie 2 (Langmead and Salzberg, 2012). 

The next main stage of the annotation pipeline is the identification of genes within 

the reads/assembled contig, a process often denoted as “gene calling” (V M 

Markowitz et al., 2014). Genes are labeled as coding DNA sequences (CDSs) and 

noncoding RNA genes, and certain annotation pipelines (e.g., IMG/MER) also predict 

for regulatory elements such as clustered regularly interspaced short palindromic 

repeats (CRISPRs). 

CDSs are identified using a number of tools including MetaGeneMark (Zhu et al., 

2010), Metagene (Noguchi et al., 2006), Prodigal (Hyatt et al., 2010), Orphelia (Hoff 



                                                      Chapter 5: Metagenomics tools 

128 
 

et al., 2009) and FragGeneScan (Rho et al., 2010), all of which utilize ab initio gene 

prediction algorithms. Often, annotation pipelines use an intersection of these tools 

to obtain a more informative prediction of the protein coding genes. Gene prediction 

tools utilize codon information (i.e., start codon – AUG) to identify potential open 

reading frames and hence label sequences as coding or noncoding. Most tools can be 

trained by using the desired training sets. For example, FragGeneScan is trained for 

prokaryotic genomes only, and is used by IMG/MER and MG RAST as well as EBI 

Metagenomics. It is believed to be one of the most accurate gene-prediction tools 

currently available. However, like most of these tools, it is expected to have an 

average prediction accuracy of ∼65%–70%, resulting in multiple genes that are 

missed altogether (Rho et al., 2010). 

Noncoding RNAs such as tRNAs are predicted using programs like tRNAscan (Lowe 

and Eddy, 1997; Schattner et al., 2005), ribosomal RNA (rRNA) genes (5S, 16S, and 

23S) are predicted using internally developed rRNA models for IMG/MER, and MG-

RAST uses similarity to compare three known databases (SILVA (Quast et al., 2013), 

Greengenes (DeSantis et al., 2006) and the Ribosomal Database Project-RDP (Maidak 

et al., 1996; Cole et al., 2007)) to predict rRNA genes. 

The next stage of the annotation pipeline involves functional assignment to the 

predicted protein coding genes. This is currently achieved by homology-based 

searches of query sequences against databases containing known functional and/or 

taxonomic information. Due to the large size of metagenomic datasets, this stage is 

often very expensive computationally and highly automated. BLAST or other 

sequence-similarity-based algorithms (Edgar, 2010) often run on high-performance 

computer clusters. Often, multithreading or other parallel programming approaches 

are used to divide jobs in multiple central/graphic processing units (CPUs/GPUs). This 

reduces the running time complexity and significantly speeds up querying execution 

time. 

Some widely used data repositories to obtain annotation for metagenomic datasets 

include functional annotation databases such as KEGG (Ogata et al., 1999; Du et al., 

2014), SEED (Overbeek et al., 2005), eggNOG (Powell et al., 2014), COG/KOG 

(Tatusov et al., 2000), as well as protein domain databases such as PFAM (Bateman 

et al., 2000; Finn et al., 2014) and TIGRFAM (Haft et al., 2003). Often, annotation 
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pipelines make use of multiple databases or composite protein domain databases 

such as Interpro (Hunter et al., 2009) in order to obtain a more collective, cumulative 

biological functional annotation. 

MG-RAST predicts all genes in the metagenome, and then identifies the best 

homologs of those genes in the isolate genomes using a tool called BLAT (BLAST-like 

alignment tool) (Kent, 2002). BLAT misses similarities below 70% identity, so many 

strong hits to other genes are missed. After the best hits to genes from an isolated 

genome are identified, all subsequent analysis is done using the genes of the isolate 

genomes, not the genes of the metagenome at hand. This creates a lot of limitations 

due to the fact that the analysis is not performed on the original genes of the 

metagenome but on the “proxy” genes to the isolated genomes instead. The 

advantage of this method is its speed; the only computationally intensive step is to 

find the best hits of the metagenomes against the isolates. Once this is done, all 

other comparisons are already pre-existing. The other major advantage is that the 

MG-RAST database does not grow in size, as is the case with the IMG/MER database. 

IMG/MER also begins with prediction of all genes from the metagenome, but then 

runs all the computations on those genes rather than on their proxies. This allows 

the identification of PFAM hits (which is not supported in MG-RAST) and provides 

much more detailed functional information compared to COGS, which is the only 

protein families database used in MG-RAST. The major bottleneck for IMG/MER is 

the exponential growth of the gene number, which is not an issue for MG-RAST since 

the metagenome genes are not kept for analysis. It is, however, important to use 

PFAM for functional analysis because by comparing the number of genes from any 

metagenome that go into COG or PFAM clusters, the second provides significantly 

higher coverage and therefore allows a much deeper analysis. Another major 

advantage of IMG/MER is that, since the tool keeps the original metagenome genes, 

it also keeps the original contigs, which provides synteny information. Therefore, it is 

far more suitable if one is interested in identifying novel biosynthetic gene clusters 

(BGCs) in the metagenomes, a type of analysis that may be less viable using MG-

RAST. The prediction of BGCs from metagenomics data is recently gaining a great 

deal of interest due to their potential in biotechnological applications. The possibility 

to engineer BGCs for the production of secondary metabolites with improved 
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properties, known for their use in anticancer drugs and antibiotics, offers limitless 

potential for bioprospecting. 

The EBI Metagenomics service (Hunter et al., 2014) is a newly developed web-based 

portal that uses metadata structures and formats that comply with the Genomic 

Standards Consortium (GSC) guidelines. Moreover, a novel data scheme currently 

being hosted by the EBI-EMBL is being adopted by the EBI Metagenomics service. 

This is known as the European Nucleotide Archive (ENA) (Leinonen et al., 2011) data 

schema and aims to integrate data derived from sequencing technologies under a 

consensus, mutually accepted standard. EBI Metagenomics offers a dual shotgun and 

marker gene analysis service. It allows the extraction of rRNA data from shotgun 

metagenomic data using tools such as rRNASelector (Lee et al., 2011) for concurrent 

marker metagenomic analysis. It therefore supports additional 16S rRNA-based 

analysis tools such as Qiime (Caporaso et al., 2010) (see section on Marker Gene 

Metagenomics) for the efficient taxonomic assignment of these sequences. For 

functional analysis and annotation of CDS sequences, EBI Metagenomics uses 

FragGeneScan to obtain protein coding sequences and thereafter utilizes databases 

such as Interpro, which is a composite, cumulative system comprised of multiple 

databases of protein families, and allows for protein domain prediction and 

functional assignment. EBI Metagenomics provides data archiving via ENA and 

provides unique accession numbers for submitted datasets. Archiving policies 

require the data to be made public; however, there is a 2-year period (upon 

submission) during which the data is kept private pending user publication of 

analysis results. 

CAMERA (Seshadri et al., 2007) is another online cloud computing service that 

provides hosted software tools and a high-performance computing infrastructure for 

the analysis of metagenomic data. One advantage of CAMERA is that it allows 

greater user intervention and flexibility during the analysis process. However, this 

means that users must have expertise, knowledge, and hands-on experience in 

metagenomic date analysis per se, in order to ensure correct execution of the 

pipeline and accuracy of results. Moreover, in order to perform comparative 

metagenomics using CAMERA, the datasets in hand must be traversed through the 

CAMERA pipeline, thus making integration of data from different resources more 
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computationally demanding. MEGAN 5 (Huson et al., 2007) is yet another tool that 

performs analysis of metagenomic data and offers a wide range of visualization tools 

for metagenomic annotation results. It supports multiple visualization schemes 

including functional or taxonomic dendrograms, tag clouds, bar charts, and Krona 

taxonomic plots (Ondov et al., 2011) that allow hierarchical data to be explored in 

the form of a zoomable pie chart. 

 

5.4 Marker Gene Metagenomics 

 

It is widely accepted that sequencing of the 16S rRNA gene reflects eubacterial and 

archaeal evolution (Woese, 1987). Since the introduction of SSU rDNA-based 

molecular techniques (Amann et al., 1995; Muyzer, 1999; Rusch et al., 2007), the 

study of microbial diversity in natural environments has advanced significantly. In 

addition, pyrosequencing of the 16S rRNA gene has been widely applied in the field 

of microbial ecology (Luna et al., 2007; Jones et al., 2009; Thompson et al., 2011) and 

has resulted in a great number of sequences deposited in relevant databases, thus 

enhancing the value of 16S rRNA as the “gold standard” in microbial ecology. While 

the 16S rRNA gene fragment, containing one or more variable regions, is the 

preferred target marker gene for bacteria and archaea, this is not the case for fungi 

and eukaryotes where the preferred marker genes are the internal transcribed 

spacer (ITS) and 18S rRNA gene, respectively. 

Taxonomic analysis for prokaryotes (i.e., bacteria and archaea) is regularly 

performed using 16S rRNA data derived from varying sequencing technologies (i.e., 

454 pyrosequencing as well as Illumina, Solid and Ion Torrent), and, for the purposes 

of this review, we will list the relevant software to allow analysis for most 

sequencing technologies. Commonly used tools for 16S rRNA data analysis and 

denoising include QIIME, Mothur (Schloss et al., 2009), SILVAngs, MEGAN and 

AmpliconNoise (Quince et al., 2011). Despite the vast availability of algorithms and 

software for analysis of 16S rRNA metagenomics datasets, QIIME has been 

established as one of the most popular software (Nilakanta et al., 2014). 
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It is important to be aware of certain aspects of the terminology required for the 

efficient analysis of 16S rRNA metagenomics data. These include the following: i) 

Amplicon: a DNA fragment that is amplified by PCR, e.g., one or more 16S rRNA 

variable regions, or other marker genes. Most researchers will make use of standard 

PCR primers; ii) OTU: species distinction in microbiology, typically using rRNA and a 

percentage of similarity threshold for classifying microbes within the same, or 

different, OTUs; iii) Barcode: a short DNA sequence that is added to each read during 

amplification and that is specific for a given sample. This allows samples to be mixed 

(multiplexed) to reduce sequencing cost. During analysis, sequences need to be 

demultiplexed, i.e., separated by sample. 

Analysis usually requires a reference database that is searched to find the closest 

match to an OTU from which a taxonomic lineage is inferred. Some widely utilized 

databases include Greengenes (16S rRNA), Ribosomal Database Project (Cole et al., 

2009) (16S rRNA), Silva (Pruesse et al., 2007) (16S + 18S rRNA genes), and Unite 

(Kõljalg et al., 2013) (ITS), although the usage of Greengenes is not recommended 

since it is not regularly updated. On other hand, Silva is one of the curated and 

recommended databases for taxonomic assignment. These databases are less 

suitable for certain groups of organisms, such as protists and viruses, which are 

extremely diverse and for which considerably less sequence information is available 

compared to bacteria. Although the workflow presented in this section was initially 

developed for the 16S rRNA, it is applicable to functional marker genes and 

necessary for analysis of functional gene datasets. However, in the latter case, the 

taxonomic assignment of sequences is performed using functional gene repositories, 

such as the FunGene (Fish et al., 2013).  

 

5.4.1 Denoising 

 

Denoising is important for 16S rRNA metagenomic data analysis, and it is platform-

specific; i.e., certain platforms (e.g., Illumina) require less denoising than others (e.g., 

pyrosequencing). For example, denoising of 454 pyrosequencing data, despite being 

computationally expensive, is necessary due to intrinsic errors generated from 
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pyrosequencing that can give rise to erroneous OTUs. A procedure called “flowgram 

clustering” removes problematic reads and increases the accuracy of the taxonomic 

analysis. Several denoising algorithms have been developed so far  (Reeder and 

Knight, 2010; Quince et al., 2011; Bragg et al., 2012; Keegan et al., 2012; Balzer et al., 

2013; Brodin et al., 2013; Iyer et al., 2013) but for the purpose of this review three of 

them will be analyzed in detail. 

Denoising is performed very efficiently by AmpliconNoise (Quince et al., 2011) a tool 

that uses the following basic denoising steps: 1) Filtering of noisy reads: reads are 

truncated based on the appearance of low signal intensities; 2) Removing 

pyrosequencing noise: distance between the flowgrams is defined and true 

sequences and their frequencies are inferred by an expectation-maximization (EM) 

algorithm; 3) Removing PCR noise: the same ideas are used for removing PCR errors; 

4) Chimera identification and removal: for each sequence, exact pairwise alignments 

are performed to all sequences with equal or greater abundance, which is the set of 

possible parents. Although a considerable number of sequences is lost during the 

denoising process, it results in high-quality sequences (Gaspar and Thomas, 2012); 

however, there has been some debate on the level of stringency required to achieve 

such high quality (Bakker et al., 2012). 

A very popular software for the analysis of microbial communities is QIIME. Initially 

QIIME was implemented for use of 454 pyrosequencing datasets only, i.e., using sff 

(Standard Flowgram Format) files, but currently QIIME has been modified to accept 

the fastq file format, thereby making the analysis of Illumina datasets possible. The 

QIIME developers provide users with extensive online tutorials for several 

workflows, and, moreover, QIIME is available as an open-source software package 

mostly implemented using the programming language PYTHON. 

Another widely used software for the analysis of microbial communities is Mothur. It 

was created from the combination of pre-existing software, such as DOTUR (Schloss 

and Handelsman, 2005), SONS (Schloss and Handelsman, 2006a) and Treeclimber 

(Schloss and Handelsman, 2006b), but, due to the community support it has 

received, currently it incorporates many more algorithms, thus providing the user 

with a variety of choices. 
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More recently, a web-based application called SILVAngs was developed, which 

provides a fully automated analysis pipeline for data derived from rRNA marker gene 

amplicon sequencing. The analysis workflow is based on 1) Alignment of reads, 2) 

Quality assessment and filtering of reads, 3) Dereplication, whereby identical 

sequences are filtered out to avoid overestimation, 4) Clustering and OTU picking 

using a priori defined thresholds, and 5) Taxonomic assignment of OTUs using the 

SILVA rDNA database. 

The choice of which denoising algorithm to use is largely depends on the user. Once 

a choice is made, the user should also consider whether to deviate from the default 

parameters. Parameter adjustment is related to the dataset produced, i.e., which 

specific 16S rRNA gene region was sequenced and which technology was used to 

perform the actual sequencing. In addition, it has been suggested that use of 

different denoising methods can produce significantly different outcomes (Koskinen 

et al., 2014), which should be taken into careful consideration when comparing 

studies that have utilized different algorithms for data analysis. 

 

5.4.2 OTU clustering, picking, and taxonomic assignment 

 

After the demultiplexing of the dataset, i.e., the assignment of reads to samples 

using barcode information, the next step is OTU picking. For bacteria/archaea, it is 

accepted that OTUs of similarity greater than 97% correspond to the same species, 

but also other dissimilarity cutoffs can be employed, if needed for the downstream 

analyses. There are numerous OTU picking strategies: 1) De novo is used if amplicons 

overlap and if a reference sequence collection is not available. It clusters all reads 

without using a reference and is quite expensive computationally, hence not very 

suitable for very large datasets. 2) Closed-reference is used if amplicons do not 

overlap and if a reference sequence collection is available. This approach discards 

reads that do not hit a reference sequence. 3) Open-reference is used if amplicons 

overlap and a reference dataset is available. This method clusters reads against a 

reference dataset, but if the reads do not match the reference, they are 

consequently clustered de novo. All the aforementioned are incorporated into 
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QIIME. There are also other types of OTU clustering and picking strategies being 

developed (Sun et al., 2009; Hwang et al., 2013; Patin et al., 2013; Preheim et al., 

2013); the most appropriate choice for the downstream analysis will depend on the 

type of data and the user. 

Taxonomic assignment of OTUs can be performed using a variety of algorithms. 

Currently QIIME supports numerous algorithms, such as BLAST, the RDP classifier, 

RTAX, Mothur classifier, and uclust, to search for the closest match to an OTU from 

which a taxonomic lineage is inferred. This requires reference databases of marker 

genes. Some commonly utilized databases include Greengenes (16S rRNA), 

Ribosomal Database Project (16S rRNA), Silva (16S + 18S rRNA genes), and Unite 

(ITS). 

 

5.4.3 Statistical analysis and visualization of results 

 

QIIME output includes a representation of a taxonomic tree in Newick format, which 

can be visualized in several applications, and a file in Biom (Biological Observation 

Matrix) format (McDonald et al., 2012) representing OTU tables. This file can be 

imported into MEGAN for visualization or into any other statistical software 

requiring matrix-type data. In addition, alpha-diversity analysis (diversity within a 

sample, e.g., Phylogenetic Diversity (PD), Chao (Chao, 1984) etc.) and beta-diversity 

analysis (diversity across samples, e.g., UniFrac (Lozupone et al., 2006), PCoA), as 

well as taxonomic composition and phylogenetic analyses, are supported through 

QIIME. Numerous other tools and software packages exist for performing statistical 

analysis of metagenomic data. The Primer-E package (Clarke and Gorley, 2006) is 

commonly utilized by microbial ecologists and allows for multiple multivariate 

statistical analyses, such as multidimensional scaling (MDS), analysis of similarities 

(ANOSIM), and hypothesis testing. Recently the R statistical programming language 

(R Core Team, 2015) has gained immense popularity and is currently widely used for 

multivariate statistics. Packages such as vegan (Oksanen et al., 2008), phyloseq 

(McMurdie and Holmes, 2013) and Bioconductor (Gentleman et al., 2004) provide 

multiple in-built functions and libraries for performing a wide range of statistical 
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analysis required for metagenomic datasets. While it is out of the scope of this 

review to thoroughly analyze visualization tools for genomic data, readers are 

encouraged to visit a recent review article (Pavlopoulos et al., 2013). 

 

5.5 Data Management, Storage, and Sharing 

 

Tools such as IMG/MER, CAMERA, MG-RAST, and EBI metagenomics (which also 

incorporates QIIME) provide an integrated environment for analysis, management, 

storage, and sharing of metagenome projects. This requires that a consensus 

commonly accepted annotation scheme is designed in order to allow for efficient 

data exchange, integration, sharing, and visualization between different platforms 

and to further reduce the need for reprocessing of metagenomic datasets, a task 

which is very expensive computationally. 

The GSC is currently investing heavily toward a widely accepted language that shares 

ontologies and nomenclatures thereby providing a common standard for exchange 

of data derived from the analysis of metagenomic projects. Toward this goal, MIMS 

(Minimum Information about a Metagenome Sequence) and MIMARKS (Minimum 

Information about a MARKer Sequence) (Yilmaz et al., 2011) have been devised, 

providing a scheme of standard languages for metadata annotation. 

 

5.6 Conclusions 

 

Tools and databases for metagenomic data analysis are currently well on their way 

to becoming more and more efficient and elaborate (for an overview of the tools 

most utilized nowadays for metagenomic data analysis, see Table 5.2). Technologies 

offering increased read length, such as PacBio, or new chemistry, such as Irys 

Technology and Nanopore Sequencing, are beginning to offer new capabilities to the 

analysis pipelines and aid in many aspects the assembly as well as the concurrent 

annotation process. Assembly tools such as IDBA-UD are being developed and 

increasingly improved to address the specific problem of assembling mixtures of 

genomes as is eminent for metagenomic samples. Databases like GOLD (Reddy et al., 
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2014), associated with the IMG/MER portal, can be used as a reference in order to 

perform validation tests for assembly tools. Moreover, the use of simulated 

metagenomic datasets has been proposed in order to asses these tools (Mavromatis 

et al., 2007). 

There has been some controversy within the metagenomics community regarding 

the actual need for performing assembly on metagenomes. One contention is that 

using clustering algorithms such as cd-hit (Li and Godzik, 2006; Fu et al., 2012) or 

uclust is sufficient to group similar reads together and thereafter proceed to 

annotation of these clusters without prior assembly. This clustering approach may 

allow for more accurate annotation of highly diverse samples containing rare, 

uncultured genomes that may otherwise be excluded from the assembly process due 

to their low coverage. One drawback of not performing an assembly may be that 

complex regulatory elements such as CRISPRs may not be identified successfully 

(Thomas et al., 2012). 

Binning and annotation methods are also constantly being modified and altered to 

specifically address metagenomic analysis pipelines. A significant improvement of 

these processes will be achieved upon increase of the genomic repository of cultured 

as well as uncultured genomes within the public database repertoire. Composition-

based as well as similarity-based binning methods, especially those making use of 

supervised machine learning algorithms (i.e., PhylopithiaS, trained on reference 

genomes), will become increasingly accurate due to the availability of more reliable 

information. 
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Table 5.2: Tools grouped according to their main functionality. 

Shotgun 
metagenomics 

Assembly 

EULER 
Binning 

SOrt-ITEMS 

Annotation 

KEGG 

Velvet PhymmBL MetaCluster TA 

SOAP MetaCluster SEED 

ABySS 

Annotation 

FASTX-Toolkit eggNOG 

MetaVelvet FastQC ProViDE (Ghosh et al., 2011) 

MetaVelvet-SL SolexaQA COG/KOG (Tatusov et al., 2003) 

Meta-IDBA Lucy 2 PFAM  

IDBA-UD DUST TIGRFAM 

Newbler (Roche) Bowtie MetaPhlAn (Segata et al., 2012) 

MIRA MetaGeneMark HighSSR (Churbanov et al., 2012) 

Mapsembler (Peterlongo and Chikhi, 2012) LEfSe (Segata et al., 2011) Blat 

ALLPATHS (Butler et al., 2008) TACOA 

Analysis 
pipelines 

IMG/MER (Victor M. Markowitz et 
al., 2014) 

MetaORFA (Ye and Tang, 2009) Metagene MG-RAST 

MetAMOS CREST (Lanzén et al., 2012) MEGAN 5 

Binning 

TETRA Prodigal CAMERA 

S-GSOM mOTU-LG (Sunagawa et al., 2013) Parallel-META (Su et al., 2014) 

PhylopythiaS Orphelia EBI Metagenomics 

TACOA Kraken (Wood and Salzberg, 2014) METAREP (Goll et al., 2010) 

PCAHIER FragGeneScan PHACCS (Angly et al., 2005) 

ESOM CRT (Bland et al., 2007)  

ClaMS NBC (Rosen et al., 2011) 

CARMA MyTaxa (Luo et al., 2014) 

WGSQuikr (Koslicki et al., 2014) RITA (MacDonald et al., 2012) 

SPHINX (Mohammed et al., 2011) PILER-CR (Edgar, 2007) 

MetaPhyler tRNAscan (Xinbo Wang et al., 2013) 



                                                         Chapter 5: Metagenomics tools 

139 
 

Table 5.2: Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Marker gene metagenomics 

Standalone software 

QIIME 
Mothur 
JAguc (Nebel et al., 2011) 
M-pick (Xiaoyu Wang et al., 2013) 
OTUbase (Beck et al., 2011) 

CopyRighter (Angly et al., 2014) 
AbundantOTU (Ye, 2011) 
UniFrac 
ESPRIT  

Analysis pipelines 

SILVA 
FunFrame (Weisman et al., 2013) 
PANGEA (Giongo et al., 2010) 
FastGroupII (Yu et al., 2006) 
CLOTU (Kumar et al., 2011) 

Denoising 

AmpliconNoise 
DADA (Rosen et al., 2012) 
JATAC (Balzer et al., 2013) 
UCHIME (Edgar et al., 2011) 
Bellerophon (Huber et al., 2004) 
CANGS (Pandey et al., 2010) 

Databases 

SILVA 
Greengenes 
Ribosomal Database Project (RDP)  
Unite 
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At this stage it is important to mention that, in spite of the best efforts to reconstruct 

and prepare datasets by 1) quality filtering, 2) performing assemblies, and 3) binning 

sequences into taxonomically informative groups, annotation pipelines still achieve 

successful annotation for only ∼50% of the sequences under analysis (Gilbert et al., 

2010). As mentioned above, the annotation process is highly dependent on the 

available databases and hence limited by the amount of information that is present 

within these repositories. Sequences that do not have any similarity with any other 

sequence existing in a known database are termed “orphan genes” (Lespinet and 

Labedan, 2005). These genes are believed to be 1) a consequence of sequencing 

errors and/or reflect the inaccuracy of gene prediction tools, or 2) truly novel genes 

that have no sequence or function similarity to known genes and may share higher 

order similarity in the form of protein folds. A lot of work is currently being 

undertaken in order to shed some light on these unknowns/orphans using various 

types of information. Some existing tools use pathway information from 

metagenomic neighbors and also context-depended metabolomic data to assign a 

functional annotation to unknown genes (Smith et al., 2012; Yamada et al., 2012). 

Along these lines, the use of metabolomic, metatranscriptomic, and/or 

metaproteomic data will provide a more elaborate view of the “picture”, addressing 

all aspect of the dogma of life in the metagenomics era. Moreover, single-cell 

genomics is now becoming increasingly popular by investigating information from 

sequencing individual cells. The synergy of single-cell genomics with metagenomics 

can allow a more accurate separation of metagenomics sequences into individual 

genomes, guided by the single-cell sequencing data. 

A wide array of software is currently available to perform each step of the marker 

gene metagenomics analysis pipeline. What is missing from the literature is a 

systematic evaluation of software and algorithms that have been used so far and a 

standardized means of comparing results derived from different workflows. 

Variation in results can occur due to inconsistencies in a number of factors, such as 

DNA extraction (Cruaud et al., 2014; Vishnivetskaya et al., 2014), primer pair and 

amplification region (Kim et al., 2011; Soergel et al., 2012; Klindworth et al., 2013), 

sequencing platform (Harismendy et al., 2009) and the software used (Sun et al., 

2012). All of the aforementioned sources of variation make it very difficult to 
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compare and obtain trustworthy results. Computational and programming 

challenges to improve the already available software can be achieved, but only 

through benchmarks, simulations (Richter et al., 2011) and thorough testing. 

Initiatives such as the GSC could potentially take over the design of the “Minimum 

Analysis Requirements of Metagenome Sequences (MARMS)”. This will be made up 

of standardized methodologies and consensus in the choice of software, analysis 

steps, threshold values, and parameters. Such an initiative would eliminate, or at 

least minimize, the biases that can be generated by analyzing data using multiple 

methodologies. 

The availability of data software such as EBI Metagenomics, IMG/MER, MG-RAST, 

and SILVAngs will further allow users with limited computational facilities to perform 

analysis of metagenomic samples. In comparative metagenomic analyses, one can 

use tools to compare samples from different ecological niches and extract 

information that is common and/or unique to a specific environment (Sangwan et 

al., 2012; D’Argenio et al., 2014). Moreover, the GSC is striving toward the successful 

integration of analyzed data under a unified and mutually acceptable 

structure/format that will facilitate the exchange of valuable insights and 

information in the field of microbial ecology and environmental microbiology. 

To sum up, we have created a metagenomics flowchart (Figure 5.1) outlining all the 

aforementioned basic steps of the analysis pipeline. Analysis can take two different 

routes depending on the type of sequencing data (marker gene or shotgun 

metagenomics). Every analysis step shown in the flowchart is complemented by a list 

of some well-established tools used by the metagenomics community. 
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Figure 5.1: Flowchart of basic metagenomics steps and tools currently in practice10.  

                                                           
10 The analysis pipeline can take two different routes depending on the type of sequencing 
data (marker gene or shotgun metagenomics) available. The flowchart outlines the basic 
steps in the analysis pipeline starting with preprocessing of the data to the final extraction of 
results and concurrent storage and management of the data. Some popular tools that have 
been used extensively by the metagenomics community are shown for every step, as a well 
as the databases and algorithms in common practice. 



  

Chapter 6: General discussion and conclusions 

 

6.1 Molecular tools to characterize marine microbial communities 

 

The aim of this PhD project was to study the microbial community assemblages of 

hypoxic ecosystems and to identify a potential link between their identity and 

function, using state-of-the-art approaches such as targeted metagenomics and RNA 

stable isotope probing. 

Although 16S rRNA gene has been considered the golden standard for microbial 

community studies (Vos et al., 2012), the short reads that are the output of the high-

throughput sequencing technologies do not allow for a good taxonomic resolution to 

be achieved, although this issue has been debated extensively (Liu et al., 2007; 

Jeraldo et al., 2011). In addition, high-throughput sequencing can only produce 

relative abundance data as a main output; this, combined with the fact that 16S 

rRNA is found in multiple copies in each microorganism, may bias the results and 

conclusions of each study. Also, different conclusions may be derived if the presence 

or absence of a given OTU is taken into consideration, and not only its relative 

abundance at a given study site (see Chapter 3). Other genes, which are found in 

single copies in microorganisms, such as the rpoB have been proposed as alternative 

marker genes for the bacterial diversity assessment (Vos et al., 2012). However, the 

public databases which are being used for the taxonomic assessment of sequence 

reads are “biased” towards 16S rRNA, since it has been used extensively as a marker 

gene for the general “tree of life” creation. Therefore, the usage of another marker 

gene cannot substitute completely 16S rRNA, i.e. it can only be used as a 

complement to achieve better taxonomic resolution.  

Another obstacle is that the majority of sequence reads in every study can only be 

classified as uncultured; thus, a high amount of information is of no practical use 

since no information on the functional aspect of those microorganisms can be 

derived from such a taxonomic assignment. One solution to this issue would be the 

choice of protein coding genes, instead of 16S rRNA, that would allow for specific 

functional groups to be assessed in the studied habitats. Examples of such protein 
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coding genes are nitrite reductases (e.g. nirS) (Bowen et al., 2013), methyl-coenzyme 

M reductases (e.g. mcrA) (Yang et al., 2014) and dissimilatory sulfate reductaces (e.g. 

dsrB), that was chosen for this PhD project (see Chapter 3). However, even in the 

case of protein coding genes, the produced results are undoubtedly affected by the 

reference dataset used for the classification of the sequences (Müller et al., 2015). 

Apart from the choice of sequencing functional genes, and given the immense 

number of 16S rRNA sequences deposited in public databases, another useful 

approach towards the enhancement of high-throughput sequencing studies is the 

implementation of algorithms and software that can predict functional profiles of 

microbial communities based on 16S rRNA data (Langille et al., 2013; Aßhauer et al., 

2015) (see Chapter 2). Similarly, other types of software, as Seqenv (Sinclair et al., 

2016), can add environmental metadata to the studied sequences and therefore, 

provide information on where the relevant microorganisms have been previously 

found  (see Chapter 3). Combinations of such approaches may increase the amount 

of knowledge derived from such studies, and therefore the insight in microbial 

communities.  

However, as discussed in Chapter 5, there are more issues that arise from each study 

focusing on microbial communities and using high-throughput sequencing. The 

different DNA extraction, PCR and library preparation protocols that exist in the 

literature, paired with the choice of primer pair and amplification region introduce 

variations and biases in each study. Apart from the above, the choice of sequencing 

platform can also influence the outcome of a microbiome study. The first high-

throughput sequencing studies were performed using 454 GS FLX (Roche), which was 

the first commercially available pyrosequencer (see Chapters 3 and 5). This invention 

gave rise to many more sequencing platforms, with updated and less error-prone 

chemistry. Currently, the “default” platforms for a microbial community study, as 

well as for other applications, are manufactured by Illumina (see Chapters 2, 4 and 

5). However, there are constant improvements and inventions of other platforms 

(see Chapter 5). 

Moreover, the choice of software for the subsequent data analysis can amplify the 

variations between the studies; what is being compared between different research 

papers is in fact incomparable and conclusions drawn from these comparisons 
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should be cautiously taken in consideration. Different sequencing methodologies 

and software applications can vary considerably in the produced results (Amore et 

al., 2016); although certain benchmark studies exist (Sun et al., 2012), the vast 

availability of software and analysis pipelines has not been compared, evaluated and 

standardized. The use of online integrated platforms, such as IMNGS (Lagkouvardos 

et al., 2016), allows users with limited computational facilities to perform analysis of 

metagenomic samples and facilitates the accurate comparison of metagenomic 

analyses studies (see Chapter 4). In addition, there is an advantage in using publicly 

available analysis software, such as R (R Core Team, 2015) (see Chapters 2 and 3), 

compared to other commercial software (see Chapter 4). Ιn the majority of cases, 

there is an open source option for the analysis of large-scale data, which is actually 

more robust and better documented than its commercial twin.  

 

6.2 Microbial community composition in hypoxic sediments 

 

According to this research project, it has been shown that the microbial community 

diversity pattern can be differentiated based on habitat type, i.e. between riverine, 

lagoonal and marine environments (see Chapter 2). This is in accordance with studies 

conducted in similar environments, such as the Baltic Sea (Herlemann et al., 2011). 

In addition, a second level of differentiation can be observed when different lagoons 

are taken into consideration (see Chapter 3); each lagoon hosts a different SRM 

community, which is consistent with other studies suggesting that SRM communities 

exhibit biogeographic distribution patterns at small spatial scale (Pérez-Jiménez and 

Kerkhof, 2005). This finding is in accordance with a previous study in the same 

sampling sites where it was shown that sediment microbial communities, as revealed 

by 16S rRNA sequencing, are also differentiated based on the sampled lagoon 

(Pavloudi et al., 2016). 

Furthermore, the abiotic variable that is best correlated with the microbial 

community pattern is salinity, thus supporting the original hypotheses (see Chapters 

2 and 3). However, when the total number of OTUs in different habitats is taken into 

consideration, a negative linear relationship with salinity is identified concurring with 
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a model previously described by Attrill (2002), while at the same time questioning 

the observations of Remane (1934) and Herlemann et al. (2011). 

As expected, the majority of OTUs can be classified as uncultured (see Chapter 3), 

Proteobacteria and Bacteroidetes (see Chapter 2). Nevertheless, taxonomic 

assignment can reach the level of family, but in very few cases it can reach lower 

levels. This is indicative of the high diversity exhibited in lagoonal environments, and 

transitional water ecosystems in general, which have only few representative 

microorganisms that have been cultured and described.  

Regarding the phylum of Proteobacteria, the most abundant class is 

Deltaproteobacteria, and in particular with Desulfobacteraceae, which have been 

shown to exhibit high abundances in marine (Leloup et al., 2009), saline and 

hypersaline (Foti et al., 2007) and deep sea sediments (Kaneko et al., 2007) (see 

chapter 3). Nevertheless, the abundance of the Desulfobacteraceae family was 

fluctuating according to salinity, i.e. it was higher in more saline stations; thus, 

despite being the most abundant, Deltaproteobacteria are not distributed evenly in 

transitional water ecosystems (see chapter 3). In addition, the presented results (see 

Chapter 2) confirm the existence of typical freshwater bacterial taxa (e.g. de Bie et 

al., 2001), such as the Betaproteobacteria, which were almost exclusively present in 

the inner station and mouth of the Arachthos river. Other microbial taxa, such as the 

Gammaproteobacteria, are adapted to live in higher salt concentrations and osmotic 

pressure (Wu et al., 2006; Zhang et al., 2014b; Herlemann et al., 2016), although 

they can dominate brackish habitats, as has been shown in the present study.  

In the sediments of the Benguela coastal upwelling system, bacterial species and, in 

general, taxonomic groups that were expected to be thriving, were absent or present 

but in very low abundances (see Chapter 4). Examples of such species are the large 

sulfur bacteria, such as Beggiatoa spp. and Thiomargarita namibiensis, which couple 

the oxidation of sulfide using nitrate as the terminal electron acceptor (Schulz et al., 

1999; Dale et al., 2009). Also, Epsilonproteobacteria, which have been found to 

catalyze chemolithotrophic oxidation of sulfide with nitrate (Lavik et al., 2009), were 

found in very low abundances at the in situ communities. Similarly, Planctomycetes 

which include the taxonomic order of Planctomycetales that catalyze anaerobic 

ammonium oxidation (Wang and Gu, 2013) were also found in very low abundances. 
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Since the aforementioned microbial groups have been previously found in high 

abundances in the study area, it could suggest that there might be a seasonal effect 

on their appearance and enhancement. Furthermore, different approaches, such as 

sequencing or quantitative PCR on functional genes, might reveal that representative 

of these groups actually exist in the samples of the present study. As previously 

found for lagoonal sediments, the most abundant bacterial taxa were 

Deltaproteobacteria, suggesting that sulfate reduction is occurring in the sampling 

stations, although other electron acceptors can be used instead (see Chapter 3).  

In this environment which is more or less stable in terms of salinity, microbial 

community patterns were correlated with delta 15N, sediment water content and 

oxygen concentration. Delta 15N can be interpreted as signal of nitrogen consuming 

anaerobic processes, whilst reflecting the sediment type (Nagel et al., 2016), which 

in turn is dependent on the depth and sedimentation of the study area.  

Overall, it can be concluded that different examples of hypoxic marine environments 

have certain similarities regarding their microbial communities. Βoth of the selected 

environments are under studied, since a large fraction of the retrieved sequences 

corresponds to uncultured Bacteria. This hightlights the need for more and different 

type of studies in these habitats since there are still many aspects of their microbial 

communities that remain undeciphered. In addition, biogeochemical cycling in both 

the studied ecosystems is in favour of sulfate reducing and nitrate reducing bacteria, 

although their diversity should be investigated in more detail due to the low 

resolution of the 16S rRNA gene, especially when the goal is the investigation of the 

functionality of the microbial communities. 

 

6.3 Functional community composition in hypoxic sediments 

 

Apart from taxonomic diversity of the microbial communities, it has been shown that 

the studied habitats were functionally distinctive (see Chapter 2). There were more 

retrieved metabolic pathways in the case of the marine samples and less in the case 

of the lagoonal and the riverine samples. This is indicative of the number of studies 

that have been conducted in the marine environment so far, which allowed for more 
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OTUs to be transferred to KEGG reference organisms. In addition, apart from salinity, 

in the case of functional community patterns, oxygen concentration was highly 

correlated with the predicted metabolic pattern of the microbial communities under 

study, which partially supports the original hypothesis but also augments it.  

As mentioned previously, the identification of the environmental descriptive terms 

that characterize the microbial communities expand the information derived from 

the sequence reads. In the case of the SRM communities, the majority of 

environmental terms were classified to the marine biome, but terms belonging to 

the freshwater or brackish biomes were also found. As expected, the latter were 

found in stations where a freshwater effect was more evident (see Chapter 3).  

Another method that can link directly the function and identity of microorganisms is 

SIP (Friedrich, 2006) and it was employed in the sediment samples of the Namibian 

oxygen minimum zone (see Chapter 4). Although SIP is an informative method with 

vast potential applications, its application is not trivial and broader scale studies are 

not very feasible. For example, ideally, each application of SIP would require a prior 

pilot experiment, where different substrates and different durations would be tested 

in order to conclude safely on the ideal combination of substrate and duration to 

maximize the end point results and to avoid cross feeding. In the case of Chapter 4, 

samples were retrieved from the third day of the experiment also in order to test 

whether this duration was enough for a clear labelling and fraction separation to be 

observed. However, in this case, the separation of the fractions was not as clear as 

the one retrieved from the set of samples that were incubated for six days. 

Therefore, the first set of samples was not processed further.  

The isotopic enrichment, i.e. the incorporation of the label in the 13C acetate 

amended incubations, and the successful completion of the SIP experiment were 

confirmed. Thus, the produced results on the functionality of the microbial 

communities at the stations were SIP was employed are trustworthy. Overall, 

Epsilonproteobacteria dominated the anaerobic assimilation of acetate as has been 

also shown from similar studies (Webster et al., 2010). In addition, enhancement of 

known sulfate-reducers, such as Deltaproteobacteria and Firmicutes (Muyzer and 

Stams, 2008; Müller et al., 2015) was not achieved under sulfate addition. This could 

be attributed to the competition for electron donors among nitrate-reducers and 
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sulfate-reducers (Achtnich et al., 1995). Alternatively, it could be due to the fact that 

acetate cannot be used as an electron donor by all the sulfate-reducing bacteria 

(Madigan et al., 2003). 

Under the expansion of hypoxic conditions, chemolithoautotrophic microbes are 

expected to be affected (Lipsewers et al., 2017), since, in general, anaerobic 

reactions and pathways will be favoured. Currently, sulfide-oxidizing bacteria have 

been shown to control the flux of hydrogen sulfide to the water column in OMZs 

(Schulz et al., 1999). However, should sulfate reduction be enhanced, concentration 

of hydrogen sulfide would increase; such an increase would probably be diffused in 

the water column (Emeis et al., 2004) and not retained in the sediment in oxidized 

forms. 

In addition, the absence or the low abundance of nitrate-reducing sulfide-oxidizing 

bacteria from transitional water ecosystems, such as lagoons, could be one of the 

reasons that extensive hypoxic episodes are occurring frequently in such habitats. 

Hypoxic episodes, and their subsequent effects in aquatic organisms, in the Benguela 

region can be ameliorated by the presence of nitrate-reducing sulfide-oxidizing 

bacteria. However, such bacterial groups have not been identified in the studied 

lagoons which may be enhancing the occurrence of hypoxic events. Thus, 

enhancement of such microbial groups may decrease the hydrogen sulfide flux from 

the sediment to the water column and, perhaps, restrict the occurrence and 

duration of hypoxic episodes. 

Moreover, the impact of hypoxic environments in the global biogeochemical cycling 

of nitrogen and sulfur should be studied more thogoughly; the balance of the cycles 

in the study sites is leaning towards the anoxic reactions since they are by definition 

favoured by the prevailing environmental conditions. In the light of climate changes 

and given that hypoxia is expected to impact more areas (Stramma et al., 2008), the 

functionality of microbial communities would also be subjected to change. However, 

this change is still indeterminable despite of each importance.  
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6.4 Microbial vs Macrobenthic communities in the study sites 

 

It is well known that burrowing macrobenthic organisms may influence significantly 

the bacterial sediment communities through changes in oxygenation and redox 

potential of surficial and burrow-lining sediments (Papaspyrou et al., 2006). They 

increase the available surface area for diffusive exchange between anoxic pore-

water and the overlying water, and thus they create new surfaces for microbial 

colonization at the oxic-anoxic interface (Glud, 2008). In addition, it has been shown 

that bacterial biofilms can either inhibit or induce larval settlement of macrobenthic 

organisms (Chan and Walker, 1998; Wieczorek and Todd, 1998; Huggett et al., 2006). 

Furthermore, research has shown that hypoxia can compromise larval development 

and settlement of polychaetes (Dubilier, 1988; Shin et al., 2013). 

One of the differences between the study sites, i.e. the lagoonal complex of the 

Amvrakikos Gulf and the Benguela coastal upwelling sediments, is the occurrence 

and abundance of macrofauna. Although lagoonal benthic communities undergo 

temporal variations, due to the occurrence of dystrophic crises, there are certain 

tolerant species that have been found inhabiting the study sites (Nicolaidou et al., 

2006). However, changes in environmental conditions, among other biological 

interactions, seem to have an effect on the abundance of the species (Nicolaidou et 

al., 2006).  

The latest sampling for macrobenthic organisms was conducted during the same 

sampling campaign that sediment samples were collected for Chapter 3 

(http://ipt.medobis.eu/resource?r=zoobenthos_in_amvrakikos_wetlands). It is clear 

that the macrobenthic diversity pattern differs per lagoon, as there are certain 

lagoons where there is high abundance of macrobenthos, such as Logarou lagoon, 

whereas others exhibit a much lower macrobenthic species abundance, such as 

Tsoukalio lagoon. This is undoubtedly reflected in the sediment abiotic parameters, 

as in the first case there was a thicker layer of oxygenated sediment, in contrast to 

the second case. As discussed previously, this could be one of the parameters that 

have affected the microbial community composition at the studied lagoons.  
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Research on the presence of macrobenthic organisms in the Benguela coastal 

upwelling sediments is rather limited and the are has been described as one of the 

world’s regions with “major biodiversity gaps” (Konar et al., 2010). Overall, 

macrobenthic species richness in the area has been considered to be relatively poor 

(Sakko, 1998) and it has been shown to be strongly affected by oxygen deficiency 

(Eisenbarth and Zettler, 2016); macrofauna often exhibit higher diversity abundances 

at the OMZ edges, rather than in the OMZ itself due to the limited oxygen availability 

(Levin, 2003). Macrobenthic communities in the Benguela region have been found to 

differentiate along the water depth, with the deep-sea community exhibiting the 

highest diversity (Eisenbarth and Zettler, 2016); however, more studies are needed 

and in a greater extent, i.e. expanding in different gradients, in order to draw safer 

conclusions on the macrobenthic species diversity of the area. These observations, 

along with the lack of sediment consistency that was observed in the OMZ, could 

have affected the existence of the microbial communities that were found at the 

sampling sites.  

 

6.5 Future perspectives 

 

This PhD project focused on microbial communities in two types of hypoxic 

ecosystems characterized by high productivity and anthropogenic value: lagoonal 

ecosystems and OMZs. Although certain aspects of their microbial communities have 

been identified, there are still many questions that remain unanswered.  

Although state-of-the-art techniques were employed, new techniques and 

approaches are constantly becoming relevant in microbiome studies. Application of 

protein-SIP (Jehmlich et al., 2008) in the studied habitats would allow for 

phylogenetic information to be obtained, along with functional information, for the 

labelled communities in each case. However, there are also limitations in the usage 

and applicability of protein-SIP since the databases that are available for protein 

based identification of microorganisms have been developed on cultured 

representatives. Therefore, identification of unknown proteins from uncultured 

microbes is still rather troublesome. RNA SIP can be also employed using different 
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labelled substrates, i.e. electron donors, and different electron acceptors. Usage of 
15N or 18O instead of 13C is still an option, although it should be taken into 

consideration that the resulting labelling pattern would be less clear. Carbon 

contributes to about 50 % of a cell dry weight, which by far outcompetes oxygen (17 

%) and nitrogen (13 %) (Madigan et al., 2003); thus, usage of 13C is recommended for 

stable isotope studies since incorporation of the isotope in the cell is expected to be 

greater.  

Another technique that could be more informative for future studies is combined 

usage of metagenomics and metatranscriptomics. This would allow the direct 

comparison between the available genes in the habitat under study and the actual 

expressed genes under the prevailing environmental conditions.  

In addition, sequencing of different functional genes could allow for the communities 

involved in each step of the studied biochemical cycles to be identified; thus, 

coupling between oxidation and reduction reactions could be possibly quantified. 

Furthermore, the choice of new sequencing technologies, such as Nanopore 

sequencing (Branton et al., 2008), despite being error-prone to sequencing errors 

deriving from its chemistry, has the potential to increase the number of reads, as 

well as their length; thus, overall, taxonomic resolution could be ameliorated and 

safer conclusions could be drawn. 

Αpart from the molecular techniques and studies, it is crucial to isolate and culture 

more microorganisms. Despite being considered as a step backwards, since high 

throughput sequencing became commercially available and monopolized research 

papers for many years, culturing is the only method that could clearly fill in the 

taxonomy gaps and enrich the databases with valuable information. In addition, it 

would indirectly provide more information since novel approaches, such as the 

functional prediction of OTUs, would be more precise. The era of metagenomics has 

provided a plethora of information on the metabolic needs of microorganisms that 

was unknown before. Hence, in spite of the technical difficulties of this method, new 

media can be designed and tested in order for more microbes to acquire a scientific 

name and placement in the phylogenetic tree. 

Future research should focus more on the community functioning of such habitats; 

an increased understanding of the biogeochemical cycles that characterize these 
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hypoxic ecosystems will perhaps allow for predictions regarding the intensity and 

direction of the cycling of elements, especially of nitrogen and sulfur given their 

biological importance. This would facilitate the end-users of these ecosystems in the 

programming and organization of their activities, such as aquaculture, fishing, deep-

sea mining etc., so that they would increase their benefits, e.g. achieve higher 

productivity in terms of fish catches, and minimize their losses. 
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Figure S2.1: Rarefaction curves of the samples. The vertical line (raremax = 38,209) is 

the smallest number of individuals per sample to extrapolate the expected number 

of OTUs if all other samples had only that number of individuals. Rarefaction 

estimated the expected OTU richness in random subsamples of the community, with 

each subsample having 38,209 individuals. Blue: samples from Kalamitsi station. 

Pink: samples from Logarou stations. Green: samples from Arachthos stations.  
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Figure S2.2: nMDS of the similarity matrix of the sampling stations based on the 

microbial OTUs abundances, with Arachthos Delta grouped with lagoonal samples. 

Ellipses according to habitat, signs according to location. AR: Arachthos. ARO: 

Arachthos Neochori. ARDelta: Arachthos Delta. LOin: Logarou station inside the 

lagoon. LOout: Logarou station in the channel connecting the lagoon to the gulf. Kal: 

Kalamitsi. 
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Figure S2.3: Bar chart showing the abundances of the main classes of the 

Bacteroidetes phylum, at the sampling stations. AR: Arachthos. ARO: Arachthos 

Neochori. ARDelta: Arachthos Delta. LOin: Logarou station inside the lagoon. LOout: 

Logarou station in the channel connecting the lagoon to the gulf. Kal: Kalamitsi. 

 

 
Figure S2.4: Bar chart showing the abundances of the main classes of the 

Proteobacteria phylum, at the sampling stations. AR: Arachthos. ARO: Arachthos 

Neochori. ARDelta: Arachthos Delta. LOin: Logarou station inside the lagoon. LOout: 

Logarou station in the channel connecting the lagoon to the gulf. Kal: Kalamitsi. 

 



                                                       Appendix: Supporting Material for Chapter 2 

157 
 

 
Figure S2.5: The fraction of unexplained taxonomic units per habitat, as it was 

derived during the functional profiling using UProC KEGG Ortholog reference profiles 

in long read mode. FTU: fraction of unexplained taxonomic units. 
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Table S2.1: The results of the processing of the sequences11. R: River. L: Lagoon. S: Sea. AR: Arachthos. ARO: Arachthos Neochori. ARDelta: Arachthos Delta. 
LOin: Logarou station inside the lagoon. LOout: Logarou station in the channel connecting the lagoon to the gulf. Kal: Kalamitsi. A, B, C: replicate samples. a: 
initial number of read pairs. b: number of read pairs after the quality trimming. c: number of read pairs with error-corrected bases. d: number of changed 
base during error-correction. e: number of bases that failed error-correction. f: total number of bases. g: final number of read pairs. h: number of 
overlapped reads.  
Α/Α Sample libraries a b c d e f g h 
1 R_AR_A 97,520 97,257 103,854 119,220 17,195,293 49,005,323 97,140 85,492 
2 R_AR_Β 157,246 156,744 150,418 175,130 22,017,363 79,182,431 156,539 138,330 
3 R_AR_C 167,487 166,853 157,004 173,927 22,205,133 83,982,212 166,584 147,668 
4 R_ARO_A 124,486 124,133 127,234 141,985 19,113,504 62,298,698 123,994 108,362 
5 R_ARO_Β 148,083 147,533 142,035 158,385 20,558,495 74,288,330 147,315 130,082 
6 R_ARO_C 142,040 141,410 138,108 156,909 20,503,832 71,090,930 141,171 124,829 
7 R_ARDelta_A 99,760 99,117 127,995 144,962 22,421,254 48,221,228 98,852 83,896 
8 R_ARDelta_Β 120,241 119,547 150,052 172,265 26,063,598 58,281,725 119,225 100,555 
9 R_ARDelta_C 94,144 93,268 119,390 134,307 21,794,657 45,218,135 92,902 78,631 
10 L_LOin_A 130,200 129,690 140,728 162,373 22,040,685 65,001,568 129,483 113,625 
11 L_LOin_B 108,906 108,537 107,440 122,286 15,054,224 54,614,349 108,375 95,393 
12 L_LOin_C 110,955 110,433 114,615 130,986 17,301,282 55,378,030 110,234 97,101 
13 L_LOout_A 96,457 96,104 96,991 108,608 14,511,935 48,753,439 95,971 85,503 
14 L_LOout_B 144,529 144,022 155,890 183,333 24,598,512 71,687,911 143,792 124,088 
15 L_LOout_C 139,149 138,383 131,454 150,722 18,309,051 69,390,494 138,091 121,691 
16 S_Kal_A 95,387 94,933 106,728 118,775 16,034,525 47,487,795 94,773 83,828 
17 S_Kal_B 100,113 99,642 108,884 123,905 17,366,619 49,583,169 99,461 86,788 
18 S_Kal_C 100,822 100,148 112,123 127,559 17,680,003 49,756,703 99,846 87,638 
Sum        1,893,500 

 

  
                                                           
11 Details on the sequence processing can be found at the bioinformatics tutorial of Dr. Umer Zeeshan Ijaz, entitled “Illumina Amplicons OTU Construction 
with Noise Removal” (available at http://www.tinyurl.com/JCBioinformatics). 
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Table S2.2: The Chi-Square values of the Kruskal-Wallis tests for the diversity indices 

between the locations and the habitats. OTUs: total number of OTUs. N: total 

microbial relative abundance values. H΄: Shannon-Wiener. J΄: Pielou's evenness. d: 

Margalef’s species richness. ACE: Abundance Coverage Estimator. *: p < 0.05. **: p < 

0.01. n.s.: not significant.  

 

Table S2.3: The values of the Mann-Whitney U tests used for the post-hoc pairwise 

significant comparisons, after the Bonferroni correction. OTUs: total number of 

OTUs. H΄: Shannon-Wiener. J΄: Pielou's evenness. d: Margalef’s species richness. ACE: 

Abundance Coverage Estimator. AR: Arachthos. ARO: Arachthos Neochori. ARDelta: 

Arachthos Delta. LOin: Logarou station inside the lagoon. LOout: Logarou station in 

the channel connecting the lagoon to the gulf. Kal: Kalamitsi. *: p < 0.05 before the 

Bonferroni correction. **: p < 0.017 in the case of the habitats. n.s.: not significant. 

 

 

 

 

 

 

 

 OTUs N d J΄ H΄(ln) Chao-1 ACE 
Location n.s. n.s. 11.129 * 13.28 * 13.767 * n.s. n.s. 
Habitat 7.596 * n.s. 8.425 * 13.177 ** 12.966 ** 7.799 * 7.583 * 

  OTUs d J΄ H΄(ln) Chao-1 ACE 

Location 

AR vs LOin n.s. n.s. 3.971 * n.s. n.s. n.s. 
AR vs LOout n.s. n.s. 3.971 * n.s. n.s. n.s. 
AR vs Kal n.s. n.s. 4.091 * n.s. n.s. n.s. 
ARO vs LOin n.s. n.s. 3.971 * 3.971 * n.s. n.s. 
ARO vs LOout n.s. n.s. 3.971 * 3.971 * n.s. n.s. 
ARO vs Kal n.s. n.s. n.s. 3.971 * n.s. n.s. 
ARDelta vs LOin n.s. n.s. 3.971 * n.s. n.s. n.s. 
ARDelta vs LOout n.s. n.s. 3.971 * n.s. n.s. n.s. 
ARDelta vs Kal n.s. n.s. 4.091 * n.s. n.s. n.s. 

Habitat 
River vs Lagoon n.s. n.s. 10.366 ** 10.198 ** n.s. n.s. 
River vs Sea 6.231 ** 6.231 ** 5.658 * 6.319 ** 6.231 ** 6.231 ** 
Lagoon vs Sea n.s. n.s. n.s. n.s. 4.267 * 4.267 * 
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Table S2.4: The retrieved KEGG metabolic profiles for each sample. R: River. L: Lagoon. S: Sea. AR: 

Arachthos. ARO: Arachthos Neochori. ARDelta: Arachthos Delta. LOin: Logarou station inside the 

lagoon. LOout: Logarou station in the channel connecting the lagoon to the gulf. Kal: Kalamitsi. 

KEGG profile R_AR R_ARO R_ARDelta L_LOin L_LOout S_Kal 
K00936 0.009492 0.010892 0.010948 0.009943 0.009910 0.009782 
K03296 0.004774 0.004335 0.004524 0.004674 0.004654 0.004741 
K06147 0.004574 0.004845 0.003578 0.004387 0.004409 0.004945 
K03406 0.004383 0.004567 0.004867 0.003914 0.004070 0.003392 
K02014 0.005889 0.004583 0.003118 0.004098 0.004366 0.002918 
K00059 0.005071 0.003739 0.002681 0.003471 0.003449 0.004221 
K02003 0.003619 0.003430 0.002958 0.003449 0.003521 0.003662 
K02004 0.004109 0.003359 0.002483 0.003724 0.003859 0.002732 
K02481 0.002720 0.003128 0.003890 0.002903 0.002629 0.002124 
K09687 0.003040 0.002796 0.003012 0.002880 0.002884 0.002690 
K08884 0.003547 0.002646 0.001737 0.003094 0.002442 0.003366 
K00540 0.003274 0.002945 0.002162 0.002733 0.002711 0.002813 
K02584 0.002503 0.002949 0.003767 0.002701 0.002469 0.001998 
K01897 0.002629 0.002864 0.003237 0.002596 0.002726 0.002214 
K07712 0.002546 0.002942 0.003519 0.002683 0.002464 0.002069 
K02049 0.002769 0.002554 0.002055 0.002594 0.002618 0.003125 
K01533 0.002285 0.002413 0.002485 0.002663 0.002822 0.002299 
K01990 0.002368 0.002239 0.002575 0.002510 0.002493 0.002386 
K02032 0.002674 0.002288 0.001729 0.002245 0.002406 0.002810 
K02488 0.001998 0.002474 0.002583 0.002351 0.002481 0.002227 
K13924 0.002027 0.002231 0.002355 0.002464 0.002709 0.002206 
K03320 0.001979 0.002255 0.002249 0.002377 0.002539 0.002252 
K02667 0.002064 0.002551 0.003093 0.002254 0.002060 0.001621 
K10126 0.002092 0.002390 0.002836 0.002223 0.002087 0.001693 
K02035 0.002571 0.002066 0.001437 0.001928 0.002126 0.002682 
K03701 0.002037 0.001990 0.002144 0.002355 0.002211 0.002005 
K07636 0.001876 0.002324 0.002515 0.001986 0.002061 0.001703 
K03657 0.001937 0.002061 0.002198 0.002085 0.002132 0.002012 
K02013 0.002357 0.002027 0.001926 0.002025 0.001993 0.002073 
K03088 0.002905 0.002036 0.001396 0.002191 0.002129 0.001742 
K03695 0.001799 0.002039 0.002411 0.002077 0.001929 0.001981 
K03046 0.001707 0.001904 0.002330 0.002100 0.002021 0.001997 
K01153 0.001566 0.001646 0.002457 0.002176 0.002130 0.001684 
K02483 0.002015 0.002174 0.001973 0.001737 0.001877 0.001799 
K07714 0.001788 0.002156 0.002814 0.001824 0.001644 0.001330 
K06158 0.001975 0.001799 0.001865 0.001965 0.002006 0.001853 
K03696 0.001644 0.001973 0.002279 0.001955 0.001779 0.001821 
K00257 0.002597 0.001931 0.001886 0.001573 0.001624 0.001735 
K03407 0.001934 0.002095 0.002125 0.001807 0.001789 0.001528 
K02006 0.001800 0.002006 0.001896 0.001822 0.001903 0.001796 
K02337 0.001558 0.001758 0.002256 0.001914 0.001875 0.001715 
K13599 0.001758 0.002008 0.002425 0.001764 0.001636 0.001435 
K07713 0.001672 0.002028 0.002547 0.001803 0.001635 0.001295 
K02519 0.001822 0.001681 0.001893 0.001884 0.001834 0.001779 
K01362 0.001758 0.001690 0.001534 0.002021 0.001813 0.002031 
K15738 0.001964 0.001676 0.001697 0.001825 0.001844 0.001789 
K00666 0.002171 0.001831 0.001846 0.001598 0.001683 0.001494 
K02031 0.002058 0.001685 0.001276 0.001677 0.001814 0.002102 
K03043 0.001574 0.001616 0.002107 0.001793 0.001801 0.001705 
K00128 0.002474 0.001565 0.000926 0.001514 0.001497 0.002269 
K15726 0.001974 0.001716 0.001404 0.001854 0.001930 0.001336 
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KEGG profile R_AR R_ARO R_ARDelta L_LOin L_LOout S_Kal 
K01995 0.001783 0.001729 0.001619 0.001568 0.001587 0.001873 
K01895 0.001657 0.001647 0.001915 0.001627 0.001679 0.001619 
K02028 0.001780 0.001666 0.001460 0.001562 0.001640 0.001994 
K07715 0.001590 0.001834 0.002196 0.001660 0.001511 0.001252 
K02355 0.001491 0.001678 0.002068 0.001630 0.001577 0.001529 
K12266 0.001555 0.001814 0.002234 0.001642 0.001490 0.001221 
K02010 0.001835 0.001600 0.001098 0.001602 0.001660 0.002155 
K10943 0.001482 0.001750 0.002314 0.001631 0.001479 0.001208 
K11085 0.001562 0.001656 0.001620 0.001680 0.001741 0.001574 
K01955 0.001439 0.001531 0.002019 0.001634 0.001573 0.001633 
K01996 0.001708 0.001555 0.001508 0.001527 0.001564 0.001760 
K00382 0.001540 0.001520 0.001589 0.001622 0.001645 0.001595 
K00123 0.001473 0.001646 0.002487 0.001305 0.001436 0.001159 
K03723 0.001411 0.001481 0.001767 0.001648 0.001591 0.001579 
K02482 0.001518 0.001647 0.002398 0.001386 0.001290 0.001171 
K00627 0.001883 0.001566 0.001218 0.001557 0.001568 0.001555 
K01338 0.001541 0.001534 0.002082 0.001430 0.001532 0.001196 
K02469 0.001323 0.001465 0.001612 0.001671 0.001559 0.001655 
K01952 0.001339 0.001393 0.001814 0.001596 0.001563 0.001524 
K03798 0.001232 0.001543 0.001502 0.001655 0.001407 0.001726 
K00265 0.001598 0.001404 0.001204 0.001647 0.001572 0.001604 
K00525 0.001407 0.001309 0.001751 0.001447 0.001509 0.001512 
K03086 0.001379 0.001423 0.001405 0.001631 0.001372 0.001639 
K00548 0.001405 0.001624 0.001381 0.001478 0.001464 0.001444 
K01130 0.001456 0.000729 0.000730 0.002189 0.001710 0.001967 
K01870 0.001268 0.001347 0.001681 0.001469 0.001461 0.001429 
K00626 0.001732 0.001394 0.001488 0.001335 0.001379 0.001309 
K01873 0.001229 0.001355 0.001671 0.001467 0.001454 0.001444 
K03529 0.001299 0.001467 0.001280 0.001602 0.001455 0.001508 
K02056 0.001764 0.001419 0.000835 0.001254 0.001421 0.001871 
K05366 0.001494 0.001356 0.001426 0.001365 0.001391 0.001527 
K13590 0.001201 0.001425 0.001584 0.001471 0.001595 0.001243 
K03070 0.001244 0.001309 0.001629 0.001498 0.001417 0.001389 
K00249 0.001959 0.001520 0.001464 0.001082 0.001130 0.001319 
K07486 0.000699 0.000535 0.002025 0.001829 0.001805 0.001530 
K01999 0.001539 0.001611 0.001214 0.001045 0.001124 0.001651 
K03797 0.001221 0.001337 0.001363 0.001484 0.001362 0.001266 
K02470 0.001183 0.001169 0.001435 0.001408 0.001422 0.001376 
K02052 0.001568 0.001294 0.000831 0.001222 0.001309 0.001740 
K03168 0.001287 0.001212 0.001337 0.001377 0.001282 0.001461 
K01953 0.001016 0.001200 0.001503 0.001503 0.001465 0.001250 
K07814 0.001138 0.001556 0.001738 0.001214 0.001256 0.000996 
K01537 0.000946 0.001401 0.001789 0.001253 0.001458 0.001018 
K01869 0.001135 0.001246 0.001522 0.001312 0.001307 0.001302 
K04043 0.001256 0.001320 0.001261 0.001346 0.001220 0.001416 
K08300 0.001475 0.001229 0.001009 0.001398 0.001239 0.001440 
K03694 0.001122 0.001225 0.001494 0.001344 0.001310 0.001272 
K00615 0.001149 0.001303 0.001606 0.001238 0.001217 0.001237 
K03721 0.001198 0.001426 0.001793 0.001261 0.001145 0.000923 
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Table S2.5: The fraction of unexplained taxonomic units per sample and averaged 

per habitat, as it was derived during the functional profiling using UProC KEGG 

Ortholog reference profiles in long read mode. FTU: fraction of unexplained 

taxonomic units. R: River. L: Lagoon. S: Sea. AR: Arachthos. ARO: Arachthos Neochori. 

ARDelta: Arachthos Delta. LOin: Logarou station inside the lagoon. LOout: Logarou 

station in the channel connecting the lagoon to the gulf. Kal: Kalamitsi. A, B, C: 

replicate samples. 

Samples FTU (%) Average FTU per 
location (%) 

Average FTU per 
habitat (%) 

R_AR_A 54.68 
50.93 

56.85 

R_AR_Β 51.49 
R_AR_C 46.61 
R_ARO_A 49.98  

48.29 R_ARO_Β 47.68 
R_ARO_C 47.21 
R_ARDelta_A 76.16 

71.32 R_ARDelta_Β 69.64 
R_ARDelta_C 68.17 
L_LOin_A 67.68 

66.95 

67.51 

L_LOin_B 67.94 
L_LOin_C 65.22 
L_LOout_A 75.18 

68.06 L_LOout_B 66.04 
L_LOout_C 62.97 
S_Kal_A 37.9 

38.91 38.91 S_Kal_B 39.92 
S_Kal_C 38.92 
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Table S2.6: The linear regression equations for the average number of OTUs per 

taxonomic group, as well as the average number of OTUs irrespective of taxonomic 

group, at the different salinities. *: p < 0.05. **: p < 0.01. n.s.: not significant. SW: p-

value of Shapiro–Wilk statistic to test for normality in regression residuals (critical 

value (a = 0.05) for Shapiro–Wilk statistic when n = 6 is 0.7923). 

 Taxonomic group Linear equation R2  SW 
 All OTUs y = -13.322x + 2588.4 0.6719 * 0.3366 

Archaea 
Crenarchaeota y = 0.3862x + 6.7355 0.552 n.s.  
Euryarchaeota y = 1.7602x + 42.142 0.3178 n.s.  
Unclassified Archaea y = 1.3505x + 24.152 0.4197 n.s.  

Bacteria 

Acidobacteria y = -1.1499x + 118.77 0.51 n.s.  
Actinobacteria y = -2.5228x + 127.28 0.8638 ** 0.6748 
Bacteroidetes y = -5.9149x + 483.59 0.7537 * 0.9983 
Chlorobi y = -0.2292x + 19.104 0.7611 * 0.8545 
Chloroflexi y = -1.2697x + 120.66 0.5828 n.s.  
Cyanobacteria/Chloroplast y = 0.283x + 23.533 0.1213 n.s.  
Firmicutes y = -0.4473x + 36.236 0.7097 * 0.7609 
OD1 y = -0.7155x + 40.82 0.8038 * 0.8457 
Planctomycetes y = -0.2028x + 91.737 0.0124 n.s.  
Proteobacteria y = -6.9127x + 728.14 0.6514 n.s.  
TM7 y = -0.7108x + 33.437 0.9814 ** 0.8424 
Unclassified Bacteria y = 3.824x + 509.41 0.2806 n.s.  
Verrucomicrobia y = -1.5924x + 100.18 0.8384 * 0.1759 
Other y = 0.7423x + 82.471 0.0812 n.s.  

Bacteroidetes 

Bacteroidetes incertae sedis y = -0.6164x + 22.668 0.971 ** 0.8067 
Bacteroidia y = -0.3285x + 12.704 0.9297 ** 0.6491 
Flavobacteria y = -0.3244x + 74.333 0.1095 n.s.  
Sphingobacteria y = -1.5084x + 121.92 0.5637 n.s.  
Unclassified Bacteroidetes y = -3.1372x + 251.96 0.7839 * 0.6318 

Proteobacteria 

Alphaproteobacteria y = -2.8399x + 223.18 0.655 n.s.  
Betaproteobacteria y = -2.8083x + 100.92 0.939 ** 0.308 
Gammaproteobacteria y = -0.4691x + 185 0.0823 n.s.  
Deltaproteobacteria y = -0.7239x + 190.73 0.2751 n.s.  
Epsilonproteobacteria y = -0.1367x + 11.211 0.7642 * 0.5321 
Unclassified Proteobacteria y = 0.0651x + 17.105 0.0245 n.s.  
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Figure S3.1: Taxonomic classification of the SRM OTUs of the different lagoons: a) based on the presence/absence of OTUs, b) based on the 

abundance of OTUs.  
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Figure S3.2: Multidimensional scaling of the SRM OTUs (90% similarity cut-off), based 

on the abundance of the environmental terms that they have been associated with. 

Data labels according to the location of the sampling station, as in Figure 3.4. 
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Table S3.1: The results of the processing of the sequences during the noise removal. 

M: Mazoma lagoon, L: Logarou lagoon, S: Tsopeli lagoon, T: Tsoukalio lagoon, R: 

Rodia lagoon. 01: Station inside the lagoons. 02: Station in the channel connecting 

each lagoon to the gulf. A, B, C: replicate samples. a: number of raw sequences. b: 

number of sequences after the first filtering. c: number of sequences after the 

removal of sequencing errors. d: number of clustered sequences after the removal of 

the PCR errors. e: number of chimeras. f: number of clustered sequences after the 

removal of chimeras (high quality sequences). Sequencing of the sample M_01_A 

was considered to be faulty, resulting in a high number of errors, thus this sample 

was not included in the further analyses.  

Α/Α Sample libraries a b c d e f 
1 M_01_B 6,622 4,802 4,363 998 9 989 
2 M_01_C 5,798 3,960 3,633 1,005 7 998 
3 M_02_A 1,752 1,229 1,020 391 0 391 
4 M_02_B 3,617 2,476 2,222 667 4 663 
5 M_02_C 8,104 5,264 4,104 914 2 912 
6 L_01_A 13,913 6,698 5,689 1,082 217 865 
7 L_01_B 5,411 3,120 2,439 850 131 719 
8 L_01_C 3,602 2,533 2,242 749 1 748 
9 L_02_A 5,191 3,568 3,142 858 1 857 
10 L_02_B 4,559 3,083 2,891 967 1 966 
11 L_02_C 6,504 4,755 4,179 1,152 3 1,149 
12 S_01_A 5,763 4,248 3,012 520 7 513 
13 S_01_B 4,057 2,738 2,083 513 5 508 
14 S_01_C 1,502 1,067 883 246 1 245 
15 S_02_A 6,959 4,546 3,447 995 1 994 
16 S_02_B 1,079 691 596 241 1 240 
17 S_02_C 3,881 2,868 2,636 846 9 837 
18 R_01_A 5,470 3,939 3,442 950 234 716 
19 R_01_B 3,311 2,133 1,934 475 1 474 
20 R_01_C 2,378 1,794 1,400 339 1 338 
21 R_02_A 7,540 5,831 3,276 522 4 518 
22 R_02_B 5,802 4,488 3,226 560 2 558 
23 R_02_C 9,134 6,747 4,350 676 7 669 
24 T_01_A 5,064 3,299 2,896 705 2 703 
25 T_01_B 1,310 910 761 260 0 260 
26 T_01_C 8,200 5,965 3,641 655 7 648 
27 T_02_A 3,112 2,121 1,402 388 1 387 
28 T_02_B 5,501 4,171 3,089 465 3 462 
29 T_02_C 3,490 2,368 1,597 329 1 328 
Sum 148,626 101,412 79,595 19,318 663 18,655 
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Table S3.2: Diversity indices of the samples, based on the 90% similarity cut-off. 

OTUs: total number of OTUs. N: total SRM relative abundance values. d: Margalef’s 

species richness. J΄: Pielou's evenness. H΄: Shannon-Wiener. ACE: Abundance 

Coverage Estimator. M: Mazoma lagoon, L: Logarou lagoon, S: Tsopeli lagoon, T: 

Tsoukalio lagoon, R: Rodia lagoon. 01: Station inside the lagoons. 02: Station in the 

channel connecting each lagoon to the gulf. A, B, C: replicate samples.  

 

 

 

 

 

 OTUs N d J΄ H΄(log2) Chao-1 ACE 
M_01_B 469 3,628 57.1 0.8391 7.446 666,1667 656,9447 
M_01_C 418 2,585 53.07 0.8249 7.182 608,987 639,5986 
M_02_A 257 1,100 36.56 0.8362 6.694 380,0167 436,1893 
M_02_B 398 2,054 52.05 0.8535 7.372 617,4925 634,6642 
M_02_C 449 4,266 53.6 0.7756 6.834 588,0822 586,8483 
L_01_A 383 5,148 44.7 0.8636 7.411 446,8936 441,4868 
L_01_B 387 2,434 49.5 0.8561 7.359 576,4068 565,9593 
L_01_C 408 2,016 53.49 0.862 7.476 621,1304 612,1865 
L_02_A 397 2,595 50.37 0.8149 7.035 611,7619 608,364 
L_02_B 422 1,877 55.85 0.8375 7.304 775,9516 731,6545 
L_02_C 475 3,461 58.16 0.7638 6.791 698,875 723,8786 
S_01_A 311 3,589 37.87 0.7736 6.406 466,1163 463,5426 
S_01_B 238 2,153 30.88 0.7323 5.782 325,6923 367,0418 
S_01_C 149 926 21.67 0.8404 6.067 195,1613 214,0853 
S_02_A 411 3,403 50.42 0.705 6.121 541,679 557,0556 
S_02_B 160 619 24.74 0.7355 5.386 277 317,8009 
S_02_C 382 1,986 50.17 0.797 6.836 692,082 705,5519 
R_01_A 381 3,192 47.1 0.8076 6.924 739,6829 637,4184 
R_01_B 239 1,709 31.97 0.8167 6.452 346,8 374,3831 
R_01_C 224 1,702 29.97 0.7763 6.061 339,1765 336,6552 
R_02_A 312 5,518 36.1 0.676 5.601 430,1458 438,677 
R_02_B 300 4,196 35.84 0.7313 6.018 386,8421 410,2137 
R_02_C 351 6,194 40.09 0.7025 5.94 488,3077 481,892 
T_01_A 311 2,404 39.82 0.7926 6.564 462,25 458,5118 
T_01_B 171 812 25.38 0.8046 5.968 317,25 320,797 
T_01_C 366 5,426 42.45 0.6938 5.908 491,5091 490,3717 
T_02_A 223 1,943 29.32 0.7609 5.935 338,1613 311,9816 
T_02_B 292 3,948 35.14 0.7944 6.506 410,825 410,6931 
T_02_C 226 2,204 29.23 0.7205 5.634 313,1277 356,1822 
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Table S3.3: The Chi-Square values of the Kruskal-Wallis tests for the diversity indices 

between the salinity categories and the lagoons. OTUs: total number of OTUs. N: 

total SRM relative abundance values. d: Margalef’s species richness. J΄: Pielou's 

evenness. H΄: Shannon-Wiener. ACE: Abundance Coverage Estimator. *: p < 0.05. **: 

p < 0.01. n.s.: not significant. 

 

Table S3.4: The values of the Mann-Whitney U tests used for the post-hoc pairwise 

significant comparisons, after the Bonferroni correction. OTUs: total number of 

OTUs. N: total SRM relative abundance values. d: Margalef’s species richness. J΄: 

Pielou's evenness. H΄: Shannon-Wiener. ACE: Abundance Coverage Estimator. *: p < 

0.17 in the case of the salinity categories. *: p < 0.01 in the case of the lagoons. n.s.: 

not significant. 

 

Table S3.5: The values of the Mann-Whitney U tests for the diversity indices between 

the locations. OTUs: total number of OTUs. N: total SRM relative abundance values. 

d: Margalef’s species richness. J΄: Pielou's evenness. H΄: Shannon-Wiener. ACE: 

Abundance Coverage Estimator. *: p < 0.05. n.s.: not significant. 

 

 

 OTUs N d J΄ H΄(log2) Chao-1 ACE 
Salinity 
categories 9.099 * n.s. 9.814 ** 6.423 * 8.363 * 7.351 * 8.630 * 
Lagoon 14.697 ** n.s. 15.326 ** 11.913 * 17.694 ** 10.128 * 11.103 * 

  OTUs N d J΄ H΄(log2) Chao-1 ACE 

Salinity 
categories 

(Mixo-) a-mesohaline vs 
(Mixo-) b-mesohaline n.s. n.s. n.s. n.s. 37.000 * n.s. n.s. 
(Mixo-) a-mesohaline vs 
(Mixo-) polyhaline 0 * n.s. 0 * n.s. 1 * n.s. 1 * 

Lagoons 

Mazoma vs Tsoukalio n.s. n.s. n.s. n.s. 0 * n.s. n.s. 
Tsopeli vs Logarou n.s. n.s. n.s. n.s. 1 * n.s. n.s. 
Rodia vs Logarou 0 * n.s. 1 * n.s. 1 * n.s. n.s. 
Tsoukalio vs Logarou 0 * n.s. 0 * n.s. 0 * 2 * 2 * 

 OTUs N d J΄ H΄(log2) Chao-1 ACE 
Location n.s. n.s. n.s. 59.000 * n.s. n.s. n.s. 
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Figure S4.1: Schematic image explaining the SIP experiment (adapted from Dumont 

and Murrell (2005)). Codes according to Table 4.3. 
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Figure S4.2: Fractionation plots of RNA-SIP experiments for station 18. Plots depict the RNA 

concentration (ng/μl) vs buoyant density (g/ml) for each fraction after ultracentrifugation. 

RNA from fractions denoted by a symbol was used for 16S rRNA sequencing. For each set, a 

parallel tube containing E. coli RNA was centrifuged and used as marker for identifying 

“heavy” gradient fraction (~ 1.82 g/ml) and “light” gradient fraction (~ 1.79 g/ml). Top graph: 

Incubations with nitrate as an electron acceptor. Middle graph: Incubations with sulfate as 

an electron acceptor. Bottom graph: Control incubations with no electron acceptor addition. 
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Figure S4.3: Fractionation plots of RNA-SIP experiments for station 34. Plots depict the RNA 

concentration (ng/μl) vs buoyant density (g/ml) for each fraction after ultracentrifugation. 

RNA from fractions denoted by a symbol was used for 16S rRNA sequencing. For each set, a 

parallel tube containing E. coli RNA was centrifuged and used as marker for identifying 

“heavy” gradient fraction (~ 1.82 g/ml) and “light” gradient fraction (~ 1.79 g/ml). Top graph: 

Incubations with nitrate as an electron acceptor. Middle graph: Incubations with sulfate as 

an electron acceptor. Bottom graph: Control incubations with no electron acceptor addition. 
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Figure S4.4: Fractionation plots of RNA-SIP experiments for station 39. Plots depict the RNA 

concentration (ng/μl) vs buoyant density (g/ml) for each fraction after ultracentrifugation. 

RNA from fractions denoted by a symbol was used for 16S rRNA sequencing. For each set, a 

parallel tube containing E. coli RNA was centrifuged and used as marker for identifying 

“heavy” gradient fraction (~ 1.82 g/ml) and “light” gradient fraction (~ 1.79 g/ml). Top graph: 

Incubations with nitrate as an electron acceptor. Middle graph: Incubations with sulfate as 

an electron acceptor. Bottom graph: Control incubations with no electron acceptor addition. 
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Figure S4.5: The relative abundances (%) of the main microbial taxonomic groups of the 

“heavy” and “light” fractions of the SIP experiment at station 18. Blue frame: samples with 

addition of 13C labelled acetate. Pink frame: samples with addition of 12C acetate. Green 

frame: samples with no electron donor addition. Top graph: Incubations with nitrate as an 

electron acceptor. Middle graph: Incubations with sulfate as an electron acceptor. Bottom 

graph: Control incubations with no electron acceptor addition. 
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Figure S4.6: The relative abundances (%) of the main microbial taxonomic groups of the 

“heavy” and “light” fractions of the SIP experiment at station 34. Blue frame: samples with 

addition of 13C labelled acetate. Pink frame: samples with addition of 12C acetate. Green 

frame: samples with no electron donor addition. Top graph: Incubations with nitrate as an 

electron acceptor. Middle graph: Incubations with sulfate as an electron acceptor. Bottom 

graph: Control incubations with no electron acceptor addition. 
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Figure S4.7: The relative abundances (%) of the main microbial taxonomic groups of the 

“heavy” and “light” fractions of the SIP experiment at station 39. Blue frame: samples with 

addition of 13C labelled acetate. Pink frame: samples with addition of 12C acetate. Green 

frame: samples with no electron donor addition. Top graph: Incubations with nitrate as an 

electron acceptor. Middle graph: Incubations with sulfate as an electron acceptor. Bottom 

graph: Control incubations with no electron acceptor addition.  
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Table S4.1: Solutions used for nucleic acid extractions and ultracentrifugation. All 

solutions were prepared with DEPC treated water, in baked glassware (3 h, 180 °C).  

Solutions Ingredients 
120 mM NaPO4 buffer 112.88 mM Na2HPO4, 7.12 mM NaH2PO4 
TNS solution 500 mM Tris-HCl pH 8, 100 mM NaCl, 10 % SDS (w/v) 
Polyethylene Glycol (PEG) 30 % (w/v) polyethylene glycol 6000 in 1.6 M NaCl 
Gradient buffer (GB) 0.1 M Tris-HCl pH 8, 0.1 M KCl, 1 mM EDTA 
 

Table S4.2: Number of sequences per sample after every processing step, as 

provided by the IMNGS platform. SIP: stable isotope probing. a, b, c: replicate 

samples. A, B, C, D, E, F, G, H, I: sample code according to the SIP experiment 

employed (as in Table 4.3)12.  

Station 
Primer pair used for 
the first-step PCR Demultiplexing 

Merging of 
paired end reads 

Expected 
error filtering 

Chimeras/Artifacts 
filtering 

Abundance of 
OTUs filtering 

1 F1 - R1 5177 1783 765 580 357 
2 F1 - R1 7514 2356 872 628 346 
4 F1 - R1 9907 3257 1315 963 451 
5_a F1 - R1 159921 62142 23497 16113 5779 
5_b F2 - R2 1576 134 48 38 38 
5_c F2 - R1 983 131 40 28 28 
7 F1 - R1 30750 9731 3933 2640 1100 
8_a F1 - R1 328213 106987 42525 20325 7636 
8_b F2 - R2 545 47 19 15 15 
9_a F1 - R1 4175 1529 599 482 245 
9_b F2 - R2 44 8 6 2 2 
10_a F1 - R1 210437 78386 30176 18183 5912 
10_b F2 - R2 448 54 32 20 20 
10_c F2 - R1 1786 240 73 50 50 
14_a F1 - R1 347336 114982 46853 26251 10699 
14_b F2 - R2 758 96 34 18 18 
18_a F1 - R1 60573 22697 8235 4971 2216 
18_b F2 - R2 980 102 26 16 16 
20_a F1 - R1 88865 33058 12466 7180 2792 
20_b F2 - R2 1466 180 64 46 46 
20_c F1 - R1 15494 5031 2184 1481 661 

                                                           
12 F1: forward primer sequence  
(5΄ - TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG - 3΄).  
R1: reverse primer sequence  
(5΄ - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACNVGGGTATCTAATCC - 3΄).  
F2:  forward primer sequence including an extra 5 bp barcode  
(5΄ -TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCTGCCTACGGGNGGCWGCAG - 3΄).  
R2: reverse primer sequence including an extra 5 bp barcode  
(5΄ -GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTAGGACTACNVGGGTATCTAATCC - 3΄). 
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Station 
Primer pair used for 
the first-step PCR Demultiplexing 

Merging of 
paired end reads 

Expected 
error filtering 

Chimeras/Artifacts 
filtering 

Abundance of 
OTUs filtering 

34_a F1 - R1 84710 30105 10650 6603 3140 
34_b F2 - R2 1026 134 50 34 34 
36_a F1 - R1 35457 12271 4663 3068 1287 
36_b F2 - R2 424 34 18 18 18 
39_a F1 - R1 198059 70860 23690 13356 5078 
39_b F2 - R2 494 64 14 10 10 
39_c F2 - R1 2011 206 78 54 54 
43_a F1 - R1 64277 22572 9160 6102 2034 
43_b F2 - R2 240 30 4 4 4 
45_a F1 - R1 22851 8650 3082 2114 866 
45_b F2 - R2 458 52 14 10 10 
46_a F1 - R1 159996 60249 22994 16881 8404 
46_b F2 - R2 752 66 24 18 18 
47_a F1 - R1 182389 67790 27012 14938 5147 
47_b F2 - R2 958 112 40 34 34 
47_c F2 - R1 1714 174 49 23 23 
48_a F1 - R1 56599 21649 8014 5420 2108 
48_b F2 - R2 351 42 16 12 12 
53_a F1 - R1 123069 45561 18398 14412 7712 
53_b F2 - R2 26 0 0 0 0 
59_a F1 - R1 46821 16853 6113 3907 1669 
59_b F2 - R2 828 78 18 14 14 
2281_a F1 - R1 474 56 18 18 18 
2281_b F2 - R2 252239 93277 34313 22605 8485 
2281_c F2 - R1 1683 192 56 28 28 
2282_a F1 - R1 211415 74237 28128 16925 5332 
2282_b F2 - R2 970 82 18 14 14 
2282_c F2 - R1 1321 140 46 32 32 
2285_a F1 - R1 72444 24485 9011 5433 2087 
2285_b F2 - R2 1352 80 20 16 16 
2287 F1 - R1 11650 3663 1486 1254 742 
2289_a F1 - R1 294335 106725 45676 28179 11247 
2289_b F2 - R2 308 22 14 4 4 
2291 F1 - R1 6332 2201 820 611 303 
18_A4 F1 - R1 8921 3575 1716 1648 1584 
18_A5 F1 - R1 4370 1603 763 738 719 
18_A10 F1 - R1 11139 4250 1725 1551 1337 
18_B3 F1 - R1 7555 2803 1145 1083 1017 
18_B4 F1 - R1 8553 3552 1629 1565 1522 
18_B9 F1 - R1 41824 15410 6541 2776 1123 
18_C5 F1 - R1 4231 1569 657 630 596 
18_C10 F1 - R1 3768 1382 643 594 535 
18_C11 F1 - R1 3228 1250 515 470 396 
18_D3 F1 - R1 24233 9629 3994 3781 3682 



                                                       Appendix: Supporting Material for Chapter 4 

178 
 

Station 
Primer pair used for 
the first-step PCR Demultiplexing 

Merging of 
paired end reads 

Expected 
error filtering 

Chimeras/Artifacts 
filtering 

Abundance of 
OTUs filtering 

18_D4 F1 - R1 20205 7895 3232 3049 2949 
18_D8 F1 - R1 29991 12064 5655 4978 4082 
18_D9 F1 - R1 40741 15797 8085 6546 5527 
18_E4 F1 - R1 13516 5326 2343 2272 2205 
18_E8 F1 - R1 60874 22089 10370 8018 6121 
18_E9 F1 - R1 16341 6236 2655 2411 2263 
18_F3 F1 - R1 287 29 12 9 9 
18_F8 F1 - R1 281 23 5 2 2 
18_F9 F1 - R1 270 25 11 6 6 
18_G3 F1 - R1 2790 1042 407 393 383 
18_G8 F1 - R1 13479 4844 2173 1809 1379 
18_G9 F1 - R1 10805 4192 1739 1601 1265 
18_H4 F1 - R1 9722 3776 1664 1564 1510 
18_H5 F1 - R1 8364 3362 1512 1447 1403 
18_H10 F1 - R1 76397 29007 12524 5862 2208 
18_I4 F1 - R1 3503 1346 587 569 552 
18_I9 F1 - R1 7076 2693 1025 943 817 
18_I10 F1 - R1 6030 2274 853 724 509 
34_A3 F1 - R1 53063 20452 8611 8161 7924 
34_A9 F1 - R1 111631 41315 17528 8644 6070 
34_B4 F1 - R1 30247 12193 4811 4596 4443 
34_B9 F1 - R1 33681 12965 5309 4960 4327 
34_C4 F1 - R1 16138 6411 2832 2657 2601 
34_C8 F1 - R1 46607 16540 7453 3161 1892 
34_C9 F1 - R1 73484 26881 12409 5118 3207 
34_D3 F1 - R1 46678 18531 8280 6391 4974 
34_D9 F1 - R1 104606 40306 19560 11731 9186 
34_E3 F1 - R1 107618 41905 14023 13427 12911 
34_E4 F1 - R1 30817 11993 5103 4797 4610 
34_E8 F1 - R1 38628 15042 6322 5943 5524 
34_E9 F1 - R1 44984 17086 7021 6328 5642 
34_F4 F1 - R1 26595 10276 4275 4090 3905 
34_F8 F1 - R1 29727 11914 5109 4911 4795 
34_F9 F1 - R1 33827 13651 6160 4634 3664 
34_G4 F1 - R1 21047 8396 3502 3334 3282 
34_G9 F1 - R1 38426 15384 6988 6653 6125 
34_H3 F1 - R1 34576 13622 5844 5545 5039 
34_H9 F1 - R1 113731 38909 15059 6520 3557 
34_I4 F1 - R1 608 205 100 78 78 
34_I9 F1 - R1 17819 6940 2931 2772 2721 
34_I10 F1 - R1 2467 960 405 372 370 
39_A3 F1 - R1 17239 6870 2748 2632 2587 
39_A8 F1 - R1 6916 2626 1108 1060 997 
39_A9 F1 - R1 8257 3229 1297 1241 1172 
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Station 
Primer pair used for 
the first-step PCR Demultiplexing 

Merging of 
paired end reads 

Expected 
error filtering 

Chimeras/Artifacts 
filtering 

Abundance of 
OTUs filtering 

39_B3 F1 - R1 5167 1969 873 849 827 
39_B4 F1 - R1 17214 7018 3220 3028 2911 
39_B9 F1 - R1 6136 2380 1005 936 877 
39_B10 F1 - R1 2823 1078 423 368 318 
39_C3 F1 - R1 2671 997 342 325 321 
39_C4 F1 - R1 2426 944 418 406 389 
39_C9 F1 - R1 8529 3321 1421 1247 946 
39_D4 F1 - R1 14684 6003 2650 2429 2221 
39_D9 F1 - R1 28881 11266 5112 4152 3632 
39_D10 F1 - R1 48920 19741 9769 6617 4681 
39_E3 F1 - R1 3891 1549 705 684 664 
39_E8 F1 - R1 5141 1981 825 801 761 
39_E9 F1 - R1 4881 1879 889 830 783 
39_F3 F1 - R1 7449 2832 1200 1151 1126 
39_F8 F1 - R1 5303 1988 826 778 738 
39_F9 F1 - R1 4721 1747 700 667 646 
39_G3 F1 - R1 3383 1311 523 505 484 
39_G9 F1 - R1 4595 1811 809 744 660 
39_H3 F1 - R1 15547 6372 2803 2654 2593 
39_H7 F1 - R1 45930 17636 6985 4352 2536 
39_I3 F1 - R1 6765 2542 1118 1080 1032 
39_I9 F1 - R1 4308 1627 718 666 577 
Blank_18_SIP F1 - R1 7044 2628 1104 1025 971 
Blank_34_SIP F1 - R1 14 2 0 0 0 
Blank_39_SIP F1 - R1 3125 1109 494 476 463 
Blank_F1-R1 F1 - R1 33367 12182 5370 5004 4748 
Blank_F2-R1 F2 - R1 22 4 0 0 0 
Blank_F2-R2 F2 - R2 1889 709 219 209 203 

 

 

 

 

 

 

 

 

 

 

 



                                                       Appendix: Supporting Material for Chapter 4 

180 
 

Table S4.3: Diversity indices of the samples. OTUs: total number of OTUs. N: total 

microbial relative abundance values. H΄: Shannon-Wiener. J΄: Pielou's evenness. d: 

Margalef’s species richness. λ: Simpson. 

Samples OTUs N H΄(ln) J΄ d  λ 
1 89 311 4.154 0.925 15.332 0.977 
2 98 309 4.154 0.906 16.919 0.975 
4 114 405 4.209 0.889 18.821 0.973 
5 242 1755 4.509 0.821 32.261 0.979 
7 164 961 4.443 0.871 23.733 0.980 
8 198 3545 3.907 0.739 24.103 0.960 
9 61 111 3.843 0.935 12.740 0.972 
10 179 1915.67 4.207 0.811 23.552 0.974 
14 237 4847 4.280 0.783 27.810 0.972 
18 198 968 4.378 0.828 28.654 0.976 
20 229 1062 4.560 0.839 32.721 0.982 
34 171 1473 3.789 0.737 23.303 0.953 
36 164 578.5 4.413 0.865 25.627 0.978 
39 233 1484 4.546 0.834 31.770 0.980 
43 168 848 4.530 0.884 24.767 0.984 
45 136 397 4.376 0.891 22.560 0.981 
46 220 3225.5 4.359 0.808 27.108 0.976 
47 258 1551.33 4.589 0.826 34.981 0.981 
48 189 989 4.537 0.866 27.259 0.983 
53 182 4880 4.409 0.847 21.312 0.977 
59 183 702.5 4.503 0.864 27.767 0.979 
2281 236 2497.33 4.296 0.786 30.040 0.972 
2282 218 1499.33 4.292 0.797 29.674 0.968 
2285 159 859 4.182 0.825 23.387 0.965 
2287 113 620 4.135 0.875 17.419 0.972 
2289 242 4807 4.501 0.820 28.427 0.978 
2291 86 285 3.916 0.879 15.038 0.968 
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Table S4.4: Statistical significant Pearson correlations between the diversity indices 

of the samples and the physicochemical variables of the sampling stations. N: total 

microbial relative abundance values. H΄: Shannon-Wiener. J΄: Pielou's evenness. d: 

Margalef’s species richness. λ: Simpson. *: p < 0.05. **: p < 0.01 

  Physicochemical variables 
  Total 

Nitrogen (%) 
Liquid Water 
Content (%) 

delta 15N Salinity 
(psu) 

Total Organic 
Carbon (%) 

Diversity 
indices 

N    - 0.47 *  
H΄   - 0.59 **   
J΄ - 0.39 * - 0.45 *    
d   - 0.42 *   
λ - 0.40 *    - 0.38 * 
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Table S4.5: Pair-wise statistical comparisons (PERMANOVA) of microbial 

communities among the different tested factors. A: zonal transect at 28° 38΄S. B: 

cross shelf transect starting at 25°S. C: stations between 23°S and 25°S. D: zonal 

transect at 23°S. E: stations between 19°S and 21°S. F: zonal transect off Kunene 

mouth at 17° 15΄S. n. sign.: non significant. *: p < 0.05. **: p < 0.01 

Transect Depth range Range of oxygen concentration 
Groups t Groups t Groups t 
A, B n. sign. 0-100 m, 100-200 

m 
n. sign. 0-10 μmol/l, 10-30 

μmol/l 
n. sign. 

A, C 1.7566 * 0-100 m, 200-500 
m 

1.637 
** 

0-10 μmol/l, 30-50 
μmol/l 

n. sign. 

A, D n. sign. 0-100 m, 500-1000 
m 

n. sign 0-10 μmol/l, 50-100 
μmol/l 

1.8887 * 

A, E 1.4518 * 0-100 m, 1000-
2500 m 

1.8295 
* 

0-10 μmol/l, 100-
150 μmol/l 

2.5629 * 

A, F n. sign. 100-200 m, 200-
500 m 

n. sign 0-10 μmol/l, 150-
200 μmol/l 

2.6073 * 

B, C n. sign. 100-200 m, 500-
1000 m 

n. sign 10-30 μmol/l, 30-50 
μmol/l 

n. sign. 

B, D n. sign. 100-200 m, 1000-
2500 m 

2.1683 
* 

10-30 μmol/l, 50-
100 μmol/l 

1.4369 * 

B, E n. sign. 200-500 m, 500-
1000 m 

1.4594 
* 

10-30 μmol/l, 100-
150 μmol/l 

1.9505 
** 

B, F n. sign. 200-500 m, 1000-
2500 m 

2.491 
** 

10-30 μmol/l, 150-
200 μmol/l 

2.4442 
** 

C, D n. sign. 500-1000 m, 1000-
2500 m 

n. sign 30-50 μmol/l, 50-
100 μmol/l 

n. sign. 

C, E n. sign.   30-50 μmol/l, 100-
150 μmol/l 

1.2358 * 

C, F n. sign.   30-50 μmol/l, 150-
200 μmol/l 

1.6836 * 
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