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Summary 

The candidate division OP3, recently entitled candidate phylum Omnitrophica, is 

characterized by 16S rRNA gene sequences from a broad range of anoxic habitats with a 

broad phylogeny of up to 26% sequence dissimilarity. The 16S rRNA phylotype OP3 LiM 

had previously been detected in limonene-degrading, methanogenic enrichment cultures and 

represented small coccoid cells. Neither isolation experiments nor physiological experiments 

had provided insights into the metabolism of this bacterium within the complex methanogenic 

community. This doctoral thesis aimed at the characterization of populations of the phylotype 

OP3 LiM to discover its biology.  

Metagenomes usually yield draft population genomes. To obtain the complete closed 

OP3 LiM genome, in silico methods were explored to improve draft assemblies. Large 

genomes of planctomycete strains were assembled with a variety of methods. A taxonomic 

classification of contig sequences was used to differentiate and separate contigs of draft 

assemblies into taxon-specific groups. Reassemblies of reads obtaining from mapping onto 

taxon-specific contigs yielded improved draft assemblies. This knowledge was used to obtain 

a closed genome of OP3 LiM from a metagenome of physically enriched OP3 LiM cells. 

Finishing the OP3 LiM genome required the combination of data of different sequencing 

technologies, a variety of assembly and mapping software, over 15 reassemblies with 

intensive manual quality controls by read and contig mapping and, finally, laboratory work 

with combinatorial PCR to solve the genome puzzle.  

The population genome of OP3 LiM is the first closed genome of a member of 

candidate phylum Omnitrophica and comprises 1,974,501 bp with a GC content of 52.9%. Its 

23S rRNA contains a group I intron. The genome offers a syntrophic life on hydrogen or 

formate, however, the metaproteome indicated that OP3 LiM uses glycolysis together with 

pyruvate oxidation as major catabolic pathway. The metaproteome also identified high levels 

of proteins potentially involved in the degradation of polymers as well as in the uptake of 

foreign nucleic acids. The genomic information was combined with observations of cells of 

the methanogenic community by different visualization methods.  

Images of OP3 LiM required electron microscopy due to the small cell size of  

0.2–0.3 µm in diameter. In situ hybridizations revealed two physiological stages, free-living 

OP3 LiM cells with low ribosome content and OP3 LiM cells attached to either bacteria or 
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archaea, which showed strong signals. This observation indicated a higher metabolic activity 

of OP3 LiM cells during the attachment and, likewise, that the bacterium utilizes surface 

polysaccharides as preferred substrate.  

In situ hybridizations revealed that the methanogen Methanosaeta in the enrichment 

culture contained cells in the filaments that lacked DNA and rRNA suggesting that these cells 

lost their cellular content. We also observed faint signals of the OP3 LiM 16S rRNA in 

Methanosaeta cells. The presence of the intron RNA of the 23S rRNA of OP3 LiM was 

visualized in Methanosaeta cells devoid of DNA and rRNA. This first direct observation of 

an intron transfer from a bacterium to an archaeon together with metaproteomic observations 

indicate the lifestyle of an epibiotic bacterium for OP3 LiM. OP3 LiM is the first predatory 

bacterium that preys on Archaea. We propose to name OP3 LiM “Candidatus Vampirococcus 

archaeovorus”. 
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Zusammenfassung 

Die Kandidaten-Division OP3, neuerdings Kandidat Phylum Omnitrophica benannt, ist 

gekennzeichnet durch 16S rRNA Gensequenzen, die aus einer großen Bandbreite anoxischer 

Lebensräume gewonnen wurden und mit Sequenzunterschieden von bis zu 26% eine breite 

Phylogenie aufzeigen. Der 16S rRNA Phylotyp OP3 LiM wurde in Limonen-abbauenden 

methanogenen Anreicherungen nachgewiesen und ist repräsentiert durch kleine 

kokkoidförmige Zellen. Weder Isolationsexperimente noch physiologische Tests hatten 

Einblicke in den Metabolismus dieses Bakteriums innerhalb der komplexen methanogenen 

Gemeinschaft gegeben. Das Ziel dieser Doktorarbeit bestand in der Charakterisierung von 

Populationen des Phylotyps OP3 LiM, um seine Biologie aufzudecken. 

Aus Metagenomen lassen sich in der Regel unvollständige „Entwurf“- 

Populationsgenome gewinnen. Um das vollständig geschlossene OP3 LiM Genom zu 

erhalten, wurden in silico Methoden zur Verbesserung von unvollständigen Genomen 

erkundet. Große Genome von Planctomycetenstämmen wurden mit einer Vielzahl von 

Methoden aus Sequenzen zusammengebaut. Eine taxonomische Klassifikation von Contig-

Sequenzen (langen Genomstücken) wurde verwendet, um die Contigs der Genome in 

taxonomisch-klassifizierte Gruppen zu differenzieren und zu trennen. Sequenzen, die durch 

den Anlagerungsprozess („Mapping“) auf taxonomisch-spezifische Contigs ausgewählt 

wurden, ergaben beim Genomzusammenbau verbesserte Contigs. Diese Erkenntnis wurde 

verwendet, um ein geschlossenes Genom von OP3 LiM aus einem Metagenom von 

physikalisch-angereicherten OP3 LiM Zellen zu gewinnen. Die Fertigstellung des OP3-LiM-

Genoms erforderte die Kombination von Daten verschiedener Sequenzierungstechnologien, 

eine Vielzahl von Assemblierungs- und Mapping-Software, die Durchführung von über 15 

Reassemblierungen zusammen mit intensiver manueller Qualitätskontrolle, welche durch 

Mapping-Verfahren der DNA-Bruchstücke und der Contigs ermöglicht wurde, und 

schließlich Laborarbeit mit kombinatorischer PCR für die Lösung des Genompuzzles. 

Das Populationsgenom von OP3 LiM ist das erste geschlossene Genom eines 

Mitglieds des Kandidat Phylums Omnitrophica und umfasst 1.974.501 Basenpaare mit einem 

GC Gehalt von 52,9%. Seine 23S rRNA beinhaltet ein Gruppe-I-Intron. Das Genom 

ermöglicht ein syntrophes Leben auf Wasserstoff oder Formiat, jedoch wies das Metaproteom 

darauf hin, dass OP3 LiM hauptsächlich die Glykolyse zusammen mit der Pyruvat-Oxidation 
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katabol nutzt. Das Metaproteom identifizierte auch eine große Anzahl an in der Zelle häufig 

vorkommenden Proteinen, die potentiell an dem Polymerabbau sowie an der Aufnahme von 

fremder Nukleinsäure beteiligt sind. Die Genominformationen wurden mit Beobachtungen, 

die durch die Anwendung verschiedener Bildgebungsmethoden von den Zellen der 

methanogenen Gemeinschaft gemacht werden konnten, kombiniert. 

Die visuelle Darstellung von OP3 LiM erforderte Elektronenmikroskopie, was auf die 

geringe Zellgröße von 0,2–0,3 µm im Durchmesser zurückzuführen ist. In situ 

Hybridisierungen zeigten zwei physiologische Zustände, frei-lebende OP3 LiM Zellen mit 

geringem Ribosomengehalt und OP3 LiM Zellen, die an Bakterien beziehungsweise Archaeen 

anhafteten und starke Signale aufwiesen. Diese Beobachtung deutete auf eine höhere 

metabolische Aktivität von OP3 LiM Zellen während der Anlagerung hin und ebenso, dass 

das Bakterium Oberflächen-Polysaccharide als bevorzugtes Substrat verwendet.  

In situ Hybridisierungen offenbarten, dass der in der Anreicherungskultur lebende 

Methanbildner Methanosaeta Zellen in den Filamenten besitzt, denen DNA und rRNA fehlen, 

was auf den Verlust ihres Zellinhaltes deutet. Wir beobachteten auch schwache OP3 LiM 16S 

rRNA Signale in Methanosaeta Zellen. Die Anwesenheit der RNA des 23S rRNA Introns von 

OP3 LiM wurde in Methanosaeta Zellen, die weder DNA und rRNA aufwiesen, sichtbar 

gemacht. Diese erste direkte Beobachtung eines Introntransfers von einem Bakterium zu 

einem Archaeon, zusammen mit Beobachtungen aus dem Metaproteom, deutet auf den 

Lebensstil eines Epibionten für OP3 LiM hin. OP3 LiM ist das erste räuberische Bakterium, 

welches auf Archaeen Jagd macht. Wir schlagen den Namen "Candidatus Vampirococcus 

archaeovorus" vor. 
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Chapter 1 

Introduction 

1.1 The microbial diversity 

Although invisible to the naked eye, prokaryotes constitute an essential component of the 

Earth´s biota (Whitman et al., 1998). The prokaryotic diversity is a product of about  

3.8 billion years of evolution – two billion years longer than that of eukaryotic organisms 

(Torsvik et al., 2002), and they have continued to evolve to occupy every possible metabolic 

niche (von Wintzingerode et al., 1997; Rinke et al., 2013). 4–6 x 1030 bacterial and archaeal 

cells are estimated to inhabit the Earth (Whitman et al., 1998) and outnumber the eukaryotic 

cells by several order of magnitudes (Schleifer, 2004). The majority of the prokaryotes occur 

in the open ocean (1.2 x 1029 cells), in soil (2.6 x 1029 cells), and in oceanic and terrestrial 

subsurfaces (3.5 x 1030 and 0.25–2.5 x 1030 cells) (Whitman et al., 1998). The total organic 

carbon of prokaryotes on earth is enormous, approximately 60% to 100% of the total organic 

carbon found in plants (Whitman et al., 1998). In addition, prokaryotes contain large amounts 

of N, P, and other essential nutrients (Whitman et al., 1998). Bacteria and Archaea possess an 

immense metabolic diversity, and their activities are critical in processes ranging from sewage 

treatment to regulating the composition of the atmosphere (Ward, 2002). They are a crucial 

component of the biosphere because they catalyze biogeochemical cycles sustaining all life on 

Earth (Torsvik et al., 2002). Therefore, discovering and understanding the diversity of 

microbial communities (the number of species and their relative abundances) is a high priority 

in ecology (Ward, 2002).  

Although we are aware of the central role of microbes in in biotic processes, we have 

known very little about their actual diversity (Schleifer, 2004). Estimating the microbial 

diversity is a persisting challenge by the fact that the development of a reliable classification 

based on morphological traits as these for higher eukaryotes has been difficult due to their 

relative simplicity (Schloss & Handelsman, 2004; Prakash et al., 2007). For the recognition of 

prokaryotic species, the isolation of an organism in pure culture is an indispensable requisite 

(Rosselló-Mora & Amann, 2001). Currently, 14,800 species are validly published 

(http://www.dsmz.de/bacterial-diversity/prokaryotic-nomenclature-up-to-date). Molecular 
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techniques indicate that the hitherto classified prokaryotes account a small portion of the real 

microbial diversity (Rosselló-Mora & Amann, 2001). More than 99% of the global population 

of prokaryotes has yet not been isolated by using standard techniques (Hugenholtz et al., 

1998b; Schleifer, 2004).  

Consequently, cultivation-independent methods, based mainly on molecular retrieval 

of 16S rRNA gene (rDNA) sequences, have become the most important tools for detection 

and identification of microbes (Derakshani et al., 2001). Since Woese and Fox (1977) first 

proposed the 16S rRNA gene as a phylogenetic tool to describe the evolutionary relationships 

among organisms and Pace et al. (1985) described its use for classifying uncultivable 

microorganisms in the environment (Schloss & Handelsman, 2004), the perspective on 

microbial diversity has improved enormously (Hugenholtz et al., 1998b).  

Comparative sequence analysis of small subunit ribosomal ribonucleic acids (SSU 

rRNA; 16S rRNA in prokaryotes, 18S rRNA in eukaryotes) indicates that the living 

organisms comprise at least three primary domains, Bacteria, Archaea, and Eucarya 

(Schleifer, 2004). In addition, the use of the rRNA approach in exploring uncultured 

prokaryotes in natural samples has given valuable insights into prokaryotic diversity 

(Rosselló-Mora & Amann, 2001). The usage of new tools unveiled a widespread distribution 

and unexpected diversity by the discovery of new uncultured linages of Archaea (Auguet et 

al., 2010). Contrary to previous belief that species of this domain inhabited only the extreme 

environments (e.g., extreme, hot, saline or strictly anaerobic habitats) (Amann, 2000), a high 

numbers of novel and unexpected “non-extreme” archaeal phenotypes were discovered in 

habitats like soil, seawater, etc. (Sharma et al., 2005). Many of the uncultivated phyla are 

found in diverse habitats, and some are extraordinarily abundant (Rappé & Giovannoni, 

2003). Today, 2 million nearly complete sequences are known on the 16S rRNA level, thereof 

650,000 with less than 99% identity to other 16S rRNA gene sequences (SILVA database, 

release 128, Sept. 2016). 

Over the past decades the species census estimates have changed, but remains still 

controversial (Amann & Rosselló-Móra, 2016). The number of bacterial species in the world 

was previously estimated to range from 107 to 109 (Schloss & Handelsman, 2004). According 

to a new estimate, which based on the combination of scaling laws with a model of 

biodiversity, there are even about one trillion (1012) microbial species on Earth, and 99.999% 

of them have yet to be discovered (Locey & Lennon, 2016). The study of Schloss et al. (2016) 

provides evidence that the PCR-based census of species might stop at a few millions (Amann 

& Rosselló-Móra, 2016). 
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The microorganism diversity is hidden in the “rare biosphere”. Yarza et al. (2014) 

revealed that there are likely more than 1,000 phylum-level clades that lack any cultured 

representatives (Amann & Rosselló-Móra, 2016). This “unculturable” bacterial diversity 

presents a vast gene pool for biotechnological exploitation and poses a major challenge for 

microbiologists to understand their phylogenetic relationship and ecological significances 

(Sharma et al., 2005). 

Sequencing of bacterial genome sequences is now a standard procedure (Land et al., 

2015). However, because the majority of microbes are “unculturable”, classical methods for 

cloning and sequencing the entire genome of every species in a population are unsuitable. 

This is reflected in the biased representation of SSU rRNA-based phylogeny according to 

which more than 88% of all microbial strains belong to only four bacterial phyla, the 

Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes (Rinke et al., 2013). 

Metagenomics technologies relying on environmental shotgun sequencing usually 

offer the possibility of sampling from a community and investigating microbes in their natural 

environment (Pachter, 2007). They have become an indispensable tool for studying the 

diversity and metabolic potential of environmental microbes, whose bulk is as yet non-

cultivable (Teeling & Glöckner, 2012). Due to new genomic sampling of previously 

enigmatic or unknown microbial lineages, the tree of life has dramatically expanded revealing 

that large fraction of diversity is currently only accessible via cultured-independent genome-

resolved approaches (Hug et al., 2016). 

But the ever-increasing amount and complexity of generated sequences has also large 

implications for analysis of this data. Therefore, the ability of bioinformatics to analyze, 

compare, interpret, and visualize the vast increase in bacterial genomes, transcriptomes, 

proteomes, and metatranscriptomes is valiantly trying to keep up with these developments 

(Paulino et al., 2015). New software packages are available for this problem (e.g., Metawatt 

(Strous et al., 2012), CONCOCT (Alneberg et al., 2014), GroopM (Imelfort et al., 2014) or 

Anvi’o (Eren et al., 2015). Nevertheless, it is likely that there will be a continued demand for 

good bioinformatics tools. The reconstruction of a complete and fully automated assembly of 

genomes using next-generation sequencing (NGS) short read sequences remains a significant 

bioinformatics challenge (Paulino et al., 2015). The technology of long-read sequencing now 

offers different alternatives to solve these genome assembly problems (e.g., repeated elements 

or segmental duplications involved in complex regions) (Madoui et al., 2015). 

The number of sequenced genomes has continued to increase dramatically in the last 

10 years. The Integrated Microbial Genomes & Microbiomes (IMG/M) system contains a 
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total of 47,516 (among them 40,894 public) archaeal, bacterial and eukaryotic genomes 

currently available in July 2016 (Chen et al., 2017). These genomic data represent an over 

300% increase since September 2013 (Markowitz et al., 2014). In addition, IMG also includes 

5,185 (3,907 public) viral genomes, 1,220 (1,192 public) plasmids and 1,196 (1,192 public) 

genome fragments (Chen et al., 2017). This information has expanded the catalog of 

microbial taxa by orders of magnitude, and has had a major impact on the understanding of 

microbial diversity (Locey & Lennon, 2016). In summary, the last decade has seen an 

explosion of sequence information from the environment, and it is time to study especially the 

so-far not characterized phyla in more detail.  

 

 

1.2 Candidate Division OP3 

The candidate division OP3 was first recognized in a culture-independent molecular 

phylogenetic survey carried out on the bacterial community in the Obsidian Pool (OP), a hot 

spring (75°C to 95°C) located in the Yellowstone National Park (Fig. 1). This unique 

ecosystem, rich in iron, sulfide, carbon dioxide and hydrogen, is dominated by lithotrophic 

communities and a fertile ground for discovery of novel microbial diversity (Hugenholtz et 

al., 1998a; Kumar & Saravanan, 2010). In the study by Hugenholtz et al. (1998a), 12 novel 

division level bacterial lineages were detected in sediment on the basis of 16S rRNA gene 

sequences (Wagner & Horn, 2006; Glöckner et al., 2010). One of these candidate divisions 

was named Obsidian Pool 3 (OP3) (Hugenholtz et al., 1998a). 

 

 

Fig. 1. Obsidian Pool, The Yellowstone National Park (from Kumar & Saravanan, 2010). 

 

Phylogenetic analysis of 16S rRNA genes assigned OP3 to the 

Planctomycetes/Verrucomicrobia/Chlamydiae (PVC) superphylum. This assemblage is 
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formed by four bacteria phyla, comprising the Planctomycetes, Verrucomicrobia, Chlamydiae 

and Lentisphaerae, together with the candidate divisions Poribacteria and OP3 (Fig. 2) 

(Wagner & Horn, 2006).  

 

 

Fig. 2. Phylogenetic relationship based on 16S rRNA gene sequences showing major recognized bacterial phyla. 

Solid wedges indicate phyla with cultured representatives. Open wedges indicate candidate phyla. OP3 is 

highlighted with red frame. PVC superphylum is highlighted with green colour range (adapted from Kumar & 

Saravanan, 2010). 

 

On basis of their monophyletic cluster in 16S rRNA-based phylogenetic trees, a 

common ancestor was speculated. Despite this proposal, the members of the PVC 

superphylum differ greatly within the superphylum with respect to the life-style, physiology, 

and ecology. Microorganisms of this group possess dramatically different lifestyles and 

colonize sharply contrasting habitats (Wagner & Horn, 2006). Each phylum includes 

members that attracted significant research interest (Lagkouvardos et al., 2014). Members are 

important in carbon and nitrogen cycling (e.g., Rhodopirellua and anammox bacteria, such as 

“Candidatus Kuenenia” species) (Gupta et al., 2012; Lagkouvardos et al., 2014), as 

pathogens or symbionts (e.g., Chlamydia species), or as environmental microbes in soil and 

marine habitats (e.g., Verrumicrobia) (Fuerst, 2013; Lagkouvardos et al., 2014). 

The initial description of OP3 was based on a single 16S rRNA gene sequence 

retrieved from OP sediment (Hugenholtz et al., 1998a). However, soon a diverse range of 

habitat was identified for members of the OP3 phylum based on the presence of 16S rRNA 

sequences in clone libraries of environmental samples. Most of these sequences were obtained 

from anoxic environments including various marine habitats, such as water column (Madrid et 
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al., 2001), hydrothermal fluids (Pisapia et al., 2017), or sediments (Stott et al., 2008; Kolinko 

et al., 2012), hypersaline wastewater (Lefebvre et al., 2006), wetlands (Dedysh, 2011), 

flooded paddy soil (Derakshani et al., 2001), and waste water treatment plants and 

methanogenic bioreactors (Chouari et al., 2005). In example (Fig. 3), OP3 was observed in 

the microbial community present in monoterpene degrading methanogenic enrichment 

cultures, a complex syntrophic community (Rotaru et al., 2012).  

 

 

Fig. 3. Maximum parsimony tree of Bacteria 16S rRNA gene sequences retrieved from limonene degrading 

methanogenic enrichment cultures (from Rotaru et al., 2012). 



Chapter 1 – Introduction 

7 

First phylogenetic analysis of all available OP3-related 16S rRNA gene sequences 

(SILVA database, release 100, checked November 2009) had shown that OP3 is represented 

by at least five different subdivision level lineages (Glöckner et al., 2010). At least members 

of one of these sub-lineages (sub-lineage V) may possess a facultative anaerobic lifestyle 

(Ivanova & Dedysh, 2012) based on OP3-related bacteria recently detected in both oxic and 

anoxic peat layers from acidic wetlands (Ivanova & Dedysh, 2012). Currently, the SILVA 

database contains 2,960 candidate phylum Omnitrophica (Omnitrophica, renamed by Rinke et 

al. (2013)) SSU sequences, all defined as uncultured and obtained from diverse habitats 

(SILVA database; release 128 of September 2016; https://www.arb-silva.de).  

16S rRNA gene sequences, recovered from a wide range of anoxic habitats, revealed a 

phylogenetical broad phylum of OP3. First genomic insights into the biology of the OP3 

bacteria were obtained from metagenomic studies including the analysis of large 

metagenomic cosmid clones (Glöckner et al., 2010), single cell genomes (Kolinko et al., 

2012; Rinke et al., 2013), and metagenomic population draft genomes (Speth et al., 2016). 

Currently, 87 population genome bins / draft genomes for candidate phylum Omnitrophica, 

obtained from diverse habitats, are available from GenBank (June 2017; 

https://www.ncbi.nlm.nih.gov) (Appendix Table S1). 

Metagenomic cosmids and draft assemblies identified OP3 genes potentially involved 

in anaerobic respiration (Glöckner et al., 2010). The potential of nitrate respiration was 

described for OP3. A gene encoding a nitrate reductase was identified in the most complete 

OP3 draft genome (assembly accession number ASM156711v1) to date, retrieved from 

sludge of a wastewater treatment plant (Speth et al., 2016). OP3 is capable of fixing carbon 

via the reductive acetyl-CoA cycle (Wood-Ljungdahl pathway) (Rinke et al., 2013). OP3 

genomes share a high proportion of orthologal genes with members of the 

Deltaproteobacteria, rather than with those of the PVC superphylum (Glöckner et al., 2010). 

One OP3 genome has genes for magnetotactic behavior (Kolinko et al., 2012), a 

representation of the high diversity of OP3. 

The genome-based information was also used in the construction of phylogenetic 

trees. The limited resolution of a single gene, such as the widely used 16S rRNA gene, was 

recently replaced by a set of genes with less degree of conservation (e.g., a set of ribosomal 

protein sequences) (Hug et al., 2016). This should reduce the uncertainty of the branching in 

the trees. The concatenated genes placed the candidate division OP3 at the root of the PVC 

superphylum, before the division of Chlamydiae and Planctomycetes in maximum likelihood 

analyses (Fig. 4) (Rinke et al., 2013; Anantharaman et al., 2016; Hug et al., 2016). 
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Fig. 4. Phylogenetic trees are based on up to 38 marker genes (Wu et al., 2013) and sequences are collapsed at 

the phylum level. OP3 is highlighted with red frame. The PVC superphylum is highlighted with green color 

range (adapted from Rinke et al., 2013). 

 

 

1.3 Anaerobic monoterpene degrading methanogenic enrichments 

1.3.1 Methanogenic degradation of complex organic matter 

The degradation of complex biomass in anoxic habitats typically proceeds in several steps by 

a complex microbial community (Fig. 5). These steps include primary fermentations, 

followed by further oxidation by sulfate reduction or iron reduction, or by coupling primary 

fermentations with secondary fermentations to methanogenesis as terminal electron accepting 

process (Schink, 2006).  
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Fig. 5. Carbon and electron flow in the methanogenic degradation of complex biomass. Involved are: (1) primary 

fermentative bacteria; (2) hydrogenoxidizing methanogens; (3) acetate-cleaving methanogens; (4) secondary 

fermenting bacteria (syntrophs); and (5) homoacetogenic bacteria (from Schink, 2006). 

 

The polymeric substrates (polysaccharides, proteins, lipids, and nucleic acids) are 

hydrolyzed to oligo- and monomers (sugars, amino acids, purines, pyrimidines, fatty acids, 

and glycerol) by primary fermenters. This metabolic group of bacteria ferments the monomers 

further to fatty acids, branched-chain fatty acids, succinate, alcohols, lactate, etc. Some of 

these products (acetate, CO2, H2, other one-carbon compounds) can be used directly by 

methanogens converting them to methane and CO2. For the methanogenic degradation of 

other products of primary fermenters (fatty acids longer than two carbon atoms, alcohol 

longer than one carbon atom, branched-chain or aromatic fatty acids) secondary fermenters 

are needed to convert them to acetate, CO2, H2, and formate. These compounds are 

subsequently used by methanogens (Schink & Stams, 2006), which are divided into two 

groups: the hydrogenotrophic methanogens and the acetotrophic methanogens. They complete 

the process (Sieber et al., 2010). The function of homoacetogenic bacteria in the overall 

process is less understood (Schink & Stams, 2006). These organisms can catalyze the 

reductive synthesis of acetate from CO2. They constitute a very phylogenetically diverse 

bacteriological group, present in both oxic and anoxic environments (Drake et al., 2002). 

Owing their metabolic versatility, they can participate in fermentation processes and compete 
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with primary fermenters for monomeric compounds and with secondary fermenters for 

fermentation products in anoxic environments. In certain environments (low pH or low 

temperature) they may even successfully compete with hydrogenotrophic methanogens 

(Schink & Stams, 2006). 

In sediments or in well-balanced sludge digesters in which the hydrogen-utilizing 

community maintains a low hydrogen partial pressure the degradation of compounds, such as 

sugars and polysaccharides, may proceed nearly exclusively through acetate and hydrogen 

(bold arrows in Fig. 5), and reduced side products play only a minor role (Schink, 2006; 

Schink & Stams, 2006). Excessive production of reduced side products, however, is typically 

found in pure cultures or in unbalanced reactors. There, large amounts of easily fermentable 

substrates boost acid formation and inhibit hydrogenotrophic methanogens due to a drop in 

pH (< 6.0), or the presence of toxic compounds causes the inhibition. The degree of mutual 

dependence among the different metabolic groups of primary fermenters, secondary 

fermenters, and methanogens can vary considerably, from total independence to the entire 

dependence of fermenters on the cooperation with methanogens which consume the catabolic 

products of the secondary fermenters. This product consumption makes the catabolism of the 

fermenter thermodynamically feasible and is called syntrophic interaction (Schink & Stams, 

2006). 

 

1.3.2 Degradation of monoterpenes under methanogenic conditions 

Terpenes are natural hydrocarbons, which are built from isoprene (C5H8) units. These 

compounds are the largest class of plant secondary metabolites (van der Werf et al., 1999). 

Monoterpenes (C10H16) consist of two linked isoprene units. They belong to the diverse group 

of terpenoids, of which more than 55,000 structures are known to date. Monoterpenes 

comprise acyclic, monocyclic and bicyclic structures, as well as oxygenated forms 

(monoterpenoids) (Marmulla & Harder, 2014). They are widely distributed in nature (van der 

Werf et al., 1999) and are used in the food, flavor, and fragrance industries due to their 

odorous properties (Lüddeke et al., 2012). These components are ubiquitous present in leaves 

and fruits. Transport processes, such as the transport of decayed plant material by rain, runoff 

and wind into river and lakes (Rotaru, 2009) cause the presence of monoterpenes in anoxic 

habitats (Harder & Foss, 1999). The hydrophobic character of monoterpenes causes cell 

toxicity (Marmulla et al., 2016). Below toxic concentrations, they can serve as carbon and 
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energy source for microorganisms in aerobic and anaerobic respiration mode (Marmulla & 

Harder, 2014).  

Since the last two decades more and more bacteria were identified that oxidized 

aliphatic or aromatic hydrocarbons in the absence of oxygen with nitrate, sulfate, or other 

electron acceptors (Widdel et al., 2010). Anaerobic degradation of alkenes was first observed 

with squalene (C30H50) and the model alkene, 1-hexadecene, enrichment cultures, which 

converted these alkenes to methane and carbon dioxide (Widdel et al., 2010). Later, the 

mineralization of monoterpenes in denitrifying bacteria and methanogenic communities was 

discovered (Marmulla & Harder, 2014). In many deep sediments, oxygen, nitrate, ferric iron 

and sulfate are depleted. Then, only methanogenic communities can degrade the remaining 

organic matter (Zengler et al., 1999). In previous studies the degradation of alkenoic 

monoterpenes, such as bicyclic monoterpenes, 2-carene and α-pinene, under methanogenic 

conditions was described (Harder & Foss, 1999).  

Limonene (C10H16), the most abundant monocyclic monoterpene, is formed by more 

than 300 plants. It represents the major constituent of essential oils from citrus plants (van der 

Werf et al., 1999; Marmulla & Harder, 2014). This compound can be degraded under 

denitrifying conditions (Foss & Harder, 1998). The review of Marmulla & Harder (2014) 

shows an overview on the transformations of limonene provided by a number of older review 

articles. These described components including perillyl alcohol, perillic acid, p-menth-1-ene-

6,8-diol, alpha-terpineol, carveol and carvone, and limonene-1,2-diol (Marmulla & Harder, 

2014) are only intermediate products in the transformation of limonene. Limonene 

degradation in the absence of inorganic electron acceptor is less exergonic when compared to 

aerobic or other anaerobic respiratory processes. Consequently, the microorganisms adapt to 

the exploitation of minimal energy spans by establishing syntrophic interactions (Rotaru, 

2009; Stams & Plugge, 2009). Rotaru (2009) proposed a model of limonene degradation. The 

monocyclic monoterpene could be degraded to different fatty acids and alcohols by 

fermenters, which then break them down to smaller molecules. Smaller fatty acids could use 

as substrates by syntrophic bacteria and their catabolic end-products (acetate, formate, H2, and 

CO2) would feed the methanogens. Acetate could also be produced by homoacetogens. 

 

1.3.3 Limonene-degrading methanogenic cultures 

Members of candidate phylum Omnitrophica were detected in 16S rRNA gene clone libraries 

prepared from methanogenic enrichment cultures that utilized limonene as carbon and energy 
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source (Fig. 3, Rotaru et al., 2012). This phylotype was called OP3 LiM, for limonene and 

methane.  

The methanogenic cultures were established earlier with activated sludge from waste 

water treatment plant (Harder & Foss, 1999) and transferred annually in fresh water 

methanogenic media, overlaid with 2,2,4,6,8,8-heptamethylnonane (HMN) as organic carrier 

phase for limonene. However, these methanogenic enrichments were established previously 

on α-pinene and 2-carene and after five successive transfers a stable community capable of 

limonene degradation was obtained (Rotaru, 2009). Cultures were branched into twelve lines 

and transferred once a year. They produced methane for up to two and a half years (Fig. 6). 

The composition and structure of the community was analyzed using the full cycle 

rRNA approach (Amann et al., 1995) and catalyzed reporter deposition-fluorescence in situ 

hybridization (CARD-FISH) experiments. Microscopic images identified numerous 

morphotypes in the enrichment, from small cocci and vibrio to long filaments. Bacteria 

represented 40% and Archaea represented 33% of the microbial community, as detected by 

CARD-FISH using the domain specific probes, EUB338 I + VI and ARCH-915 (Rotaru et al., 

2012). Archaea 16S rRNA gene sequences were related to microorganisms from the order 

Methanomicrobiales and Methanosarcinales (Rotaru et al., 2012). Bacteria 16S rRNA gene 

sequences showed 16S similarity to representatives of the lineages: Bacteroidetes, 

Deltaproteobacteria, Candidate Division OP3, and Firmicutes (Fig. 3).  

 

 

Fig. 6. Accumulated amount of methane production of the enrichment culture MM-214 (July 2010 to April 

2014).  
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An OP3-specific probe [OP3-565] was developed and used for the visualization and 

quantification of OP3 LiM cells by CARD-FISH. The studies revealed a presence of 18% 

OP3 cells in the enrichment during the exponential growth (Rotaru et al., 2012). These 

members of candidate phylum Omnitrophica were small and round-shaped cells, located 

either free-living or attached to larger cells (Fig. 7). All knowledge about OP3 candidate 

division so far has been derived exclusively from analysis of 16S rRNA gene clone sequences 

and metagenomic cosmid clones (Glöckner et al., 2010; Kolinko et al., 2012). The 

corresponding bacteria have remained undetected and consequently, nothing was known 

about the morphology of OP3 (Kolinko et al., 2012). Thus, this was the first time that a 

member of this phylum had been visualized (Rotaru et al., 2012). 

 

 

Fig. 7. Microscopic images of samples from methanogenic enrichment cultures thriving on limonene, as 

visualized by (A) epifluorescence microscopy with probe OP3-565, and (B) the same microscopic field 

visualized by DAPI staining. Scale bars, 5 µm (from Rotaru et al., 2012).  

 

Because attempts to isolate OP3 cells as strains failed (Rotaru, 2009), physical 

separations of bulk biomass was attempted. Anaerobic density gradient centrifugation was 

performed to separate the diverse microbial community and to provide highly enriched 

fractions with living cells. After two consecutive density gradient centrifugations, fractions 

containing over 80% OP3 LiM cells were obtained as revealed by CARD-FISH experiments 

(Kulkarni, 2010). Cells of the methanogenic enrichment cultures and of enriched OP3 LiM 

fractions were visualized by transmission electron microscopy (TEM) (Jordan, 2013). Small 

OP3-like cells both as free-living cells and cells attached to various types of larger rod-shaped 

cells were tentatively identified. This cell morphology was abundantly represented in 

fractionated materials. In addition, different cell sizes of the small cocci were observed for the 
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attached-living cells. Cells of this morphology both from fraction and from cultures consisted 

of a center and a sort of floating coat around (Fig. 8) (Jordan, 2013). 

 

 

Fig. 8. TEM image of a methanogenic enrichment culture. A direct contact between several small coccoid cells 

of different cell sizes and a long rod-shaped cell exists. 

 

The analysis of the genome of OP3 LiM had been started by the enrichment of OP3 

LiM cells by physical cell separation. Genomic DNA was extracted and the OP3 LiM-

enriched metagenome was sequenced by Roche 454 Titanium pyrosequencing technology 

(454 GS FLX) by the Max Planck-Genome-centre Cologne. An assembly of 454 reads by 

Newbler v. 2.3 resulted in a draft metagenome of 5,779 contigs of 16,026,544 bp in size. An 

initial analysis of the ten largest contigs, using the software JSpecies (Richter & Rosselló-

Móra, 2009), indicated that at least five of these contigs were likely fragments of the OP3 

genome. These contigs spanned a length of 1,650,908 bp (Jordan, 2013). 
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1.4 Aims of the study 

Previous research has shown a complex interaction of microbes in the limonene-degrading 

enrichment cultures. Attempts to isolate OP3 LiM cells had failed. Previous studies had tested 

metabolic roles for OP3 LiM, but did not provide conclusive experimental evidence. Thus, the 

exploration of the biology of OP3 LiM cells promised insight into a so-far undisclosed 

biology.  

The overarching goal of this thesis has been the understanding of the biology of OP3 

LiM. Genome information has enormous impact on the view of an organism. Therefore, the 

determination of the complete closed genome sequence of this small bacterium was a major 

aim of this thesis. The step from a draft genome to a closed genome was expected to require a 

variety of assembly methods and manual quality controls to solve the genome puzzle. This 

bioinformatic approach was also to be applied to some planctomycete genomes. The strategy 

foresaw eventual laboratory work with PCR amplifications to resolve uncertainties in the 

genome draft. The complete genome was then basis for a comprehensive OP3 LiM study with 

metatranscriptomes and metaproteomes. For these experiments, a size-fractionation by 

centrifugation was developed during this thesis work. 

OP3 LiM cells were further characterized by the visualization of the cells in 

enrichment cultures. The application of visualization approaches was optimized and indicated 

the physiological stages of OP3 LiM cells. The information obtained by the experimental 

work in this thesis was expected to provide a deep insight into the biology of OP3 LiM.  
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1.5 Manuscript and publication outline 

Chapter 2 

Permanent draft genome of ‘Rhodopirellula islandica’ strain K833. 

Jana Kizina, Marina Žure, Erhard Rhiel, Colin Bernhard Munn, Michael Richter, Jens 

Harder  

Published in Mar Genomics 24 (2015):249–251. 

Autor´s contributions: 

J.K. performed the bioinformatics analyses under supervision of M.R., M.Z. 

performed the growth experiments supervised by C.B.M. and J.H., E.R. performed the 

electron microscopy, J.H. designed and supervised the study and wrote the manuscript 

together with all authors. 

Contribution of J.K.:  

Experimental concept and design: 0%; Experimental work: 60%; Data analysis and 

interpretation: 60%; Preparation of figures and tables: 40%; Writing of the manuscript: 10%. 

 

 

Chapter 3 

In silico detection of taxon-unrelated contigs and reassembling of taxon-specific reads 

improve draft genomes of strains. 

Jana Kizina, Jens Harder 

In preparation for submission to J Microbiol Methods. 

Autor´s contributions: 

J.K. designed the method development and performed the bioinformatics analyses, 

J.K. and J.H. wrote the manuscript. 

Contribution of J.K.:  

Experimental concept and design: 100%; Experimental work: 100%; Data analysis and 

interpretation: 100%; Preparation of figures and tables: 95%; Writing of the manuscript: 70%. 
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Chapter 4 

Optimization of CARD-FISH for Methanosaeta cells. 

Jana Kizina, Jens Harder 

Manuscript in preparation. 

Autor´s contributions: 

J.K. designed and performed the experiments, J.K. and J.H. wrote the manuscript. 

Contribution of J.K.:  

Experimental concept and design: 90%; Experimental work: 100%; Data analysis and 

interpretation: 90%; Preparation of figures and tables: 100%; Writing of the manuscript: 90%. 

 

 

Chapter 5 

”Candidatus Vampirococcus archaeovorus“ and a transfer of a bacterial intron 

ribonucleic acid into archaeal cells. 

Jana Kizina, Sebastian Jordan, Anastasia Resteu, Christina Probian, Sten Littmann, Stefanie 

Markert, Erhard Rhiel, Kurt Stüber, Thomas Schweder, Richard Reinhardt, Michael Richter, 

Jens Harder 

In preparation for submission to Appl Environ Microbiol. 

Autor´s contributions: 

J.H. and J.K. designed the study, C.P. and J.K. maintained cultures, S.J. performed 

Percoll gradients and prepared DNA enriched in OP3 LiM, J.K. and A.R. performed size 

fractionation, A.R. prepared DNA and RNA of size-fractionated samples, J.K. performed the 

bioinformatics analyses, initially supervised by M.R., K.S. and R.R. performed sequencing 

and prepared the first Newbler assembly, E.R. contributed EM graphs, J.K. and S.L. prepared 

SEM graphs, J.K. performed in situ hybridizations, J.K., S.M. and T.S. performed the 

proteomic analysis, J.K. and J.H. annotated the genome and interpreted the proteomic results, 

J.H. supervised the study and J.K. and J.H. wrote the manuscript. 

Contribution of J.K.:  

Experimental concept and design: 30%; Experimental work: 80%; Data analysis and 

interpretation: 80%; Preparation of figures and tables: 95%; Writing of the manuscript: 50%. 
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ABSTRACT 

The planctomycete strain K833 was isolated from cold waters at the coast of Island and is 

tentatively named ‘Rhodopirellula islandica’. It has a lower temperature range for growth 

than other genome-sequenced Rhodopirellula strains affiliating to Rhodopirellula baltica and 

‘Rhodopirellula europaea’. The permanent draft genome of strain K833 was obtained as part 

of a larger study on the biogeography of Rhodopirellula species in European marine waters. 

The genome consists of 55 contigs with a genome size of 7,433,200 bp. With an average 

nucleotide identity of 81% to related genomes of R. baltica and ‘R. europaea’ and more than 

4000 common genes, it will be a valuable source for the study of temperature adaptation of 

planctomycete genomes. 

 

 

2.1 Introduction 

Rhodopirellula is a genus of marine Planctomycetes which are unusual bacteria 

lacking a murein saculus in the membrane. Planctomycetes live frequently attached to 

surfaces. They are abundant in the particulate fractions of marine ecosystems and are 

considered as important participants in the global carbon and nitrogen cycles. Rhodopirellula 

baltica SH1T was the source for the first planctomycete genome (Glöckner et al. 2003). A 

collection of 70 Rhodopirellula strains obtained from different European seas (Winkelmann 

and Harder, 2009) revealed 13 distinct operational taxonomic units (OTUs) (Winkelmann et 

al., 2010). Eight strains were sequenced which covered sample sites from the Baltic Sea to the 

Mediterranean Sea (Klindworth et al., 2014, Richter et al., 2014a,b, Richter-Heitmann et al., 

2014, Wegner et al., 2014). ‘R. islandica’ strain K833 (=JCM 17612 = DSM 24040) was 

isolated from a water sample on the coast of Sandgerdi, Island (64.0356 N 22.6986 W) 

(Winkelmann and Harder, 2009) and features in electron micrographs the typical structures of 

the genus: swarming motile cells with a flagellum, attached-living cells often form rosettes, 

the reproductive pole also features small flagella-like structures (Fig. 1).  
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Fig. 1. Electron micrographs of cells of ‘R. islandica’ strain K833: free-living swarmer cell (upper left), sessile 

cells (middle left), budding cell (right) and reproductive pole of a cell in transition from swarming to sessile life 

style (lower left). Preparation and EM conditions were as described (Hahnke et al., 2014). 

 

In a comparative growth study performed in triplicates, cells pre-cultured on M13a 

agar plates were inoculated into 250 ml flasks that contained 50 ml of M13 medium in 

artificial seawater at ~35 per mille salinity. The culture flasks were incubated rotating at 50 

rpm in the dark at 14, 21, 28 or 37 °C (Fig. 2). Strain K833 did not grow at 37 °C in contrast 

to the other strains, whereas R. baltica SH1T grew and ‘R. europaea’ 6C had the highest 

growth rate. At 14 °C, strain 6C had a long lag phase before growth started and strain K833 

showed the highest growth rate of the strains (Fig. 2). Thus, the strains are a valuable source 

to investigate the genomic features of temperature adaptation in microorganisms. 
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Fig. 2. Effect of temperature on growth of ‘R. islandica’ K833. Error bars indicate the standard deviation of the 

mean of optical density (OD) for three cultures. 

 

 

2.2 Data description 

Genomic DNA of strain K833 was sequenced by the Illumina MiSeq technology 

performed by the Max Planck-Genome-centre Cologne, Germany 

((http://mpgc.mpipz.mpg.de/home/). 5,494,521 paired-end reads of 250 bp were dynamically 

trimmed with SolexaQA v.2.2. (Cox et al. 2010) and normalized with Khmer 1.0 (Crusoe et 

al. 2014). 1,462,500 high-quality reads were assembled with SPades (Bankevich et al. 2012). 

Contigs were de-novo assembled in Geneious R8 (Biomatters, Auckland, New Zealand) to 

remove duplications and reads were mapped onto contigs with BBtools to identify possible 

contig elongations. The mapping reads were reassembled using the first assembly as trusted 

assembly in Spades. After six rounds, the assembly was stable and CheckM 0.9 indicated a 

completeness of 99.93% with a contamination value of 0.0% (Parks et al. 2014). The genome 

was annotated in RAST (Aziz et al. 2008) (Table 1).  

 

 



Chapter 2 – Permanent draft genome of ‘Rhodopirellula islandica’ strain K833 

36 

Table 1 

Genome and environmental features. 

Item Description 
MIGS data  
Investigation_type Bacteria_archaea 
Project_name K833 
Collected_by Julia Strahl 
Collection_date 18-May-2005 
Lat_lon 64.0356 N 22.6986 W 
Depth 0 m 
Alt_elev NA 
Country Iceland 
Environment Marine water 
Ref_biomaterial http://dx.doi.org/10.1128/AEM.01525-09 
Biotic_relationship Free living 
Trophic_level Heterotroph 
Rel_to_oxygen Aerobe 
Isol_growth_condt http://www.ncbi.nlm.nih.gov/pubmed/19303037 
Sequencing_meth Illumina MiSeq 
Num_replicons NA 
Assembly SPAdes 3.5 
Finishing_strategy Draft 
Annot_source RAST 
Estimated_size 7,433,200 
Biome ENVO:00000569 
Feature ENVO:02000049 
Material ENVO:00002150 
Geo_loc_name Sandgerdi, Iceland 
Sample-material Surface water from the beach 
Source_mat_id DSM 24040 
Temp 7 °C 
Salinity 34,6 PSU 
Motility Yes 
Genome assembly data  
Assembly method SPAdes v. 3.5. 
Assembly name K833 
Genome coverage 370× 
Sequencing technology Illumina MiSeq 
 

The genome encodes 6851 proteins, 54 tRNAs and 3 rRNAs. These values are in the 

range of previous observations for genomes of Rhodopirellula strains, with over 7 Mb and 

over 6000 predicted open reading frames each, and reflect the complex lifestyle of the 

planctomycetes. The average nucleotide identity between strains was determined by JSpecies 

(Richter and Rosselló-Móra, 2009) and is 81.2% between strain K833 and strain SH1T, 81.4% 
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between strain K833 and strain 6C, and 88.1% between strain SH1T and strain 6C, indicating 

a very close relationship between the three species. Pairwise analysis by reciprocal best match 

BLAST in RAST revealed 4241 genes present in both strain K833 and R. baltica SH1T. This 

high number reflects the close relation between the two species as predicted by 16S rDNA 

and ANI analysis (Table 2). The sessile lifestyle of planctomycetes comprises life in oxygen-

limited biofilms. The K833 genome codes for the synthesis of menaquinone, the typical 

quinone of microaerophiles, and a menaquinone (vitamin K)-dependent gamma-carboxylase 

that is not present in R. baltica SH1T. The genome of strain K833 codes not only for cbb3-type 

cytochrome c and cytochrome d terminal oxidases ― well known for their high affinity to 

molecular oxygen―, but also for a periplasmatic nitrate reduction pathway as alternative 

electron acceptor which is lacking in R. baltica SH1T. Thus, the bacterium is well adapted to 

microoxic-anoxic transition zones that occur frequently in coastal sediments. A feature of 

these transition zones is fermentation yielding an acidification. In contrast to the R. baltica 

SH1T, the K833 genome contains a glutamate decarboxylase (EC 4.1.1.15) conferring acid-

resistance. It has also some unique sulfatases and glycosyl hydrolases. Unusual is the 

presence of traG and traI genes within a region encoding hypothetical proteins, indicating a 

potential for genetic transfer. 

 

Table 2 

Genome features. 

 ‘R. islandica’ strain K833 
Size (bp) 7,433,200 
Contigs 55 
GC content (%) 57.2 
Coding (%) 88 
CDS 6851 
rRNA genes 3 
tRNA genes 54 
ANI [%]a,b 81.2% 
16S rDNA identitya 99.54% 
a Compared to the type strain Rhodopirellula baltica SH1T (Glöckner et al., 2003). 
b Calculated by using the software JSpecies (Richter and Rosselló-Móra, 2009). 
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Nucleotide sequence accession number 

This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank 

under the accession LECT00000000. The version described in this paper is version 

LECT01000000. The sequence associated contextual (meta)data are MIxS compliant (Table 1, 

Yilmaz et al., 2011). 
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Highlights 

• The in silico approach improves short read de novo draft assemblies of strains 

• Binning differentiates sequences by phylogeny 

• Assembly of taxon-specific reads have fewer contigs with longer sequence lengths 

 

 

Abstract 

The next-generation sequencing (NGS) technology Illumina produces high-throughput 

sequence information at low costs. But the short read length limits the genome assembly 

quality. Many de novo draft assemblies remain highly fragmented. In this contribution, we 

describe an in silico approach to improve microbial draft genome assemblies by iterative 

rounds of taxonomic evaluation of contigs by the software Metawatt, read mapping to 

taxonomically coherent contigs, and reassembly of the recruited reads. This taxonomically 

guided approach reduced the numbers of contigs substantially and yielded contamination-free 

permanent draft genomes. 
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3.1 Introduction 

The complete genome sequence of an organism provides an invaluable resource to the wider 

research community and is the basis for comparative and evolutionary genomics studies (Tsai 

et al., 2010). The capillary electrophoresis sequencing technology using Sanger´s 

dideoxynucleotide synthesis termination yields about 1.5 Mb/day of high-quality reads with 

average length of 500–800 bases. However, the fragments of DNA to be sequenced must first 

be cloned and the resulting libraries must be maintained (Mavromatis et al., 2012). The 

introduction of next-generation sequencing (NGS) in the last decade has accelerated the study 

of microbial genomes (Koren & Phillippy, 2015). 454 pyrosequencing and the widely used 

second-generation sequencing (SGS) technology Illumina sequencing-by-synthesis do not 

require cloning (Mavromatis et al., 2012). The most advanced chemistry/platform 

combination of 454 pyrosequencing (GS FLX + System with the GS FLX Titanium 

Sequencing Kit XL+) can produce ~1 million reads per run in 23 h with reads up to 1,000 

bases in length and an average read length of 700 bases (Hodkinson & Grice, 2015). The costs 

decreased from 500 United States Dollars (USD) per million bases for Sanger sequencing to 

8.57 USD/Mb for 454 systems (Rhoads & Au, 2015). A typical technological error was the 

frequent misidentification of the length of homopolymers (Hodkinson & Grice, 2015). 454 

Life Sciences (Roche, Basel, Switzerland) stopped the support of the platform after 2016 due 

to the substantially lower costs for the Illumina technology (Hodkinson & Grice, 2015). The 

Illumina technology dominates currently the market due to the production of high-throughput 

reads at moderate cost (El-Metwally et al., 2013; Reuter et al., 2015). The Illumina MiSeq 

platform provides long reads with 300 bases, also as paired-end reads. The HiSeq 2500 is the 

platform with greatest performance output, producing 8 billion fragments in a paired-end 

fashion with 125 bases for each read in 7 h to 60 h. The costs dropped to 0.03 USD/Mb 

(Rhoads & Au, 2015). Arrays of HiSeq machines, such as HiSeq X Ten (released 2014), 

provide an even higher throughput (Hodkinson & Grice, 2015).  

The disadvantage of the second generation technologies is primarily the short length of 

reads which makes assembly a complex and difficult challenge (Henson et al., 2012). The 

performance of de novo assembly software depends heavily on the sequence length, depth of 

sequence coverage, fragment size of the templates that are sequenced and the types of 

sequence errors specific to each technology (Tsai et al., 2010). No single assembler is optimal 

in every possible quality metric (Wences & Schatz, 2015) and consequently, draft genome 

assemblies vary in their quality (Tsai et al., 2010). The assembled data generally are highly 
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fragmented with many gaps (Tsai et al., 2010) due to difficulties in assembling repeat regions 

and to sequencing biases. Moreover, the assembled fragments frequently contain errors, either 

due to sequencing artefacts or to the incorrect reconstruction of repeats (Nagarajan et al., 

2010). Therefore, to obtain a closed genome directly with an Illumina dataset of high 

coverage is rather unlikely (El-Metwally et al., 2013).  

Technical errors in the assembled sequence can be automatically corrected due to a 

high level of coverage. Assembly software is designed to consider NGS-platform specific 

sequence error profiles. However, the resulting assemblies are usually more fragmented 

(Nagarajan et al., 2010). The closing of the genome sequence requires a time- and cost-

intensive process of additional experiments. The standard strategy to closure gaps usually 

involves approaches such as directed-PCR and primer-walking in combination with dideoxy 

sequencing. Pairs of adjacent contigs are identified, following by the determination of 

genomic sequences which span the gaps between them (Tsai et al., 2010; Nagarajan et al., 

2010). Because the closure of the complete genome can involve month of lab work and 

thousands of finishing experiments, the task is usually done in large genome centres 

(http://www.cbcb.umd.edu). The prohibitive analysis cost of finishing appears to only be 

justified for high-priority genomes (Nagarajan et al., 2010). As a result, increasingly large 

number of sequenced genomes remains unfinished, at a “permanent draft” stage, which are 

used for subsequent analysis (Mavromatis et al., 2012; Paulino et al., 2015).  

An alternative approach is the third-generation sequencing (TGS) technology capable 

to provide much longer reads (Rhoads & Au, 2015). The PacBio RS was the first 

commercially available long read sequencer (Koren & Phillippy, 2015), enabling single 

molecule real time (SMART) sequencing (Quail et al., 2012). RS II (P6-C4) generates reads 

with average length of 1.0–1.5 x 104 bp (Rhoads & Au, 2015). 3.5–7.5 x 104 reads can be 

produced per run in 0.4 h to 6 h (Rhoads & Au, 2015). The long read lengths make the 

technology well-suited for unsolved problems in genome assembly, for example in complex 

regions involving repeated elements or segmented duplications (Rhoads & Au, 2015; Madoui 

et al., 2015). PacBio sequencing offers much longer read length than SGS methods but is 

hindered by a lower throughput, higher error rates, and higher costs per base (Rhoads & Au, 

2015), which are 0.4–0.8 USD/Mb using the RS II P6-C4 system (Rhoads & Au, 2015). 

Therefore, Illumina as most cost-economic sequencing method is expected to be intensively 

used in the near future.  

Often draft assemblies are sufficient for many genomic analyses, especially if 

complete sequences of closely related organisms are available (Nagarajan et al., 2010). 
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However, long contigs are essential for most downstream applications, such as annotation and 

variant calling (Ekblom & Wolf, 2014). Consequently, obtaining better draft genomes is a 

common goal (Paulino et al., 2015). There is currently an urgent need for tools to efficiently 

improve the draft assemblies without the additional cost of manual finishing (Tsai et al., 

2010; Paulino et al., 2015).  

In this study, we proposed a strategy for in silico improving of de novo draft 

assemblies utilizing the same set of Illumina short reads that were used to generate the 

original de novo assembly. Metawatt-3.5.2 binning was introduced as taxonomic analysis tool 

to differentiate contaminations from the “organism” bin that was then used as guided 

assembly for the next round. Iterative rounds of targeted read mapping to taxonomically 

coherent contigs and the de novo reassembly of the mapped subset of reads are used to 

improve the assembly. Contigs are again taxonomically classified. A last improvement step is 

a final de novo assembly of extended and overlapping contigs using Geneious and a manual 

inspection of the resulting draft genome.  

 

 

3.2 Materials and methods 

3.2.1 Bacterial strains 

This study used ‘Rhodopirellula bahusiensis’ strain SWK21 (= DSM 24079), which was 

isolated from the surface of a macroalgae sampled at Tjärnö, Sweden (58.8764 N 11.1447 E), 

and ‘Rhodopilula apulia’ strain SM50 (= DSM 24084), which was isolated from a mixed 

sediment water sample originating from San Cataldo, Italy (40.3861 N 18.3055 E) 

(Winkelmann & Harder, 2009).  

 

3.2.2 DNA extraction and sequencing 

The genomic DNA of both strains was extracted using the FastDNA SPIN Kit for Soil (MP 

Biomedicals, Germany). Sequencing was performed by the Illumina MiSeq technology (2 x 

300 bp) for genomic DNA of strain SWK21 and by the Illumina HiSeq technology (2 x 150 

bp) for genomic DNA of strain SM50 (Fig. 1) by the Max Planck-Genome-centre Cologne 

(http://mpgc.mpipz.mpg.de/home/). 

 



Chapter 3 – In silico approach to improve draft genomes of strains 

47 

3.2.3 Preprocessing of Illumina raw reads 

Obtained raw reads were quality checked with FastQC 

(www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and dynamically trimmed with SolexaQA 

v.3.1.4 (Cox et al., 2010) (Fig. 1). The default quality cutoff was p = 0.05. To perform 

filtering on read lengths, the “lengthsort” command of SolexaQA v.3.1.4 was performed after 

the initial trimming command. The paired-read files were combined, passed single reads were 

added and then normalized with Khmer 2.0 (Crusoe et al., 2014) (Fig. 1A). The program was 

run twice, once with coverage (C) = 20 and then run again on the new file with C = 5, both 

passes with a kmer size of 20. Paired sequences and orphaned sequences were separated. Each 

file was treated separately using Trimmomatic (version 0.32) (Bolger et al., 2014) (Fig. 1A). 

This trimming tool was used to clean thoroughly the beginnings and the ends of reads. A two-

step procedure was implemented. In short, the first step included quality trimming 

functionality with a sliding window (SLIDINGWINDOW:4:15), cutting of adapters 

(ILLUMINACLIP:adapters.fa:2:30:10), removal of low quality bases off the start 

(LEADING:3) and the end (TRAILING:3) of a read based on a threshold, and dropping of 

short reads (MINLEN:36), using phred + 33 quality score. Specified number of bases was 

then removed from the start (HEADCROP) and the end (CROP) of the reads in a second step. 

The usage either of one option or both, and the specific number of trimmed bases were 

determined individually for each file by the consideration of summary graphs provided by 

FastQC. 

 

3.2.4 De novo assembly 

Preprocessed Illumina reads were assembled de novo using SPAdes-3.8.0 (Bankevich et al., 

2012) (Fig. 1A). The SPAdes script “spades.py” was performed with the option for single cell 

data (--sc). In addition, we allowed the assembler to incorporate its own error correction 

routines to do further correction in addition to the pre-processing of reads by setting the 

option “--careful”.  
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3.2.5 Improving of draft genome assembly completeness 

 

 

Fig. 1. Workflow for improvement of de novo draft assemblies. A) Steps to generate the original de novo draft 

assemblies. B) Steps of the developed polishing approach. Details of the individual steps are explained in the 

text. Individual tool was applied on data of A strain SWK21, B strain SM50, or A/B both strains. QC = quality 

control. 
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The binning function of Metawatt-3.5.2 (Strous et al., 2012) was used to obtain a 

taxonomic affiliation of the contigs of the first assembly. The classification allowed the 

differentiation of a set of taxonomically coherent contigs in an “organism” bin from contigs 

without a taxonomic affiliation on the basis of multiple criteria, such as strong deviations of 

GC content, tetranucleotide frequencies and coverage. The contigs without taxonomic 

affiliation were grouped by Metawatt-3.5.2 into an “unbinned” bin. Additionally, the 

taxonomic profiling allowed a verification of the expected genome affiliation, if the target 

genome was highly similar to a reference genome in the database used. The bin of the target 

organism was picked using the taxonomic level "order". The strategy of binning and targeted 

reassembly has been introduced by Meier et al. (2016) for binning refinements of 

metagenomes. For the assembly of genomes of strains, the procedure was further developed.  

The preprocessed Illumina reads were aligned to the target bin using BBmap of the 

BBmap package (version 35.14, http://sourceforge.net/projects/bbmap/). The mapped reads 

were de novo reassembled again, usually improving the initial draft assembly. The same 

datasets of reads were used for each round of mapping. For the first round, the minimum 

identity value was set relatively low with 80%. The read mapping procedure was performed 

separately for each paired-end read file and single read file of a genome project. All the reads 

of the different procedures that mapped were reassembled together with SPAdes-3.8.0. The 

option for single cell data (--sc) was included. Again, the binning function of Metawatt-3.5.2 

was used to pick the new draft assembly. Taxonomically non-related contigs, identified as 

“unbinned” in Metawatt-3.5.2, were not included in the next round of mapping. The 

summarized statistic of the input data (number of contigs, bin size (nt), and N50 contig 

length) were used as quality parameter to assess the new draft assembly. An optimization was 

reached by the realization of at least one of these criteria. In case of an increased degree of 

quality, the reassembly round consisting of mapping, reassembling, and taxonomic analysis 

by binning, was then run repeatedly with the newly defined bin as reference. For all iterations, 

the minimum identity value for read mapping was set of 95% and the mapped reads were 

reassembled with the SPAdes assembler, supported by the usage of "trusted contigs". All 

contigs, longer than 10,000 bp, of the new picked bin were selected.  

If the defined quality parameters in Metawatt indicated no further optimization of the 

draft assembly, the procedure of iterative rounds was stopped. Then quality assessment and 

validation were performed to find the core bin of highest quality for further improvement. The 

draft assemblies both before the improvement by iterative reassembly rounds and of each 

taxon-specific reassembly were analysed by the web interface of QUAST (Gurevich et al., 
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2013), which was run with default parameters. The resulted report of the multiple assemblies 

supported the selection of the bin with highest quality. Because assembly metrics, such as the 

N50 size and contig number, may not always correlate well with actual quality of the 

assembly (Utturkar et al., 2014), the following other tools were incorporated. Detailed 

information about differences between two assemblies was provided using dnadiff (Phillippy 

et al., 2008) from MUMmer v.3.23 (Kurtz et al., 2004). The accuracy of completeness and 

contamination of the polished assemblies were estimated using CheckM 0.9.7 (Parks et al., 

2015). Completeness was also indicated in Metawatt-3.5.2. 

The commercial bioinformatics program Geneious (Biomatters Ltd., Auckland, New 

Zealand; Kearse et al., 2012) was used to find overlapping positions of contigs from the 

selected taxon-specific bin of highest quality. A “de novo assembly” of the contigs was 

performed using custom sensitivity settings. High stringent parameters (no allowed gaps or 

mismatches per read, a minimum overlap identity of 100%, a maximum gap size of 2, and a 

maximum ambiguity of 1) were set to find only true overlaps. The produced contigs were 

inspected manually and consensus sequences were combined with the non-assembled contigs 

to create the final permanent draft genome.  

 

3.2.6 Draft genome annotation and comparative analyses 

The updated draft assemblies were automatically annotated by the Rapid Annotations using 

Subsystems Technology (RAST) server (Aziz et al., 2008). Calculations of average 

nucleotide identities (ANIs) with published whole and draft Rhodopirellula genomes were 

determined by JSpecies (Richter & Rosselló, 2009). 
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3.3 Results  

We developed an approach to improve draft assemblies obtained from Illumina reads. Our 

approach consisted of an iteration of taxon-specific binning of contigs, mapping of reads 

against the taxon-specific set of contigs, and reassembling of the reads that were recruited by 

mapping (Fig. 1B). Planctomycetes are well known for their large genomes and we optimized 

two de novo draft assemblies for the genomes of ‘Rhodopirellula bahusiensis’ strain SWK21 

and ‘Rhodopilula apulia’ strain SM50.  

 

3.3.1 Example 1: ‘Rhodopirellula bahusiensis’ strain SWK21 

3.3.1.1 De novo draft assembly 

Illumina MiSeq sequencing of the genomic DNA of strain SWK21 generated a total of 

9,030,614 (x 2) paired-end reads (Fig. 3). 1,858,082 read pairs and 12,770 single reads were 

obtained after trimming and normalization using SolexaQA v.3.1.4 and Khmer 2.0, 

respectively. The preprocessed data were trimmed using Trimmomatic v.0.32 to remove 

especially the beginnings and ends of reads with low quality, resulting in 1,851,828 read pairs 

and 12,580 singletons (Fig. 2; Fig. 3).  

 

 

Fig. 2. Overview of the range of quality values across all bases at each position in the FastQ file of A) raw reads 

in forward direction, B) raw reads in reverse direction, C) final preprocessed paired-end reads, and D) final 

preprocessed singletons of one performed sequencing run, provided by FastQC. The x-axis describes the position 

in read (bp), the y-axis provides the quality score. 
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These high-quality reads were assembled de novo using SPAdes V3.8.0. The 

mismatch correction of the assembler failed for unknown reasons. The assembly consisted of 

236 contigs with a total size of 7.91 Mb (Fig. 3).  

 

3.3.1.2 Polishing of draft assembly by targeted reassembling 

The binning of the assembly in Metawatt-3.5.2 with a taxonomic profile of the rank “order” 

assigned 95 contigs in a “Planctomycetales” bin and 115 contigs in an “unbinned” bin. The 

latter had a low N50 size (Table S1) indicating short contigs. The “Planctomycetales” bin 

served as reference for the mapping and in the second and following iterative rounds it served 

as “guided assembly” for the assembly of recruited reads. Three iterative rounds showed an 

improvement in at least one of the quality parameters: assembly size, contig number, or N50 

size (Fig. 3). Each reassembly yielded the same taxonomic profiling in Metawatt with the 

classification of a single taxon-specific bin (Table S1). The “Planctomycetales” bin improved 

to 75 contigs with a total size of 7.79 Mb. This bin had the highest quality according to 

QUAST calculations (Fig. 3).  

The contigs of the SPAdes assembly were reassembled using a stringent de novo 

assembly by custom settings in Geneious to identify overlapping regions of contigs. Manual 

inspection of the assembled contigs confirmed that 18 of 75 contigs were correctly assembled 

into six new contigs. The final permanent draft genome for strain SWK21 comprises 63 

contigs (Fig. 3) and represents a nearly complete genome of 99.93% and of 89.4% 

completeness according to CheckM and Metawatt-3.5.2, respectively. This final draft 

assembly was annotated using RAST (Table 1). ANIs with published complete and draft 

genomes of the genus Rhodopirellula confirmed a novel species in the genus Rhodopirellula 

(Table S3).  
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Fig. 3. Overview of the iterative approach to obtain a permanent draft genome for strain SWK21 with details to 

raw and preprocessed reads (dark gray boxes), initial de novo draft assembly (orange box), reassemblies or 

taxon-specific bins (light gray boxes), mapped read data (blue boxes), and permanent draft genome of strain 

SWK21 (pink box). Statistics were obtained by Metawatt and QUAST. Behind the contig number, the largest 

contig size is provided in brackets. pe: paired-end. se: singletons. 
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3.3.2 Example 2: ‘Rhodopilula apulia’ strain SM50 

3.3.2.1 De novo draft assembly 

‘Rhodopilula apulia’ strain SM50 represents a novel genus and was selected based on the 

taxonomic distance to known genomes as study case. The Illumina HiSeq sequencing of the 

genomic DNA of strain SM50 yielded 18,135,378 (x 2) paired-end reads with an average 

length of 150 bp (Fig. 4). The pre-processing resulted in 2,625,722 read pairs and 41,906 

singletons using SolexaQA v.3.1.4 and Khmer 2.0. Trimming using Trimmomatic v.0.32 

reduced the read number to 2,608,370 read pairs and 32,178 singletons. SPAdes V3.8.0 

assembled the reads into 1,684 contigs with a total size of 10.28 Mb (Fig. 4). 

 

3.3.2.2 Improvement of the draft assembly 

Metawatt assigned the contigs of the assembly to seven taxon-specific bins (Table S2). 1,252 

short contigs remained as unbinned. The taxon bin “Planctomycetales” was used as reference 

for read mapping and reassembling. Three iterative cycles were performed to improve the 

assembly. Metawatt always clustered the contigs of the actual reassembly in several bins. As 

we only selected the “Planctomycetales” bin for the next iterative cycle, it was interesting to 

obtain for contigs taxonomic assignments outside of “Planctomycetales”. The third iterative 

cycle yielded an increase number of contigs, a lower total base number and a lower N50. 

Dnadiff was used to compare the “Planctomycetales” bins of the second and third cycle. 

99.74% bases of the bin obtained after the second performed round were aligned to the other 

bin. Consequently, the bins of the second cycle were selected as high-polished draft 

assembly (Fig. 4). 
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Fig. 4. Overview of the iterative approach to obtain a permanent draft genome for strain SM50. Detailed 

information of raw and preprocessed reads (dark gray boxes), the initial draft assembly (orange box), 

reassemblies or selected bins (light gray boxes), mapped read data (blue boxes), and the permanent draft genome 

(pink box) are shown. Statistics were obtained by Metawatt and QUAST. The largest contig size is shown in 

brackets behind the contig number. pe: paired-end. se: singletons. 

 



Chapter 3 – In silico approach to improve draft genomes of strains 

56 

For the de novo assembly of contigs in Geneious, we considered the taxonomic 

position of strain SM50 as representative for a novel genus and included also the contig of 

“Nostocaceae” and the three contigs of “Candidatus Brocadiales” (Table S2). The assembly 

aligned 163 of 250 contig sequences to 59 new contigs, which were confirmed by manual 

inspection. One “Nostocaceae” contig and one “Candidatus Brocadiales” contig assembled 

with “Planctomycetales” contigs, thus suggesting that they indeed belong to the genome of 

SM50. The permanent draft genome of strain SM50 consisted finally of 146 contigs (Fig. 4), 

representing a nearly complete genome of 99.93% and of 91.1% using CheckM and 

Metawatt-3.5.2, respectively. Annotation was performed in RAST (Table 1) and the 

calculation of ANI values with published complete and permanent draft genomes of the 

genus Rhodopirellula were implemented in the JSpecies software (Table S4). 

 

Table 1. Annotation results from RAST, the completeness from CheckM (1) and Metawatt (2), and 

contamination from CheckM (1) for the final improved draft assemblies.  

 Strain SWK21 Strain SM50 

Draft genome size (bp) 7,784,569 9,795,212 

Contig number  63 146 

GC content 55.8 59.0 

N50 236,729 107,901 

L50 10 31 

Number of coding sequences 7,413 7,925 

Number of RNAs 67 82 

Closest neighbours with 

highest scores (score) 

Pirellula sp. 1 (542)* 

Rhodopirellula baltica SH1T 

(536) 

Pirellula sp. 1 (546)* 

Rhodopirellula baltica SH1T 

(535) 

Completeness (%) 99.931/89.42 99.931/91.12 

Contamination (%) 1.161 0.001 

* Pirellula sp. 1 (presently Rhodopirellula baltica SH1T) is validly described as type strain of Rhodopirellula 

baltica gen. nov., sp. nov. (Schlesner et al., 2004). 
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3.4 Discussion 

A complete and fully automated assembly of genomes using SGS short reads remains a 

significant bioinformatics challenge. Areas of low sequence coverage, repetitive elements and 

short read length often result in highly fragmented de novo draft assemblies (Paulino et al., 

2015). Manual finishing is laborious and slow (Tsai et al., 2010). TGS technology, such as 

PacBio RS, capable of much longer reads and faster runs than SGS, offers an alternative 

approach to overcome many of the limitations (Rhoads & Au, 2015). But the advantages of 

PacBio and SGS are complementary. A lower throughput, higher error rate, and higher costs 

hindered PacBio to outperform Illumina sequencing technology. Thus, it is critical to develop 

tools to efficiently improve the short read de novo draft assemblies (Rhoads & Au, 2015; 

Paulino et al., 2015).  

We developed an in silico approach to increase the quality of microbial de novo draft 

assemblies. By applying this strategy, original genomic assemblies are substantially improved 

by targeted reassembly, often with a trusted assembly as starting point. This strategy of 

aligning sequences against contigs ends and the generation of de novo reassemblies is not a 

new idea. However, the implementation of iterative rounds of reassembling is mainly based 

on the usage of additional data from other sequencing technologies. The generation of reads 

with increased length can increase the fraction of the genomes that can be fully resolved 

(Koren & Phillippy, 2015; Sangwang et al., 2016). Such hybrid sequencing strategies 

combine the strengths of SGS (high-throughput and high sequencing accuracy) and TSG 

(long reads) (Rhoads & Au, 2015). However, this finishing procedure also results in 

additional costs.  

We were interested to improve de novo draft assemblies without the generation of new 

sequences and also without an available reference genome. Our approach resolved gaps by a 

separation of contaminating reads with a taxonomic classifier. Mapping of reads to the 

taxonomically coherent assembly enabled a reassembly that usually established new linkage 

information. The absence of contaminating reads may be a crucial factor for the success of the 

reassembly caused by the reduction of number of positions to which a read can be aligned. 

The integration of a taxonomic binning software has been recently described for 

metagenomes (Meier et al., 2016; Laso-Pérez et al., 2016; Sedlar et al., 2017). We applied 

binning on single-genome draft assemblies which allowed the differentiation and separation 

of non-phylogenetically related contigs which consequently increased the quality of the 

assembly. The unbinned contigs are very short sequences with low information content.  
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Genome projects that target the reconstruction of complete genomes will require 

additional efforts beyond the described procedure on Illumina data sets. The longer reads of 

TGS can range across long regions of repetitive sequences. Because of the high cost, the 

important first step is to thoroughly consider whether a closed genome sequence is necessary 

for addressing the biological question at hand (Ekblom & Wolf, 2014). For many downstream 

analyses high-quality permanent draft genomes are often sufficient and can often be obtained 

by the application of few bioinformatics tools. Nagarajan et al. (2010) called it “a small bag 

of tricks that can make the task less daunting”.  

We selected the strain SWK21, closely related to the genus Rhodopirellula, and the 

strain SM50, a distantly related strain, to demonstrate our approach. With a 16S rRNA gene 

identity of over 98.7% to Rhodopirellula baltica SH1T (Table S3), strain SWK21 was 

assigned to the genus Rhodopirellula (Winkelmann & Harder, 2009; Frank, 2011). Functional 

genes as phylogenetic marker (carB gene) clearly showed the formation of a different lineage 

in the phylogenetic tree and consequently a new species tentatively named ‘Rhodopirellula 

bahusiensis’ (Žure, 2015). Based on a gene identity of 93.7% for the complete 16S rRNA 

gene to Rhodopirellula baltica SH1T (Table S4), the strain SM50 represents a novel genus 

(Winkelmann & Harder, 2009) and is tentatively named ‘Rhodopilula apulia’ (Žure et al., 

2015). To assess the extent of their genetic relatedness to Rhodopirellula baltica SH1T, nearly 

complete genomes are needed. The final permanent draft genomes confirmed previous 

insights in the phylogeny of planctomycetes (Table S3; Table S4).  

The demonstration of our strategy on two different bacterial strains also represents the 

flexibility of the strategy: each step of the approach can be adapted to the individual datasets. 

This is important because no single approach is the best for all applications (Koren & 

Phillippy, 2015). ‘Rhodopilula apulia’ strain SM50 represents a novel genus of bacterial 

phylum Planctomycetes. Binning resulted in the taxonomic assignment of assembled contigs 

outside of “Planctomycetales” using Metawatt. The taxonomic profiling can failed for target 

genomes without high similarity to a reference genome in the database used. Bioinformatics 

tools – not only assemblers – have weaknesses and all results should be considered critically. 

Therefore, we performed a final de novo assembly of extended contigs using Geneious as well 

as the manually inspection of overlapping regions. This last improvement step clarifies the 

affiliation.  

In addition, Geneious can help to overcome assembly problems based on the usage of 

NGS data. Obtained reads may have arisen from two different copies of the same genome 

sequence, which complicates assemblies. If the repetitive region longer than the longest read, 
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the assembled sequences end at the boundaries of such repeats (Henson et al., 2012). The 

visual inspection of mapping results in Geneious can contribute to an understanding of these 

assembly problems. Therefore, gains in ideal assembly quality can be made with the extension 

of contigs by read mapping and a final assembling in Geneious. 

Our approach is utilizable for sequencing projects targeting a complete genome. The 

effort of manual finishing can be reduced by supporting the initial closing of many gaps using 

our in silico strategy. Furthermore, the integration of a binning step allows using the strategy 

for both genomic and metagenomic data. The organism of interest can be initially picked from 

draft metagenome assemblies and then improved. 

 

 

3.5 Conclusion 

We developed a bioinformatics approach to substantially improve draft genome assemblies by 

the identification of taxonomically related contig sequences using metagenome binning 

software and a refinement based on the taxon-specific assembly. Thereby, taxonomically 

unrelated contigs were removed and the reassembly of recruited reads provided longer 

contigs. The iterative cycle can be performed until no further improvement. The obtained 

contigs were finally used for an assembly to identify overlapping contigs and, after manual 

curation, to obtain a permanent draft genome. 
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Table S1. Overview about properties of input assemblies and their produced bins for the 

strain SWK21.  

Binning 

character 
Taxon 

Size in Mb 

(Largest contig in kb) 

Contig 

number 
N50 

Initial assembly 

Original unbinned 7.91 (404.1) 236 168,554 

After binning 
Planctomycetales 

unbinned 

7.76 (404.1) 

0.07 (4.1) 

95 

115 

168,554 

1,245 

First Reassembling 

Reassembly unbinned 7.91 (405.3) 201 226,510 

After binning 
Planctomycetales 

unbinned 

7.77 (405.3) 

0.07 (3.7) 

77 

106 

226,510 

1,030 

Second Reassembling 

Reassembly unbinned 7.90 (406.4) 198 226,510 

After binning 
Planctomycetales 

unbinned 

7.79 (406.4) 

0.07 (3.5) 

77 

102 

226,510 

993 

Third Reassembling 

Reassembly unbinned 7.90 (411.2) 186 232,953 

After binning 
Planctomycetales 

unbinned 

7.79 (411.2) 

0.07 (3.5) 

75 

97 

232,953 

1,027 
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Table S2. Overview about properties of input assemblies and their produced bins for the 

strain SM50.  

Binning 

character 
Taxon 

Size in Mb 

(Largest contig in kb) 

Contig 

number 
N50 

Initial assembly 

Original unbinned 10.28 (207.5) 1,684 40,298 

After binning 

Planctomycetales 

Nostocaceae 

Candidatus Brocadiales 

Spartobacteria 

Lentisphaeria 

Deltaproteobacteria 

Verrucomicrobiae 

unbinned 

9.43 (207.5) 

0.09 (43.6) 

0.03 (34.1) 

0.07 (31.6) 

0.03 (17.9) 

0.09 (15.5) 

0.06 (14.9) 

0.33 (3.7) 

361 

4 

1 

3 

2 

11 

7 

1,252 

42,311 

39,090 

34,111 

28,021 

17,871 

10,956 

11,744 

302 

First Reassembly 

Original unbinned 10.08 (310.8) 687 51,624 

After binning 

Planctomycetales 

Nostocaceae 

Chroococcales 

Candidatus Brocadiales 

Spartobacteria 

Burkholderiales 

Deltaproteobacteria 

unbinned 

9.55 (310.8) 

0.10 (54.3) 

0.05 (54.0) 

0.03 (32.3) 

0.03 (31.9) 

0.03 (17.2) 

0.03 (12.1) 

0.12 (3.9) 

300 

2 

2 

1 

1 

3 

6 

348 

55,557 

54,321 

54,041 

32,280 

31,926 

7,910 

10,747 

458 

Second Reassembly 

Original unbinned 10.07 (352.9) 567 67,761 

After binning 

Planctomycetales 

Nostocaceae 

Candidatus Brocadiales 

unbinned 

9.60 (352.9) 

0.17 (73.4) 

0.03 (32.3) 

0.10 (3.2) 

246 

3 

1 

282 

72,329 

51,099 

32,280 

457 
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Table S3. 16S rRNA gene similarities and average nucleotide identities (ANIs) of published 

complete and draft Rhodopirellula genomes and final draft genome of strain SM50 to the final 

draft genome of ‘Rhodopirellula bahusiensis’ SWK21.  

Genome 
Genome size 

(bp) 

16S rRNA 

dissimilarity1 
ANIm (%) 

Aligned 

bases (%) 

Aligned 

bases (bp) 

‘Rhodopirellula bahusiensis‘ 

SWK21 
7,784,569 * * * * 

‘Rhodopilula apulia‘ SM50 9,795,212 7.1 83.90 0.91 71,072 

Rhodopirellula baltica SH1 7,145,576 0.0 86.38 52.31 4,072,177 

Rhodopirellula baltica 

SWK14 
7,488,930 0.0 86.59 53.49 4,163,902 

Rhodopirellula baltica SH28 7,149,689 0.2 86.86 54.82 4,267,688 

Rhodopirellula baltica WH47 7,033,319 0.0 86.43 52.93 4,120,424 

Rhodopirellula europaea 6C 7,191,307 0.1 88.67 56.15 4,371,385 

Rhodopirellula europaea 

SH398 
7,446,194 0.1 89.41 60.57 4,715,393 

Rhodopirellula islandica 

K833 
7,433,200 0.8 86.44 45.09 3,510,023 

Rhodopirellula maiorica SM1 8,874,084 4.8 87.48 1.43 111,681 

Rhodopirellula sallentina 

SM41 
8,186,686 2.1 85.70 2.77 215,598 

Rhodopirellula sp.  SWK7 8,777,069 2.6 85.10 2.67 208,073 

1 16S rRNA gene dissimilarity to strain SWK21. Numbers indicate differences in percent 

(from Winkelmann, 2009). 
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Table S4. 16S rRNA gene similarities and average nucleotide identities (ANIs) of published 

complete and draft Rhodopirellula genomes and final draft genome of strain SWK21 to the 

final draft genome of ‘Rhodopilula apulia’ SM50.  

Genome 
Genome size 

(bp) 

16S rRNA 

dissimilarity1 
ANIm (%) 

Aligned 

bases (%) 

Aligned 

bases (bp) 

‘Rhodopilula apulia‘ SM50 9,795,212 * * * * 

‘Rhodopirellula bahusiensis‘ 

SWK21 
7,784,569 7.1 83.93 0.73 71,707 

Rhodopirellula baltica SH1 7,145,576 6.4 83.20 0.53 51,891 

Rhodopirellula baltica 

SWK14 
7,488,930 7.1 83.81 0.69 67,376 

Rhodopirellula baltica SH28 7,149,689 7.6 84.61 0.78 76,108 

Rhodopirellula baltica WH47 7,033,319 7.1 83.88 0.68 66,581 

Rhodopirellula europaea 6C 7,191,307 7.7 82.87 0.75 73,819 

Rhodopirellula europaea 

SH398 
7,446,194 7.7 82.81 0.59 57,619 

Rhodopirellula islandica 

K833 
7,433,200 8.0 83.62 0.72 70,278 

Rhodopirellula maiorica SM1 8,874,084 7.9 84.56 0.88 86,559 

Rhodopirellula sallentina 

SM41 
8,186,686 6.4 82.92 0.52 50,614 

Rhodopirellula sp.  SWK7 8,777,069 8.2 83.13 0.59 58,088 

1 16S rRNA gene dissimilarity to SM50. Numbers indicate differences in percent (from 

Winkelmann, 2009). 
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Abstract 

Methanosaeta is a methanogenic filamentous archaeon specialized on acetate degradation and 

usually present in methanogenic syntrophic communities. Catalyzed reporter deposition-

fluorescence in situ hybridization (CARD-FISH) of Methanosaeta filaments was reported to 

be heterogeneous for field samples and enrichment cultures. This study explored strategies to 

improve CARD-FISH signals of the filamentous cells using the horseradish peroxidase 

(HRP)-labeled ARCH-915 probe. We suggest two strategies of CARD-FISH experiments 

with one or two probes. In a limonene-degrading methanogenic enrichment culture, we still 

observed for the optimized procedures a heterogeneous staining. This may be a biological 

phenomenon. 

 

 

4.1 Introduction 

Methane producing microorganisms belong to the domain Archaea. They are strictly 

anaerobic organisms (Welte & Deppenmeier, 2014) and are found in various anoxic 

environments, such as fresh water sediments, tundra areas, swamps and the intestinal tract of 

ruminants and termites as well as in man-made environments, such as rice fields, anaerobic 

digesters of sewage plants and biogas plants (Kubota et al., 2008; Welte & Deppenmeier, 

2014). Methanogens are important for global carbon fluxes (Welte & Deppenmeier, 2014). 

They occupy the terminal position in the anaerobic food chain for the recycling of carbon 

components from organic matter (Jupraputtasri et al., 2005; Welte & Deppenmeier, 2014). In 

this process biopolymers (polysaccharides, proteins, lipids, and nucleic acids) are hydrolyzed 

to mainly sugars, amino acids, purines, pyrimidines, fatty acids, and glycerol by primary 

fermenters. This metabolic group of bacteria convert these organic compounds to simple 

carbonic acids (e.g., propionate, butyrate and acetate), alcohols (e.g., ethanol, propanol and 

butanol), and some other compounds (H2, CO2 and ketones). Syntrophic bacteria use these 

primary fermentation products as substrates to form acetate, CO2, H2, and formate, which are 

then converted to methane by methanogenic archaea (Schink & Stams, 2006; Welte & 

Deppenmeier, 2014). It has been estimated that approximately 74% of the global methane 

discharge into the atmosphere is from biological processes, mainly the activity of 

methanogens (Kubota et al., 2008). A major intermediate is acetate. Only two methanogenic 

genera, Methanosarcina and Methanosaeta, have been described to use this substrate (Barber 

et al., 2011; Welte & Deppenmeier, 2014). While members of the genus Methanosarcina are 
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versatile in their substrate range (Welte & Deppenmeier, 2014), Methanosaeta species are 

specialized on acetate degradation. They have a high affinity for this substrate. Only a steady 

state concentration of 7 µM to 70 µM is needed for growth, contrary to Methanosarcina 

species, which minimum threshold for acetate utilization is 0.2 mM to 1.2 mM (Jetten et al., 

1992). Species of the genus Methanosaeta form rod-shaped cells and are combined end to end 

in long filaments, surrounding by a sheath-like structure (Welte & Deppenmeier, 2014)  

(Fig. 1).  

 

 

Fig. 1. Transmission electron microscopy (TEM) image of a Methanosaeta filament from the limonene-

degrading methanogenic enrichment cultures. The individual cells inside of a proteinaceous sheath are shown. 

Scale bar 100 nm (Image was kindly provided by T. Fischer, 2017). 

 

Large filaments were observed in a methanogenic enrichment culture on limonene. 

The phylogeny of the filaments was established in catalyzed reporter deposition-fluorescence 

in situ hybridization (CARD-FISH) using the Methanosaeta specific probe MX-825 and the 

general domain probe for Archaea ARCH-915 (Rotaru, 2009). The Methanosaeta filaments in 

the enrichment culture revealed a heterogeneous staining with 4’,6-diamidin-2-phenylindol 

(DAPI) and with CARD-FISH using the general archaeal probe. This study attempts to obtain 

a homogeneous staining of all cells of Methanosaeta filaments.  

Partial staining in CARD-FISH experiments is most often caused by a lack of cell 

permeabilization (Amann & Fuchs, 2008). The penetration of horseradish peroxidase (HRP)-

labeled probes into fixed cells is a critical step of CARD-FISH due to the size of 5–6 nm and 
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a molecular weight of 40 kDa of the enzyme (Amann & Fuchs, 2008; Kubota, 2013). 

Appropriate permeabilization protocols are essential for diffusion of HRP-labeled probes into 

the intact fixed cells (Kubota et al., 2008; Molari & Manini, 2012). Due to differences in cell 

wall composition of Bacteria and Archaea, no standard protocol exists for all microbial cells. 

The permeabilization step has to balance the accessibility to the rRNA molecules with the 

possible loss of rRNA molecules or the complete lysis of the cell (Molari & Manini, 2012). 

Therefore, empirical optimizations often consider the specific composition of the cell wall 

(Amann & Fuchs, 2008).  

The surface structures of methanogens include four types: pseudomurein, surface layer 

proteins (S-layer), methanochondroitin, and sheath (Kubota et al., 2008). The genus 

Methanosaeta has a proteinaceous sheath forms the filament with the individual cells inside 

(Kubota et al., 2008) (Fig. 1). Therefore, lysozyme which is the most commonly used enzyme 

for permeabilization treatment was considered to be inadequate for the detection of 

Methanosaeta filaments (Kubota, 2013).  

In this study, we evaluated several different enzymatic and chemical treatments to 

improve the detectability of the ARCH-915 stained cells in Methanosaeta-like filaments. The 

results suggested separate protocols for the application of CARD-FISH to detect the archaeal 

cells of the filaments in the limonene-degrading methanogenic enrichment cultures and for the 

simultaneous detection of other members by double CARD-FISH. The general probe mix for 

Bacteria, EUB338 I–III, does not match the 16S rRNA of the phylotype OP3 LiM, which is 

an abundant member of the bacterial community in the enrichment culture (Rotaru, 2009; 

Rotaru et al., 2012). Hence, double CARD-FISH experiments used besides Arch-915 either 

EUB338 I–III or the OP3 LiM specific probe OP3-565.  

 

 

4.2 Materials and methods 

The CARD-FISH protocol (Pernthaler et al., 2004) for samples on membrane filters was 

performed with permeabilization, endogenous peroxidases inactivation, in situ hybridization, 

washing, and catalyzed reporter deposition (tyramide signal amplification). The 

permeabilization step for prokaryotic cells uses lysozyme (Fig. 2). Because this enzyme is 

expected to be rendered insensitive to the archaeal filaments, the permeabilization was 

modified to improve the penetration of HRP-labeled probes into the fixed filamentous cells by 

several enzymatic and chemical treatments.  
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Fig. 2. Workflow of the CARD-FISH application. The sequential steps of the general CARD-FISH approach are 

displayed with boxes. Gray boxes represent constant steps. White boxes represent variations that are shown to 

the right. Arrows indicate the position of insertion. (1) Steps as described in the protocol (Pernthaler et al., 2004).  
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For single CARD-FISH with ARCH-915, the protocol for formaldehyde-fixed cells 

(1.3% for 1 h at room temperature (RT)) was modified by (i) addition of an ethanol fixation 

(50% v/v for 10 min at RT) before filtration or a treatment of the cells on the filter with (ii) 

0.5% sodium dodecyl sulfate (SDS) solution for 10 min at RT (Holler et al., 2011) or (iii) an 

ethanol series (50%, 70%, and 96% v/v for 5 min each step at RT). Lysozyme treatment as 

described in Pernthaler et al. (2004) was changed to (i) 2 h incubation instead of 1 h, (ii) 

achromopeptidase treatment after lysozyme treatment or (iii) proteinase K treatment. 

Achromopeptidase (60 or 120 U/µl in 0.01 M NaCl, 0.01 M Tris/HCl, pH 8.0) was applied for 

30 min at 37°C. Endogenous peroxidases were inactivated with 0.01 M HCl for 10 min at RT. 

Proteinase K was tested over a range of concentrations (15, 20, 25, 30, 100, or 200 µg/ml in 

0.1 M Tris-HCl, 0.05 M EDTA, pH 8.0, 0.5 M NaCl). Filters were incubated for 3, 10, or  

15 min at 37°C in low concentrated proteinase K solutions (15–30 µg/ml) or for 2 min at RT 

in proteinase K solution of concentrations of 15 µg/ml (Holler et al., 2011), 100 µg/ml, and 

200 µg/ml. Proteinase K activity was stopped by 0.1 M HCl for 10 min at RT. As further 

option, an ethanol series in 50, 70, and 96% ethanol for 5 min each step at RT was performed 

after the permeabilization. The modifications described by Holler et al. (2011) were also 

tested: the samples were incubated in 0.5% SDS solution for 10 min at RT, in proteinase K 

solution (15 µg/ml in 0.1 M Tris-HCl, 0.05 M EDTA, pH 8.0, 0.5 M NaCl) for 2 min at RT, 

and in 0.01 M HCl for 5 min at RT. A formamide (FA) concentration of 35% (v/v) was used 

for in situ hybridization with the HRP-labeled ARCH-915 probe (Table 1). The hybridization 

was performed for 2.5 h as described by Pernthaler et al. (2004) for coastal water samples or 

overnight. Washing and amplification was performed as described by Pernthaler et al. (2004) 

(Fig. 2).  

For double staining of Archaea with probe ARCH-915 and Bacteria with probe mix 

EUB338 I–III or with the OP3 LiM specific probe OP3-565 and helper mix (Table 1), two 

sequential hybridizations were performed. The afore-mentioned permabilization procedures 

were tested. For staining of bacterial cells, steps of hybridization, washing and amplification 

were performed as described by Pernthaler et al. (2004) (Fig. 2). HRP present at the first 

probe used was inactivated after the signal amplification by incubation of the filter with 3% 

H2O2 for 10 min at RT. Filter sections were then washed thoroughly in MQ water and after 

air-drying they were stored overnight at –20°C before the second round of CARD-FISH was 

performed. Alexa-488 and Alexa-594 labeled tyramides were used for first and second 

amplification, respectively. 

 



Chapter 4 – Optimization of CARD-FISH for Methanosaeta cells 

76 

Table 1. HRP-labeled oligonucleotide probes and helpers (non-labeled) used in this study. 

Probe name Probe sequence (5´–3´) Position  Target group 
FA 

(%)a 
Reference 

EUB338 Ib GCTGCCTCCCGTAGGAGT 338–355 Most Bacteria 35 
Amann et al., 

1990 

EUB338 IIb GCAGCCACCCGTAGGTGT 338–355 Planctomycetales 35 
Daims et al., 

1990 

EUB338 IIIb GCTGCCACCCGTAGGTGT 338–355 Verrucomicrobiales 35 
Daims et al., 

1990 

ARCH-915 GTGCTCCCCCGCCAATTCCT 915–934 Domain Archaea 35 
Stahl and 

Amann, 1991 

OP3-565 TACCTGCCCTTTACACCC 608–626d Candidate OP3 LiM 30 Rotaru, 2009 

H548-Ac AATAAATCCGAGTAACGC 590–608d Candidate OP3 LiM  
Kizina et al., 

unpublished 

H548-Cc AATCAATCCGAGTAACGC 590–608d Candidate OP3 LiM  
Kizina et al., 

unpublished 

H583-TCc CTCCCCACTTGTCAGGCCGCC 626–647d Candidate OP3 LiM  
Kizina et al., 

unpublished 

H583-CTc CCTCCCACTTGTCAGGCCGCC 626–647d Candidate OP3 LiM  
Kizina et al., 

unpublished 

a FA, fomamide concentration of the hybridization buffer. 
b/c Used in a mix. 
d OP3 LiM 16S rRNA location. 
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4.3 Results 

To optimize the permeabilization for the cell wall of Methanosaeta filaments, different 

chemicals and enzymes (SDS, ethanol, lysozyme, achromopeptidase and proteinase K) were 

examined.  

Briefly, an increased incubation time from 1 h to 2 h in lysozyme solution was not 

more effective. We confirmed the inadequate and heterogeneous detection of rRNA signals of 

Methanosaeta cells, when the lysozyme treatment was performed as described by the original 

protocol (Pernthaler et al., 2004). Weak signals were likely due to a partial permeabilization. 

Both other enzymatic treatments were more successful. After the lysozyme and 

achromopeptidase treatment stronger hybridization signals were detected with HRP-labeled 

ARCH-915 probe. But non-detectable or weakly detectable archaeal filament cells were still 

observed. Proteinase K at high concentration (200 µg/ml) produced better CARD-FISH 

signals of filamentous cells than the other performed permeabilization treatments. Few signals 

were observed for samples prepared by the described modification by Holler et al. (2011) 

with SDS and a short proteinase K incubation. Overnight incubation increased the signal 

strength slightly. Chemical treatments strongly influenced the labeling of filament cells. SDS 

incubation led to better CARD-FISH signals independent on the used enzyme. In contrast, the 

effect of dehydration through an ascending series of ethanol depended on the position 

integrated into the workflow as well as the enzymatic treatment. Ethanol dehydration yielded 

disrupted cells and weak or no hybridization signals. It was partly effective, if performed or 

before filtration.  

Overall, proteinase K was the most effective treatment for Methanosaeta cells. The 

incubation in proteinase K solution at low concentration was even adequate for the 

hybridization of nearly all cells of filaments (Fig. 3). The reproduction of these experiments 

yielded reproducibly heterogeneous hybridization signal intensities for cells of the filaments. 

Filaments that were completely stained were next to cells in filaments without CARD-FISH 

signal. It may be concluded that these cells have no rRNA (Fig. 3C).  
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Fig. 3. Epifluorescence micrograph of CARD-FISH hybridized sample from limonene degrading methanogenic 

enrichment culture. The pre-treatment protocol for the filter was an ethanol dehydration (50%, 70%, and 96% 

v/v for 5 min each step), an incubation for 5 min at 37°C in proteinase K solution (20 µg/ml in 0.1 M Tris-HCl, 

0.05 M EDTA, pH 8.0, 0.5 M NaCl), an incubation of 0.1 M HCl for 10 min at RT, and a hybridization time of 

2.5 h. (A) Cells hybridized with the HRP-labeled ARCH-915 probe (green). (B) DAPI stained cells (blue). (C) 

Overlay of DAPI staining and ARCH-915 signals. Red circles indicate cells containing DNA (blue), but no 

rRNA (green). Scale bars, 5 µm.  

 

Higher concentration of proteinase K solution (200 µg/ml) resulted in even clearer 

pictures, likely due to the destruction of bacterial cells in the samples. This enzymatic 

treatment in combination with ethanol incubation, SDS incubation, incubation in 0.1 M HCl 

to inactivate endogenous peroxidases, and overnight hybridization is recommended as 

approach for Methanosaeta cell detection by CARD-FISH (Fig. 4A, strategy 2; Fig. 4D). 

The strong proteinase K treatment was ineffective to detect archaeal cells of smaller 

morphology as well as bacteria in double CARD-FISH experiments. The more gentle 

enzymatic treatment of lysozyme and achromopeptidase for permeabilization in combination 

with SDS incubation and overnight hybridization was resulting in reproducible results  

(Fig. 4A, strategy 1). CARD-FISH signals of small archaeal cells were observed and the 

permeabilization strategy was also appropriate for the detection of bacterial cells using the 

EUB338 I–III probe mix or the OP3 LiM specific probe OP3-565 by double CARD-FISH 

(Fig. 4B). The DAPI stained filaments showed archaeal CARD-FISH signals for the majority 

of cells in the filaments. Therefore, this modified CARD-FISH protocol is suggested for 

quantification of archaeal cells as well as the analysis of the microbial diversity in the 

methanogenic enrichment cultures on limonene. An ethanol series after permeabilization 

treatment showed better signals for archaeal cells (Fig. 4C). Because of observed hydrolysis 

of bacterial cells this step has to be omitted in double CARD-FISH application. 
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Fig. 4. (A) Overview on protocols for CARD-FISH of (strategy 1) simultaneous detection of archaeal and 

bacterial cells by double CARD-FISH and of (strategy 2) single detection of Methanosaeta filament cells.  
1 Basic steps of the original protocol described by Pernthaler et al. (2004). Gray boxes show steps used in the 

original protocol. White boxes show steps which were modified. Modifications are displayed in black frames. 

(B–D) Epifluorescence micrographs of CARD-FISH hybridized sample from limonene degrading, methanogenic 

enrichment cultures. (B) Merged images show cells hybridized with OP3-565/helper mix in red and with 

archaeal probe ARCH-915 in green after performed strategy 1 for double CARD-FISH; (C) cells hybridized with 

archaeal probe ARCH-915 after performed strategy 1 with optional ethanol dehydration; (D) hybridized with 

archaeal probe ARCH-915 after performed strategy 2. (B–C) DAPI stained cells are shown in blue. Scale bars,  

5 µm. 

 

 

4.4 Discussion 

Fluorescence in situ hybridization (FISH) has become a standard technique in environmental 

microbiology for studying the abundance of species or taxonomic groups in microbial 

communities. The sensitivity of FISH is improved by CARD-FISH (Ishii et al., 2004; Kubota, 

2013). This approach was used to characterize the microbial community of limonene-

degrading methanogenic enrichment cultures. Based on the heterogeneous labeling of 

archaeal filament cells using the HRP-labeled ARCH-915 probe, an improved CARD-FISH 

method for Methanosaeta cells was the aim of this study.  

Previous studies analyzed the composition and structure of this methanogenic 

enrichment culture community using the full cycle rRNA approach (Rotaru et al., 2012) and 

CARD-FISH experiments (Rotaru et al., 2012; Kizina et al., unpublished). Methanosaeta 

filaments were stained very heterogeneously. Some cells showed a weak or no signal using 

the general domain probe ARCH-915. This has also been noticed in other studies 

(Jupraputtasri et al., 2005; Kubota, 2013). Lysozyme is usually used for the permeabilization 

of cells, but may not be effective for microorganisms with unusual cell wall structures (Ishii et 

al., 2004), such as Methanosaeta which have a proteinaceous sheath outside to their 

individual cell envelopes (Kubota et al., 2008). An incomplete permeabilization of the sheath 

of the filaments was considered for an insufficient probe penetration of ARCH-915-HRP into 

the fixed filamentous cells as cause of heterogeneous CARD-FISH signals. To improve the 

permeabilization, we investigated combinations of different enzymes (lysozyme, 

achromopeptidase, and proteinase K) and chemicals (SDS and ethanol) as well as adjusted 

basic steps of the CARD-FISH protocol (Pernthaler et al., 2004). Although sonication may be 

effective, it disrupts cell-to-cell contacts and was therefore not considered. SDS incubation as 
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pretreatment before the enzymatic treatment as well as an overnight hybridization increased 

the signal intensities. As described by Kubota (2013), achromopeptidase treatment after the 

lysozyme treatment was effective. Achromopeptidase hydrolyzes lysyl peptide bonds. The 

lysozyme treatment likely improves the accessibility of the peptide bonds (Ishii et al., 2004; 

Kubota, 2013).  

Proteinase K is a suitable candidate for the permeabilization of Methanosaeta 

filaments due to the degradation of a broad spectrum of proteins (Lloyd et al., 2013). 

Proteinase K showed the best results for Methanosaeta cells. Other studies also described that 

proteinase K is more effective for Archaea than lysozyme (Teira et al., 2004; Molari & 

Manini, 2012). However, we confirmed the results of previous studies (Schönhuber et al., 

1999; Kubota, 2013) that this enzyme is difficult to be used reproducible at low 

concentrations. Proteinase K at high concentrations (200 µg/ml) was not more suitable for 

small archaeal cells as well as bacterial cells. Thus, the simultaneous detection of bacterial 

and archaeal cells by double CARD-FISH experiments needed another method.  

The recombinant pseudomurein endopeptidase [PeiW] was proposed as 

permeabilization method for CARD-FISH application to methanogens by Kubota et al. 

(2008). This enzyme was not very effective for methanogens having methanochondroitin and 

a sheath. Partial staining of Methanosaeta after PeiW treatment was observed using HRP-

labeled ARCH-915. Therefore, this enzyme was not included in our study. 

CARD-FISH is a standard method for in situ detection of cells in environmental 

microbiology. An alternative amplification method is hybridization chain reaction (HCR). 

DNA-HCR and RNA-HCR systems are available (Yamaguchi et al., 2015). In situ DNA-

HCR was carried out using Methanosaeta concilii cells and the results were compared with 

the application of CARD-FISH. In contrast to CARD-FISH, the non-enzymatic technique was 

able to stain cells without permeabilization indicating a more readily entrance of the probe 

(Yamaguchi et al., 2015). This is advantageous for Methanosaeta cells because of their cell 

wall structure. However, the images of the detection of Methanosaeta concilii cells using in 

situ DNA-HCR with ARCH-915-initiatorH probe and Cye3-labelled amplifier probes showed 

filamentous cells which are DAPI stained but not stained using the probes (Yamaguchi et al., 

2015). Thus, this alternative approach confirmed our best CARD-FISH results. It suggests 

that the unstained cells have no ribosomal RNA. 

No standard protocol exists for all microbial cells (Molari & Manini, 2012). Our 

experiments demonstrated that due to great variations in cell wall composition among 

prokaryotes an approach likely cannot have a universal applicability. Therefore, we suggested 
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two strategies, one (Fig. 4A, strategy 2) for the application of CARD-FISH for Methanosaeta 

cells and the other (Fig. 4A, strategy 1) for the simultaneous detection of Methanosaeta cells 

and all other archaeal and bacterial cells using double CARD-FISH experiments. 

Nevertheless, the further development of highly reproducible cell permeabilization methods 

especially for the application of double CARD-FISH experiments to microbes with different 

cell wall structure remains a necessity. 

 

 

4.5 Conclusion 

In this study we suggested two strategies for the permeabilization of the Methanosaeta cell 

wall to improve successfully their visualization, either for single detection or simultaneous 

detection with other archaeal or bacterial cells. The best established technique still revealed 

cells in Methanosaeta filaments that contained DNA but no rRNA according to in situ 

hybridizations. We conclude that the partial staining was not caused methodologically, but 

may have a biological reason, e.g. lysis by phages or predation.  
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Abstract  

The candidate phylum Omnitrophica (candidate division OP3) is currently characterized by 

draft genomes from metagenomes and single cell genomes. Recently, we visualized the 

phylotype OP3 LiM cells in methanogenic cultures on limonene. In this study, the closed 

genome of OP3 LiM was obtained from a nearly clonal enrichment. Visualization 

experiments applying CARD-FISH showed two physiological stages of OP3 LiM cells: free-

living cells had a weak fluorescence signal, whereas the strong signal of attached-living OP3 

LiM cells indicated an active metabolism. OP3 LiM cells presented a characteristic surface 

extension in electron micrographs and attached to Bacteria and to Archaea. A group I intron 

in the 23S rRNA of OP3 LiM is excised from the RNA transcript by a LAGLIDADG/HNH 

homing endonuclease, as demonstrated by the presence of the protein and the nascent and 

mature RNA transcript. Methanosaeta filaments of the methanogenic cultures thriving on 

limonene had cells without rRNA or both rRNA and DNA. Some of these Methanosaeta cells 

contained the group I intron RNA of OP3 LiM, as detected in in situ hybridization 

experiments. OP3 LiM cells are very small (200–300 nm in diameter) and have highly 

expressed secreted proteins involved in depolymerization and uptake of macromolecules. 

Expressed proteins revealed that OP3 LiM uses glycolysis and conserves energy by the 

utilization of pyruvate via a pyruvate:ferredoxin oxidoreductase and an RNF complex 

(Ferredoxin:NAD oxidoreductase). Transferases allow energy conservation from the 

depolymerization of nucleic acids. Our study, especially the interdomain transfer of intron 

RNA, demonstrated a predatory activity for OP3 LiM cells and we propose to name the 

anaerobic predatory OP3 LiM coccus ”Candidatus Vampirococcus archaeovorus“.  
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Importance  

Predatory bacteria may represent an intermediate evolutionary stage from bacteria to phages 

by genome reduction. So far, only a few genomes of aerobic predatory bacteria are known. In 

this study on a nearly clonal limonene-degrading methanogenic enrichment culture, we 

present the first closed genome of an anaerobic predatory bacterium. It is also the first closed 

genome of a member of the candidate phylum Omnitrophica. The predatory capacity of this 

epibiontic bacterium is concluded from the content of its closed genome and visualizations 

including CARD-FISH. The bacterium has a group I intron in its 23S rRNA gene and we 

demonstrated the presence of the intron RNA in Methanosaeta cells. This is the first 

visualization of an interdomain intron RNA transfer from a bacterium into an archaeon. 

Because OP3 LiM is the first bacterium that preys on archaea, we propose to name it 

“Candidatus Vampirococcus archaeovorus”. 
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5.1 Introduction 

A primordial soup (1) initiated the evolution of life starting with the RNA world (2). Once the 

available dissolved organic carbon – the primordial soup – was depleted, energy was only 

available in the form of reduced inorganic compounds or as particulate organic matter in the 

form of cells. Geochemically produced hydrogen has been identified as potential energy 

source for ancient acetogenic and methanogenic organisms (3). The origin and evolution of 

predation has less been considered as important process in early times of the earth (4), but is 

now established as a widespread mode of interaction among living organisms in many 

ecosystems (5–6). Predators were identified in groundwater, rivers, estuaries, the open ocean, 

sewage, soils, plant roots, and animal feces (7–8). They have been classified as obligate 

(unable to grow in the absence of prey) or facultative (able to grow as a pure culture without 

the presence of prey) (8). Bacterial predators attack their prey in groups (Myxobacteria) or 

individually. Epibiotic species attach to the prey, and other species penetrate the periplasma or 

the cytoplasm (8–9). Members of the genus Bdellovibrio and related organisms, summarized 

as “Bdellovibrio and like organisms” (BALOs), are the most-studied group of predatory 

bacteria (10). BALOs include the deltaproteobacterial order Bdellovibrionales and 

Bacteriovoracaceae as well as the alphaproteobacterial Micavibrio spp. (7). They exclusively 

prey on gram-negative cells and have a dimorphic life cycle. Motile cells with a single polar 

flagellum find prey cells and attach to the outer membrane (7). After an irreversible 

attachment (11) invading BALOs such as Bdellovibrio bacteriovorus enter the prey’s 

periplasmic space and proliferate at the expense of the prey’s cytoplasmic content. Motile 

progeny cells release themselves from the remnants of the prey cell to start a new cycle (11). 

Epibiontic predators remain attached to the outer membrane while nourishing on the 

prey (11). This lifestyle have Bdellovibrio exovorus sp. nov. (formerly Bdellovibrio sp. strain 

JSS), a novel predator of Caulobacter crescentus, and Micavibrio aeruginosavorus (12–13). 

The eukaryotic microalgae Chlorella has as epibiontic predator Vampirovibrio chlorellavorus 

(14). In the epibiotic strategy, the cell-to-cell contact via pili has been considered as essential 

element of the predation (6, 12, 15). The genome of Micavibrio aeruginosavorus contains a 

complete type I secretion system and a functional type II secretion system for protein 

secretion (12). Complete twin arginine translocation (TAT) and Sec transport systems 

indicated a functional type II secretion system that is known to assemble type IV pili (16). 

Several pil genes encoding type IV pili are dispersed in the genome of Micavibrio 

aeruginosavorus. Also Bdellovibrio exovorus JSST uses type IV pili. The genome contains the 
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Sec pathway and an almost full general secretory pathway (GSP) type II export system (15). 

The genomic potential to produce a functional flagellum and type IV pili are also present in 

the obligate predator Vampirovibrio chlorellavorus (8).  

Besides the aforementioned species with available genome sequences, many reports 

on predatory bacteria have been published in the last century that provided an at that time 

state-of-the-art experimental evidence. Notably, the anaerobe Vampirococcus (17) has 

stimulated discussion on the early evolution of predators. Vampirococcus has been defined by 

microscopic cell counts and electron micrographs and has no validated standing in 

nomenclature (10).  

In this contribution, we describe a novel anaerobic predatory bacterium with a coccal 

morphology. We had observed cells of candidate division OP3, now also named Candidate 

phylum Omnitrophica (18), in high abundances in a methanogenic enrichment culture thriving 

on limonene. The phylotype OP3 LiM originated from a 16S rRNA gene clone library. 

Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) with a specific 

OP3 LiM-probe [OP3-565] revealed that 18% of all cells in the enrichment culture were OP3 

LiM cells (19). The images showed signals of small and round-shaped cells, located either 

free-living or attached to larger cells. We applied in this study physical cell separations and a 

range of visualization techniques as well as metagenomes, metatranscriptomes and 

metaproteomes to provide a first insight into the biology of OP3 LiM cells. Based on our 

observations, we propose a taxonomic affiliation with Vampirococcus.  
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5.2 Results 

Visualizations of cells and of ribonucleic acids. 

The small size of OP3 LiM cells as observed in previous CARD-FISH studies (19) 

suggested a separation of cell populations by density gradients. The density centrifugation of 

concentrated cells from the limonene-degrading methanogenic enrichment culture yielded two 

visible bands close to the top and to the bottom in a Percoll gradient (Fig. S1). PCR and 

CARD-FISH analyses specific for OP3 LiM detected in the gradient the highest abundance of 

OP3 cells in a macroscopically not turbid layer above the visible bottom layer. This fraction 

was further concentrated in a second Percoll gradient and yielded a fraction with over 80% 

OP3 LiM cells according to CARD-FISH. The twice-enriched cells were used for an OP3 

LiM-enriched metagenome. 

Transmission electron micrographs of the OP3 LiM-enriched Percoll gradient fraction 

of the second gradient showed a dominant morphotype of small cells surrounded by a surface 

structure weakly stained with uranyl acetate (Fig. 1A). The cell size was about 200 nm to 300 

nm in diameter. The abundance of the morphotype in transmission electron microscopy 

(TEM) pictures coincided with the signal abundance of OP3 LiM cells in CARD-FISH 

experiments and related the small cells with a cape to the phylotype OP3 LiM. The 

characteristic morphotype was also detected in samples of enrichment cultures, mainly 

attached to larger cells (Fig. 1B–D). The latter were short rods and filaments, and they seemed 

to have an intact cell morphology. The attached small cocci were present in different sizes, 

likely presenting different growth stages.  
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Fig. 1. Negatively stained OP3 LiM cells from methanogenic enrichment cultures: (A) single cell morphotype 

that was abundant in the Percoll gradient fraction containing over 80% OP3 LiM cells according to CARD-FISH 

and (B–D) cells attached to larger cells. The small particles in Fig. 1A are Percoll that are colloidal silica 

particles of 15 nm to 30 nm diameter coated with polyvinylpyrrolidone. The small single cells had a size of 200 

nm to 300 nm and a cape of biological material that was less stained than the cell. In the enrichment culture, such 

OP3 LiM cells were attached to larger cells of different morphologies. 

 

A second method to enrich OP3 LiM cells was differential centrifugation. Twelve 

lineages of limonene-degrading methanogenic enrichments originated from one microliter of 

inoculum transferred in 1999 and were maintained by one annual transfer of 10% v/v. 

Template-dilution OP3 LiM-specific PCR and CARD-FISH experiments with probe OP3-565 

guided the selection of a lineage containing a high cell number of OP3 LiM. The majority of 

cells in the enrichment cultures pelleted with 10,000 S (Pe1). Small cells in the supernatant 

were collected in a 100 S-pellet that after resuspension was separated into aggregated cells 

(second 10,000 S-pellet (Pe2)) and free cells (supernatant of second 10,000 S centrifugation 

(Pe3)). Scanning electron micrographs of the different fractions confirmed the size 
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fractionation. The fraction of large cells was dominated by filaments and aggregated cells 

(Fig. S2A–D). Small cells were attached on the filaments (Fig. 2; Fig. S2–S5). The fractions 

Pe2 and Pe3 contained to over 99% single cells of small size (Fig. S2E–F; Fig. S3). Pe1, Pe2 

and Pe3 were the source for additional metagenomes and for metatranscriptomes and  

-proteomes.  

 

 

Fig. 2. Scanning electron micrograghs of a filamentous microorganism and attached small cells, assigned to 

Methanosaeta and OP3 LiM cells, respectively. Scale bar, 1 µm (A) and 4 µm (B).  

 

CARD-FISH detection of OP3 LiM cells was improved by introducing four helper 

oligonucleotides (20). In cultures of the lineages, OP3 LiM cells presented up to 30% of 4’,6-

diamidin-2-phenylindol (DAPI) stained cells (Fig. S6). Strong detections signals were 

observed for attached OP3 LiM cells, suggesting a larger ribosome content and a higher 

metabolic activity of the attached-living cells in comparison to free-living cells. The weaker 

signal suggests a state of low metabolic activity, eventually of starvation. OP3 LiM cells 

attached to archaeal and bacterial cells as visualized by double CARD-FISH experiments with 

two probes for OP3 LiM cells and for Archaea or for Bacteria, respectively. 

Among the Archaea in the enrichment cultures, filaments of cells were conspicuous in 

the microscopic view and affiliated to Methanosaeta by CARD-FISH experiments applying 

either a Methanosaetaceae-specific probe (MX-825) (21) that targeted in silico all 

Methanosaeta phylotypes present in the enrichment culture (22) or a general probe for 
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Archaea (Fig. 3). These filaments often contained one or some cells that did not stain with 

DAPI, a universal stain for DNA, suggesting that they did not contain DNA (Fig. 3–5; Fig. 

S7–S9). In addition, CARD-FISH with the general archaeal probe ARCH-915 did not detect 

ribosomes in all cells of the filaments.  

 

 

Fig. 3. Detection of Archaea and OP3 LiM in a methanogenic enrichment culture in CLSM images. Overlay (A) 

and individual signals of DNA (B), OP3 LiM (C) and Archaea (D) were obtained by DAPI staining and double 

CARD-FISH with probes OP3-565 together with helper oligonucleotides and ARCH-915, respectively. Scale bar 

represents 2 µm.  

 

To exclude a methodological problem, we tested a variety of cell lysis treatments to 

improve the detection of archaeal rRNA in all cells of filaments. Similar to the results of 

Kubota et al. (23), experiments with a harsh treatment with proteinase K did not result in 

CARD-FISH signals from all cells in filaments (see also Chapter 4). The visibility of 

filaments in phase-contrast micrographs together with the absence of DNA and of rRNA in 

cells of the filaments suggested that these cells in the filament had lost their cellular content.  
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Fig. 4. Methanosaeta filaments in phase contrast micrograph (A) and overlay of epifluorescence micrographs 

(B) revealing the presence of DNA (DAPI staining in blue) and of rRNA (CARD-FISH staining with ARCH-915 

in green). Scale bar for all images is 5 µm.  

 

OP3 LiM cells were frequently attached to the filaments, either as single cell (Fig. 5) 

or as a group of cells (Fig. 3; Fig. S10). The Methanosaeta cells lacking DNA and rRNA had 

OP3 LiM cells on their surface. The CARD-FISH signal of probe OP3-565 showed the 

hybridization not only in small cells of OP3 LiM, but also in Methanosaeta cells. This 

staining was faint (Fig. 5). To exclude an archaeal target sequence for the probe, BLASTN of 

the probe sequence was performed against the metagenome Pe1–Pe3 and detected the 18mer 

target sequence of OP3 LiM and next two 15mer oligonucleotides. Sequences affiliated to 

Methanosaeta as well as the Methanosaeta concilii GP-6 genome had a 13mer of base-pairing 

with the probe OP3-565, with a GC content of 54%. The difference in length of these base-

pairing regions strongly excludes a false-positive signal and suggests that the signal of the 

probe OP3-565 in Methanosaeta cells originate from the hybridization to rRNA of OP3 LiM 

present in the archaeal cells. 
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Fig. 5. Detection of rRNA from OP3 LiM by CLSM. Detection of Archaea and OP3 LiM in a methanogenic 

enrichment culture in CLSM images. Overlay (A) and individual signals of OP3 LiM rRNA (B), Archaea rRNA 

(c) and DNA (D), were obtained by double CARD-FISH with probes OP3-565 together with helper 

oligonucleotides and ARCH-915 as well as DAPI staining, respectively. Scale bar represents 5 µm.  

 

The 23S rRNA of OP3 LiM contains a group I intron at position 2,061 to 2,768 bp 

including an open reading frame (ORF) encoding for a LAGLIDADG/HNH homing 

endonuclease. CARD-FISH with three probes and six helper oligonucleotides targeting the 

intron RNA was performed to visualize the presence of the intron in enrichment cultures, 

together with taxon-specific probes. The intron was detected in several cells with different 

morphotypes. Cells of filaments that did not contain DNA according to DAPI-staining 

contained the intron (Fig. 6). Intron containing cells were identified as part of an archaeal 

filament in double CARD-FISH experiments with the archaeal probe (Fig. S11). Together 

with the faint signal of OP3-LiM rRNA in filamentous cells, this observation suggested a 

mobility of ribonucleic acid molecules from OP3 LiM cells into Methanosaeta cells. Intron 

RNA was also detected in cells that had not the Methanosaeta morphology (Fig. S11–S16). 

Double CARD-FISH experiments together with the OP3 LiM probe confirmed that the intron 

was detected outside of OP3 LiM (Fig 6; Fig. S12, S15, S16). 
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Fig. 6. In situ detection of intron RNA originating from OP3 LiM by light microscopy (A) and confocal laser 

scanning microscopy (B). DNA was stained with DAPI (blue). In a double CARD-FISH experiment, OP3 LiM 

rRNA was detected with OP3-565 (green) and the intron RNA was detected with three intron probes hen1-2235, 

hen2-2309 and hen3-2538 (red). All probes were used with flanking helper oligonucleotides. Scale bars, 5 µm. 

 

 

Fig. 7. Detection of Bacteria in a methanogenic enrichment culture. DNA is stained with DAPI (blue), the 16S 

rRNA probe mix EUB338 I–III revealed bacterial cells (excluding OP3 LiM) (green) and the OP3 LiM-specific 

probe OP3-565 detected OP3 LiM cells (red) in double CARD-FISH experiments. Scale bar, 5 µm. 
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Bacteria also had OP3 LiM cells on their surface (Fig. 7 and 8). The probe mix 

EUB338 I–III does not detect OP3 LiM due to mismatches in the target 16S rRNA sequence 

(19). A range of morphologies was identified as Bacteria including vibrios of different sizes, 

large coccoid cells as well as short and thin rod-shaped cells (Fig. 7 and 8). The bright 

CARD-FISH signal of several OP3 LiM cells attached to individual bacterial cells highlights 

their metabolic activity. Intron RNA was detected in one bacterial cell aggregate (Fig. S13). 

Other intron signals in double CARD-FISH experiments together with the EUB338 I–III 

probe mix did not detect the intron in a cell containing bacterial rRNA (Fig. S13 and S14). 

 

 

Fig. 8. Detection of OP3 LiM and Bacteria by double CARD-FISH. The epifluorescence micrographs show cells 

from culture MM-376 visualized with DAPI (blue, A and D), probe OP3-565 for OP3 LiM cells (green, A and 

B), and probe mix EUB338 I–III for Bacteria (red, A and C). Scale bars, 2 µm. 
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The OP3 LiM genome. 

The OP3 LiM-enriched metagenome with 454 and MiSeq datasets provided a draft 

genome with uncertainties in repetitive regions. Combinatorial PCR reactions ordered the 

contigs of repetitive elements or confirmed suspicious regions including the presence of three 

repeats of about 2,000 bp with small sequence variations mixed with two completely identical 

sequences of 2,506 bp within the ORF of the very large multienzyme surface protein  

(Fig. S17A).  

The coverage of 33.68% 454 reads and 6.97% MiSeq reads at the final OP3 LiM 

genome confirmed the enrichment of OP3 LiM cells.  

The closed OP3 LiM genome was confirmed by mapping of metagenomes obtained 

from a second biological sample which was size-fractionated (Pe1, Pe2 and Pe3). Increased 

concentrated OP3 LiM cells in the different fractions are confirmed by the OP3 LiM genome 

mapping coverage of 2.77% Pe1, 5.94% Pe2 and 12.66% Pe3 high-quality reads. Sequence 

differences between the two biological samples were mainly homopolymers caused by 454 

reads. Manual curation gave the final genome of OP3 LiM.  

The OP3 LiM genome is a single, circulate chromosome of 1,974,201 bp in length 

(Fig. 9). We placed the genome start point at the origin of replication (ori) at the N-terminus 

of dnaA. The asymmetry of the nucleotide composition between leading and lagging strands 

indicated the first base of the start codon of dnaA coding for the chromosomal replication 

initiator protein DnaA (24) as base number one. The terminus is about 950,000 bp away from 

the ori, based on the shift points of the GC skew graphs (25). Gene orientation is highly 

ordered. 85% of the genes are transcribed in the direction of the DNA replication and only 

15% of the genes are transcribed opposite to the direction of the DNA replication.  

The genome has an average GC content of 52.9% with the overall sequence 

composition of the forward strand of 23.56% A, 26.59% C, 26.31% G, and 23.52% T. Rapid 

Annotations using Subsystems Technology (RAST) annotation revealed 2,015 protein-coding 

open reading frames (ORFs) with an average length of 894 bp. 37% of ORFs covered known 

metabolic processes in RAST-subsystems with 735 proteins, 44 tRNA genes and one rRNA 

operon encompassing a 5S (1,194,960 bp to 1,195,074 bp), a 23S (1,195,261 bp to 1,198,995 

bp), and a 16S (1,199,780 bp to 1,201,360 bp) RNA gene. The 16S rRNA gene of OP3 LiM 

has a sequence identity of 99% to 16S rRNA LiM gene clones from our previous study (19), 

an identity of 77% to the 16S rRNA of the next related single cell genome (Genbank acc. no. 
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ASOC01000103), and an identity of 94% to the next related metagenome-derived OP3 

population genome (Genbank acc. no. MNVR01000026). 

 

 

Fig. 9. Circular representation of the OP3 LiM genome. From outside to inside, the circles display: (1) Physical 

map with a start of the replication origin, (2) coding sequences transcribed in forward direction, (3) coding 

sequences transcribed in reverse direction, (4) rRNA, (5) tRNA, (6) G+C percent plot, (7) GC-skew  

[G–C]/[G+C] (http://www.sanger.ac.uk/science/tools/dnaplotter). 

 

A group I intron in the 23S rRNA gene of OP3 LiM at position 2,061 bp to 2,768 bp 

possesses a gene for a homing endonuclease (position 2,225 bp to 2,779 bp). This intron is 

actively excised. The potential transcript of 3,733 bp for the 23S rRNA including the intron 

RNA was not present in the capillary electropherogram of the whole RNA preparation  

(Fig. S18). Mapping of 134,406,170 RNA-seq reads to the OP3 LiM genome revealed a high 

coverage of the 23S rRNA gene and a lower coverage of the intron. On average, the 23S 

rRNA region before the intron had a read coverage of 998,331 per base and the region behind 

the intron had a read coverage of 772,062 per base. Intron RNA was presented by 5,918 reads 

per base. Detailed analysis of the reads at the intron borders revealed the presence of both the 
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23S rRNA gene with intron and the mature 23S rRNA in the RNA preparations. The insertion 

site corresponds to the E. coli 23S rRNA gene position 1,917. The LAGLIDADG homing 

endonuclease was detected in the metaproteomes.  

A group II intron was found in a region with a large number of various inserted 

genetic elements. This region of 6,505 bp was located from position 648,611 bp to 655,115 

bp. The group II intron is located between two copies of a gene of unknown function (peg.582 

and peg.585) (Fig. S17B). The genes called CHP1 and CHP2 have a nucleotide identity of 

95%. In each gene is a highly-variable region of 83 bp that is flanked by repetitive sequences 

and is ending 28 bp in front of the stop signal (Fig. S19). On both sites of the genetic element 

are genes for 23S rRNA intervening sequence (IVS) proteins (122 aa; peg.581 and 209 aa; 

peg.586). The group II intron encodes a third IVS protein (133 aa; peg.583) and a retron-type 

RNA-directed DNA polymerase (reverse transcriptase) (peg.584). Downstream of this gene is 

a G homopolymer of 21 bases.  

Defense systems against foreign nucleic acids are restriction modification (RM) 

systems (26). An expressed type I RM cluster (hsdMSR) peg.557/558/560 with an 

unexpressed hsdS copy peg.559, a type II RM (expressed restriction endonuclease peg.1905 

and unexpressed modification methylase peg.1906) and an expressed subunit of type III RM 

system (peg.612) were found in the OP3 LiM genome. 

Candidate regions for clustered regularly interspaced short palindromic repeats 

(CRISPR) providing acquired immunity against foreign genetic elements (27) are identified at 

positions 875,578 bp to 875,727 bp, 1,062,302 bp to 1,062,425 bp and 1,625,552 bp to 

1,625,657 bp as questionable, because each CRISPR locus was separated by only one spacer, 

located on the positions 875,626 bp (54 bp in length), 1,062,335 bp (58 bp in length) and 

1,625,587 bp (36 bp in length), respectively.  

Expressed are genes (peg.1109 with uvrA, peg.1010 with uvrB, and peg.1508 with 

uvrC) encoding all subunits for the UvrABC endonuclease. This multienzyme complex is 

involved in DNA repair by nucleotide excision repair (NER). An expressed uvrD of the 

superfamily I DNA helicase (peg.988), required for uvrABC excision repair and believed to 

function by unwinding duplex DNA (28), is also found in the OP3 LiM genome.  
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Physiology of OP3 LiM. 

1,298 proteins of OP3 LiM were identified in metaproteomes of Pe1, Pe2 and Pe3 and 

provided a view on the metabolism (Table S1). Most abundant is a 18-stranded beta-sheet 

outer membrane pore protein (peg.955) that facilitates the uptake and for export of 

macromolecules (Table S2 and S3). Three other large proteins with transmembrane helices 

are among the most frequently detected proteins, a GPI-membrane anchored actin/protein 

binding protein with KELCH repeats (499 kDa; peg.1770), a protein with unknown function 

(326 kDa; peg.589) and a very large multi-enzyme surface protein (peg.37). All three proteins 

are abundant due to their size (Table S2), not by number (Table S3). 

The gene (peg.37) encodes for a very large multi-enzyme surface protein with 42 

predicted transmembrane helices and has a size of 4,384 kDa. The 39,678 amino acids of the 

protein represent a multi-enzyme with 308 domains thereof 43 were identified as conserved 

domains. The degradation of polysaccharides is the most abundant function, represented by  

8 glycosyltransferases, 2 glucosidases and a sugar epimerase. Three peptidases and a 

chaperone act on proteins. A phosphatase, a dehydrogenase, a methyltransferase and an 

acetyltransferase complete the identified range of degradative enzyme domains. As 

environmental signal sensor serves a signal receiver domain and a cellular signaling response 

may be induced via cyclic guanine-nucleotides by a diguanylate cyclase/phosphodiesterase 

(GGDEF & EAL domains). The nucleotide metabolism is influenced by 3 ATP-binding 

domains, a protein kinase and two nucleotide kinases, two ppGpp synthases/hydrolases as 

well as two ssDNA and two dsDNA binding domains. Peptides of the first 8,290 amino acids 

of the 39,678 amino acids multi-functional protein containing a peptidase, cellulose synthase 

and glycosyltransferase were clearly detected in the metaproteome.  

Abundant cytosolic proteins are GroES, EF-Tu, DNA-directed RNA-polymerases, 

glutamine synthetase and carbamoyl phosphate synthase. OP3 LiM has the potential to 

conserve energy from the phosphoester bonds in nucleic acids. A polynucleotide nucleotidyl 

transferases (peg.1256) moves a nucleoside monophosphate from ribonucleic acid onto 

phosphate, thus synthesizes a nucleoside diphosphate. Another source of ATP is pyruvate 

phosphate dikinase (peg.972). A pyruvate:ferredoxin oxidoreductase with four expressed 

subunits gamma (peg.113), delta (peg.114), alpha (peg.115), and beta (peg.117) provides 

reducing equivalents for energy conservation via a membrane-integrated RNF-complex 

(ferredoxin:NAD oxidoreductase) (gene cluster peg.1598–1603). Furthermore, a proton-

translocating pyrophosphatase (peg.63) is highly expressed. Enzymes acting on the 3-carbon 
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metabolites of the glycolysis and anabolic enzymes of the branched-amino acid biosynthesis 

pathway are also present in large quantities. 

The periplasm contains a highly expressed peptidyl prolyl cis-trans isomerase 

(peg.12), a Clp protease (peg.1300) and an ATPase (peg.15) that has in addition to the 

CpaF/VirB11-like_ATPase domain an N-terminal CobQ/CobB/MinD/ParA nucleotide 

binding domain suggesting a participation in nucleic acid transfer. Although OP3 has no 

flagellum, an abundant protein is MotD (peg.236), a stator ring protein for a flagellum 

forming a pore in the inner membrane that is usually filled by a type III secretion system and 

accessor proteins. The second stator protein MotB (peg.1609) is also present. Other abundant 

proteins are an outer membrane protein assembly factor, the Sec translocase SecD/SecF 

(peg.1065) and the bacterial and archaeal type of the chromosome segregation protein SMC 

(peg.52) that binds nucleic acids. The bacterial actin MreB (peg.1197) is also highly 

expressed.  

We searched for other proteins potentially involved in the uptake of nucleic acids or 

other macromolecules. Besides the aforementioned extracellular nucleotide-binding CpaF-

related ATPase, three PilT ATPases (peg.695, peg.1506, and peg.1804) are present to import 

macromolecules. These ATPases also power depolymerization of the pilus polymer. 

Extension by polymerization of pilin subunits maybe driven by several expressed genes for 

PilB ATPases or orthologs (peg.846, peg.1097, peg.1186, peg.1188, peg.1189, peg.1248, 

peg.1249, and peg.1789). Of the pil genes, CpaB (peg.13), PilM (peg.1101), PilO (peg.1179), 

three PilQ (peg.1098, peg.1177, and peg.1779) and three PilZ (peg.169, peg.393, and 

peg.788) were expressed. A PilA-related pseudopilin PulG (peg.1182) is the most abundant 

pilin. OP3 LiM has an active Sec secretion system and a type II secretion / type IV pilus 

assembly system. Several loci contain pil-related genes, including one locus in front of the 

very large multi-enzyme surface protein that contains several export proteins of a type II 

secretion system. 

The OP3 LiM proteomes highlighted the presence of large outer membrane pores and 

of depolymerizing and polymer uptake domains in the periplasm. The metabolism of OP3 

LiM is heterotroph. The genome offers a syntrophic life on hydrogen or formate, with a 

carbon dioxide fixation on the Wood–Ljungdahl pathway using formate dehydrogenase, the 

reduction of a formyl group on tetrahydrofolate and methyl transfer to an acetyl-CoA 

synthase. But these enzymes are not highly expressed. Among the four hydrogenase, an 

uptake hydrogenase (hydrogen:NAD oxidoreductase) was the most expressed hydrogenase. 

Interestingly, a high expression of serine hydroxymethyltransferase (peg.1522) suggested 
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serine and glycine as precursors of C1-compounds. Glycolysis with a class II fructose-

bisphosphate aldolase (peg.192) is combined with substrate level-phosphorylation and a RNF-

complex for the formation of a membrane potential. Building blocks (amino acids, ribose, 

nucleotides, and fatty acids) are synthesized according to expressed enzymes. OP3 LiM may 

salvage these monomers from the prey, but does not seem to depend on salvage pathways. D-

alanine (peg.1279) and D-glutamate racemases (peg.342) as well as peptidoglycan 

biosynthetic enzymes are expressed. Together with the presence of peptidoglycan-binding 

domains in several secreted proteins it suggests the presence of a murein saculus in OP3 LiM. 

Genes for the synthesis of the LPS core glycolipid (peg.644) suggest the well-known lipid 

asymmetry in the outer membrane.  
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5.3 Discussion 

The characterization of the phylotype OP3 LiM indicated a chemoheterotrophic metabolism 

confirming suggestions from other studies (18, 29). Major nutrient for the cell is likely the 

organic matter presenting the surface of microorganisms. Cellulosomes of clostridia have 

been described as extracellular, surface-associated “highly efficient nanomachines” that had 

evolved to perfect depolymerisation multi-enzyme complexes for plant cell wall complex 

carbohydrates (30). Similar to plant polysaccharides, archaeal and bacterial surface 

polysaccharides represent an energy-rich growth substrate and OP3 LiM has enzymes for 

their utilisation. The bacterium has expressed extracellular enzyme domains for the 

depolymerisation of polysaccharides and proteins. This attack on the surface of the prey 

microorganism may open an entry to the cytosol of the prey. The presence of excreted 

ATPases in OP3 LiM is unusual for microorganisms, usually ATP-consuming enzymes are 

restricted to the cytosol. The purpose of the ATPases in the attack of OP3 LiM may be a 

depletion of the energy charge of the prey cell that paralyses the prey metabolism. Then OP3 

LiM cells can exhaust the prey´s macromolecular content. 

OP3 LiM is a coccus of about 0.2 µm to 0.3 µm in diameter. This “small eats big” is 

usual for bacterial predators (6). The size also means that OP3 LiM cells are not or barely 

visible in phase-contrast microscopes which have an optical resolution of 0.3 µm. The world 

of such very small bacteria has to be explored by optical detection of nucleic acids by in situ 

hybridization that identifies the phylotype together with phase-contrast and by electron 

microscopical images. Small bacteria are expected to have small genomes. The closed 

genome of OP3 LiM was obtained from a close-to-clonal population because the 

methanogenic enrichment culture originated from a dilution-to-extinction culture with an 

inoculum of one microliter prepared in 1999 and is kept at 3–4 annual generations by one 

annual transfers of 10% v/v. The genome is small and highly organized. The leading strand 

contains after the genes involved in DNA replication the genes for a secretion pathway and 

the very large multi-enzyme surface protein involved in polymer degradation. This is the 

expected position for highly expressed proteins minimizing collisions of replicating and 

transcribing polymerases (31–32).  

The genome includes several mobile elements. A group I intron in the 23S rRNA gene 

has a gene for a homing endonuclease in the peripheral stem-loop regions of the group I 

ribozyme (33–34). The identified insertion position 1,917 (referring to the E. coli sequence) 

has been reported for other 23S rRNA introns in Coxiella burnetii (35), Thermotoga 
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subterranean (35), Thiomargarita sp. NAM092 (36) and Synecoccus sp. C9 (33). 23S rRNA 

introns seem also to be frequent in groundwater-associated bacteria, with the 23S rRNA 

position 1,917 as a preferred insertion site (37). The intron excision is an essential process for 

OP3 LiM. We investigated the fate of the intron RNA in in situ hybridization studies and 

detected huge amounts in cells that lacked DNA and rRNA. The filamentous morphology of 

Methanosaeta revealed that individual cells in the filaments had accumulated the intron RNA. 

So far, an interdomain horizontal gene transfer (HGT) by conjugation has been demonstrated 

by a plasmid transfer from Bacteria to Archaea (38). Although the mechanism of transfer 

from the bacterium OP3 LiM into the dead archaeal cell with a nearly intact cell envelope is 

not understood on the molecular level, it demonstrated the mobility of nucleic acids between 

predator and prey cells. A second experimental observation, the presence of small amounts of 

OP3 LiM rRNA in cells of Methanosaeta, supported the presence of a polynucleotide export 

mechanism in OP3 LiM or the presence of a cytosolic continuum linking both cytosols of 

prey and predator. As coccal cells usually have no bacterial actin MreB, the presence of this 

protein in OP3 LiM suggests the presence of a MreB foothold in OP3 LiM cells as structural 

ground for the transport processes between the cells, e.g. the energy-driven uptake of proteins 

or nucleic acids by several PilT ATPases. Several expressed genes of both ATPases, PilT and 

PilB, are present in the genome of OP3 LiM suggesting that the bacterium may be capable of 

undergoing cycles of extension and retraction (39), also for gliding on the prey surface. 

A reverse transcriptase is the hallmark of a group II intron. The high sequence 

microdiversity of the potential insertion sites was surprising in view of the very low single-

nucleotide polymorphism of the population genome. We attribute this observation tentatively 

to an active retro-transcriptase, an RNA-directed DNA polymerase, in the OP3 LiM 

population.  

This study has provided a closed genome of high quality of the OP3 LiM population in 

limonene-degrading methanogenic enrichment cultures. The genome has been confirmed by 

recruitment plots from additional metagenomes of the enrichment cultures. The 16S rRNA 

gene sequence indicated a large phylogenetic distance to the next described candidatus 

species or species. The phylogenetic probe OP3-565 showed the morphology of the identified 

cells and guided the physical enrichment of OP3 LiM cells. Metaproteomes provided insights 

to infer the putative metabolism and the observed transfer of nucleic acids into the prey cell 

revealed the lifestyle of OP3 LiM. Based on these observations, we propose to name the OP3 

LiM cells “Candidatus Vampirococcus archaeovorus”. 
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5.4 Description of “Candidatus Vampirococcus archaeovorus” 

“Candidatus Vampirococcus archaeovorus” [N.L. n. vampirum (from Hung. vampir), 

vampire; N.L. masc. n. coccus (from Gr. masc. n. kokkos, grain, seed), berry, coccus; N.L. 

masc. n. Vampirococcus, a vampire-like coccus; Gr. masc. adj. archaios (Latin transliteration 

archaeos), ancient; L. v. voro, to eat,  to devour; N.L. masc. adj. archaeovorus, archaea 

(ancient microorganisms) devouring.  

Represented by the phylotype OP3 LiM and its genome (Genbank acc. no. 

CP019384). OP3 LiM was found in a limonene-degrading methanogenic enrichment culture. 

Cells are coccoid shaped with diameters around 0.2 µm to 0.3 μm and occur free-living and 

attached to microorganisms. Phylogenetic analyses of the 16S rRNA gene indicate that this 

strain is different from all other recognized candidate genera or genera and belongs to the 

candidate phylum Omnitrophica, formerly candidate division OP3. The bacterium is 

maintained in slowly growing Methanosaeta-rich methanogenic enrichment cultures in 

freshwater medium at 28°C. 
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5.6 Materials and methods 

Cultivation of methanogenic enrichment cultures. 

The methanogenic enrichment culture originated from a wastewater sample taken in 

1997 (40). From a dilution-to-extinction series prepared in 1999, a culture that had been 

inoculated with one microliter enrichment culture became the origin of all cultures 

investigated in this study. Twelve lineages were established in 2005 and maintained with an 

annual transfer of 10% v/v inoculum. The cultures contained 300 ml fresh water 

methanogenic media including 2 mM acetate and 1 mM cysteine, 30 ml 2,2,4,6,8,8-

heptamethylnonane (HMN), and 1.5 ml of R-(+)-limonene in 500 ml borosilicate bottles 

(19,40). OP3 LiM-specific PCR and CARD-FISH were performed to select lineages for the 

experiments. 

 

Cell separation by Percoll density gradient centrifugation. 

Cell biomass from 100 ml of enrichment culture was pelleted at 15,500x g for 10 min 

in a Beckman ultracentrifuge rotor 70.1 Ti (Beckman, Palo Alto, CA). The pellet was 

resuspended in a mixture of 45 ml Percoll (GE Healthcare, Freiburg, Germany) and 5 ml  

1.5 M NaCl. Portions of 10 ml suspension were centrifuged at 36,680x g for 60 min in the 

aforementioned rotor. Gradient fractions of 1 ml size were assayed for the presence of OP3-

LiM cells by applying OP3 LiM-specific PCR with a template dilution series and CARD-

FISH with the probe OP3-565. Fractions enriched in OP3 LiM cells had densities of 1.05  

0.05 g/cm3 and were combined from several separations. The enriched fractions were further 

concentrated with a second gradient centrifugation using the aforementioned conditions. OP3 

LiM cells were visible at a density of 1.05 g/cm3 and were collected for an OP3 LiM-enriched 

metagenome. 

 

Cell separation by differential centrifugation. 

For the separation of large cells and aggregates from small cells in enrichment 

cultures, a Beckmann SW28 ultracentrifuge rotor was used at 7,600 rpm (7,643x g) for  

20 min, corresponding to a sedimentation coefficient of 10,000 S. Each pellet (Pe1) was 

resuspended in 1 ml 10 mM Tris, 1 mM EDTA, pH 8.0 (TE). The supernatant was centrifuged 

at 27,000 rpm (96,467x g) for 160 min, corresponding to a sedimentation coefficient of 100 S. 

The pellet of each tube was resuspended in 0.5 ml TE and a 10,000 S pellet of aggregated 
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cells and a few large cells (Pe2) was obtained at 12,400 rpm (16,331x g, 10,000 S) for 3 min. 

Cell suspensions (Pe1 and Pe2) and the supernatant of the last centrifugation (Pe3) were 

stored at –80°C. 

 

Transmission electron microscopy (TEM). 

For negative-staining transmission electron microscopy, bacterial cultures were 

absorbed onto carbon film, washed in 20 mM Tris/HCL, 1 mM EDTA, pH 6.9, and stained 

for 1 min with 4% (w/v) aqueous uranyl acetate (41). After transfer onto copper grids and air 

drying, samples were examined in a Zeiss EM109 TEM (Zeiss, Oberkochen, Germany) 

operated at 80 kV and calibrated magnifications. Cells were analyzed using the program 

MeasureIT (Olympus Soft Imaging System GmbH, Münster, Germany). 

 

Scanning electron microscopy (SEM). 

Cells fixed with formaldehyde (1.3% w/v in 1 x phosphate buffered saline (PBS) (pH 

7.4)) were spotted on silicon wafers (5 x 7 mm, PLANO, Wetzlar, Germany) and incubated 

for 60 min at room temperature (RT). Then cells were dehydrated in an ethanol series  

(30%, 50%, 70%, 80%, and 96% v/v, each for 10 min) and critical point dried (LEICA EM 

CPD 300, Leica, Wien, Österreich). Micrographs were obtained with a Quanta FEG 250 SEM 

(FEI, Hillsboro, OR). 

 

Extraction of nucleic acids. 

OP3 LiM-enriched fractions were extracted for genomic DNA according to Martín-

Platero et al. (42). RNA and DNA from fractions of the differential centrifugation (Pe1, Pe2, 

Pe3) were obtained with the RNA PowerSoil® Total RNA Isolation Kit and the RNA 

PowerSoil® DNA Elution Accessory Kit (Mo Bio, Laboratories, Carlsbad, CA). After in-

house quality control by spectroscopy and agarose gel electrophoresis, sample quality control 

by capillary electrophoresis and sequencing was performed by the Max Planck-Genome-

centre Cologne, Germany (http://mpgc.mpipz.mpg.de/home/). For PCR analyses, DNA was 

extracted from biomass of 1ml-samples of enrichment culture using the FastDNA SPIN Kit 

for Soil (MP Biomedicals, Santa Ana, CA) according to the manufacturer’s instructions. The 

nucleic acid was dissolved overnight at 4°C and the solution was clarified by centrifugation at 

14,000 rpm for 5 min. 
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OP3 LiM-specific PCR. 

OP3 LiM was detected using as template 1.0 µl (a few ng) extracted genomic DNA or 

1.0 µl culture of an OD600 nm of 0.2–0.5 with freeze-thaw fractured cells (43) together with  

1.7 µM of each primer OP3-565F and OP3-1481R (Table 1), 15.0 µl 2 x GoTaq mastermix 

(Promega, Madinson, WI) and 13 µl water. The PCR protocol was 4 min at 94°C, 30 cycles of 

94°C for 1 min, 62°C for 1 min and 72°C for 3 min, and finally 72°C for 10 min. After 

amplicon analysis by separation in a 1% w/v agarose gel and ethidium bromide staining, 

sequences were obtained from dideoxynucleotide-terminated oligonucleotides. The 

sequencing reaction was performed for 60 cycles with an initial denaturing step of 20 sec at 

96°C, a denaturation of 10 sec at 96°C, 5 sec at 62°C, and 4 min at 62°C. The products were 

purified by molecular sieve chromatography using Sephadex G50 superfine (GE Healthcare 

Life Sciences, Freiburg, Germany) and were separated on an ABI Prism 3130 XL Genetic 

Analyzer (Applied Biosystems, Foster City, CA, USA).  

 
Table 1. PCR primers used in this study. 

Primer 

name 
Sequence (5´–3´) Position Application Reference 

OP3-565F GGGTGTAAAGGGCAGGTA 608–626a 
OP3-specific 16S rDNA 

forward primer 
This study 

OP3-1481R TACGACTTAGCGCCAGTC 1525–1543a 
OP3-specific 16S rDNA 

reverse primer 
This study 

8-27F AGAGTTTGATCCTGGCTCAG 8–27b 
Bacterial universal 16S 

rDNA forward primer 
(44) 

907R CCGTCAATTCMTTTGAGTTT 907–926b 
Bacterial universal 16S 

rDNA reverse primer 
(45) 

a OP3 LiM 16S rRNA location. 
b E. coli 16S rRNA location. 

 

Fluorescence in situ hybridization of 16S rRNA. 

For cell identity visualization, we used the CARD-FISH technique (46). For brighter 

signals of OP3 LiM cells, clone sequences (Genbank acc. no. FN646451.1, FN646447.1, 

FN646441.1, FN646440.1, and FN646435.1) were used to manually design partially 

degenerated helper oligonucleotides, two for each adjacent side of probe OP3-565 (Table 2) 

and used at probe concentration.  
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Table 2. Helpers (non-labeled) used and designed in this study. 

Helper name Helper sequence (5´–3´) Position 

H548-Aa AATAAATCCGAGTAACGC 590–608c 

H548-Ca AATCAATCCGAGTAACGC 590–608c 

H583-TCa CTCCCCACTTGTCAGGCCGCC 626–647c 

H583-CTa CCTCCCACTTGTCAGGCCGCC 626–647c 

Hhen1-2210b TCTGGTTTCATAAAGACCTCCTTCT 2210–2235d 

Hhen1-2255b TCCTTCTCCGTCGGCAAAAC 2255–2275d 

Hhen2-2288b AGTCTTGCCGTTGTCTGAAGG 2288–2309d 

Hhen2-2329b CTGGGAGATGTTGAAACAAAGAGA 2329–2353d 

Hhen3-2516b CAGAATTTCGCAAAATCCCGTT 2516–2538d 

Hhen3-2561b GCTACTCTTAAGATGTTCCCCCT 2561–2584d 

a/b Used in a mix. 
c OP3 LiM 16S rRNA location. 
d OP3 LiM 23S rRNA location. 

 

One ml of enrichment cultures was fixed with formaldehyde (1.3% w/v in 1 x PBS 

(pH 7.4)) for 60 min at RT. Fixed cultures were filtered on 0.2 µm GTTP filters (Millipore, 

Darmstadt, Germany) and three times washed with 15 ml 1 x PBS (pH 7.4). After air-drying, 

permeabilization was performed for 60 min at 37°C by lysozyme treatment (10 mg/m1). 

Probes (Table 3) were hybridized for 160 min at 46°C. After staining with DAPI (1 μg/ml), 

cells were visualized using an epifluorescence microscope (Nikon Eclipse 50i; Nikon, Tokyo, 

Japan) or a confocal laser scanning microscope (CLSM) (Zeiss LSM 780, Zeiss, Oberkochen, 

Germany). 

The visualization of two populations required two separate CARD-FISH experiments 

with two probes and differently labeled tyramides for the first and second signal 

amplification, respectively. The order of probes and tyramides was optimized. Horseradish 

peroxidase (HRP) present at the first probe was inactivated after the signal amplification by 

incubation of the filter with 3% H2O2 for 10 min at RT. After rinsing with 1 L MQ water and 

air-drying filters were stored overnight at –20°C and the second CARD-FISH experiment was 

performed the next day. 
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Table 3. HRP-labeled oligonucleotide probes used in this study. 

Probe name Probe sequence (5´–3´) Position  Target group 
FA 

(%)a 
Reference 

EUB338 Ib GCTGCCTCCCGTAGGAGT 338–355 Most Bacteria 35 (47) 

EUB338 IIb GCAGCCACCCGTAGGTGT 338–355 Planctomycetales 35 (48) 

EUB338 IIIb GCTGCCACCCGTAGGTGT 338–355 Verrucomicrobiales 35 (48) 

ARCH-915 GTGCTCCCCCGCCAATTCCT 915–934 Domain Archaea 35 (49) 

OP3-565 TACCTGCCCTTTACACCC 608–626d Candidate OP3 LiM 30 (19) 

hen1-2235c CCGCCAAGTAGTAGCCGATT 
2235–

2255e 

Intron in 23S rRNA 

of OP3 LiM 
20 This study 

hen2-2309c AACTTTCCACGGTGACTTGT 
2309–

2329e 

Intron in 23S rRNA 

of OP3 LiM 
20 This study 

hen3-2538c TCTTTATCATTTCTGCCAGTTCG 
2538–

2561e 

Intron in 23S rRNA 

of OP3 LiM 
20 This study 

a FA, fomamide concentration of the hybridization buffer. 
b/c Used in a mix. 
d OP3 LiM 16S rRNA location. 
e OP3 LiM 23S rRNA location. 

 

CARD-FISH detection of intron RNA. 

The group I intron in the 23S rRNA gene of OP3 LiM (position 2,061 to 2,768 of 23S 

rRNA gene) includes a gene for a LAGLIDADG/HNH homing endonuclease. Targeting 

within the functional gene, probe and flanking helper oligonucleotides were designed using 

Primer3 v. 4.0.0 (http://sourceforge.net/projects/primer3/) (Tables 2 and 3). Specificity was 

tested against the OP3 genome; Methanosaeta genomes (Genbank acc. no. NC_015416.1, 

CP003117.1, CP000477.1, and LKUG01000745.1) as well as population genomes of 

members of the limonene-degrading, methanogenic enrichment cultures (Aminiphilus, 

Anaerolinea, Coriobacterineae, Desulfovibrionaceae, Marinilabiliaceae, Mesotoga, 

Methanoculleus, Methanoregula, Methanosaeta, Methanospirillum, Prolixibacteraceae, 

Synergistaceae, Syntrophaceae, Syntrophobacteraceae, Thermoanaerobaculum, and 

Treponema), obtained by Metawatt-3.5.2 binning (50), in Geneious R9 (Biomatters, 

Auckland, New Zealand). After optimization, a formamide concentration of 20% was used at 
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concentrations of 0.17 ng/µl for each of the oligonucleotide in the mixture of three probes and 

six helpers. 

 

Genome assembly from an OP3 LiM-enriched metagenome. 

The OP3 LiM genome was obtained from two biological samples. An OP3 LiM-

enriched sample was sequenced by 454 Titanium pyrosequencing technology (450 bp reads, 

454 GS FLX, Roche, Basel, Switzerland) as well as by MiSeq technology (2x 250 bp reads, 

Illumina, San Diego, CA, USA) by the Max Planck-Genome-centre Cologne, Germany 

(http://mpgc.mpipz.mpg.de/home/). Three cell size-fractionated samples (Pe1, Pe2, Pe3) 

provided DNA and RNA for metagenomes and metatranscriptomes using the Illumina HiSeq 

instrument (1 x 150 bp reads for RNA and 2 x 250 bp reads for DNA) (Tab. S4 and S5; Fig. 

S20). 

454 pyrosequencing yielded 491,907 reads. An assembly of 454 reads was performed 

by Newbler v. 2.3 (51) and resulted in a metagenome of 5,779 contigs with 16,026,544 bp. 

Analysis of tetranucleotide frequencies using JSpecies (52) indicated that five of the six 

largest contigs covering 1,650,908 bp were part of the OP3 LiM genome. For further 

analyses, the raw reads of the 454 sequencing were processed in mothur-1.29.1 (53) resulting 

in 426,697 quality-controlled reads. 

A MiSeq read set of the same biological sample was used to finish the genome. 

9,888,618 paired-end reads were quality-controlled using FastQC 

(www.bioinformatics.bbsrc.ac.uk/projects/fastqc/). Raw reads were processed with dynamic 

trimming with SolexaQA v.2.2. (54) and normalization with Khmer 1.0 (Fig. S21,  

Workflow 1) (55). The assembly by SPAdes-3.1.0 (56) contained 28,618 contigs with 

61,364,565 bp. The assembly was inspected using QUAST v-2.3 (57). 

Contigs of the Newbler assembly were grouped by Metawatt-2.1. 22 contigs of two 

“Planctomycetales” bins with 1,949,258 bp were selected as target of a mapping of processed 

454 and MiSeq reads within Geneious R8 (Biomatters, Auckland, New Zealand). In addition, 

MiSeq raw reads were also processed in different ways with tools of the BBMap package 

(version 32.27, http://sourceforge.net/projects/bbmap/) (Fig. S21, Workflow 2–4). Contigs of 

the two “Planctomycetales” bins were extended by read mapping using 454 and MiSeq 

quality-controlled reads and then de novo assembled by Geneious R8 (Biomatters, Auckland, 

New Zealand). The assembly was improved by fourteen rounds of read mapping with BBmap 

(version 32.27), assembly of the mapping reads in SPAdes-3.5 taking the actual assembly as 
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trusted and binning of contigs with Metawatt-2.1. When the improvement in the assembly 

became asymptotic, a MiSeq read dataset obtained with a different processing method was 

used for the next mapping. Almost all bin information was assembled in one contig. Finally, 

assemblies were based on the Newbler or the first Geneious assembly as trusted assembly to 

correct errors introduced in the assembly process. The comparison of the final assemblies 

revealed a linear presentation of a circular genome with different start points.  

Manual visual inspection of mapping results of 454 and MiSeq reads obtained with 

Geneious R8 and with the Burrows-Wheeler Aligner (BWA) algorithm (Sequencher 5.3, 

Gene Codes, Avis Drive, USA) revealed questionable regions in the genome. These regions 

were often repetitive elements which were in general identified using REPuter (58) and 

dotplot visualization in Geneious R8 (Biomatters, Auckland, New Zealand). Flanking 

sequences of repetitive elements were manually identified in the visualization of sequence 

diversity of mapped reads. This indicated a false-positive assembly of two or more repetitive 

elements into one in the contig. Sequence comparison using dotplot visualization identified 

repetitive elements of the draft genome also in two small contigs of the 454 assembly 

assigned by Metawatt-2.1 to the OP3 LiM bin. Both contigs were de novo assembled from 

454 reads that mapped to the Newbler contigs using Sequencher 5.3 and Geneious R8 and 

several mapping rounds to verify and extent the Newbler assembly for these two contigs. In 

silico read walking from one flanking sequence to the other site across the repetitive elements 

failed due to read length shortage (repetitive elements were longer than 454 reads) and 

additional repetitive elements within the genetic content between the repetitive elements.  

To clarify the physical sequence order around the triple repetitive element with a 

second repetitive element within the region, combinatory PCR reactions were performed with 

primers developed with Primer3 v.4.0.0 and located on the flanking sites of repetitive 

elements. PCR conditions were 4 min at 94°C, 41 cycles of 94°C for 1 min, 55°C for 1 min 

and 72°C for 4 min, and finally 72°C for 10 min. Amplicons were using the PCR Purification 

Kit or from agarose gels using the Gel Extraction Kit (both Quiagen, Hilden, Germany). 

Amplicons were sequenced using 60 cycles at 96°C for 10 sec, 58°C for 5 sec with ramping 

of 1°C per second and 60°C for 4 min. Acquired sequences were edited by Finch TV version 

1.4.0. The integration of the genetic content between the repetitive elements was manually 

assembled into the large contig on the basis of in silico and in vitro results, thus providing a 

closed genome of OP3 LiM.  
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Confirmation of the OP3 LiM genome using three metagenome. 

Size-fractionated cells as present in Pe1, Pe2 and Pe3 were used to obtain three 

metagenomes using Illumina HiSeq technology. The sequencing yielded for Pe1 42,649,735, 

for Pe2 21,648,241 and for Pe3 10,904,818 paired-end reads (Tab. S4). FastQC provided a 

quality-control. Processing used dynamical trimming with SolexaQA v.3.1.4 and 

normalization with Khmer 1.4.1. Low quality regions of these reads were thoroughly cleaned 

using Trimmomatic version 0.32 (59) using paired end mode as well as single end mode. 

Trimming included cutting of adapters, removal of low quality bases based on a threshold and 

dropping of short reads. Specified number of bases was then removed from the start and the 

end of the reads, guided by FastQC visualizations. The processing gave 8,222,350 paired-end 

reads and 1,160,518 single reads of Pe1, 3,674,326 paired-end reads and 719,609 single reads 

of Pe2, and 1,610,392 paired-end reads and 383,400 single reads of Pe3 (Tab. S5). Assembly 

used SPAdes-3.8.0 (56) with the option “metaspades.py”. A de novo assembly of all three 

metagenomes was also performed using script “spades.py”, because the option 

“metaspased.py” allowed only a single library with paired-end reads (Tab. S6).  

The OP3 LiM genome was verified by mapping processed reads onto the OP3 LiM 

genome in Geneious R9 and visual inspection. OP3 LiM bins of the Pe1, Pe2, and Pe3 

assemblies as well as the combined dataset Pe123 were obtained by contig sorting in 

Metawatt-3.5.2. These bins were compared with the genome using dnadiff from MUMmer 

v3.23 (60) as well as mapping to the OP3 LiM genome.  

Pilon (61) was used to automatically improve the OP3 LiM genome. Read sets from 

all sequencing platforms were aligned individually as well as a pool of HiSeq data of Pe1, 

Pe2, and Pe3 to the OP3 LiM genome using the BWA-MEM algorithm in Sequencher 5.3. 

The generated SAM files were converted into BAM files, sorted in coordinate order and 

indexed using SAMtools (version 0.1.19) (62). Pilon analyses were performed with the OP3 

LiM sequence as input genome and the arguments “change”, “vcf”, “tracks”, “variant”, “fix” 

and “all duplicates”. The analyses results were analyzed manually and the OP3 LiM genome 

was manually edited to match the HiSeq reads from the Pe1, Pe2, and Pe3 metagenomes.  

 

Genome annotation. 

The OP3 LiM genome was annotated using several pipelines and manual annotations. 

The NCBI Prokaryotic Genome Annotation (63) was refined using JCoast (64) and Geneious 

with results of an in-house annotation based on GenDB (65), results of the RAST project with 
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genome ID 6666666.225137 (66) and online resources of NCBI. CRISPRs structures were 

searched using CRISPRFinder (67). A closer view to the composition of the nucleotides was 

given by using Artemis Release 16.0.0 (68). RNAmmer-1.2 was used to predict 5S, 16S, and 

23S rRNA genes in the genome sequence (69). The number of tRNA genes was identified 

using ARAGON v1.2.38 (70).  

 

Linearization at ori. 

The OP3 LiM genome was linearized at the origin of replication (ori), with the start 

codon of the chromosomal replication initiator protein DnaA gene as base 1. The GC-skew 

(71–72) and the pattern of ORF-orientation supported this decision, as analyzed with 

GenSkew (http://genskew.csb.univie.ac.at/) and ORF prediction programs. However, the 

genome contains a homopolymer of 21 guanines as potential telomeres. 

 

Metatranscriptomes. 

RNA sequencing with Illumina HiSeq technology yielded for Pe1 12,998,858 total 

RNA reads and 57,878,109 rRNA-depleted RNA reads, for Pe2 7,063,485 total RNA reads 

and 56,879,058 rRNA-depleted RNA reads, and for Pe3 10,025,317 total RNA reads of 

sequencing project 1906 and for Pe1 36,052,513 and 14,307,025 total RNA reads and 

60,205,817 rRNA-depleted RNA reads of sequencing project 1843 (Tab. S4). All RNA reads 

of project 1906 were merged providing 144,844,827 raw reads. Guided by FastQC 

visualizations, these reads were processed with BBDuk of the BBmap package (version 

32.27) for adapter trimming, quality trimming and contaminant filtering. Next, the reads were 

trimmed with SolexaQA v.3.1.4 and Trimmomatic version 0.32 including options to cut 

adapters, to remove low quality bases below a threshold and to drop short reads in a first 

round and with options for removal of a specified number of bases from the start and the end 

of the reads in a second round. 134,406,170 high-quality RNA reads were obtained and used 

for mapping to the OP3 LiM genome. The RNA seq reads of project 1843 were trimmed with 

SolexaQA v.3.1.4 (Tab. S5). 

 

Construction of reference database for the OP3 LiM proteome. 

Two metagenomes from the OP3 LiM-enriched cells were obtained, a Newbler 

assembly on 454 reads and a SPAdes assembly on MiSeq reads. After removal of contigs 

mapping to the OP3 LiM genome, all contigs were de novo assembled in Geneious R9. 
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Contigs with a nucleotide identity of over 96.2% were manually inspected and duplicate 

contigs from the combined assemblies were removed. After addition of the OP3 LiM genome 

to the metagenome, an in-house GenDB database project was built. JCoast was used to create 

a faa-file of 92,294 coding sequences for the identification of proteins in the metaproteome.  

 

Metaproteomic analysis. 

Cells obtained by differential centrifugation (Pe1, Pe2, and Pe3) were extracted and 

the protein content was determined by photometric measurement of the absorption at 595 nm 

using Nanoquant solution. To increase the protein concentration, necessary for direct loading 

on a gel, samples of Pe1 and Pe2 were concentrated to a volume of 18 µl in vacuum 

centrifuge (Eppendorf Concentrator plus). The concentration of Pe3 cells was increased by 

centrifugation, a Beckmann ultracentrifuge rotor Ti 50.2 was used at 45,000 rpm (184,048x g, 

100 S) for 55 min. Proteins of the samples were then separated by size in an SDS-PAGE (Fig. 

S22). Each gel lane was cut into 10 equal pieces, which proteins were digested with trypsin. 

Peptides were eluted in an ultrasonic bath for 15 min, concentrated and finally purified with 

ZipTips with C18 resin (Millipore, Billerica, Mass). The peptide mix was separated on a 

Nano HPLC (Easy-nLCII HPLC system, Thermo Fisher Scientific, Dreieich, Germany) and 

analyzed by MS/MS in an LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scientific) 

(73). For protein identification, tandem mass spectra were extracted using the Sorcerer™-

SEQUEST® platform (Sage-N Research, CA; version 3.5) searching the MS/MS data against 

a metaproteome database containing the aforementioned ORFs and common laboratory 

contaminants. Search parameters were parent ion tolerance of 10 ppm, fragment ion mass 

tolerance of 1.00 Da, and oxidation of methionine (15.99 Da) as variable modification (max. 

three modifications per peptide). MS/MS-based peptide and protein identifications were 

validated with Scaffold V4.4.8 (www.proteomesoftware.com). Peptide false discovery rates 

(FDRs) were set to 1%, and protein FDRs were set to 5% throughout all experiments. 

Quantification of each protein was considered as total spectral counts (TSCs) for each protein, 

because the molecular weight of ORFs varied largely. A normalization incorporating the 

molecular weight to yield a relative molecule number used the normalized spectral abundance 

factors (NSAF) (74) that were normalized by all TSC assigned to OP3 LiM.  
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Supplementary figures. 

 

 

Fig. S1. Distribution of biomass along first and second Percoll density gradients. 

Concentrated biomass from the limonene methanogenic enrichment culture was separated 

over a Percoll density gradient by centrifugation (A). OP3 LiM-specific PCR and CARD-

FISH detected OP3 LiM cells above the bottom band in the gradient. The OP3 LiM-fractions 

of ten Percoll gradients were combined and separated in a second Percoll gradient (B). 
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Fig. S2. Scanning electron microscopy (SEM) images of the methanogenic enrichment 

community from culture MM-375. Cells of the culture (A–D) were separated by differential 

centrifugation. The supernatant of a 10,000 S centrifugation (E–F) revealed the removal of 

nearly all aggregates, filaments and large cells. Scale bar: 10 µm (A), 5 µm (B), 4 µm (C),  

2 µm (D), 30 µm (E) and 5 µm (F). 
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Fig. S3. SEM images of cell suspensions prepared from the 10,000 S–100 S pellet originating 

from culture MM-375. Scale bar: 10 µm (A), 5 µm (B–C) and 3 µm (D).  
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Fig. S4. SEM images of cells affiliated to Methanosaeta originating from the limonene 

methanogenic enrichment culture MM-375 (A–D) and cell suspensions prepared from the 

10,000 S–100 S pellet (E). Scale bar: 2 µm (A–D) and 5 µm (E). 
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Fig. S5. SEM images of cells originating from the enrichment cultures MM-375 (A, C–E) and 

MM-212 (B). Scale bar: 10 µm (A), 5 µm (B–C), 1 µm (D) and 500 nm (E).  
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Fig. S6. Detection of OP3 LiM cells by CARD-FISH. Cells from the cultures MM-252 were 

detected using the probe OP3-565 with helper oligonucleotides (green, A and B) and DAPI 

staining (blue, A and C). Scale bars, 5 µm. 
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Fig. S7. Micrographs of a filament from culture MM-376. CARD-FISH was performed for 

the detection of archaeal cells (ARCH-915; Alexa-488) on slides. Lysozyme treatment was 

used for the permeabilization. (A) Phase-contrast micrograph, (B) DNA detection by DAPI 

staining, (C) rRNA detection by probe ARCH-915, and (D) an overlay of epifluourescence 

micrographs. Scale bars, 5 µm. 
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Fig. S8. Micrographs of a filament from culture MM-376. Cells were permeabilized by 

lysozyme and CARD-FISH was performed for the detection of archaeal cells (ARCH-915; 

Alexa-488) on slides. (A) Phase-contrast micrograph, (B) DNA detection by DAPI staining, 

(C) rRNA detection by probe ARCH-915, and (D) an overlay of epifluourescence 

micrographs. Scale bars, 5 µm. 
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Fig. S9. Epifluorescence micrographs of cells and filaments from culture MM-376. The 

CARD-FISH protocol (46) for samples on membrane filters was modified by the performance 

of an ethanol dehydration (50%, 70%, and 96% v/v for 5 min each step), an incubation for  

5 min at 37 °C in proteinase K solution (20 µg/ml in 0.1 M Tris-HCl, 0.05 M EDTA, pH 8.0, 

0.5 M NaCl), an incubation of 0.1 M HCl for 10 min at RT, and a hybridization time of 2.5 h. 

Cellular rRNA was detected by CARD-FISH with the horseradish peroxidase (HRP)-labeled 

ARCH-915 probe (green, A and B). DNA was stained with DAPI (blue, A and C). (A) is an 

overlay of (B) and (C). Scale bars, 5 µm. 
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Fig. S10. Correlative light and electron microscopy image of the detection of OP3 LiM and 

Archaea. A Quanta FEG 250 SEM equipped with the DELMIC SECOM platform was used to 

visualize a double CARD-FISH sample of the limonene methanogenic enrichment culture. 

OP3 LiM rRNA was detected with OP3-595 (red, Alexa-594 as label on the tyramide). 

Archaeal cells were detected with ARCH-915 (green; Alexa-488). DNA was stained by DAPI 

(blue). 

Formaldehyde-fixed cells (1.3% v/v for 1 h at RT) of the limonene methanogenic 

enrichment cultures were centrifuged at 13,000 rpm for 10 min. The pellet was washed twice 

in 500 µl 1 x phosphate buffered saline (PBS), twice in 200 µl MilliQ water and resuspended 

in 300 µl MilliQ water. The suspension was diluted with MilliQ water (20% v/v sample) and 

80 µl was placed on an indium-tin oxide (ITO)-coated cover glass (DELMIC B.V., JA Delft, 

The Netherlands). After air drying CARD-FISH was performed.  
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Fig. S11. Detection of intron RNA in double CARD-FISH experiments using the intron 

specific probe/helper-mix and ARCH-915 on cells from culture MM-376. Overlay of 

fluorescence micrographs (A, E) and individual graphs reveal the presence of DNA by DAPI 

(blue, A, D, E, H), of intron RNA by three intron probes hen1-2235, hen2-2309 and hen3-

2538 (red, A, B, E, F) and of Archaea by probe ARCH-915 (green, A, C, E, G). Scale bars,  

2 µm (A–D) and 5 µm (E–H). 
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Fig. S12. In situ detection of intron RNA and rRNA originating from OP3 LiM by double 

CARD-FISH and epifluorescence microscopy. RNA was visualized with OP3-565 (green, A 

and B) and with three intron probes hen1-2235, hen2-2309 and hen3-2538 (red, A and C). All 

probes were used with flanking helper oligonucleotides. Cells originating from culture  

MM-376 were stained with DAPI for the presence of DNA (blue, A and D). Scale bars, 2 µm. 
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Fig. S13. In situ detection of intron RNA and bacterial rRNA by double CARD-FISH and 

epifluorescence microscopy. Intron RNA was visualized with three intron probes hen1-2235, 

hen2-2309 and hen3-2538 (red, A and B) with helper oligonucleotides. The probe mix 

EUB338 I–III (green, A and C) and DAPI (blue, A and D) were applied to detect Bacteria and 

DNA. Scale bars, 5 µm. 
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Fig. S14. Detection of intron RNA in double CARD-FISH experiments using the intron 

specific probe/helper-mix and probe mix EUB I–III on cells from culture MM-376. Overlay 

of fluorescence micrographs (first column) and individual graphs reveal the presence of DNA 

by DAPI (blue, first and fourth column), of intron RNA by three intron probes hen1-2235, 

hen2-2309 and hen3-2538 (first and second column) and of Bacteria (first and third column). 

The detection of intron RNA was possible with Alexa-488 (green, A, B) as well as Alexa-594 

(red, E, F, I, J, M, N, Q, R, U, V). Scale bars, 5 µm (A–L & Q–X) and 10 µm (M–P). 
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Fig. S15. Gallery of intron RNA CARD-FISH signals in double CARD-FISH experiments 

using the intron specific probe/helper-mix and probe OP3-565 on cells from culture MM-376. 

Overlay of fluorescence micrographs (first column) and individual graphs reveal the presence 

of DNA by DAPI (blue, first and fourth column), of intron RNA by three intron probes hen1-

2235, hen2-2309 and hen3-2538 (red, first and second column) and of OP3 LiM (green, first 

and third column). Scale bars, 5 µm (A-H) and 2 µm (I-X). 
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Fig. S16. Continuation of the gallery of intron RNA CARD-FISH signals in double CARD-

FISH experiments using the intron specific probe/helper-mix and probe OP3-565 on cells 

from culture MM-376. Overlay of fluorescence micrographs (first column) and individual 

graphs reveal the presence of DNA by DAPI (blue, first and fourth column), of intron RNA 

by three intron probes hen1-2235, hen2-2309 and hen3-2538 (red, first and second column) 

and of OP3 LiM (green, first and third column). Scale bars, 5 µm. 
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Fig. S17. Dot plot presentations of repetitive regions within the OP3 LiM genome.  

(A) Interlaced repetitive elements in the ORF for the very large surface protein, a gene of 

119,034 bp. This assembly was finally confirmed by performed combinatorial PCR reactions. 

(B) Duplicated genes of unknown function (CHP1; peg.582 and CHP2; peg.585) located in a 

region of multiple insertions. Axes provide the position of the repeats within the OP3 LiM 

genome sequence. Dot plot calculations were performed in Geneious 10.1.3 with “Low 

sensitivity/Fast” settings, word size of 10, and title size of 100,000. 
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Fig. S18. Size distribution of total RNA preparations. RNAs from different Pe1 pellets used 

for library no. 1906.A (A) and for library no. 1906.B (B). (C) shows RNA from Pe2 used for 

library no. 1906.D. The x-axis describes the length of the RNA fragments in nucleotides [nt], 

the y-axis shows the fluorescence in fluorescence units [FU]. 
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Fig. S19. Representation of high-variable regions of 83 bp length in the duplicated genes 

CHP1 (peg.582) and CHP2 (peg.585) representing a diversity of 44 sequences with multiple 

coverage in the metagenomes. These regions were present in 1,012 reads of the combined 

metagenome Pe1, Pe2 and Pe3. De novo assembly of the 1,012 reads resulted in 44 contigs of 

which 25 mapped to CHP1 (L) and 19 mapped to CHP2 (R). Geneious 10.1.3 were used for 

mapping (bbmap mapper plugin with “Normal Sensitivity” settings for mapping of 

metagenome reads onto the genome and Geneious mapper with “High sensitivity/Medium” 

settings for mapping of contigs onto the genome) and de novo assembly of the 1,012 reads 

(with “High sensitivity/Medium” settings). 

  



Chapter 5 – ”Candidatus Vampirococcus archaeovorus“ 

148 

 

Fig. S20. Overview on culture materials selected for the individual “omics” studies. 

Precultures MM-315, MM-319 and MM-324 were inoculated in May, 2014 and used as 

inoculum for the cultures MM-360, -364, -369, -370, -371, -372, -373 in January, 2015. 

Biomass was harvested for “omics” studies in October/November, 2015.  
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Workflow 1 

Dynamical trimming – SolexaQA 

 

Length filtering – SolexaQA 

 

 

File combining – Khmer 

 

 

Concatenate  

Add single reads 

 

Digital normalization – Khmer 

Adapted from https://khmer-protocols.readthedocs.io  

 

 

 

 

 

 

Read extraction to get a paired read file and singleton file 

 

 

 

 

 

 

perl LengthSort.pl read1.trimmed.fastq read2.trimmed.fastq -l 

<lowest median value> 

Interleave-reads.py read1.trimmed.paired1.fastq 

read2.trimmed.paired2.fastq > trimmed.combined.fastq 

cat read1.trimmed.single >> trimmed.combined.fastq 

phyton normalize-by-median.py -k 20 -C 20 -N 8 -x 5e8 --savetable 

trimmed.combined.kh trimmed.combined.fastq 

phyton filter-abund.py trimmed.combined.kh 

trimmed.combined.fastq.keep 

phyton normalize-by-median.py -k 20 -C 5 -N 8 -x 5e8 

trimmed.combined.fastq.keep.abundfilt 

phyton extract-paired-reads.py trimmed.combined.fastq.keep.abundfilt 

perl DynamicTrim.pl read1.fastq read2.fastq 
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Workflow 2 

Adapter trimming – BBduk 

 

 

 

 

Normalization & error correction – BBnorm 

 

 

 

Workflow 3 

Adapted from suggestion of Brian Bushnell (http://seqanswers.com/) 

Removal of phiX, and other contaminat reads – BBduk 

 

 

Adapter trimming – BBduk 

 

 

Normalization & error correction – BBnorm 

 

Merging of data – BBMerge 

Merged paired-end reads into single reads by overlap detection.  

 

Quality-trimming of unmerged reads – BBduk 

 

 

 

bbnorm.sh in= adapter_trim.fq out=corrected.fq ecc=t 

bbmerge.sh in= corrected.fq out=merged.fq outu=unmerged.fq  

bbduk.sh in1=read1.fq in2=read2.fq out=adapter_trim1.fq 

out2=adapter_trim2.fq ref=/.../bbmap/resources/truseq.fa.gz ktrim=r 

mink=12 k=28 

bbduk.sh in1= adapter_trim1.fq in2= adapter_trim2.fq 

out=qual_trim1.fq out2=qual_trim2.fq qtrim=rl qtrim=10 minlength=25 

bbnorm.sh in= qual_trim1.fq out=corrected1.fq ecc=t hist=hist1.txt 

histout=histout1.txt 

bbduk.sh in1=read1.fq in2=read2.fq out=clean.fq 

ref=/.../bbmap/resources/phix174_ill.ref.fa.gz hdist=1 k=31 

bbduk.sh in=clean.fq out=adapter_trim.fq 

ref=/.../bbmap/resources/truseq.fa.gz ktrim=r mink=11 k=25 

bbduk.sh in=unmerged.fq out=qtrimmed.fq trimq=10 qtrim=rl 

minlength=50 
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Concatenate  

 

 

Workflow 4 

Merging of data – BBMerge 

Merged paired-end reads into single reads by overlap detection. 

 

Contamination filtering & adapter trimming – BBTrim 

Trimming of merged and unmerged data separately. Change the output file format to Fasta. 

 

 

 

 

 

Combining 

 

Fig. S21. Workflows for MiSeq read processing. 

  

bbmerge.sh in1=read1.fq in2=read2.fq out=merged.fq outu=unmerged.fq 

trimq=10 qtrim=t 

bbtrim.sh in=pe.fq out=pe.fa 

ref=/.../bbmap/resources/phix174_ill.ref.fa.gz,/.../bbmap/resources/

truseq.fa.gz trimq=20 qtrim=t 

bbtrim.sh in=se.fq out=se.fa 

ref=/.../bbmap/resources/phix174_ill.ref.fa.gz,/.../bbmap/resources/

truseq.fa.gz trimq=20 qtrim=t 

cat pe.fa se.fa > all.fa 

cat merged.fq qtrimmed.fq >> all.fa 
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Fig. S22. Proteins present in biomass obtained by differential centrifugation from two 

limonene methanogenic enrichment cultures MM-372 (A) and MM-373 (B). Coomassie 

Brilliant Blue stained protein after separation by size in an SDS-PAGE. M is the molecular 

weight marker. A1 and B1 originated from fraction Pe1, A2 and B2 from Pe2, and A3 and B3 

from Pe3. 
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Supplementary tables. 

 

Tab. S1. Overview on total spectral counts (TSCs) of total and OP3 related proteins and 

proportion of OP3 related proteins in percent and NSAF.  

 Proteins 
MM-372 MM-373 

 Pe1 Pe2 Pe3 Pe1 Pe2 Pe3 

TSCs1 
4,704 (all) 66,386 64,092 86,46 70,327 95,496 88,676 

1,298  
(OP3 LiM related) 44,755 19,359 53,165 23,486 56,078 60,998 

% TSCs2 27.59 67.42 30.21 61.49 33.40 58.72 68.79 

total NSAF3 66.31 23.23 56.33 26.06 52.75 66.64 

1 TSC: total spectral count. 

2 OP3 related percentage of TSCs.  

3 NSAF: normalized spectral abundance factor of 1,298 OP3 LiM proteins. 

 



Chapter 5 – ”Candidatus Vampirococcus archaeovorus“ 

154 

Tab. S2. Mass-abundant proteins identified by SDS-page in combination with HPLC-

MS/MS.  

Annotation MW 
(kDa)  

TSC in 
372Pe11  

TSC in 
32372Pe311 

 Feature ID2 

18-strand beta-barrel outer membrane pore 53  2477  1843  peg.955 
co-chaperone GroES CDS 58  933  1289  peg.1005 
GPI-membrane anchored actin binding protein with KELCH repeats 499  837  828  peg.1770 
translation elongation factor Tu CDS 44  775  991  peg.661 
Pyruvate,phosphate dikinase (EC 2.7.9.1) 101  598  814  peg.972 
very large multi-enzyme surface protein 4384  586  159  peg.37 
DNA-directed RNA polymerase subunit beta CDS 128  517  694  peg.656 
polyribonucleotide nucleotidyltransferase CDS 77  386  403  peg.1256 
DNA-directed RNA polymerase subunit beta' CDS 152  370  646  peg.657 
flagellar motor protein MotD 24  359  375  peg.236 
expressed protein CDS 326  343  416  peg.589 
Clp protease, ATP-binding subunit 91  340  383  peg.1300 
peptidyl-prolyl cis-trans isomerase 35  334  309  peg.12 
outer membrane protein assembly factor BamA CDS 87  316  273  peg.142 
ATPase for pilus assembly/DNA-transfer CpaF CDS 82  292  359  peg.15 
expressed DUF4139 protein, secreted 63  291  236  peg.189 
glyceraldehyde-3-phosphate dehydrogenase 36  272  355  peg.902 
transcription termination factor Rho CDS 47  259  283  peg.277 
phosphoglycerate dehydrogenase CDS 57  255  321  peg.231 
chromosome segregation protein SMC chromosome segregation 
protein SMC, archaeal type CDS 45  253  235  peg.52 

glutamine synthetase type III CDS 83  252  322  peg.1443 
DNA-directed RNA polymerase subunit alpha 37  242  278  peg.691 
putative exosortase-affiliated protein 13  226  297  peg.152 
expressed membrane protein CDS 28  219  188  peg.1614 
transmembrane receptor with multiple PAS sensor domains and 
histidine kinase domain 170  218  297  peg.1028 

molecular chaperone DnaK CDS 68  206  281  peg.633 
DPS-like protein/bacterioferritin within the ferritin-like superfamily 18  200  191  peg.121 
Pyruvate:ferredoxin oxidoreductase, alpha subunit (EC 1.2.7.1) 43  194  318  peg.115 
bifunctional preprotein translocase subunit SecD/SecF 80  186  239  peg.1065 
actin homologue MreB CDS 39  186  198  peg.1197 
carbamoyl phosphate synthase large subunit CDS 118  183  329  peg.365 
phosphoribosylpyrophosphate synthetase CDS 35  173  174  peg.133 
phosphoglycerate kinase 43  171  196  peg.868 
glutamate dehydrogenase CDS 49  169  170  peg.369 
periplasmic-binding component of ABC transport system specific for 
sn-glycerol-3-phosphate 52  167  194  peg.41 

ketol-acid reductoisomerase CDS 36  166  197  peg.196 
pyruvate:ferredoxin oxidoreductase, gamma subunit (EC 1.2.7.1) 20  165  233  peg.113 
secretion system protein with secretin and TonB domains   58  163  167  peg.14 
short chain acyl-CoA dehydrogenases  42  163  145  peg.859 
S-adenosylmethionine synthetase 42  157  191  peg.187 
dihydroxy-acid dehydratase CDS 59  156  199  peg.193 
pilin related to pseudopilin PulG  15  155  117  peg.1182 
fructose-bisphosphate aldolase class-II 49  151  178  peg.192 
alkaline phosphatase with homology to phosphomutase 46  151  136  peg.1454 
30S ribosomal protein S2 CDS 33  149  165  peg.176 
secreted protein containing glycoside hydrolase family 2, TIM barrel 
domain  94  145  168  peg.45 

recombinase RecA  39  144  187  peg.1078 
LPS assembly outer membrane protein LptD 80  143  100  peg.644 
Translation elongation factor EF-G, a GTPase 71  141  192  peg.1700 
chromosome segregation protein SMC, common bacterial type 124  139  223  peg.856 
multidrug efflux pump subunit AcrB 116  138  192  peg.1581 
translation initiation factor IF-2 79  138  183  peg.250 



Chapter 5 – ”Candidatus Vampirococcus archaeovorus“ 

155 

Tab. S2. – continued from previous page. 

Annotation MW 
(kDa)  

TSC in 
372Pe11  

TSC in 
32372Pe311 

 Feature ID2 

class V aminotransferase CDS 41  135  164  peg.230 
6-phosphofructokinase  37  134  133  peg.809 
PilT, pilus retraction ATPase 39  131  141  peg.695 
expressed membrane protein CDS 78  131  129  peg.31 
flagellar motor protein MotB 23  131  120  peg.1690 
gliding motility-associated ABC transporter substrate-binding protein 
GldG 94  129  168  peg.1833 

protein with domain of unknown function (DUF4912) 40  129  118  peg.238 
proton-translocating pyrophosphatase CDS 72  128  147  peg.63 
ATP-dependent Zn proteases FtsH 69  127  155  peg.1037 
inosine 5-monophosphate dehydrogenase 41  127  157  peg.1004 
transcription termination control protein NusA 43  126  155  peg.249 
carbamoyl phosphate synthase large subunit CarB CDS 120  125  176  peg.1750 
expressed protein CDS 43  122  320  peg.46 
DNA topoisomerase tpye II (Gyrase) subunit B CDS 91  122  187  peg.4 
3-deoxy-7-phosphoheptulonate synthase 37  121  130  peg.834 
DNA gyrase subunit A CDS 91  115  170  peg.8 
GMP synthase [glutamine-hydrolyzing], ATP pyrophosphatase 
subunit B  36  115  115  peg.366 

Phosphoenolpyruvate-protein kinase (PTS system EI component in 
bacteria) 65  114  154  peg.185 

ATP phosphoribosyltransferase CDS 33  114  103  peg.125 
phosphodiesterase with HD domain of ribonuclease Y  59  113  144  peg.1985 
expressed protein with unknown function 93  113  116  peg.580 
short-chain dehydrogenase/reductase (SDR)  28  112  128  peg.1661 
PilT-related nuclease/ATPase with N-terminal membrane domain 
(COG4956) 37  111  95  peg.1295 

secretion system ATPase related to VirB11/CpaF 52  110  128  peg.1423 
type I site-specific deoxyribonuclease, HsdR family 117  108  152  peg.560 
expressed protein with unknown function 124  107  141  peg.320 
type II secretory pathway ATPase GspE/PulE or type IV pilus 
assembly pathway ATPase PilB 43  107  144  peg.1249 

phosphohexomutase superfamily 54  104  107  peg.1167 
Type II secretory pathway component GspD/PulD (secretin) with 
additional STN domain 56  104  87  peg.1098 

GMP synthase (glutamine amidotransferase II) 62  103  193  peg.1003 
homocitrate synthase  46  102  116  peg.233 
ATP-dependent protease/chaperone ClpB CDS 97  101  162  peg.629 
30S ribosomal protein S4 24  100  119  peg.690 
signal transducer with HAMP signal, GAF transducer and GGDEF 
(diguanylate cyclase) domains 51  99  98  peg.1190 

bifunctional UDP-3-O-[3-hydroxymyristoyl] N-acetylglucosamine 
deacetylase/(3R)-hydroxymyristoyl-[acyl-carrier-protein] dehydratase 48  99  106  peg.145 

Type II secretory pathway component GspD/PulD (secretin)  57  95  59  peg.1177 
2-isopropylmalate synthase CDS 56  92  122  peg.197 
S-adenosyl-L-homocysteine hydrolase 46  91  163  peg.188 
cellobiose phosphorylase  93  90  127  peg.40 
signal transducer with PAS sensor, GGDEF (diguanylate cyclase) and 
metal dependent phosphohydrolase domains 85  87  113  peg.319 

ATP-dependent Zn-protease (COG0465) 62  85  115  peg.1595 
alanyl-tRNA synthetase 96  84  148  peg.1076 
ribonuclease E or G 57  84  130  peg.1174 
isoleucine--tRNA synthetase  106  79  124  peg.1204 
sensory signal transduction histidine kinase with PAS domain 114  76  138  peg.495 
expressed protein with unknown function 53  75  134  peg.356 
DNA polymerase I CDS 97  68  105  peg.274 
enolase (phosphopyruvate hydratase  46  51  161  peg.1594 
1 372Pe1 and 373Pe3 selected as representatives for all fraction samples. 
2 Feature ID´s are taken from the RAST annotation project with genome ID 6666666.225137.
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Tab. S3. Molecule-abundant proteins identified by SDS-page in combination with HPLC-

MS/MS. 

Annotation MW 
(kDa) 

NSAF of 
372Pe11 

NSAF of 
372Pe31 Feature ID2 

18-strand beta-barrel outer membrane pore 53 4,012 2,557 peg.955 
translation elongation factor Tu CDS 44 1,512 1,656 peg.661 
putative exosortase-affiliated protein 13 1,492 1,680 peg.152 
co-chaperone GroES CDS 58 1,381 1,634 peg.1005 
flagellar motor protein MotD 24 1,284 1,149 peg.236 
DPS-like protein/bacterioferritin within the ferritin-like superfamily 18 0,954 0,780 peg.121 
pilin related to pseudopilin PulG  15 0,887 0,574 peg.1182 
peptidyl-prolyl cis-trans isomerase 35 0,819 0,649 peg.12 
pyruvate:ferredoxin oxidoreductase, gamma subunit (EC 1.2.7.1) 20 0,708 0,857 peg.113 
expressed membrane protein CDS 28 0,671 0,494 peg.1614 
glyceraldehyde-3-phosphate dehydrogenase 36 0,649 0,725 peg.902 
DNA-directed RNA polymerase subunit alpha 37 0,561 0,552 peg.691 
pyruvate phosphate dikinase (EC 2.7.9.1) 101 0,508 0,593 peg.972 
flagellar motor protein MotB 23 0,489 0,384 peg.1690 
chromosome segregation protein SMC, archaeal type CDS 45 0,483 0,384 peg.52 
expressed protein with unknown function 19 0,474 0,360 peg.32 
transcription termination factor Rho CDS 47 0,473 0,443 peg.277 
polyribonucleotide nucleotidyltransferase CDS 77 0,430 0,385 peg.1256 
phosphoribosylpyrophosphate synthetase CDS 35 0,424 0,366 peg.133 
secreted protein containing peptidoglycan binding-like domain 14 0,411 0,242 peg.1626 
actin homologue MreB CDS 39 0,409 0,373 peg.1197 
Outer membrane chaperone Skp (OmpH) 21 0,401 0,427 peg.143 
expressed DUF4139 protein, secreted 63 0,396 0,275 peg.189 
ketol-acid reductoisomerase CDS 36 0,396 0,402 peg.196 
30S ribosomal protein S2 CDS 33 0,388 0,368 peg.176 
pyruvate:ferredoxin oxidoreductase, alpha subunit (EC 1.2.7.1) 43 0,387 0,544 peg.115 
phosphoglycerate dehydrogenase CDS 57 0,384 0,414 peg.231 
LemA/RetS hybrid sensor kinase-response regulator protein 21 0,380 0,427 peg.1440 
30S ribosomal protein S4 24 0,358 0,365 peg.690 
DNA-directed RNA polymerase subunit beta CDS 128 0,347 0,399 peg.656 
short-chain dehydrogenase/reductase (SDR)  28 0,343 0,336 peg.1661 
expressed protein with unknown function 22 0,343 0,264 peg.810 
expressed secreted protein of unknown function 9 0,343 0,172 peg.216 
phosphoglycerate kinase 43 0,341 0,335 peg.868 
short chain acyl-CoA dehydrogenases  42 0,333 0,254 peg.859 
ABC-type transporter Mla maintaining outer membrane lipid 
asymmetry, periplasmatic component MlaD 23 0,328 0,307 peg.1297 

S-adenosylmethionine synthetase 42 0,321 0,334 peg.187 
Clp protease, ATP-binding subunit 91 0,321 0,309 peg.1300 
recombinase RecA  39 0,317 0,353 peg.1078 
outer membrane protein assembly factor BamA CDS 87 0,312 0,231 peg.142 
6-phosphofructokinase  37 0,311 0,264 peg.809 
rubrerythrin  22 0,308 0,411 peg.1840 
ATPase for pilus assembly/DNA-transfer CpaF CDS 82 0,306 0,322 peg.15 
membrane or secreted protein containing peptidoglycan-binding Lysin 
subgroup domain (LysM) 19 0,298 0,352 peg.995 

ATP phosphoribosyltransferase CDS 33 0,297 0,229 peg.125 
glutamate dehydrogenase CDS 49 0,296 0,255 peg.369 
short-chain dehydrogenase/reductase (classical (c) SDR) 28 0,294 0,257 peg.1582 
PTS fructose/mannitol-specific subunit IIA [OP3_merged] 17 0,293 0,260 peg.182 
DNA-binding protein similar to integration host factor beta subunit 10 0,292 0,243 peg.1000 
30S ribosomal protein S7 CDS 18 0,291 0,253 peg.659 
PilT, pilus retraction ATPase 39 0,288 0,266 peg.695 
class V aminotransferase CDS 41 0,283 0,294 peg.230 
alkaline phosphatase with homology to phosphomutase 46 0,282 0,217 peg.1454 
3-deoxy-7-phosphoheptulonate synthase 37 0,281 0,258 peg.834 
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Tab. S3. – continued from previous page. 

Annotation MW 
(kDa) 

NSAF of 
372Pe11 

NSAF of 
372Pe31 Feature ID2 

protein with domain of unknown function (DUF4912) 40 0,277 0,217 peg.238 
periplasmatic-binding component of ABC transport system specific for 
sn-glycerol-3-phosphate 52 0,276 0,274 peg.41 

expressed secreted protein with TMH and unknown function 15 0,275 0,240 peg.1095 
GMP synthase [glutamine-hydrolyzing], ATP pyrophosphatase subunit 
B  36 0,274 0,235 peg.366 

expressed secreted protein of unknown function 18 0,272 0,253 peg.1619 
inosine 5-monophosphate dehydrogenase 41 0,266 0,282 peg.1004 
fructose-bisphosphate aldolase class-II 49 0,265 0,267 peg.192 
glutamine synthetase type III CDS 83 0,261 0,285 peg.1443 
molecular chaperone DnaK CDS 68 0,260 0,304 peg.633 
PilT-related nuclease/ATPase with N-terminal membrane domain 
(COG4956) 37 0,258 0,189 peg.1295 

transcription termination control protein NusA 43 0,252 0,265 peg.249 
DNA-binding transcriptional regulator, LacI/PurR family 32 0,247 0,216 peg.970 
expressed protein CDS 43 0,244 0,547 peg.46 
50S ribosomal protein L5 CDS 22 0,242 0,301 peg.675 
expressed protein with unknown function 32 0,241 0,184 peg.590 
D-alanine/D-glutamate or branched-chain amino acid aminotransferase 32 0,241 0,126 peg.1303 
secretion system protein with secretin and TonB domains   58 0,241 0,212 peg.14 
secreted protein containing molecular chaperone IbpA, HSP20 family 23 0,239 0,304 peg.1363 
nicotinamidase/pyrazinamidase 31 0,235 0,187 peg.2006 
nucleoside diphosphate kinase 19 0,235 0,201 peg.2007 
Lipoprotein-anchoring transpeptidase ErfK/SrfK 30 0,232 0,213 peg.1682 
pyruvate:ferredoxin oxidoreductase, beta subunit (EC 1.2.7.1) 31 0,230 0,235 peg.117 
expressed secreted protein of unknown function 12 0,229 0,288 peg.217 
dihydroxy-acid dehydratase CDS 59 0,227 0,248 peg.193 
30S ribosomal protein S5 CDS 18 0,224 0,225 peg.680 
protein with TMH, SAF and Flp pilus assembly protein RcpC domains 34 0,222 0,162 peg.13 
membrane-associated protein with peptidoglycan-binding domains 
OmpA and LysM 37 0,220 0,233 peg.768 

transcriptional regulator  27 0,219 0,210 peg.840 
protein with tandem amino-acid binding ACT domain 14 0,215 0,473 peg.824 
type II secretory pathway ATPase GspE/PulE or type IV pilus assembly 
pathway ATPase PilB 43 0,214 0,246 peg.1249 

DNA-directed RNA polymerase subunit beta' CDS 152 0,209 0,312 peg.657 
type II restriction endonuclease, TdeIII 32 0,207 0,168 peg.1905 
adenine phosphoribosyltransferase [OP3_merged] 19 0,203 0,236 peg.969 
bifunctional preprotein translocase subunit SecD/SecF 80 0,200 0,220 peg.1065 
secretion system ATPase related to VirB11/CpaF 52 0,182 0,181 peg.1423 
ATP-dependent Clp protease proteolytic subunit 22 0,172 0,241 peg.229 
Translation elongation factor EF-G, a GTPase 71 0,170 0,199 peg.1700 
S-adenosyl-L-homocysteine hydrolase 46 0,170 0,261 peg.188 
cochaperone GroES (HSP10) 11 0,156 0,274 peg.1006 
expressed protein with unknown function 9 0,153 0,180 peg.1110 
proton-translocating pyrophosphatase CDS 72 0,153 0,150 peg.63 
GMP synthase (glutamine amidotransferase II) 62 0,143 0,229 peg.1003 
carbamoyl phosphate synthase large subunit CDS 118 0,133 0,205 peg.365 
dihydrodipicolinate synthase 31 0,119 0,221 peg.1117 
phosphopyruvate hydratase = enolase CDS 46 0,095 0,257 peg.1594 
periplasmatic solute-binding protein of ABC transporter 28 0,083 0,305 peg.1815 
1 372Pe1 and 373Pe3 selected as representatives for all fraction samples. 
2 Feature ID´s are taken from the RAST annotation project with genome ID 6666666.225137.  
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Tab. S6. Statistics of de novo assemblies (SPAdes-3.8.0) obtained from each of the pellet 

fraction materials (Pe1, Pe2, Pe3) and from the combined meta-dataset (Pe123) using the 

QUAST web interface (57).  

 Pe1 Pe2 Pe3 Pe123 

Contigs  66,295 49,682 37,084 60,275 

Total length (≥ 0 bp)  138,911,059 69,185,133 41,658,908 143,570,422 

Total length (≥ 10,000 bp) 73,066,546 33,865,897 11,010,571 86,992,345 

Largest contig 947,465 730,866 1,402,382 845,110 

GC (%) 52.95 55.20 52.81 52.81 

N50 14,596 23,779 2,784 24,276 
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Chapter 6 

Discussion 

After the discovery of candidate division OP3 in sediment of the Obsidian Pool (OP) based on 

16S rRNA gene sequences, a diverse range of habitats, mostly anoxic environments, were 

discovered to contain 16S rRNA gene sequences of members of the candidate phylum 

Omnitrophica. A broad phylogeny of this phylum was established, with 16S rRNA gene 

dissimilarities of up to 26%. 

The phylotype OP3 LiM, one of the OP3 members, was detected in limonene-

degrading, methanogenic enrichment cultures. The cells occurred either free-living or 

attached to larger cells of different morphology (Rotaru et al., 2012). All attempts to isolate 

the bacterium in pure culture failed so far (Rotaru et al., 2012). The characterization of OP3 

LiM promised to gain insights into a so far undisclosed biology and this thesis describes my 

insights. 

 

 

6.1 Culture stability 

The methanogenic enrichment culture that utilized limonene as carbon and energy source 

originated from a wastewater sample which was taken in 1997 (Harder & Foss, 1999). A 

dilution-to-extinction series was prepared in 1999. A culture with one µl of inoculum grew 

and all cultures used in this study originated from this culture. The small inoculum was used 

to obtain a limited diversity in the methanogenic enrichment cultures.  

Bacterial genomes vary extensively in terms of both gene content and gene sequence 

(Lees et al., 2016). The initial bottleneck should enable a close-to-clonal population structure 

to obtain population genomes with little sequence variation. Twelve culture lines were 

established in 2005. Cultures produced methane for two to three years. These culture lines 

were maintained by one annual transfer of 10% v/v inoculum. Active cultures of each line 

were chosen as inoculum. First studies observed that 18% of all cells were OP3 LiM cells in 

the enrichment during the exponential growth as revealed by catalyzed reporter deposition-

fluorescence in situ hybridization (CARD-FISH) (Rotaru et al., 2012). 
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Populations of the same species are likely to be maintained, when similar 

environmental conditions are available (Konstantinidis & Rosselló-Móra, 2015). This may 

also be expected for stable enrichment cultures. But the 12 lineages varied in their activity. 

The methane production profiles varied for the cultures of the same passages and 

demonstrated a range from inactive to highly active cultures. Thus, we observed an instability 

of the microbial community. In an early set of experiments of this thesis in 2014, OP3 LiM-

specific PCR (colony PCR and PCR with genomic DNA) as well as CARD-FISH were 

performed to investigate the presence of OP3 LiM cells in the lineages. At that time, seven 

cultures were active and contained OP3 LiM. One culture was active, but OP3 LiM was 

apparently lost in the last transfers. Four cultures had no OP3 LiM cells. Such variations in 

the structure of microbial communities, including members of OP3, were previously 

described. Among lineages of benzene-degrading, methanogenic enrichment cultures, the 

OP3 population was absent in culture lineages, which were more frequently transferred 

suggesting very slow doubling times of OP3 (Luo et al., 2016). Shifts of archaeal and 

bacterial communities, induced by changes in the dilution rate, were identified for propionate-

degrading, methanogenic chemostat cultures (Shigematsu et al., 2006) as well as for butyrate-

degrading, methanogenic chemostats. In the latter, candidate division OP3 were predominant 

at high dilution rate (Tang et al., 2007).  

To understand the instable coexistence of microbial species within mixed cultures, all 

members of the community should be defined and their role and relationships among them 

should be investigated (Kato et al., 2005). The microbial community compositions of the 

limonene degrading enrichments were revealed by the full cycle 16S rRNA approach. Clone 

libraries for bacterial and archaeal 16S rRNA genes were established and revealed a complex 

microbial community. Syntrophic interactions between these members were proposed 

(Rotaru, 2009). However, a balance of the various types of relationships (both positive and 

negative) is considered to be essential for the stability (Kato et al., 2005). The examination of 

general characteristics of each of the members in pure culture and the co-cultivation of these 

isolates in order to investigate their functions and relationships would facilitate the successful 

construction of mixed cultures (Kato et al., 2005). However, currently there is no isolate 

available for members of candidate phylum Omnitrophica.  

OP3 LiM is metabolically active as attached organism and preys on Methanosaeta. 

Thus, it is not essential for the methanogenic process and may be lost in highly active 

cultures. Alternatively, it may severely impair and kill the methanogenic process by a very 
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successful predation. Thus, we have to consider the enrichment cultures as potentially 

instable. The maintenance of OP3 LiM in the cultures is the result of a sensitive equilibrium. 

 

 

6.2 Challenges in genome closure and finishing 

The genome of the bacterium OP3 LiM was obtained from metagenomic datasets of OP3-

enriched cell fractions and of size-fractionated cells of the enrichment cultures. Metagenomics 

provides ways to characterize not yet cultured microbes as well as microbial communities and 

their interactions (Segata et al., 2013). Population genomes are assembled from metagenomic 

data (Tsai et al., 2016). 

Complex microbial communities such as the limonene-degrading methanogenic 

enrichment cultures require a large sequencing effort. Physical cell separation was performed 

to reduce the complexity of the metagenome by the separation of the diversity into individual 

gradient fractions. Highly enriched OP3 LiM fractions were obtained. A higher representation 

of a population in a metagenomic dataset (greater dominance) will result in a greater 

likelihood of assembly and recovery of contigs (Kunin et al., 2008; Sangwan et al., 2016). 

Consequently, a significant part of the genome and, in some cases, a near-complete genome of 

the dominant species is likely to be obtained by assembly (Kunin et al., 2008). OP3 LiM cells 

were enriched to over 80% of all cells in two consecutive density gradient centrifugations and 

allowed the extraction of genomic DNA and consequently the start of the metagenome project 

(Chapter 5). An alternative approach is fluorescent activated cell sorting (FACS) by flow-

cytometry after FISH or CARD-FISH hybridization in combination with genome 

amplification. This application has the potential of direct extraction of specific subpopulations 

from environmental samples (Kalyuzhnaya et al., 2006; Gawad et al., 2016). 

Currently, about 72,000 datasets of microbial genomes are available for studies. 

However, only a small part of about 12,000 genomes are complete, they have been finished. 

In contrast, draft genomes or permanent draft genomes are incomplete. The finishing process 

is mostly performed for sequences obtained from cultured organisms. Only 179 finished 

genomes have been extracted from metagenomic datasets. The majority of genomes derived 

from metagenomes are published as draft genomes or permanent draft genomes (June 2017, 

https://img.jgi.doe.gov). As complete genomes are not a requisite for many applications and 

the creation of the best possible assembly from the available data may already reveal 

biological insight, the effort to finish the genome is usually avoided (Wences & Schatz, 2015; 
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Mardis et al., 2017). Consequently, large percentage of genomes only achieves high-quality 

draft status (Utturkar et al., 2014; Land et al., 2015). However, a complete genome is highly 

desired for a full understanding of the biology of the organism. A finished genome sequence 

is required to examine all rather than most of the genes in an organism (Mardis et al., 2017) 

and allows the argumentation of the absence of functions. 

The assembly of DNA reads to correctly reconstruct genomes is an essential task in 

bioinformatics (Utturkar et al., 2014). Assembly of the complete genome sequence of each 

single microbial population is limited by biological sequence information, e.g. long direct or 

inverted repeats, longer than sequence reads and by problems of the sequencing technology to 

cover all regions equally (Klumpp et al., 2012; Konstantinidis & Rosselló-Móra, 2015; Tsai et 

al., 2016). Assembly algorithms usually finish the contig construction at these repeats 

resulting in a genome assembly with many contigs (Klumpp et al., 2012; Tsai et al., 2016). 

Finishing is the process of resolving the contig order and filling the sequence gaps. This 

process of finishing a genome requires the availability of template DNA, time, resources and 

expertise (Ekblom & Wolf, 2014; Mardis et al., 2017). In my work, I first explored in silico 

methods to improve the assembly and then used combinational PCR and amplicon sequencing 

for finishing the OP3 LiM genome.  

De novo draft assemblies of high quality but with many contigs can be obtained from 

Illumina short read datasets by the application of few bioinformatics tools and without the 

requirement of specific bioinformatics expertise. I explored variables in existing 

bioinformatics tools as well as the use of taxonomic information gained from the contigs. 

Iterative rounds of taxonomic evaluation of contigs, read mapping to taxonomically coherent 

contigs, and reassembly of the recruited reads efficiently improved draft assemblies 

significantly (Chapter 3). The usage of a taxonomic classifier resolved some gaps between 

contigs of single-genome draft assemblies. The differentiation and separation into taxon-

related and taxon-unrelated groups of contigs by the Metawatt binner (Strous et al., 2012) 

improved Illumina read assemblies, e.g. of different planctomycetes strains (SWK21, SM50, 

K833) (Chapter 3). These genomes demonstrated the usage of currently available 

bioinformatics programmes and tools in novel ways to refine the genome assembly. The 

visual inspection of mapping results in a bioinformatics software platform (e.g., Geneious) 

contributed to an understanding of the assembly problem, e.g. the read coverage reflected the 

numbers of repeats in the genome, and provided an in silico read walking with 454 reads for 

the OP3 LiM genome.  
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The small number of finished metagenome-derived genomes integrated into the 

Integrated Microbial Genomes & Microbiomes (IMG/M) system (https://img.jgi.doe.gov) is 

an indication for the complexity of finishing genomes from metagenomes. A variety of 

strategies and different tools were needed to close all gaps of the OP3 LiM draft assembly and 

to optimize the final sequence. An available finished reference genome is a distinct advantage 

for the challenge of genome finishing due to the performance of mapping and the discovery of 

genetic variations (Klumpp et al., 2012). For OP3 LiM a reference genome was absent and 

members of the candidate phylum Omnitrophica represent an extremely phylogenetically 

diverse bacteriological group in nature (Chapter 1, Table S1; Fig. 2). Consequently, de novo 

assembly was approached with read datasets of the 454 sequencing technology and the 

Illumina technology obtained from genomic DNA of OP3 LiM-enriched fractions. A second 

biological sample was size-fractionated and provided three Illumina datasets for confirmation 

of the OP3 LiM genome sequence. Each sequencing platform has its own unique features and 

advantages over other platforms as well as produces technology based sequencing errors 

(Klumpp et al., 2012).  

Contigs of a Newbler assembly of 454 reads was taxonomically characterized to 

identify 22 contigs associated to OP3 LiM. These served as starting point for the mapping and 

contig elongation using 454 and Illumina MiSeq reads. The combination of data of different 

read lengths and from several and different sequencing platforms can counterbalance 

drawbacks of each method (Ekblom & Wolf, 2014). Today, the 454 technology is replaced by 

the PacBio platform and actual projects use a combination of short reads from the second 

generation sequencing (SGS) platforms and long reads generated by third generation 

sequencing (TGS) technology, such as PacBio (Au et al., 2012; Utturkar et al., 2014; Tsai et 

al., 2016).  

Central challenge in genome assembly are repetitive sequences which can give rise to 

false overlaps or fragments (Wences & Schatz, 2015). Read mapping onto the most advanced 

in silico refined OP3 LiM draft assembly revealed the presence of repetitive sequences. The 

assembler had collapsed tandem repeats of two or more copies of sequences. In silico 

approaches, e.g. by read walking, failed to solve these suspicious regions because the repeats 

were longer than the length of 454 reads. PCR with primers located outside of the repetitive 

sequences yielded amplicons that filled the sequence gaps and indicated the physical map of 

the repetitive elements.  

One repeat was detected in the largest ORF, a gene of 119,034 bp and required the 

design of 17 primers to integrate two additional Newbler contigs with similar repeat 
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sequences in the accurate order into the OP3 LiM genome. To ensure that unique primers 

correspond to the regions outside of the repeats, the design of a second, more specific reverse 

primer was required for one contig-end resulting in 9 reverse and 8 forward primers. Another 

repeat present within both Newbler contigs was the cause of false-positive assemblies. PCR 

reactions with primers, derived from unique contig regions located next to this repeat, 

revealed the misassembly. One contig had to be integrated into the other contig before the 

integration into the OP3 LiM genome. Sequence information obtained by combinatory PCR 

also revealed small sequence variations in the repeats. The physical sequence order around the 

repetitive elements was deduced by accurate mapping of acquired sequences and by 

identification of the approximate length of PCR products providing by the used molecular 

weight size marker. DNA fragments of 500 bp up to 3,000 bp size were generated allowing 

the implementation of the regular PCR method.  

Combinatorial PCR reactions were also performed for a second questionable region of 

multiple insertions in the OP3 LiM genome. The genetic element contained duplicated genes 

of unknown function (CHP1 and CHP2), each with a highly-variable region of 83 bp, a  

poly-G region consisting of 21 guanine bases, a group II intron with a gene for a reverse 

transcriptase and three 23S rRNA intervening sequences (IVSs). PCR reactions with 

combinations of 7 forward and 7 reverse primers, designed for the detection of the overall 

suspicious region as well as small segments of the regions, confirmed the accuracy of the 

assembly for this region with multiple insertions. A special problem was the inability of 

dideoxy sequencing to confirm the polymeric G sequence in amplicons.  

Small variations between the datasets of different sequencing platforms (454 and 

Illumina technology) were identified. The comparison of these data revealed similarity 

between Illumina datasets generated from two different biological samples and variations of 

these datasets to that generated from 454 sequencing. The manual inspection showed 

homopolymer-associated, single-base errors established as high error rate for Roche 454 (Luo 

et al., 2012). Consequently, OP3 LiM genome was manually edited to the sequence 

information of matched reads from the Illumina metagenomes. The confirmation of the 

finished circular OP3 LiM genome by a second biological sample additionally indicated the 

constructed average “mosaic” genome (Konstantinidis & Rosselló-Móra, 2015) with the very 

low single-nucleotide polymorphisms of the population genome as nearly clonal consensus 

genome. 

Overall, the assembly and finishing of a complete OP3 LiM genome required a 

variation of read processing methods, a variety of assembly and mapping software, the 



Chapter 6 – Discussion 

167 

introduction of taxonomic binning software in the quality evaluation and a large set of lab 

experiments required to resolve long repeated sequences in the genome. Software tools 

greatly vary on different datasets (Wences & Schatz, 2015) and in this study, visual inspection 

revealed their limitations. The adaption of the developed approach to the individual dataset 

and especially the manual inspection of all results were essential.  

 

 

6.3 Visualization of OP3 LiM 

Visualization experiments applying CARD-FISH indicated an epibiontic lifestyle for OP3 

LiM. The signal intensity of attached cells indicated via a large number of ribosomes that 

bacterial as well as archaeal members of the methanogenic enrichment cultures provide 

nutrition to OP3 LiM. Transmission electron microscopy (TEM) also provided evidence of 

OP3 LiM attachment to larger cells. With a size of 200 nm to 300 nm, OP3 LiM cells have to 

be closely associated to larger cells via cell-to-cell contact to become pelleted in the 

centrifugation. 

CARD-FISH allowed the visualization of strong signals. Low cellular rRNA contents 

of the target organisms hamper in situ identification by FISH. The usage of CARD-FISH 

enhanced the fluorescent FISH signals (Molari & Manini, 2012). Nevertheless, this method 

has also limitations which must be overcome by adaption the application. A critical step of 

this approach is the penetration of the horseradish peroxidase (HRP)-labeled probes into fixed 

cells due to their large size. Because the cell-wall composition of Bacteria and Archaea is 

diverse, no standard protocol exists and an optimization of the permeabilization step is usually 

necessary which considers the specific cell wall composition of the target organisms (Amann 

& Fuchs, 2008). We observed an inadequate and heterogeneous detection of rRNA signals of 

Methanosaeta cells. Lysozyme, usually used for the permeabilization of prokaryotic cells, 

was not effective for the diffusion of HRP-labeled ARCH-915 into the Methanosaeta sheath. 

A harsh treatment with proteinase K was necessary for the detectability of homogeneous 

CARD-FISH signals of the filamentous cells. Nevertheless, some cells in filaments lacked 

DNA and RNA. Because of the visibility of these filaments in phase-contrast micrographs and 

due to similar results by the application of in situ DNA-hybridization chain reaction (HCR), 

an approach without permeabilization step (Yamaguchi et al., 2015), a loss of their cellular 

content by predation is suggested (Chapter 4).  
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However, the visualization of pure-cultured Methanosaeta cells should also confirm 

our finding of biological reasons for the partial staining. All uninfected cells of the filaments 

should be stained by ARCH-915 and DAPI. 

Metabolically active cells can be identified using FISH (Molari & Manini, 2012). A 

significant problem for FISH of 16S rRNA with oligonucleotide probe is also the target site 

inaccessibility. Unlabeled oligonucleotides (helpers) that bind adjacent to the probe target site 

have the potential to increase weak probe hybridization signals (Fuchs et al., 2000). 

Introducing of four helpers improved the CARD-FISH signals of OP3 LiM cells. We detected 

weak signals for free-living OP3 LiM cells in comparison to strong signals for attached cells 

to archaeal and bacterial cells suggesting a higher metabolic activity of OP3 LiM during the 

attachment. Due to bright signals of OP3 LiM when attached to bacterial cells of different 

morphology, we suggested also the ability to prey on a wide range of bacterial cells supported 

by the visualization of the 23S rRNA intron of OP3 LiM within a bacterial cell aggregate 

(Chapter 5, Fig. S13). 

 

 

6.4 OP3 LiM, a new predator 

Association of OP3 LiM cells to Methanosaeta together with the absence of DNA and rRNA 

in filamentous cells and the presence of the bacterial intron RNA within this cell morphology 

indicated a predation of archaea. The OP3 LiM genome has the potential for a predatory life 

of the cell. The combination of both visualization and genome information suggests that OP3 

LiM is a novel epibiotic predator. So far, few predatory prokaryotes with an epibiotic lifestyle 

are known: “Bdellovibrio and like organism” (BALO) strains, represented by Bdellovibrio 

exovorus sp. nov. (Jurkevitch & Davidov, 2006) and Micavibrio aeruginoavorus (Dashiff et 

al., 2011), as well as the bacteria Vampirococcus, Vampirovibrio and Ensifer (Esteve & Gaju, 

1999). 

A range of epibiontic lifestyles are known including different preys, cell morphology, 

response to oxygen, and mode of feeding and reproduction. Still, common features are present 

(Pérez et al., 2016) and we locked for characteristics of these in OP3 LiM.  

The observation of different intensities of CARD-FISH signals as well as different cell 

sizes of small attached coccoid cells indicated a lifestyle similar to obligate bacterial 

predators. The observed biphasic lifecycle for OP3 LiM consisting of a free living attack 

phase and a growth and replication phase seem to be similar to that of epibiotic predators, 
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such as Bdellovibrio exovorus and Vampirococcus, which remain attached to the prey outer 

membrane while attacking (Mahmoud & Koval, 2010). 

A small cell size might be a common feature of epibiotic bacteria. Bdellovibrio 

exovorus is a gram-negative, comma-shaped rod with 0.5 µm width and 0.5 µm to 1.4 µm 

length (Koval et al., 2013) and Vampirococcus is gram-negative and ovoidal (0.6 µm wide) 

(Esteve & Gaju, 1999). With a cell size of about 0.2 µm to 0.3 µm OP3 LiM is smaller than 

the other members of the methanogenic community. “Small eats big” has been established as 

rule for bacterial predators (Pérez et al., 2016).  

A small genome length appears to be a characteristic signature of epibiotic predators. 

The complete genome of OP3 LiM consists of 1,974,201 bp and is predicted to encode for 

2,015 open reading frames (ORFs). These genome features correspond to the genome lengths 

and number of predicted ORFs of Bdellovibrio exovorus strain JSS (2.66 Mb; 2,669 ORFs), 

Micavibrio aeruginosavorus EPB (2.46 Mb; 2,460 ORFs), and Micavibrio aeruginosavorus 

ARL13 (2.48 Mb; 2,432 ORFs) (Pasternak et al., 2014). Periplamic predators have larger 

genomes (Bdellovibrio bacteriovorus HD 100: 3.78 Mb, 3,586 ORFs and Bdellovibrio 

marinus JS: 3.44 Mb, 3,231 ORFs) (Pasternak et al., 2014). This significant difference 

between both main predatory strategies is a further indication for the epibiotic strategy of OP3 

LiM.  

We identified an active Sec pathway and a type II secretion / type IV pilus assembly 

system in the high organized OP3 LiM genome. Genes for a secretion pathway and a very 

large multi-enzyme surface protein with a size of 4,384 kDa were directly located after genes 

involved in DNA replication. In addition to the used annotation pipelines, NCBI Prokaryotic 

Genome Annotation (Angiuoli et al., 2008), Rapid Annotations using Subsystems 

Technology (RAST) (Aziz et al., 2008) and the in-house annotation based on GenDB (Meyer 

et al., 2003), two other ORF prediction programs, the open reading frame finder by NCBI 

(https://www.ncbi.nlm.nih.gov/orffinder/) and the ORF-finder of the Sequence Manipulation 

Suite (Stothard, 2000), predicted the ORF of the very large multi-enzyme surface protein. 

This large protein involved enzymes that function abundantly in polymer degradation 

including a repertoire of ten carbohydrate-active enzymes (CAZymes) (Yin et al., 2012) 

including domains of glucosidases and several glycosyltransferases. Bright detection signals 

for several OP3 LiM cells, especially when attached to individual bacterial cells (Chapter 5 

Fig. 7 and 8), indicated a high metabolic activity of these cells. Due to these observations we 

suggest OP3 LiM may also nourish on lipopolysaccharides (LPSs) present in gram-negative 

bacteria. All metabolic enzymes involved in glycolysis were found indicating the bacterium is 
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capable of utilizing sugars. For bacteriophages, which infect gram-negative bacteria, enzyme 

activities of LPS hydrolysis was already identified (Yan et al., 2014). Beside the degradation 

of macromolecules the multifunctional protein has receiver and transmitter domains for the 

reception of environmental signals. A diguanylate cyclase/phosphodiesterase (GGDEF & 

EAL domains) was identified, capable of the synthesis and degradation of the bacterial second 

messenger cyclic diguanylate (c-di-GMP) (Tamayo et al., 2007).  

When a predator finds a suitable prey cell, a cascade of quickly events for the growth 

phase has to start. To have a protein for complex cellular functions including domains of 

receiver and transmitter might influence their metabolic activity. Free-living OP3 LiM cells 

are in a state of low metabolic activity to survive starvation. Signaling molecules interact with 

the prey cell. Certain components of the outer membrane of the prey cell, e.g., the bacterial 

LPS, are postulated to serve as trigger for the activation of second messengers, followed by a 

cascade of effects for the infection. The perception of this extracellular stimulus is coupled to 

an adaptive response and all steps will be exerted, which are necessary for the growth phase 

of OP3 LiM. Consequently, OP3 LiM is metabolically active as attached organism.  

OP3 LiM lacks genes for a flagellum, but genes for stator elements (proteins of Mot 

complexes) are present. These proteins are able to form a channel (Bardy et al., 2003). The 

most abundant protein is a 18-stranded beta-sheet outer membrane pore protein. Beta barrels 

are described to be suitable objects for channel engineering (Schulz, 2002) and are involved in 

the transport of polymers across the outer membrane (Whitney et al., 2011). The pore may 

also serve for pili. Several locations in the genome harbor pil genes encoding type IV pili and 

pil-related genes. Many of the proteins involved in type IV pilus biosynthesis and function 

share similarity with proteins in type II secretion systems and archaeal flagellum systems. 

Several proteins are phylogenetically related, suggesting that these three machineries may 

share functional characteristics. Indeed, the formation of pilin-like structures was observed in 

an overexpression of the pseudopilin (PulG) from the type II secretion system in Klebsiella 

oxytoca (Jakovljevic et al., 2008). The pilus fibre is composed of a single pilin protein, PilA 

(Bardy et al., 2003). The genome of OP3 LiM possesses a PilA-related pseudopilin PulG as 

most abundant pilin (peg.1182) suggesting PilA polymerization might be initiated as 

suggested for the Klebsiella oxytoca type II pullulanase secretion system (Peabody et al., 

2003; Köhler et al., 2004; Seitz & Blokesch, 2013). So far, the visualizations have not 

resolved pili on the surface of OP3 LiM. Because of the small cell size of the bacterium, 

advanced tools are required. Pili of ultra-small bacteria have been visualized using 
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cryogenetic (cryo)-TEM (Fig. 1, Luef et al., 2015). OP3 LiM may have similar functional 

pili-like structures.  

 

 

Fig. 1. Cryo-TEM images (2D) of an ultra-small bacterium with pili-like structures, (a) distributed across the cell 

surface, (b) connected to an adjacent bacterium. Scale bar, 100 nm (Luef et al., 2015). 

 

The ATPases PilB and PilT drive energetically the extrusion and retraction of pili 

(Bardy et al., 2003). Cycles of pilus assembly and disassembly have been linked to 

“twitching” motility (Peabody et al., 2003). Several expressed pilT and pilB genes are 

identified in the OP3 LiM proteome. This may provide a mode of motility for the flagellum-

less OP3 LiM cells. In addition, PilT ATPases are involved in the uptake of foreign 

macromolecules which suggests together with many nucleic acid binding domains in 

expressed proteins that nucleic acids are a nutrient for OP3 LiM. A cell-to-cell contact via pili 

has been considered as essential element of predation (Wang et al., 2011; Pasternak et al., 

2014; Pérez et al., 2016). Genomes of epibiotic predators such as Micavibrio and Bdellovibrio 

exovorus JSST also possess genes encoding type IV pili suggesting a function of type IV pili 

for the initial attachment to prey cells (Chanyi & Koval, 2014). 

OP3 LiM shares many characteristics with other epibionic predators, especially with 

the obligate predator Vampirococcus. Both are able to grow under anaerobic conditions, 

which differs they from the strict aerobe bacteria Bdellovibrio, Ensifer and Vampirovibrio. 

Vampirococcus cannot be sustained long enough outside its natural environment to isolate a 

pure culture according to Guerrero et al. (1986). The bacterium appears to absorb the contents 

of their prey Chromatium like a “vampire”, which resulted in name of Vampirococcus 

(Guerrero et al., 1986). We observed the absence of DNA and rRNA in Methanosaeta. 

Growth of OP3 LiM during attachment on the archaeal filaments can be imagined from 

different cell sizes of OP3 LiM cells in TEM and scanning electron microscopy (SEM) 
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images. Some of these filaments were deformed and seemed to have lost their cellular 

proteins responsible for the cell morphology. In conclusion, our description of OP3 LiM 

fulfills the requirements of a Candidatus proposal (Konstantinidis & Rosselló-Móra, 2015). 

We propose to name the OP3 LiM cells “Candidatus Vampirococcus archaeovorus”. 

 

 

6.5 Diversity of candidate phylum Omnitrophica 

Based on 16S rRNA sequences, a diverse range of habitats was identified for the candidate 

phylum Omnitrophica, covering anoxic aquatic and terrestrial environments (Kumar & 

Saravanan, 2010; Morrison et al., 2017). The ubiquity of the phylum may imply a prominent 

role in the functioning of the ecosystem (Pisapia et al., 2017). Genomic insights of candidate 

phylum Omnitrophica has been obtained from draft genomes originating from metagenomes 

and single cell genomes. A draft genome with a size of 4.0 Mb and consisting of 181 contigs 

(Genbank acc. no. LMZT00000000) has been obtained from granulates of wastewater 

treatment plant and described as the most complete Omnitrophica genome (Speth et al., 

2016). Therefore, this study provides the first completely closed high-quality genome of this 

phylogenetic group. The OP3 LiM sequence was reconstructed from metagenomic data of 

methanogenic, limonene-degrading enrichment cultures. OP3 16S rRNA sequences were 

previously found in slow-growing methanogenic enrichment cultures thriving on propionate 

(Shigematsu et al., 2006), butyrate (Tang et al., 2007) and benzene (Luo et al., 2016).  

Omnitrophica is described as phylogenetical broad phylum (Glöckner et al., 2010; 

Kolinko et al., 2012; Ivanova & Dedysh, 2012). The 16S rRNA gene sequence of OP3 LiM 

also indicated a large phylogenetic distinction to the next described species. The sequence has 

an identity of 99% to 16S rRNA genes of LiM clones from our previous study (Rotaru et al., 

2012) and of 98% to the 16S rRNA gene of another clone obtained from benzene-degrading 

methanogenic enrichment cultures (Genbank acc. no. KT025835). Identities of lower than 

95% to other published cloned-derived sequences (Fig. 2), of 77% to the 16S rRNA of the 

next-related single cell genome (Genbank acc. no. ASOC01000103) and of 94% to the next-

related 16S rRNA of a metagenome-derived genome (Genbank acc. no. MNVR01000026) 

represented the phylogenetic diversity. Except for the closed relatedness of OP3 LiM to one 

clone found in a benzene-degrading methanogenic enrichment culture (Genbank acc. no. 

KT025835), the broad phylogeny of candidate phylum Omnitrophica is also confirmed by the 

low 16S rRNA gene similarity of OP3 LiM to the next described OP3-related species of 
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methanogenic enrichment cultures. The sequence has an identity of 82% to genes of clones 

found in propionate-degrading methanogenic enrichment cultures (Genbank acc. no. 

AB232821, AB232806, and AB232814) and of 82% to genes of clones found in butyrate-

degrading methanogenic enrichment cultures (Genbank acc. no. AB248652, AB248653, and 

AB248654). 

 

 

Fig. 2. Phylogenetic 16S rRNA-based tree of OP3 LiM and related organisms, calculated by randomized 

axelerated maximum-likelihood (RAxML) analysis without a filter. The phylogenetical distance of OP3 LiM 

(Genbank acc. no. CP019384) to described species of candidate phylum Omnitrophica and to closely relative 

groups was calculated including all sequences with 16S rRNA gene identity of over 90%, some representatives 

with identities < 90% to the 16S rRNA gene of OP3 LiM as well as the affiliation to Planctomycetes, 

Verrucomicrobia, and Chlamydiae (PVC superpylum). Lentisphaerae were used as outgroup  

(Tree reconstruction in cooperation with K. Knittel, 2017). 

 

At present, the genus “Omnitrophus” has been published as candidatus genus with two 

species. A single cell draft genome, as representative of first substantive genomic data for 

candidate bacterial phyla OP3 (Rinke et al., 2013), was tentatively named “Candidatus 

Omnitrophus fodinae” (Genbank acc. No. ASOC00000000). The draft genome of a 

magnetotactic representative from the candidate phylum Omnitrophica was tentatively named 

“Candidatus Omnitrophus magneticus” (Genbank acc. no. JYNY00000000) (Kolinko et al., 
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2016). With 16S rRNA gene identities of 77% between OP3 LiM and both species (Fig. 2), 

the sequence divergence indicated that OP3 LiM belongs to another genus. We propose to 

name this taxonomic unit "Candidatus Vampirococcus". 

The analysis of the genome of OP3 LiM revealed features unusual for Bacteria. We 

identified a transcription of 85% of the genes in direction of the DNA replication and only 

15% of the genes along the opposite direction. In a large number of Bacteria from diverse 

lineages, strand-specific bias in gene distribution exists to reduce head-on collisions between 

DNA and RNA polymerases (Rocha, 2002; Mao et al., 2012; Saha et al., 2014) and to 

minimize transcriptional abortion, replication delay, and mutagenesis (Chen & Zhang, 2013). 

However, such strong gene strand bias of over 80% is much more important in low G + C 

Firmicutes than in any other taxonomic group (Saha et al., 2014). Interestingly, members of 

Firmicutes were identified as closest neighbors for the OP3 LiM genome by RAST analysis. 

Highest similarity was predicted to the genome structure of Thermoanaerobacter 

tengcongensis MB4. Being a low G + C Firmicute, Thermoanaerobacter tengcongensis has 

almost 87% of genes were identified in the leading strand (Ochman & Santos, 2003). The 

strong bias was explained with the existence of two different isoforms of the DNA 

polymerase III alpha subunit, PolC and DnaE, responsible for synthesis of leading and 

lagging strand (Saha et al., 2014). In other bacteria, DnaE is only responsible for the synthesis 

of both strands and an average of 58% of genes was identified in their leading strand (Rocha, 

2002). The OP3 LiM genome has only an orthologous of DnaE (peg.1001), which identifies it 

as a unique bacterium with respect to the combination of genome organization and DNA 

polymerase. One explanation may be the viral-like metabolic activity shift from a low activity 

as free-living bacterium to the high activity as epibiont. For OP3 LiM, the high organized 

small genome and the efficient replication and transcription machineries are essential based 

on their dependence to prey cells and the necessity of a rapid growth phase. Some phages 

encode typically the majority of their genes on the leading strand (Merrikh et al., 2012) or 

even all of their genes are located on the same strand and are transcripted in the same 

direction (Mrázek & Karlin, 1998; Petrovski et al., 2012). The location of the gene for a large 

multi-enzyme surface protein (4,384 kDa) potentially acting in signal reception and 

transduction and the degradation of macromolecules, directly after genes involved in DNA 

replication and genes for a secretion pathway is an efficient genome organization for a 

predatory epibiont. OP3 draft genomes are fragmented and do not allow an identification of 

the genome organization. Therefore, the presence of the large multifunctional protein was 

investigated. Of the 43 conserved domains in the large protein, several other Omnitrophica 



Chapter 6 – Discussion 

175 

genomes have 13 of these domains. Four glycosyltransferases and one glucosidase domains 

represent the most widely present functions. These enzymes of the degradation of 

polysaccharides suggest that the ultramicrobacteria of the candidate phylum Omnitrophica 

graze on LPSs. Numerous OP3 draft genomes also code for both ssDNA binding domains as 

well as the diguanylate cyclase (GGDE) and signal receiver domain, which could indicate 

signaling as common function of the phylum. Several genomes have protein binding 

chaperaone, SecA protein, a peptidase as well as the ppGpp synthase/hydrolase domains of 

the large protein of OP3 LiM. 

The genome includes several mobile elements. The 23S rRNA gene of OP3 LiM is 

interrupted by a group I intron at position 2,061 bp to 2,768 bp possesses a gene for a 

LAGLIDADG/HNH homing endonuclease. In this study, we visualized the intron in cells of 

different morphologies indicating the self-splicing character of this intron as well as an 

occurred intron RNA transfer. Group I introns are distributed widely in nature. In contrast to 

mitochondria and chloroplasts of lower eukaryotes, they are relatively rare in bacteria 

(Raghavan et al., 2007). But most bacterial 23S rRNA genes contain conserved target 

sequences for intron-encoded homing endonucleases (Nesbø & Doolittle, 2003). The intron in 

the 23S rRNA gene of OP3 LiM is a special feature of the OP3 LiM population. None of 

published draft genomes of members of candidate phylum Omnitrophica contained such an 

intron in the 23S rRNA sequence. However, it has to be noted that the high degree of 

conservation among rRNAs usually causes an incomplete assembly of rRNAs in 

metagenomes. The intron showed similarities to mobile elements of species of other 

taxonomic groups. The first of three introns in the 23S rRNA gene of a clone of 

Thiomargarita sp. (Genbank acc. no. FR774200) showed highest similarity with an identity of 

70%, followed by introns of a Candidatus Gloeomargarita lithophora strain (Genbank acc. no. 

CP017675), of an uncultured gamma proteobacterium (Genbank acc. no. HF954163), and of a 

Synechoccus strain (Genbank acc. no. DQ421380). A pathogenic lifestyle is suggested to 

contribute to the acquisition of mobile elements. Simkania negevensis and Coxiella burnetii, 

both obligate intracellular parasites, contain group I introns, which they might have acquired 

from their eukaryotic hosts (Nesbø & Doolittle, 2003).  

A large number of various inserted genetic elements were identified for a small region 

of 6,505 bp in length, located from position 648,611 bp to 655,115 bp in the OP3 LiM 

genome. Both sites are flanked by genes for 23S rRNA intervening sequence (IVS) proteins 

(122 aa; peg.581 and 209 aa; peg.586) (Fig. 3). Unlike to group I introns, which are located in 

functionally vital loci, IVSs are found in highly variable regions and not in functionally 
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essential domains after they are excised from the rRNA by ribonucleases (Everett et al., 

1999). A group II intron was found in the genetic element, located between two copies of a 

gene of unknown function (peg.582 and peg.585) (Fig. 3). Both duplicated genes called CHP1 

and CHP2 contained a highly variable region of 83 bp, potentially the insertion sites of the 

group II intron. An activity of the intron can attribute by the predicted reverse transcriptase 

gene, a RNA-dependent DNA polymerase (peg.584). A gene of a third 23S rRNA IVS protein 

(133 aa; peg.583) is also encoded by the group II intron and upstream (Fig. 3), a  

G homopolymer of 21 bases is additionally identified. Bacterial group II introns are often 

fragmented and have sizeable extraneous insertions (Dai & Zimmerly, 2002; Darmon & 

Leach, 2014). The deviation in GC content and GC skew from average of the OP3 LiM 

chromosome implied the presence of exogenous DNA (Chapter 5, Fig.9).  

 

Fig. 3. Representation of the arrangement of the various genetic elements contained in the small region of 6,505 

bp in the OP3 LiM genome.  

 

In no other genome of currently described Omnitrophica species, the entire region 

with such variation of genomic elements was predicted, confirming the acquisition of foreign 

DNA for OP3 LiM. However, currently published Omnitrophica draft genomes possess a 

homologue of one copy of the duplicated genes with unknown function (CHP1 and CHP2) 

suggesting the duplication as result of an insertion. Still, it has to be noted that the absence of 

a repetitive element in a draft genome is expected as a result of the assembly process. For 

OP3 LiM, only a manual inspection of the read mapping frequency together with mismatches 

in the matched reads revealed the existence of the intron. Homologues for all three genes for 

23S rRNA IVS proteins (peg.581, peg.583, peg.586) were present in draft genomes of other 

OP3. Interestingly, both genes located on the sides of the multiple insertion region of the OP3 

LiM sequence (peg.581 and peg.586) were only detected in metagenomes obtained from 

groundwater of the same sample source (project acc. no. PRJNA288027) (Anantharaman et 

al., 2016). Similarity to the third IVS gene (peg.583) encoded by the group II intron was only 

found to a gene of a groundwater metagenome obtained from another source of sample 

(Genbank acc. no. OIO35142). Homologues of the reverse transcriptase gene (peg.584) 

without the simultaneous detection of CHP1 were not present in genomes of other candidate 

phylum Omnitrophica but in genomes of species of other taxonomic groups. A gene of a 
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metagenome-derived draft genome of Candidate division WOR-1 had the highest similarity 

(Genbank acc. no. OGC23312). 

 

 

6.6 Methanogenic community 

6.6.1 Composition of the microbial community 

Different groups of anaerobic microorganisms decompose organic matter in a series of steps 

in sulfate-reducing or methanogenic habitats. Methanogenesis is typically for anoxic 

freshwater environments producing methane and carbon dioxide as terminal products (Ito et 

al., 2011; Pasche et al., 2011). The biological methane production is usually dependent on 

syntrophic interactions (Stams & Plugge, 2009; Ito et al., 2011). Methanogenic limonene 

degradation was also considered to depend on syntrophic interactions between the members 

of the microbial community (Rotaru, 2009). OP3 LiM was abundantly detected in these 

enrichment cultures. The instability of cultures indicated disturbances in the microbial 

relationships. However, syntrophy is a tightly regulated interaction between partners. 

Therefore, we propose that the lack of growth was caused by overwhelming predation by OP3 

LiM. Because species of candidate phylum Omnitrophica were previously detected in other 

methanogenic enrichment cultures thriving on different carbon sources (Shigematsu et al., 

2006; Tang et al., 2007) and these cultures showed instability (Luo et al., 2016), we 

characterized the member populations to gain a better understanding of the community and 

consequently of the role of OP3 LiM as one of them. The mechanism that initiated the 

limonene degradation in methanogenic consortia was investigated. 

The composition of the microbial community was previously determined by 16S 

rRNA gene clone libraries (Rotaru, 2009). OTUs were affiliated to the bacterial lineages of 

Bacteroidetes, Deltaproteobacteria, Candidate Division OP3, and Firmicutes. Archaeal 16S 

rRNA gene sequences were represented by OTUs related to Methanomicrobiales and 

Methanosarcinalles (Rotaru et al., 2012). A proportion of 40% Bacteria and 33% Archaea 

was identified by CARD-FISH. OP3 LiM cells were detected abundantly (18%) in limonene-

degrading enrichments (Rotaru et al., 2012).  
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Tab. 1. Overview on obtained population genomes of members of the limonene-degrading methanogenic 

enrichment cultures. 

Population genome Contig no. Total size (bp) Largest contig (bp) N50 

Aminiphilus 107 2,509,332 426,441 249,750 

Anaerolinea 729 8,190,433 675,216 148,540 

Coriobacterineae 34 2,683,747 340,261 122,465 

Desulfovibrionaceae1 13 3,064,128 825,615 459,888 

Marinilabiliaceae 313 2,113,112 256,750 39,198 

Mesotoga 187 2,953,278 321,343 62,338 

Methanoculleus1 79 2,758,179 266,907 56,802 

Methanoregula1 26 2,827,082 1,289,313 854,002 

Methanosaeta1 92 2,562,790 130,105 47,079 

Methanospirillum1 153 3,387,623 221,581 53,058 

Omnitrophica (OP3 LiM)2 1 1,974,201 1,974,201 1,974,201 

Prolixibacteraceae 675 11,653,373 271,462 52,779 

Synergistaceae1 451 997,826 12,213 2,567 

Syntrophaceae1 141 3,766,219 359,483 137,984 

Syntrophobacteraceae1 198 3,704,154 149,536 66,508 

Thermoanaerobaculum 125 4,511,195 279,659 67,650 

Treponema 38 2,768,450 522,577 257,485 

1 Improved bins produced in cooperation with Gerrit A. Martens as part of his student project. 
2 Closed population genome of OP3 LiM, reconstructed in this thesis. 

 

The metagenomes from size-fractionated cells yielded assembled contigs of 139 Mb, 

69 Mb and 42 Mb for Pe1, Pe2 and Pe3, respectively. This corresponded to 8–30 microbial 

species considering an average microbial genome. Binning of contigs into species-level 

groups by Metawatt-3.5.2 (Strous et al., 2012) revealed 16 population genomes besides OP3 
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LiM (Tab. 1). For a comprehensive analysis of the complex syntrophic community, five 

metagenomic assemblies obtained from 454, MiSeq, Pe1, Pe2 and Pe3 datasets and a 

metagenome assembled from the combined reads of Pe1, Pe2 and Pe3 were combined to 

obtain population genomes. 

Draft genomes from metagenomic data are incomplete (Sharon & Banfield, 2013). 

CheckM 0.9.7 (Parks et al., 2015) was used to estimate the completeness and contamination. 

Selected population genomes were reassembled with taxonomic profiling by Metawatt, read 

mapping and de novo reassembly by SPAdes 3.3.0 (Bankevich et al., 2012) (Tab. 1; 

Appendix Table S1). Refined population genomes were related to type strains using JSpecies 

(http://jspecies.ribohost.com, Richter & Rosselló, 2009) (Appendix Table S1). 

The enrichment culture included populations of the genera Methanoregula, 

Methanoculleus, Methanosaeta, Methanospirillum, Syntrophus, Syntrophobacter, 

Desulfovibrio, and Synergistaceae. High similarities to published genomes were identified 

(Appendix Table S1). The population genome classified as Methanosaeta represents a species 

of Methanosaeta concilii that was presented by the genome of strain GP6. Methanospirillum 

hungatei JF-1 is the only genome of the family Methanospirillaceae (Gunsalus et al., 2016). 

A population genome affiliated with the genus Methanospirillum, but represented a new 

species. Average nucleotide identity (ANI) values of over 80% indicated the presence of 

novel species of Desulfovibrio and of Methanoculleus. Methanosaeta was absent in the OP3 

LiM enriched metagenome, in contrast to all other population genomes.  

These population genomes reflect a syntrophy between limonene degradation and 

methane generation. The composition of the limonene-degrading, methanogenic enrichment 

cultures showed high similarities to a long-chain alkane-degrading methanogenic community 

(Embree et al., 2014; Embree et al., 2015). The conversion of hexadecane required the 

interaction of syntrophic bacteria with methanogenic archaea. Embree et al. (2014) identified 

methanogens related to Methanosaeta concilli, Methanoculleus marisnigri and 

Methanocalculus corresponding to the same species (Methanosaeta concilli), genus 

(Methanoculleus) and order of Methanomicrobiales (Methanocalculus, Methanospirillum and 

Methanoregula) among the population genomes. Methanosaeta is the specialist for acetate, 

whereas the other methanogens are specialists for hydrogen and formate as substrate. 

Desulfovibrio sp. and Smithella, a member of the family Synthrophaceae, are the syntrophs in 

the hexadecane enrichment, with Smithella as key organisms for the initial steps of alkane 

activation (Embree et al., 2014). On limonene, members of Syntrophus sp., Syntrophobacter 

sp., Desulfovibrio sp. and Synergistaceae are involved in syntrophic processes.  
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6.6.2 Outlook 

This study focused initially on an assembly and annotation of the OP3 LiM genome and the 

visualizations of interactions between OP3 LiM and community members. On the basis of 

these results, a complete study with metaproteomes, metagenomes and metatranscriptomes of 

size-fractionated cells of the enrichment was performed. The results of this study were so far 

only used to identify the proteome of OP3 LiM and to verify the OP3 LiM genome. The 

syntrophic relations within the limonene-degrading methanogenic enrichment can be 

investigated in detail. The study of the so-far unknown limonene degradation pathway is 

promising for the discovery of novel metabolisms. Metagenomes and metaproteomes will 

provide insight into the importance of the syntrophic intermediates acetate, hydrogen and 

formate. The metatranscriptome can complement the metaproteome, as it likely detects more 

transcribed genes than the metaproteome analysis identifies proteins. For these studies, the 

population genomes will be starting point and the identification of proteins and transcripts 

should be genome specific. 
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