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ABSTRACT (300 WORDS) 

The transcriptional circadian clock network is tuned into a 24-hour oscillator by numerous post-

translational modifications on the proteins encoded by clock genes, differentially influencing their sub-

cellular localisation or activity. Clock proteins in any circadian organism are subject to post-translational 

regulation, and many of the key enzymes, notably kinases and phosphatases, are functionally conserved 

between the clocks of mammals, fungi, and plant. We now establish sumoylation, the post-translational 

modification of target proteins by the covalent attachment of the small ubiquitin-like modifier protein 

SUMO, as a novel mechanism regulating key clock properties in the model plant Arabidopsis. Using two 

different approaches, we show that mutant plant lines with decreased or increased levels of global 

sumoylation exhibit shortened or lengthened circadian period, respectively. One known functional role of 

sumoylation is to protect the proteome from temperature stress. The circadian clock is characterised by 

temperature compensation, meaning that proper timekeeping is ensured over the full range of 

physiologically relevant temperatures. Interestingly, we observed that the period defects in sumoylation 

mutant plants are strongly differential across temperature. Increased global sumoylation leads to 

undercompensation of the clock against temperature and decreased sumoylation to overcompensation, 

implying that sumoylation buffers the plant clock system against differential ambient temperature. 
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Sumoylation, Arabidopsis thaliana, temperature compensation, post-translational modification (PTM), 

circadian period. 

 

INTRODUCTION 

Post-translational modification instantly alters the characteristics of target proteins and provides 

organisms with a rapid means to respond to changes in their surrounding environment without having to 



realign transcription or translation to that change. Circadian timekeeping is dependent on post-

transcriptional and post-translational regulation of clock gene products to tune the transcriptional system 

into a 24-hour oscillator (Gallego and Virshup, 2007; Mehra et al., 2009; Seo and Mas, 2014).  

 Like in other higher clades of circadian organisms, the most abundant post-translational 

modification identified to date in the plant circadian clock is phosphorylation (Hsu and Harmer, 2013; 

Choudhary et al., 2015). Phosphorylation can alter the stability of clock proteins and alter their function 

(Fujiwara et al., 2008). Interestingly, the role of post-translational modifications in timekeeping appears 

to be well-conserved. For example Casein Kinase (CK) 1 and 2 are involved in circadian regulation in 

mammals and fungi (Lee et al., 2009; Querfurth et al., 2011). Both kinases were recently implicated in 

timekeeping in the simplistic proto-clock system of the green algae Ostreococcus tauri (O’Neill et al., 

2011; van Ooijen et al., 2013a; van Ooijen et al., 2013b; Le Bihan et al., 2015). In plants, phosphorylation 

of CCA1 by Casein Kinase (CK) 2 affects its binding to target promoters (Daniel et al., 2004; Portolés 

and Más, 2010). 

  Increasing evidence implicates several additional PTMs in timekeeping in various model 

organisms (van Ooijen and Millar, 2012). For example, sumoylation functions as a regulator of the 

mammalian clock through dynamic modification of BMAL1 (Cardone et al., 2005; Lee et al., 2008). 

Recent proteomic datasets suggest that sumoylation in plants often co-regulates function of target proteins 

with phosphorylation (Nukarinen et al., 2017). Sumoylation is the modification of proteins by the Small 

Ubiquitin-related MOdifier, SUMO; a reversible and highly dynamic modification that is conserved 

throughout the eukaryote lineage (Melchior, 2000). SUMO is a ~10 kDa protein that structurally 

resembles ubiquitin and requires maturation by SUMO proteases before attachment to a target protein (Ha 

and Kim, 2008). SUMO is attached covalently to a lysine residue in the substrate protein, in an ATP-

dependent reaction involving an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3) 

(Fig. 1) (Gareau and Lima, 2010). Whilst E1 and E2 are vital enzymes (Saracco et al., 2007), E3 is 



biochemically not strictly required for the formation of a covalent bond between SUMO and substrate 

(Desterro et al., 1999). However, in vitro and in vivo studies show that it does facilitate and enhance 

binding (Kagey et al., 2003; Miura et al., 2009; Okada et al., 2009). Sumoylation is reversible by 

deconjugation of SUMO from a substrate protein, by the same SUMO proteases required for maturing 

SUMO (Chosed et al., 2006; Colby et al., 2006; Gareau and Lima, 2010).  

Abiotic stress causes substantial increases in the level of sumoylation and the overall number of 

sumoylated proteins (Kurepa et al., 2003; Saracco et al., 2007; van den Burg et al., 2010; Miller et al., 

2010). Upon heat stress, SUMO conjugation rapidly increases, reducing the overall level of free SUMO. 

The modification is only transient and sumoylation levels return to normal a few hours after heat shock 

(Kurepa et al., 2003; Saracco et al., 2007). Increased sumoylation in response to stress is thought to be an 

important mechanism by which cells can reprogram transcription to cope with a changed environment 

(Yoo et al., 2006; Tomanov et al., 2013). In plants, many abiotic stress responses are gated by the 

circadian clock (reviewed in Spoel and van Ooijen, 2013). Plants respond to milder changes in 

temperature leading to altered growth and development in a process called thermomorphogenesis (Quint 

et al., 2016). Remarkably, several of the proteins involved in thermomorphogenesis have been identified 

as sumoylation targets (Conti et al., 2014; Sadanandom et al., 2015; Tan et al., 2015; Lin et al., 2016), 

indicating that SUMO plays a role not only in regulating response to temperature extremes, but also 

within the temperature range not regarded as 'stressful'. 

 The circadian clock is characterised by temperature compensation, which means that the free 

running period of the clock remains stable over a wide range of physiologically relevant temperatures 

(Pittendrigh, 1954; Kondo et al., 1993; Somers et al., 1998; O’Neill and Reddy, 2011). Temperature 

compensation is a defining feature of the circadian clock and though the underlying mechanism(s) is/are 

not fully elucidated, it is clear that it involves transcriptional, post-transcriptional, and post-translational 

regulation. In plants, temperature compensation has been shown to involve the clock genes CCA1, LHY, 



RVE8, PRR7, PRR9, and GI, covering all expression phases of a full 24h cycle (Gould et al., 2006; 

Salomé et al., 2010; Rawat et al., 2011). Additionally, several genes involved in light sensing and 

photoperiodic responses are involved in temperature compensation (Edwards, 2005; Edwards et al., 2006; 

Ito et al., 2012; Gould et al., 2013; Nagel et al., 2014; Edwards et al., 2015). At the post-translational 

level, phosphorylation and in particular CK2 activity, are known regulators of timekeeping and 

temperature compensation (Sugano et al., 1998; Daniel et al., 2004; Baker et al., 2009; Lee et al., 2009; 

van Ooijen et al., 2013a). Inhibition of phosphorylation through mutations or chemical treatment 

compromises temperature compensation in plants, mammals, and fungi (Mehra et al., 2009; Portolés and 

Más, 2010; Zhou et al., 2015). In this manuscript, we report our investigations into a possible role of 

sumoylation in circadian timekeeping, and notably, given the known roles of sumoylation in temperature 

responses, the potential link between sumoylation and temperature compensation of circadian rhythms. 

 

MATERIALS AND METHODS 

 

Plant lines, genotyping, and growth conditions 

The Columbia-0 plant lines ots1 ots2 (Conti et al., 2008); siz1-2 (Miura et al., 2005); sum1-1 (Saracco et 

al., 2007); SUM1-OX, and sum1-1 35S:amiR-SUM2 (van den Burg et al., 2010) were described 

previously. The reporter line CCA1pro:LUC, in Col-0 background was kindly provided by Karen 

Halliday (University of Edinburgh). 

CCA1pro:LUC Col-0 was crossed with ots1 ots2 and siz1 to give CCA1pro:LUC ots1 ots2 and 

CCA1pro:LUC siz1. F1-F3 progeny were genotyped by PCR to confirm T-DNA insertions (SIZ1 LP 5’-

gagctgaagcatctggttttg-3’ and RP 5’-cacgacagatgaagcattgtg-3’ (Miura et al., 2007), OTS1 RP 5’-

cgacaagaagtggtttagacc-3’ (Conti et al., 2008), and LP 5’-gatgatgcaaggaggctagtg-3’, OTS2 LP 5’-

gcttcttccggtttaaaccac-3’ and RP 5’-tttttcttctggcgactcatg-3’, and SALK Lba1 5’-tggttcacgtagtgggccatcg-3’ 



(Alonso et al., 2003)) and presence of transgene (CCA1prom 5’-tccatttccgtagcttctggtctc-3’, LUCrev 5’-

gccttatgcagttgctctcc-3’). Soil-grown plants were grown under long day conditions (16 hr light / 8 hr dark) 

at 22°C using 60-80 µmol × m-2 × s-1 white LED tube light (Impact, T8). Seedlings were grown on half 

strength Murashige and Skoog media without vitamins and sucrose at 21°C in 100 µmol × m-2 × s-1 white 

tube light (Phillips, Alto II). 

 

Luminescent imaging 

The protoplast transfection vector system for rapid circadian imaging was provided by David Somers 

(Kim and Somers, 2010) and experiments were carried out at 20ºC under constant blue (470 nm) and red 

(630 nm) LED light as described previously (Hansen and van Ooijen, 2016). For imaging of seedlings, 5-

6-day old seedlings were sprayed with luciferin (5 mM luciferin (Biosynth AG), 10 mM Tris pH 8, 0.01% 

Triton), transferred to constant light conditions (50 µmol × m-2 × s-1 630 nm red LED light and 25 µmol × 

m-2 × s-1 470 nm blue LED light) at 15°C, 21°C or 27°C, and imaged every 2 h with a CCD camera 

(Hamamatsu). Images were analysed with MetaMorph software. All Circadian parameters described in 

this paper were determined using nonlinear regression analysis in GraphPad Prism, similar to what is 

published in (Putker et al., 2017): A centered fifth-order polynomial fit is performed to remove trend and 

create a residuals plot of the data on which a circadian damped cosine wave is fitted to determine period 

length using the user-defined equation: Y= (m*X) + amplitude*exp(-k*X)*cos(((2*π*(X-phase))/period)) 

where X is time, Y is signal, k is the decay constant (such that 1/k is the half-life), which is constrained to 

>0. Initial values are chosen automatically (m: 1; phase: 1; period: 24). The range of time that is analysed 

for both fits is set based on visual inspection of raw data, and usually excludes the first part of any time 

series where traces can be erratic, as well as the last part that is often dampened. A sample dataset 

analysed as above can be obtained as a Prism file from the corresponding author on request.  

 



RESULTS 

Sumoylation tunes circadian rhythms in plants 

Besides the several SUMO isoforms itself, the sumoylation machinery involves the enzymatic activities 

of a SUMO Activating Enzyme, a SUMO Conjugating Enzyme, SUMO Ligases, and specific SUMO 

Proteases (Fig. 1). We subjected existing Arabidopsis lines defective in these activities to a cell-based 

clock assay to rapidly determine if sumoylation could be important for timekeeping. Leaf mesophyll cells 

were isolated from adult wild-type and mutant plants, and these so-called protoplasts were transfected 

with a construct carrying the clock-regulated CCA1 promoter driving expression of the firefly luciferase 

protein (CCA1pro:LUC) for longitudinal imaging of circadian rhythms. This assay provides a rapid and 

reliable means of assessing clock defects (Kim and Somers, 2010; Hansen and van Ooijen, 2016) in any 

line where the mutant phenotype does not affect protoplast viability. Most mutant or transgenic lines 

tested exhibited no or only a minor period difference to wild-type plants (Fig. 2A and B), presumably 

reflecting the known functional redundancy between isoforms and enzymes within the sumoylation 

machinery (Saracco et al., 2007) and/or the well-documented capacity of the circadian clock network to 

buffer against perturbations (Zhang and Kay, 2010). However, a double mutant of the two isoforms of 

SUMO protease OVERLY TOLERANT TO SALT (ots1 ots2) exhibited a marked lengthening in circadian 

rhythms. The ots1 ots2 mutant exhibits an increased level of overall sumoylation (Conti et al., 2008), 

suggesting that sumoylation might be a delay mechanism within the clock network. To verify that result, 

the ots1 ots2 line was crossed to the stably transgenic, rhythmically luminescent clock marker line 

CCA1pro:LUC. Indeed, a comparison of the resulting luminescent signal reveals that increased global 

sumoylation affects circadian period length (Fig. 3A). We hypothesised that if increased overall 

sumoylation slows circadian rhythms, decreased global sumoylation might have the opposite effect. 

Decreased global sumoylation is observed in the SUMO ligase mutant siz1 (Miura et al., 2005), which 

could not reliably be tested in the protoplast assay due to its dwarfed phenotype that affects protoplast 



viability. The siz1 line was therefore crossed to the CCA1pro:LUC line to analyse clock defects on a 

whole-plant level. Circadian rhythms in the resulting line revealed that reduced overall levels of 

sumoylation are indeed associated with a short circadian period (Fig. 3B), supporting the notion that 

SUMO ligase SIZ1 and SUMO proteases OTS1/OTS2 exhibit opposing effects in tuning the circadian 

clock in plants. 

 

Temperature compensation is affected by sumoylation 

Given the general role of sumoylation in temperature responses, the effects of siz1 and ots1 ots2 on 

circadian period were analysed at moderate cold and warm conditions. Seedlings of CCA1pro:LUC siz1, 

CCA1pro:LUC ots1 ots2, and the parent line CCA1pro:LUC Col-0 were grown at 21ºC for 5-6 days 

under light-dark cycles, and then transferred to luminescent imaging conditions of constant light at either 

15ºC or 27ºC. Remarkably, whilst a long-period circadian phenotype was very evident in the 

CCA1pro:LUC ots1 ots2 at 15ºC (Fig. 4A), there was no significant difference in circadian period at 27ºC 

(Fig. 4A). This result suggests that desumoylation is required for proper temperature compensation at 

colder temperatures. To test whether the opposite is true for SUMO conjugation, CCA1pro:LUC 

expression in the siz1 background was compared to the parent line at 15 and 27º C. Astonishingly, we 

observed no significant period difference at 15º C whilst a strong period shortening effect was observed at 

27°C (Fig. 4B). This result shows that in contrast to SUMO protease activity, SUMO ligase activity is 

especially important for circadian timekeeping at higher temperatures. 

 The effects of reduced SUMO ligase and protease activity are better visualised if the quantified 

period differences are plotted relative to those observed in wild-type plants (Fig. 5). Biochemical 

reactions proceed faster at higher temperatures, except those that are temperature-compensated such as 

the circadian system. The clock in the siz1 background is undercompensated at higher temperatures (i.e. 

speeds up with temperature increase), indicating that SUMO ligase activity is required for temperature 



compensation at high temperatures. The clock in the ots1 ots2 background is undercompensated at the 

lower temperatures (i.e. slows down with decreased temperature), indicating that SUMO protease activity 

is required for temperature compensation at low temperatures.  

 

DISCUSSION 

The data in figures 1-3 imply that sumoylation contributes to the tuning of circadian period, differentially 

over moderate temperature ranges. Combined, these data suggest sumoylation is a delay mechanism 

under normal lab conditions of ~21º C. To compensate clocks against temperature, SIZ1 activity (i.e. 

SUMO ligase activity (Miura et al., 2005)) negates the speeding that higher temperatures would have, 

whereas OTS1/2 activity (i.e. SUMO protease activity (Conti et al., 2008)) negates the slowing effect of 

decreased temperature. It is important to note that although reported differences to controls in this study 

are relatively small, the true effect of these enzymes on the clock and temperature compensation might 

well be greater as the several additional SUMO ligases and proteases that have been identified might 

balance mutant phenotypes. However, no significant period changes were observed upon mutation of both 

predominant SUMO isoforms nor upon overexpression of the only known conjugating enzyme (Figure 2) 

in a protoplast assay system at 21 ºC. The authors deem it likely that future studies using stably transgenic 

clock marker lines in additional mutant backgrounds will reveal clock phenotypes in these mutants that, 

too, are dependent on environmental conditions: the data in Figure 5 suggest that had the original screen 

been carried out at 27 or 15 ºC, the ots1/ots2 or siz1 mutant backgrounds, respectively, might not have 

displayed their phenotype. A second important note is that temperature might not be the only 

environmental factor that influences the overt phenotypes of sumoylation mutants. In the supplementary 

files of a previous study (Jin et al., 2008), the effects of the siz1 mutation on circadian rhythms in red 

light versus blue light were compared. The authors of that study concluded that there were no changes in 

circadian period length, although no statistical analyses were reported. Performing these analyses using 



the published period estimates, standard deviations, and replicate numbers (Supplementary Figure 1), we 

find period differences, while biologically small, that are statistically significant for some genotypes, and, 

crucially, depend on light conditions. Raw data are only provided for the red light experiment, but based 

on the published period estimates, a slight period shortening was observed at 21 ºC under blue light: not 

dissimilar to results presented here. Our current results suggest that this effect might have been more 

pronounced if experiments were carried out at slightly lower temperatures. Unfortunately, both sets of 

results are difficult to compare as in the current study results were gathered under red ánd blue light. It is 

however an interesting avenue for further study to elucidate if the phenotype of the siz1 mutation and 

other sumoylation mutants depend on light spectrum as well as temperature. 

 It is not likely that the effects of sumoylation mutants on the clock are mediated via differential 

sumoylation of a single target. Indeed, a small number of clock-relevant proteins have already been 

reported to be sumoylated (Miller et al., 2010; López-Torrejón et al., 2013; Lin et al., 2016). To obtain a 

general idea of clock-relevant targets that might be subject to sumoylation, we compared the identified 

SUMO targets from a proteome-wide screen (Miller et al., 2010) with known circadian-expressed 

transcripts (Covington et al., 2008). From the 297 known SUMO targets for which transcript expression 

profiles were available, 43% (127) are encoded by a circadian expressed transcript (Fig. 5A and 

Supplementary Table 1), which is more than the ~30% that would be expected by chance. A GO analysis 

(Mi et al., 2017) of the 127 SUMO targets that have circadian transcripts returned the protein classes 

'transcription factor', and 'nucleic acid binding' as the most frequent (Fig. 5B). A GO-term enrichment 

analysis comparing the 127 to the set of circadian transcripts returned: helicase activity, negative regulation 

of transcription (DNA templated), negative regulation of gene expression, and chromatin and chromosome 

organisation as some of the most enriched terms. Not surprisingly, cellular compartments within the nucleus 

were enriched, including nucleolus, chromosome and nucleoplasm (Supplementary Table 2-4). 

Interestingly, histone H2B is part of the overlapping dataset. H2B is conserved in the eukaryote linage, 



and sumoylation was observed not only in plants but also in yeast and humans (Nathan et al., 2006; 

Vertegaal et al., 2006). Modification of H2B by ubiquitin E3 ligases is required for proper timekeeping in 

both Arabidopsis and mammals (Himanen et al., 2012; Tamayo et al., 2015). Mining existing datasets 

could point to more proteins on which regulatory sumoylation is functionally conserved, or to proteins 

with a conserved function in timekeeping. However, not every clock-relevant protein is encoded by a 

rhythmically expressed transcript, nor does every rhythmically expressed transcript have a product that is 

involved in timekeeping. Detailed biochemical experimental studies will now be necessary to identify the 

target proteins through which sumoylation affects timekeeping and, more importantly, to characterise the 

effect that sumoylation has on the biochemical properties of these target clock proteins. 
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FIGURE LEGENDS 

Fig. 1: The sumoylation pathway 

A) The precursor SUMO is C-terminally cleaved by SUMO proteases. Mature SUMO is bound by 

SUMO Activating Enzyme (SAE) and subsequently transferred to SUMO Conjugating Enzyme (SCE). 

Ligation to a lysine residue can be facilitated by SUMO ligases. One or more lysine residues on a target 

protein can be sumoylated by a single or a chain of SUMO. Modification by SUMO can be reversed by 

SUMO proteases. The SUMO machinery enzymes investigated in this study are indicated in bold. 

 

Fig. 2: Sumoylation affects timekeeping in plants 

A) Transient expression of CCA1pro:LUC in protoplasts from the indicated mutant backgrounds imaged 

in constant light at 20ºC. SUMO isoforms are indicated (SUM1, SUM2); SCE1 is Sumo Conjugating 

Enzyme 1; OTS1/2 is Overly Tolerant to Salt homolog 1 or 2; amiR stands for artificial micro-RNA. The 

ots1 ots2 data is scaled to the right y-axis. B) Circadian period as calculated from the traces in (A) (Mean 

value +/- SEM, n = 7 biological replicates for all genotypes except ots1 ots2 (n = 6). Significant 

differences from Col-0 were determined by ordinary one-way ANOVA with Dunnett's multiple 

comparisons test. P-value: >0.05 (n.s.), <0.01 (**), <0.0001 (****)). Result has been replicated in three 

independent biological replicate experiments. 

 

Fig. 3: SUMO protease and ligase activities have opposing effect on circadian period 

Circadian gene expression as reported by CCA1pro:LUC was analysed in the Col-0 background (black 

traces) compared to the ots1 ots2 (A) or siz1 (B) mutant backgrounds at 21ºC. Resulting luminescent 

traces (left) revealed significant changes to the period (right) of circadian rhythms (mean value +/- SEM 

of the indicated number of biological replicates; comparisons between mutant data and wild-type using 



unpaired t-tests; P-values as indicated). Result has been replicated in three independent biological 

replicate experiments. 

 

Fig. 4: Circadian rhythms in ots1 ots2 and siz1 at high and low temperatures  

Seedlings of CCA1pro:LUC ots1 ots2 (A-B) and CCA1pro:LUC siz1 (C-D) compared to the parent line 

CCA1pro:LUC Col-0 imaged at 27°C (top) or 15°C (bottom) in constant light over 4 days.  Luminescent 

traces revealed significant changes to the period of circadian rhythms (mean value +/- SEM of the 

indicated number of biological replicates; comparisons between mutant data and wild-type using unpaired 

t-tests; P-values as indicated). Result has been replicated in two independent biological replicate 

experiments. 

 

Fig. 5: Differential effects on the circadian period of mutants of the SUMO machinery across a 

range of physiologically relevant temperatures 

CCA1pro:LUC ots1 ots2 and CCA1pro:LUC siz1 period difference from parent line at 27°C, 21°C, and 

15°C, from traces in Fig. 3 and 4. Mean of difference in period is provided +/- SEM, significant 

differences were determined by t-tests between the mutant and the parent line for each temperature. P-

value: >0.05 (n.s.), <0.01 (**), <0.001 (***), <0.0001 (****). Result has been replicated in two (15 and 

27ºC) or three (21ºC) independent biological replicate experiments. 

 

Fig. 6: Overlap between sumoylation targets and circadian transcripts 

A) Venn diagram of overlap between sumoylated proteins identified by Miller et al. (2010) and all 

circadian transcripts in the dataset from Covington et al. (2008). B) Protein classes associated with the 

overlapping dataset assigned using Panther. Panther protein class IDs indicated in brackets. 
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Fig. 2: Sumoylation affects timekeeping in plants 
A) Transient expression of CCA1pro:LUC in protoplasts from the indicated mutant backgrounds imaged in 

constant light. SUMO isoforms are indicated (SUM1, SUM2); SCE1 is Sumo Conjugating Enzyme 1; OTS1/2 
is Overly Tolerant to Salt homolog 1 or 2; amiR stands for artificial micro-RNA. The ots1 ots2 data is scaled 

to the right y-axis. B) Circadian period as calculated from the traces in (A) (Mean value +/- SEM, n = 7 
biological replicates for all genotypes except ots1 ots2 (n = 6). Significant differences from Col-0 were 

determined by ordinary one-way ANOVA with Dunnett's multiple comparisons test. P-value: >0.05 (n.s.), 
<0.01 (**), <0.0001 (****)). 
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Fig. 3: SUMO protease and ligase activities have opposing effect on circadian period  

Circadian gene expression as reported by CCA1pro:LUC was analysed in the Col-0 background (black traces) 
compared to the ots1 ots2 (A) or siz1 (B) mutant backgrounds. Resulting luminescent traces (left) revealed 
significant changes to the period (right) of circadian rhythms (mean value +/- SEM of the indicated number 
of biological replicates; comparisons between mutant data and wild-type using unpaired t-tests; P-values as 

indicated).  
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� �Fig. 4: Circadian rhythms in ots1 ots2 and siz1 at high and low temperatures Seedlings of CCA1pro:LUC 

ots1 ots2 (A-B) and CCA1pro:LUC siz1 (C-D) compared to the parent line CCA1pro:LUC Col-0 imaged at 
27°C (top) and 15°C (bottom) in constant light over 4 days.  Luminescent traces revealed significant 
changes to the period of circadian rhythms (mean value +/- SEM of the indicated number of biological 

replicates; comparisons between mutant data and wild-type using unpaired t-tests; P-values as indicated). 
� �   
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Fig. 5: Differential effects on the circadian period of mutants of the SUMO machinery across a range of 
� �physiologically relevant temperatures  

CCA1pro:LUC ots1 ots2 and CCA1pro:LUC siz1 period difference from parent line at 27°C, 21°C, and 15°C, 
from traces in Fig. 2 and 3. Mean of difference in period is provided +/- SEM, significant differences were 

determined by t-tests between the mutant and the parent line for each temperature. P-value: >0.05 (n.s.), 
� �<0.01 (**), <0.001 (***), <0.0001 (****).   
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Fig. 6: Overlap between sumoylation targets and circadian transcripts  
A) Venn diagram of overlap between sumoylated proteins identified by Miller et al. (2010) and all circadian 
transcripts in the dataset from Covington et al. (2008). B) Protein classes associated with the overlapping 

dataset assigned using Panther. Panther protein class IDs indicated in brackets.  
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Supplemental Figure S1:
Analysis of the siz1 mutant line period estimates reported in Jin et al. 2008

Ordinary one-way ANOVA with multiple comparisons to the Col-0 wild-type control, using the period, 
SD, and replicate numbers as provided in Jin et al., 2008 (Table S1 in that paper).  Small but in some 

cases significant differences are observed that depend on genotype as well as light conditions. 
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