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A B S T R A C T

The aim of this study was to optimise and evaluate an intracellular cytokine staining (ICS) assay for assessment
of T cell IFN-γ responses in chickens vaccinated against Newcastle disease (ND). We aimed to validate currently
available antibodies to chicken IFN-γ using transfected CHO cells. Moreover, this ICS assay was evaluated for use
to detect mitogen and antigen induced IFN-γ production in chicken peripheral blood leucocytes.

Chickens from an inbred white leghorn line containing two MHC haplotypes, B19 and B21, were divided into
three experimental groups; one group was kept as naive controls, one group was vaccinated intramuscularly
twice with a commercial inactivated ND virus (NDV) vaccine, and the last group was vaccinated orally twice
with a commercial live attenuated NDV vaccine. PBMC were ex vivo stimulated with ConA or with NDV antigen.
The ICS assay was used to determine the phenotype and frequency of IFN-γ positive cells. ConA stimulation
induced extensive IFN-γ production in both CD3+TCRγδ+ (γδ T cells) cells and CD3+TCRγδ− cells (αβ T cells),
but no significant differences were observed between the experimental groups. Furthermore, a large proportion
of the IFN-γ producing cells were CD3− indicating that other cells than classic T cells, secreted this cytokine.
NDV antigen stimulation induced IFN-γ production but to a lower extent than ConA and with a large variation
between individuals. The CD3+TCR1γδ−CD8α+ (CTL) population produced the highest NDV specific IFN-γ
responses, with significantly elevated levels of IFN-γ producing cells in the B19 chickens vaccinated orally with
live attenuated NDV vaccine. This was not the case in the B21 animals, indicating a haplotype restricted var-
iation. In contrast, the CD3+TCR1γδ−CD4+ (Th) population did not show a significant increase in IFN-γ pro-
duction in NDV stimulated samples which was in part due to a high number of IFN-γ producing cells after
incubation with medium alone. In conclusion, an ICS assay for phenotyping of IFN-γ producing chicken leu-
kocytes was set up that proved useful in identifying cytokine producing cells upon either mitogen or antigen-
specific stimulation.

1. Introduction

Several T cell-mediated immune mechanisms are essential for the
control of viral infections and play key roles in vaccine-induced anti-
viral immunity. Thus, accurate quantification of specific T cell re-
sponses is a focus of interest to understand protective immunity and to
investigate vaccine efficacy. Studies of antigen-specific T cells may
comprise functional analyses ex vivo after activating the cells with recall
antigen. The lymphocyte activation can then be evaluated by different
methods using functional read-outs, such as proliferation, expression of
surface activation markers, or cytokine production (Thiel et al., 2004).

To detect cytokine producing cells the intracellular cytokine staining
(ICS) technique is a particularly useful method, which simultaneously
allows visualisation of single cells, their cytokine production, frequency
and phenotype. This method is based on antigen-activation of leukocyte
cultures in the presence of a secretion inhibitor prior to combined
surface and intracellular staining followed by flow cytometry analysis
(Suni et al., 1998).

ICS has been extensively used in human medical research, to ad-
dress antigen-specific T cell responses in settings such as experimental
vaccination. Quantification of the number of T cells, which produce the
effector cytokine, IFN-γ, in response to recall stimulation, has been a
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particularly popular method for years. However, it has been shown that
vaccination in humans generates a broad and complex T cell cytokine
response (De Rosa et al., 2004). Hence, proper evaluation of the re-
sponse will therefore require coordinate measurements of several cy-
tokines, which makes ICS and polychromatic flow cytometry invaluable
tools. The ICS method is not yet widely used in avian immunology re-
search and only a few published reports exist (Ariaans et al., 2008;
Huang et al., 2011; Ruiz-Hernandez et al., 2015), an example being a
methodological study describing ICS applied to study IFN-γ production
in polyclonal stimulated splenocytes (Ariaans et al., 2008). Further-
more, only a few antibodies specific for chicken IFN-γ (chIFN-γ) are
currently commercially available (Table 1). In other domestic species
such as pigs and cattle, the ICS method has been used with success in
differentiating cells based on phenotypic and cytokine profile following
polyclonal stimulation and antigen specific stimulation (Sassu et al.,
2017; Sopp and Howard, 2001). The purpose of the present study was
therefore to further evaluate, optimise and develop protocols for ana-
lyses of the chicken cellular response of not only polyclonal stimulation
but also antigen-specific stimulation of Newcastle disease virus (NDV)
specific T cells.

NDV is an avian paramyxovirus that causes Newcastle disease (ND),
a highly contagious disease which represents a severe economic pro-
blem for the poultry industry (Alexander, 2001). In the present study,
NDV specific immune responses were induced in chickens using a
vaccination model. Live attenuated (LA) and inactivated (IA) NDV
vaccines are commercially available and while both types of vaccine
formulations induce antibody responses LA NDV vaccines are con-
sidered better inducers of cellular immunity (Al-Garib et al., 2003; Zoth
et al., 2008; Lambrecht et al., 2004; Rauw et al., 2009; Jayawardane
and Spradbrow, 1995). A number of studies in poultry have shown that
IFN-γ produced by T cells after ex vivo stimulation correlate with cel-
lular immunity after vaccination or infection (Breed et al., 1997; Karaca
et al., 1996; Martin et al., 1994; Prowse and Pallister, 1989). NDV-
specific cell-mediated immunity induced by live vaccines was earlier
demonstrated in peripheral blood and spleen by ex vivo recall stimu-
lation and assessment of chicken IFN-γ production by capture ELISA
and ELISPOT (Ariaans et al., 2008; Lambrecht et al., 2004; Rauw et al.,
2009, 2010). In the present work, we optimised and evaluated an ICS
method for assessment of specific T cell responses in peripheral blood
from NDV vaccinated chickens by quantification and phenotypic
characterisation of IFN-γ producing cells.

2. Materials and methods

2.1. Method establishment and optimisation

2.1.1. Transfection of CHO cells and test of antibodies for intracellular IFN-
γ staining

To evaluate antibodies for assessment of intracellular IFN-γ, Chinese
Hamster Ovary (CHO) cells were transfected with full length chIFN-γ
cDNA (Lawson et al., 2001) or empty pCI-neo vector. CHO cells were

maintained in Ham’s F-12 Nutrient Mixture (F-12) with Glutamax
(Gibco/Thermo Fischer Scientific, Waltham, MA, USA) supplemented
with 10% FCS until 90% confluency before transfection. CHO cells were
transfected with Lipofectamine 2000™ (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. After at least 3 weeks the
selected CHO cells were sub-cultivated into 6 well plates in medium
with or without Brefeldin A (BFA) (Sigma-Aldrich) and left overnight at
41 °C, 5% CO2. Subsequently the cells were trypsinised, washed in PBS
and used for intracellular IFN-γ staining using the BD Cytofix/Cyto-
perm™ Kit (BD Biosciences, San Jose, CA, USA) according to the man-
ufacturer’s instructions. After staining, cells were re-suspended in BD
Perm/Wash buffer and used for flow cytometry analyses.

Antibodies for assessment of IFN-γ expression in CHO cells included
5C.123.08 and 5C.123.02 from the ELISA kit Chicken IFN-γ CytoSet™
(Invitrogen). 5C123.08 was used in combination with Goat anti-Mouse
IgG1 Secondary Antibody, Alexa Fluor® 647 (Invitrogen) and 5C.123.02
was labelled with APC using the LYNX Rapid APC Antibody
Conjugation Kit® (BioRad, Oxford, UK), according to the manufacturer’s
instructions. Furthermore we tested Mab80 commercially conjugated
with APC (Ariaans et al., 2008) as well as rabbit polyclonal chIFN-γ IgG
antibody (BioRad) in combination with secondary goat anti rabbit IgG
FITC (Beckman Coulter, Brea, CA, cat no 732745) (Table 1).

2.1.2. Optimisation of PBMC surface staining conditions
Blood, spleen and bone marrow were obtained from 3 to 9-week-old

animals post-mortem and cells were purified by Ficoll density gradient as
described previously (Dalgaard et al., 2010b; Sutton et al., 2015). Bone
marrow-derived dendritic cells (BMDC) cultures were generated as
described (Wu et al., 2010). Cells were harvested with TrypLX (Thermo
Scientific, CA. U.S.A). Cell concentrations were adjusted to
1 × 107cells/ml and stained in 96-U bottom plates at 100 μl/well with
mouse anti-chicken CD3 (CT3), Bu1-Alexa Fluor® 647 (AV20), KUL01
(Southern Biotech, USA), isotype controls, mouse IgG1 (NCG01,
Thermo Scientific) and mouse IgG1-Alexa Fluor® 647 (Thermo Scien-
tific). To test the effect of sodium azide and the temperature of the
FACS buffer we used PBS (pH 7.4) or PBS supplemented with 0.05%
sodium azide (PBS/azide) for 30 min on ice or room temperature (RT).
Cells stained with unconjugated antibodies were incubated with goat
anti-mouse IgG1 Alexa Fluor® 647 (Southern Biotech, USA), for 30 min
on ice or RT. Live cells were analysed by Sytox Blue exclusion.

2.1.3. Optimisation of PBMC stimulation and intracellular IFN-γ staining
Peripheral blood from inbred L21 chickens (4 unvaccinated and 4

NDV vaccinated) was collected in BD Vacutainer® Blood Collection
Plasma Tube coated with 60 USP Units of Sodium Heparin (BD,
Franklin Lakes, NJ, USA). PBMC were purified from peripheral blood by
Ficoll density gradient centrifugation as described earlier (Dalgaard
et al., 2010b). Isolated PBMC were re-suspended at a concentration of
1 × 107 cells/ml in different media to test optimal culture conditions
for ex vivo stimulation. The culture media tested were serum free X-
VIVO 15 medium containing 2 mM L-glutamine (Cambrex/Lonza,
Walkersville, MD), serum free CTL-test medium™ (Cellular Technology
Ltd., Bonn, Germany) and R10 medium (RPMI containing 2 mmol/L-
Glutamine (Cambrex/Lonza, Walkersville, MD) supplemented with
10% FCS (Cambrex/Lonza)). All culture media were supplemented with
100 U/ml penicillin and 100 μg/ml streptomycin (Cambrex/Lonza),
and subsequently transferred to 96-well plates at 100 μl/well
(1 × 10^6cells/well).

NDV antigen was prepared from NDV-vaccine which was in-
activated by UV light as earlier described (Dalgaard et al., 2010a) with
a few modifications. In brief, Poulvac NDW vaccine (106–106.6 EID50
per dose, Fort Dodge Animal Health Ltd., Southampton, UK) was re-
suspended in various culture media and UV-inactivated using a UV
cross-linker (UVC500, Hoefer, San Francisco, CA). The solution was
split into two tubes and one half of the antigen preparation was in
addition to the UV inactivation also treated with ultrasound using a

Table 1
Chicken IFN-γ antibodies tested in intracellular cytokine staining assay.

Antibody ID Isotype Reference Commercial
availability

5C.123.08 Mouse
monoclonal IgG1

Lambrecht et al.
(2000)

IFN-γ CytoSet™
ELISA, Invitrogen

5C.123.02 (biotin) Mouse
monoclonal IgG1

Lambrecht et al.
(2000)

IFN-γ CytoSet™
ELISA, Invitrogen

Rabbit anti Chicken
Interferon-γ

Purified
polyclonal rabbit
IgG

Weining et al.
(1996)

BioRad

Mab80 Mouse
monoclonal IgG1

Ariaans et al.
(2008)

None
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Vibra cell™ VC130 (Sonics and Materials Inc). Both antigen prepara-
tions were mixed 1:1 (v/v) before aliquoted and stored at −20 °C until
use.

Different concentrations of ConA (Sigma-Aldrich) and NDV antigen
were used for stimulation of PBMC from the individual chickens in
combination with BFA in a total volume of 200 μl/well. Cells were in-
cubated at 41 °C, 5% CO2 for various lengths of time and subsequently
stained for IFN-γ using the BD Cytofix/Cytoperm™ Kit (BD Biosciences)
according to the manufacturer’s instructions. In brief, 100 μl BD
Cytofix/Cytoperm solution was added and cells were incubated for
20 min (at 4 °C as recommended by the manufacturer). Subsequently,
the cells were washed twice with BD Perm/Wash buffer for 5 min at
600 × g, followed by staining with rabbit polyclonal anti-chIFN-γ IgG
antibody (BioRad) and secondary goat anti-rabbit IgG FITC (Beckman
Coulter, Brea, CA, cat no 732745). To test for unspecific intracellular
staining of primary and secondary antibodies, additional controls were
included: Rabbit anti chicken IgG FITC (Sigma cat no 8320-02) as well
as secondary goat anti rabbit IgG FITC (Beckman Coulter, cat no
732745) After staining, cells were re-suspended in BD Perm/Wash
buffer and immediately used for flow cytometry analyses.

2.2. NDV vaccination experiment

2.2.1. Animals and experimental design
Chickens were used from an inbred white leghorn line L21, AU/

DIAS lines (Miller et al., 2004), containing two MHC haplotypes B19
and B21 (Dalgaard et al., 2009). Offspring used in the experiment were
produced from NDV-vaccinated parents. Hence, experimental im-
munisations were initiated when the chickens were 4 weeks of age to
avoid influence from maternal antibodies. In total 24 B19 chickens and
24 B21 chickens were divided into 3 experimental groups. One group
was kept as naive controls without mock vaccination, one group was
vaccinated intramuscularly with a commercial inactivated NDV vaccine
(Poulvac iND Vet, Fort Dodge) at 4 and 7 weeks of age, and the third
group was vaccinated orally with a commercial live attenuated NDV
vaccine (ND C2, Intervet) at 4 and 7 weeks of age. Peripheral blood
samples were collected for serum analyses throughout the experiment
at weeks 0, 1, 3, 4, 8, 11, 13, post-primary vaccination (PV1) without
sacrificing the chickens. Additional blood was drawn for the ICS assay
from the jugular vein at weeks 8 and 13 which corresponds to weeks 5
and 10 post-secondary vaccination (PV2), in BD Vacutainer® Blood
Collection Plasma TubeHeparin.

2.2.2. MHC haplotyping
The offspring used in the experiment were produced from homo-

zygous MHC-characterised parents and their MHC haplotypes were
confirmed by genotyping of the LEI0258 microsatellite locus (Fulton
et al., 2006; McConnell et al., 1999) by PCR-based fragment analysis
and gel documentation (Dalgaard et al., 2005). Genomic DNA was
isolated from peripheral blood using the ArchivePure™DNA Blood Kit (5
PRIME GmbH, Hamburg, and Germany) according to the manu-
facturer’s instructions.

2.2.3. ELISA for NDV specific antibodies in serum
The Proflock Plus NDV ELISA kit (Synbiotics, San Diego, CA) was

used to measure NDV-specific IgY (H + L) levels in serum. The ELISA
was performed according to the manufacturer’s instructions. Briefly,
96-well microtiter plates, coated with NDV antigen, were incubated
with serum samples (diluted 1:100) and controls included in the kit.
The result was recorded as optical density (OD) at 405 nm, and the
antibody titre was calculated from a sample to positive ratio (SP) as
LOG10titer = (1.464 × LOG10 SP) + 3.74, SP being ((sample absor-
bance) − (average normal control absorbance))/(average positive
control absorbance − average negative control absorbance).

2.2.4. PBMC stimulation
PBMC from heparinised blood were isolated and re-suspended at a

concentration of 1 × 107 cells/ml in serum free X-VIVO 15 medium
supplemented with 100 U/ml penicillin and 100 μg/ml streptomycin.
The cells were subsequently transferred to 96-well plates at a volume of
100 μl/well (1 × 106 cells/well).

PBMC were stimulated with 10 ug/ml of ConA in a total volume of
200 μl/well. BFA was added in a final concentration of 5 μg/ml to all
cultures including medium controls. Both ConA and BFA were added to
the cell cultures at the start of the incubation at 41 °C, 5% CO2 in a
humid atmosphere for 16 h. ConA stimulation was performed on PBMC
from the experimental chickens at 5 weeks PV2. In contrast to stimu-
lation with ConA, for the NDV antigen stimulation, PBMC from ex-
perimental chickens were left to rest overnight at 41 °C, 5% CO2 before
the NDV antigen was added at a concentration of 1 vaccine doses in
20 μl per well. To ensure antigen presentation, cells were incubated for
a further 6 h before the addition of BFA (final conc. 5 ug/ml) to all cells.
Cells were subsequently incubated for a further 16 h before staining and
flow cytometry analysis. Stimulation with NDV antigen was performed
on PBMC from the experimental chickens at 10 weeks PV2 only.

2.2.5. Staining antibodies used in ICS assay
All monoclonal antibodies for phenotypic markers were obtained

from Southern Biotech (Birmingham, AL, USA) except the rabbit poly-
clonal anti-chIFN-γ antibody, which was purchased unlabelled and
FITC conjugated using the LYNX Rapid Fluorescein Conjugation Kit®

(BioRad) following the manufacturer’s instructions. Two different sur-
face staining panels were used in the flow cytometry analyses of sam-
ples from the animal experiment. Panel 1 (ConA-stimulated samples):
IFN-γ-FITC, CD3-SPRD (PE-Cy5), TCRγδ-biotin (TCR-1), Strepavidin-
PE-Cy7. Panel 2 (NDV-stimulated samples) IFN-γ-FITC, CD4-RPE, CD3-
SPRD, CD8α-Cy5, TCRγδ-biotin (TCR-1), Strepavidin-PE-Cy7. In both
panels the fixable LIVE/DEAD® near-IR fluorescent amine reactive dye
(Invitrogen-Molecular Probes, Eugene, OR, USA) was included as via-
bility dye. Titration of all antibodies was done prior to the experiment
in order to determine optimal staining concentrations. For both panels,
negative fluorescence minus one (FMO) controls (Roederer, 2001) were
included to determine the level of background fluorescence in each
channel to ensure correct gating.

2.2.6. Surface staining of PBMC
Prior to intracellular staining and flow cytometry analysis, cells

were stained for selected surface markers. After incubation with ConA
or antigen, cells were treated with EDTA (2 mM) for 10 min at 41 °C,
5% CO2. Cells were harvested by gentle pipetting and pelleted at
600 × g for 5 min. Cells were stained for surface markers and viability
dye in a total volume of 100 μl PBS for 20 min at RT in the dark.
Washing was carried out in 150 μl of PBS at 600 × g for 5 min.
Subsequently, PE-Cy7-conjugated streptavidin was added in a total
volume of 100 μl PBS and cells were incubated for 20 min at RT fol-
lowed by two washes with PBS. Staining was performed in PBS without
azide based on the results show in Supplementary Fig. 1 and the
manufacturer’s recommendations for fixable LIVE/DEAD® near-IR
fluorescent amine reactive dye.

2.2.7. Intracellular cytokine staining
After the surface staining, fixation and permeabilisation was carried

out using the BD Cytofix/Cytoperm™ Kit (BD Biosciences) according to
the manufacturer’s instructions as described above. The PBMC were
stained with FITC-conjugated rabbit polyclonal anti-chIFN-γ IgG anti-
body (BioRad) in a total volume of 100 μl BD Perm/Wash buffer for
20–30 min. Finally, cells were washed twice and re-suspended in PBS
with 1% paraformaldehyde (Electron Microscopy Sciences, Hatfield,
PA, USA). For the ConA-stimulated samples, at least 10,000 live cells
were acquired, and for Ag-stimulated samples, at least 1000–2000 live
CD3+ cells were acquired. If the viability in medium controls were
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below 70% all samples from that individual were excluded from sta-
tistical analysis.

2.2.8. Flow cytometry
All flow cytometry analyses were performed on a BD FACSCanto™

or a BD Fortessa™ (BD Biosciences) equipped with a 488 nm blue laser
and a 633 nm red laser. Acquisition and analysis were done using the
FACSDiva software version 5.0.3 (BD Biosciences) and FlowJo version
10 (TreeStar Inc, Ashland, OR, USA).

2.2.9. Ethics and animal care
Animals used for optimising flow cytometry surface staining were

housed in premises licensed under a UK Home Office Establishment
License within the terms of the UK Home Office Animals (Scientific
Procedures) Act 1986. Housing and husbandry complied with the Code
of Practice for Housing and Care of Animals Bred, Supplied or Used for
Scientific Purposes and were overseen by the Roslin Institute Animal
Welfare and Ethical Review Board. Animals were culled by schedule
one methods authorized by Animals (Scientific Procedures) Act 1986.

The animals for PBMC ICS optimisation as well as the NDV vacci-
nation experiment were kept according to the protocols approved by
the Danish Animal Experiments Inspectorate and complied with the
Danish Ministry of Justice Law no. 382 (10th June 1987) and Acts 739
(6th December 1988) and 333 (19th May 1990) concerning animal
experimentation and care of experimental animals. The license to
conduct the animal experiment was obtained by Dr. Juul-Madsen. The
experiment was conducted according to the ethical guidelines.

2.2.10. Statistical analysis
All data are presented as mean values with 95% confidence intervals

and values with non-overlapping confidence intervals indicate sig-
nificant differences. An unpaired T test was used to compare the chIFN-
γ response in the different MHC and treatment groups.

3. Results

3.1. CHO cell ICS staining

Transfected cells expressing a cytokine of interest are useful for
optimisation and standardisation of intracellular cytokine staining
protocols. We used CHO cells transfected with the pCI-neo vector
containing chIFN-γ to test commercially available anti-chIFN-γ anti-
bodies. It was possible to detect chIFN-γ in some resting transfected
CHO cells but the frequency of chIFN-γ producers increased if cells were
treated with BFA (Fig. 1A). All four tested antibodies to chIFN-γ de-
tected recombinant chIFN-γ produced by CHO cells (Fig. 1B). The three
monoclonal antibodies as well as the polyclonal serum, stained com-
parable frequencies of chIFN-g producing cells but the intensity of the
staining (MFI) was generally low for the polyclonal rabbit antibody. In
contrast, the lower MFI was not an issue when staining native chIFN-γ
in PBMC indicating better affinity for the native protein rather than the
recombinant (Fig. 3).

3.2. Optimisation of PBMC surface staining conditions

Surface staining of chicken leucocytes for flow cytometry may be
carried out at 4°C or at RT. Different laboratories have different pro-
cedures for staining cells for FACS analysis and the rationale for in-
cubating cells on ice/4°C is to avoid unspecific staining either caused by
cells endocytosing the staining antibodies or binding via Fc receptors.
Hence, we sought to investigate the ability of avian phagocytes and
lymphocytes to endocytose or bind mouse IgG aspecifically, and whe-
ther staining conditions affected staining frequencies by flow cyto-
metry. Using highly phagocytic cells, i.e. BMDC, and a mixture of var-
ious cell populations, i.e. PBMC, cell staining on ice or at RT and in the
presence of PBS or PBS/azide was analysed by flow cytometry

(Supplementary Fig. 1). For PBMC (Fig. S1A) or BMDC (Fig. S1B)
stained under the various conditions neither the reference (B, T and
phagocytic cells) nor the mouse isotype IgG staining frequencies were
affected significantly by buffer composition or temperature conditions.
Cell staining with PBS alone gave higher cell percentages compared to
PBS/azide potentially indicating unspecific staining and using a con-
jugated antibody gave consistent cell frequencies between the different
buffers compared to indirect cell staining. When we compared the
staining of highly phagocytic cells, BMDC, with unconjugated and
conjugated isotype controls there was little differences in their binding
capacity indicating that the unconjugated antibody is not endocytosed
before addition of the secondary antibody. The slight increase in un-
conjugated mouse IgG binding may possibly be due to the unspecific
binding of the secondary antibody. In conclusion, staining avian lym-
phocytes at RT with PBS did not significantly alter surface staining or
enhance the uptake or binding of mouse IgG and was therefore used in
further analysis.

3.3. Optimisation of PBMC stimulation and intracellular IFN-γ staining

During optimisation of the PBMC protocol several variables were
addressed (conclusions summarised in Supplementary Table 1, data not
shown). It was observed that an overnight rest of the PBMC before
stimulation with viral antigen increased the observed frequencies of
IFN-γ producing cells. This was in contrast to polyclonal stimulation
with ConA where immediate stimulation after PBMC isolation gave the
highest frequencies of IFN-γ producing cells. Different culture medium
types were tested and stimulation of PBMC from naive chickens with
ConA (10 μg/ml) showed slightly higher (but not significant) fre-
quencies of IFN-γ producing cells in serum free medium (X-VIVO15 or
CTL) as compared to R10 medium. After overnight stimulation with
10 μg/ml of ConA in the presence of 5 μg/ml of BFA, it was shown that
if cells were harvested with 2 mM of EDTA, increased frequencies of
IFN-γ producing cells were detected. As expected, stimulation with
10 μg/ml of ConA, in the presence of 10 μg/ml of BFA for 6 h, produced
a lower IFN-γ response as compared to the overnight ConA stimulation
and BFA treatment. To test for unspecific intracellular staining of pri-
mary and secondary antibodies, additional controls were included.
PBMC staining was performed using an irrelevant rabbit polyclonal
antibody (Rabbit anti chicken IgG FITC) or secondary goat anti rabbit
IgG FITC without primary antibody (Supplementary Fig. 2). No un-
specific staining was observed, however some CD8− cells stained po-
sitive as expected, probably due to IgG bound to the surface of B-cells.

3.4. Antibody responses to NDV vaccination

To monitor antibody responses to the NDV vaccinations in the ex-
perimental chickens NDV-specific antibody titres in serum were mea-
sured by ELISA (Fig. 2). All vaccinated chickens seroconverted to NDV
in response to the vaccination. The chickens immunised i.m. with the
inactivated (IA) vaccine showed significantly higher serum titres than
chickens immunised with the live attenuated (LA) vaccine. No MHC-
related differences were seen in the group vaccinated with the live at-
tenuated vaccine. In contrast, when using the inactivated vaccine, B21
chickens showed significantly higher titres 8 weeks PV1 (corresponding
to 5 weeks PV2) after which titres declined to the same levels as those
of the B19 chickens. Thus, all vaccinated chickens had mounted NDV-
specific immune response at the sampling time-points for IFN-γ stimu-
lation experiments.

3.5. IFN-γ production in PBMC stimulated ex vivo with ConA

ConA stimulation was performed on PBMC collected at five weeks
PV2. The phenotype and proportion of live lymphocytes producing IFN-
γ post ConA stimulation were assessed by ICS and flow cytometry
(gating strategy shown in Fig. 3A and B). A large proportion of the IFN-
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γ producing cells were CD3− (Fig. 3A). Only 19% of the IFN-γ produ-
cing cells observed in the medium controls and up to 33% in the sti-
mulated samples were CD3+ by surface staining (data not shown). The
IFN-γ producing CD3+ cell population comprised both TCRγδ+ and
TCRγδ−, i.e. TCR αβ cells. No differences were observed between the
groups in the total percentage of IFN-γ+cells in the live lymphocyte
gate (Fig. 4A, left). Interestingly, ConA had little effect on the propor-
tion of CD3+ TCRγδ− IFN-γ producers which were 12% in medium

controls compared to 10–11% in ConA-stimulated samples (Fig. 4A,
right). In contrast, the proportion of CD3+ TCRγδ+ IFN-γ producers
increased from 7% in medium controls to 20–22% in ConA-stimulated
samples (Fig. 4A, right). No differences in MFI of the IFN-γ positive cells
were observed (data not shown).

To assess if ConA induced IFN-γ production was affected by NDV
vaccination and/or chicken MHC haplotype, stimulation indices (SI;
IFN-γ+ proportion in stimulated samples/IFN-γ+ proportion in medium

Fig. 1. Intracellular staining of IFN-γ in transfected CHO cells. A) CHO cells were either transfected with plasmids containing the chicken IFN-γ gene or empty plasmids (mock
controls). Cells (day 22 after transfection) were cultured with or without BFA for 18 hours and subsequently stained intracellularly using monoclonal anti-chicken IFN-γ antibody (Mab80)
conjugated with APC. Representative samples are show with frequency of IFN-γ+ cells indicated above gate. B) Comparison of transfected CHO cells (day 30 after transfection) cultured
with 10 μg/ml BFA for 18 hours and subsequently stained intracellularly with either commercial ELISA capture antibody (5C.123.08) & A647 conjugated secondary anti-mouse IgG1 or
monoclonal anti-chicken IFN-γ antibody directly conjugated with APC (Mab80) or commercial ELISA detection antibody (5C.123.02) directly conjugated with APC or polyclonal rabbit
anti-chicken IFN-γ antibody & FITC-conjugated secondary goat anti-rabbit IgG. Representative samples are show with frequency of IFN-γ+ cells indicated above gate.

Fig. 2. NDV-specific antibodies in serum mea-
sured by ELISA. Chickens of two different MHC
haplotypes B19 and B21 were used for the vaccina-
tion experiment. One group was left as naive controls
(naive), one group was intramuscularly vaccinated
with commercial inactivated vaccine (IA) twice (4
and 7 weeks of age) and the last group was orally
vaccinated with commercial live attenuated vaccine
(LA) twice (4 and 7 weeks of age). Vaccination times
are indicated as week 0 PV1 and week 3 PV1. Each
value represents a mean of 8 individual determina-
tions± 95% confidence intervals. Significant dif-
ferences between MHC haplotypes within the same
treatment group are indicated by * (P < 0.05).
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controls) were calculated for the CD3+ TCRγδ− population (Fig. 4B)
and the CD3+ TCRγδ+ population (Fig. 4C). However, no statistically
significant differences were observed between MHC haplotypes or
treatment groups from cells unstimulated or stimulated with ConA.

3.6. IFN-γ production in ex vivo NDV-activated PBMC

NDV stimulation was performed on PBMC collected at 10 weeks
PV2. The phenotype and proportion of live lymphocytes that produced
IFN-γ upon stimulation were assessed by ICS and flow cytometry
(gating strategy shown in Fig. 3A and C). During optimisation we
concluded that staining benefitted from overnight rest before antigen
stimulation which was not the case for ConA stimulation. The overnight
rest, led to a larger proportion of IFN-γ producing CD3+ cells in the
medium controls. In total, 44% of the cells were CD3+ in the medium
controls compared to 66% in the antigen-stimulated samples (data not
shown). No differences were observed between the groups in the total

percentage of IFN-γ+ cells in the live lymphocyte gate (Fig. 5A, left).
The CD3+ IFN-γ+ cell population comprised both TCRγδ+ and TCRγδ−
cells. Furthermore, the CD3+ TCRγδ− population consisted of both
CD4+ and CD8α+ cells. NDV antigen stimulation had little effect on the
proportion of CD3+ TCRγδ+ IFN-γ+ cells which constituted 8% in
medium controls and 9% in antigen-stimulated samples of the live
lymphocytes (Fig. 5A, right). In contrast the proportion of CD3+ T-
CRγδ− IFN-γ+ cells (i.e. the CD4+ and the CD8α+) increased from 36%
in medium controls to 53–57% in antigen-stimulated samples (Fig. 5A,
right). In all samples, the MFI of the IFN-γ positive cells were 10–20%
higher in the CD3+TCRγδ−CD8α+ population as compared to the
CD3+TCRγδ−CD4+ population (data not shown).

The effects of NDV vaccination and/or chicken MHC haplotype on
NDV induced IFN-γ production were assessed in the TCRγδ− population
by calculating SI for the CD3+CD4+ and the CD3+CD8α+ population.
In the CD3+TCRγδ−CD8α+ population of B19 chicken, SI of IFN-γ
producers upon antigen stimulation was higher in the LA vaccinated

Fig. 3. Gating strategies for flow cytometry analyses. A) The gating strategy used for Fig. 4A (staining panel 1) and Fig 5A (staining panel 2) was: FSC/SSC defined lymphocytes (not
shown), live lymphocytes by viability dye (ViD) exclusion using Near-IR live/dead cells stain, IFNγ+, IFNγ +CD3+ and TCRγδ+/TCRγδ-. For Fig. 5A the IFNγ+CD3+TCRγδ- cells were
further divided into CD4+ and CD8α+ cells (not shown). Below the FMO-FITC negative control is shown. B) The gating strategy for Fig. 4B and 4C (staining panel 1) was: FSC/SSC
defined lymphocytes (not shown), live lymphocytes by ViD exclusion (not shown), CD3+, TCRγδ+/TCRγδ-, IFNγ+. C) The gating strategy for Fig. 5B and 5C (staining panel 2) was: FSC/
SSC defined lymphocytes (not shown), live lymphocytes by ViD exclusion (not shown), CD3+ (not shown), TCRγδ-, CD4+/CD8α+, IFNγ+.
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group compared to the IA vaccinated group and the naïve controls
(although the latter was not statistically significant; Fig. 5C). For the
B21 chickens, SI for CD3+TCRγδ− CD8α+IFN-γ+population did not
differ between treatment groups. Moreover, no significant differences
between groups or MHC haplotypes were observed in SI of the
CD3+TCRγδ−CD4+ population post NDV-stimulation (Fig. 5B).

4. Discussion

The present study aimed to validate currently available antibodies
against chIFN-γ for use in a flow cytometry based ICS assay. We aimed
to phenotype IFN-γ producing chicken lymphocytes in peripheral blood
from NDV vaccinated chickens using ex vivo stimulation with polyclonal
mitogen, ConA as well as specific NDV antigen. It was earlier shown
that it is possible to assess IFN-γ production of splenic chicken T cells by

Fig. 4. The phenotype and frequencies of IFN-γ producing cells upon ConA stimulation. A)The frequency of IFN-γ positive cells within the live lymphocyte gate (left) – mean values
are shown (n = 16) +/- SD. The proportion of cells being CD3-, CD3+TCRγδ- or CD3+TCRγδ+ in IFN-γ+ population (right). The percentages shown are mean values of all chickens in the
experiment (n = 48). B) & C) Frequencies of IFN-γ+ cells in the CD3+TCRγδ- population or the CD3+TCRγδ+ population of PBMC samples from naive and NDV immune animals either
immunised with inactivated (IA) or live attenuated (LA) vaccine with and without stimulation with 10 μg/ml ConA. Data from individual chickens are shown with stimulation indexes (SI)
indicated above including 95% confidence intervals in brackets.
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ICS using the BD Cytofix/Cytoperm™ kit which was developed for
mammalian cells (Ariaans et al., 2008; Ruiz-Hernandez et al., 2015). In
the present study we have further optimised the ICS protocol and ap-
plied it to PBMC from a vaccine study where inbred MHC characterised
chickens were immunised with live attenuated and inactivated New-
castle disease vaccines.

For initial testing of various antibodies, we found that CHO cells
expressing recombinant chIFN-γ were very useful. Others have pre-
viously shown that BFA increases intracellular accumulation of

cytokine (MFI) in the CHO transfectants without altering the percentage
positivity of the cells (Entrican, 2002). However, in our experiments
BFA increased both the percentage of positive cells as well as the MFI.
Moreover, we observed differences in the ability of some antibodies to
recognise recombinant chIFN-γ as compared to native chIFN-γ (data not
shown), reflecting a general problem. Hence, it is essential, during the
development of new chicken reagents to perform quality control en-
suring the suitability of e.g. new cytokine antibodies for detection of
native chicken cytokines.

Fig. 5. The phenotype and frequencies of IFN-γ producing cells upon (NDV) antigen stimulation. A) The frequency of IFN-γ positive cells within the live lymphocyte gate (left) –
mean values are show (n = 16) +/- SD. The proportion of cells being CD3+TCRγδ+, CD3+TCRγδ-CD4+, CD3+TCRγδ-CD8α+ or CD3- in the IFN-γ+ population (right). The percentages
shown are mean values of all chickens in the experiment (n = 48) +/- SD. B) & C). Frequencies of IFNγ+ cells in the CD3+TCRγδ-CD4+ population or CD3+TCRγδ-CD8α+ population of
PBMC samples from naive and NDV immune animals either immunised with inactivated (IA) or live attenuated (LA) vaccine, with and without stimulation with NDV antigen. Data from
individual chickens are shown with stimulation indexes (SI) indicated above including 95% confidence intervals in brackets. Significant SI differences are indicated by * (P < 0.05).
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As expected we observed a large difference in the humoral vaccine
response between chickens immunised with the IA or the LA vaccine
(Fig. 2), which is in accordance with our previous experiments using the
inbred chicken lines (Dalgaard et al., 2010a). This is supported by work
by others showing that, in general birds vaccinated with inactivated
vaccines, tend to have higher humoral antibody levels although they do
not develop a strong cell mediated response (Schijns et al., 2014;
Dimitrov et al., 2017).

We were unable to detect vaccine-induced differences by analysing
ConA activated PBMC in this study (Fig. 4B and C). This is in agreement
with previous results obtained by chIFN-γ capture ELISA analyses of the
supernatant of polyclonal-stimulated splenocytes in which no sig-
nificant differences were observed between naive and NDV-vaccinated
chickens (Lambrecht et al., 2004). Interestingly, not all IFN-γ producing
cells were found to be surface CD3+ (Fig. 4A) suggesting IFN-γ is
produced by other cell types. This is a well-known issue in mammalian
research when using IFN-γ release assays. Several investigators have
suggested that not only T cells produce IFN-γ following overnight sti-
mulation with mitogen or antigen (Hagiwara et al., 1995; Vitale et al.,
2000). Indeed, Desombere et al. (2004, 2005) reported that overnight
stimulation of human PBMC led to IFN-γ produced majorly by NK cells
whereas after 5-days of stimulation most IFN-γ producing cells were T
lymphocytes. However, in chickens, as opposed to mammals, the po-
pulation of NK cells in blood constitutes only around 1% of peripheral
lymphocytes (Neulen et al., 2015). The identity of the CD3 negative
IFN-γ producing cells in the current study remains unknown at present.
Due to well-known issues regarding changes in forward/side scatter
profiles of PBMC after fixation, we cannot exclude the possibility that
our lymphocyte gate contain monocytes and that they form part of the
CD3 negative IFN-γ producing population. It is also possible that the
CD3− IFN-γ producing population contains thrombocytes. Avian
thrombocytes are nucleated platelets forming a large part of peripheral
blood (Seliger et al., 2012) and have been shown to have roles in in-
flammation and antimicrobial defence (Scott and Owens, 2008; Ferdous
and Scott, 2015; Ferdous et al., 2016). However, it is controversial for
how long thrombocytes survive in culture. Kaspers and Kaiser (2014)
state that these cells die at 48–72 h. DaMatta et al. (1999) shows that
about 70% of the thrombocytes dies by apoptosis by 24 h and 85% by
48 h. Certainly, thrombocyte cytokine gene expression was reported up
to 18 h in culture (St Paul et al., 2012). In conclusion, further ICS
studies are needed using specific thrombocyte and monocyte marker
antibodies to define the observed CD3 negative population.

We observed an increase in the proportion of CD3+ IFN-γ producing
cells after stimulation with ConA. However, while the proportion of
IFN-γ producing CD3+TCRγδ+ cells doubled in these cultures, the
proportion of IFN-γ producing CD3+TCRγδ− (TCRαβ cells) was un-
altered. It has been reported that chicken γδ T cells are poor cytokine
producers and dependent on αβ T cells for their activation and pro-
liferation (Kasahara et al., 1993). The present study showed, however,
that 2–16% of the γδ T cells were able to produce IFN-γ upon ConA
stimulation. In another experiment, we observed prominent expansion
and blast transformation of TCRγδ+CD8β+ splenocytes upon in vitro
ConA stimulation in combination with TCRγδ−CD8β+ cells in the
cultures showing 10-fold higher responses (unpublished observation).
Thus, it seems that chicken TCRγδ cell populations may be activated by
mitogenic substances and depending on the trait monitored with or
without corresponding responses in the TCRαβ cell population. In
conclusion, methods that enumerate cytokine producing cells without
determining their phenotype e.g. by ELISPOT methodology should be
interpreted with caution if the results are to indicate solely classic T
lymphocyte activity.

To address differences in the antigen-specific T cell responses, the
IFN-γ induction protocol was changed to include an overnight rest be-
fore stimulation with NDV antigen. In mammals, PBMC or whole blood
is widely used in recall assays as described in the current study.
However, the antigen presentation potential of the PBMC samples were

reported to be of importance in successful T cell activation ex vivo (Thiel
et al., 2004). In general, exogenous antigens are easily processed by
antigen-presenting cells and displayed as peptides of MHC-II molecules
thus stimulating CD4+ T cell activation. In a study by Maecker et al.,
(2001), cross priming where peptides are displayed on MHC-I and
presented to CD8+ T cells was also shown to occur. However, higher
doses of whole protein were needed in order to observe stimulation
efficiency comparable to that of synthetic peptides. Interestingly the
ability to efficiently cross-prime was not found to be correlated to the
number of dendritic cells in the donor’s blood but rather the number of
monocytes (Maecker et al., 2001). In chickens we have also reported
the importance of monocytes in PBMC samples in order to obtain effi-
cient CD8+ T cell stimulation (Dalgaard et al., 2016). Further, studies
are needed in order to pinpoint the exact mechanisms and peripheral
blood cell types involved in antigen presentation in chicken ex vivo T
cell assays.

In the current study, the frequency of IFN-γ producers in the
CD3+TCRγδ−CD8α+ population upon NDV-specific stimulation was
significantly higher in the group vaccinated with live attenuated NDV
vaccine as compared to the group vaccinated with inactivated NDV
(Fig. 5C). However, this was only observed for B19 chickens and not for
B21 chickens. This inbred chicken line was earlier used in a comparable
NDV vaccination study where antigen-specific T cell responses were
assessed by CFSE staining and proliferation analyses (Dalgaard et al.,
2010b). PBMC from chickens (of both MHC haplotypes) immunised
with live attenuated vaccine showed a significantly higher proliferative
capacity upon virus-specific recall stimulation than naive MHC-mat-
ched controls. However, no significant differences between the two
haplotypes were reported (Dalgaard et al., 2010b). Nevertheless, the
contrasting results may reflect that proliferating T cells do not ne-
cessarily produce IFN-γ and vice versa. This was previously suggested
by Lambrecht et al. (2004) when no close correlation was found be-
tween the proliferative response to mitogens and the IFN-γ production
in chicken splenocyte cultures. The observed antigen-specific IFN-γ
production in CD3+TCRγδ−CD8+ cells of B19 chickens was only ob-
served in the group vaccinated with the live attenuated vaccine and not
in the group having received the inactivated vaccine. This was in good
agreement with earlier reports demonstrating that live attenuated NDV
vaccines induce a stronger CMI than inactivated NDV vaccines (Al-
Garib et al., 2003; Zoth et al., 2008; Lambrecht et al., 2004; Rauw et al.,
2009; Jayawardane and Spradbrow, 1995). However, the observation
may not only reflect differences in the amount of circulating memory T
cells induced by the vaccinations, but also differences in vaccine re-
sponse kinetics and hence the possibility of identifying the NDV specific
cells in peripheral blood. It should also be noted that recall stimulation
using e.g. synthetic peptide pools or recombinant viral proteins may
improve the methodology. The NDV antigen used in this study most
likely, apart from viral protein/peptides, also contain unspecific sti-
muli, such as viral nucleic acids and other viral pathogen associated
molecular patterns. Hence, the IFN-γ producing cells were not ne-
cessarily exclusively responding to NDV peptides presented by MHC.
Interestingly, spontaneous IFN-γ production by unstimulated lympho-
cytes (medium controls) was earlier reported to be higher in samples
from AIV infected chickens as compared to uninfected controls
(Reemers et al., 2012). In general, we also observed large differences in
the spontaneous IFN-γ production in medium controls between treat-
ment groups, MHC type and sample time as previously reported in
various species (Ariaans et al., 2009; Koets et al., 2006).

The study of chicken antigen-specific T cells is much hampered by
the lack of available MHC multimer reagents, and thus knowledge of
where and when to detect specific effector and memory T cells in vivo is
scarce. The fact that the chickens e.g. lack draining lymph nodes as we
know them from mammals further complicates a comparative ap-
proach. However, a few reports have established the presence of virus-
specific memory T cells in both spleen and peripheral blood of chickens.
Thus, Singh et al. (2010) reported assessment of ex vivo stimulated
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avian influenza virus specific peripheral T cells by their IFN-γ secretion
(by NO inducing capacity in the HD11 cell line) and found cytokine
producing capacity 3–9 weeks post a DNA vaccination. Likewise, Pei
et al. (2003) reported the presence of Infectious Bronchitis virus (IBV)
specific T cells in the spleen 3–6 weeks after infection by assessment of
their protective potential by adoptive transfer. In the future, assessment
of chicken memory T cell biology will be aided by development of new
MHC multimer reagents and identification of T cell activation and
memory cell markers for detailed phenotyping of antigen-specific cells.
In addition functional assays for assessment of combinations of para-
meters such as proliferative capacity, degranulation potential/CTL ac-
tivity and ability to produce several cytokines in addition to IFN-γ will
be key to progress in the field.

In conclusion, we found that the ICS method could be useful for
studying vaccine-induced T cell responses in the chicken but careful
optimisation should be performed in each experimental setup. Although
ConA increased the frequencies of IFN-γ+ cells, it is noteworthy that a
large proportion of the IFN-γ producers were γδ T cells or even
thrombocytes. Furthermore, the ICS method was used for assessment of
NDV-specific T cell responses in a vaccination experiment and large
variations between individuals were observed along with a non-specific
background response in naive chickens. In order to further pursue an-
tigen-specific responses, optimisation of the NDV antigen stimulation
protocol must be done, e.g. by co-stimulation strategies or improved
antigen presentation by APC enrichment. Furthermore, not only the
magnitude but also the quality of a T cell response is important for
protective immunity, as shown in mammalian studies (Seder et al.,
2008). In the future, it will be necessary to address combinations of T
cell functions in the chicken to identify valuable correlates of protec-
tion.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

We would like to thank Dominika Borowska for preparing chicken
bone marrow-derived cell cultures. Dominika Borowska and Lonneke
Vervelde were funded by the Biotechnology and Biological Sciences
Research Council Institute Strategic Program GrantBB/J004324/1 to
The Roslin Institute and Kate Sutton by the Biotechnology and
Biological Sciences Research Council GrantBB/M003094.

We also acknowledge financial support from the European Union
Seventh Framework Network of Animal Disease Infectiology Research
Facilities (NADIR; reference number FP7-228394) and the Danish
Research Council (274-06-0258). Finally, this article is based upon
work from COST Action FA1207 “Towards Control of Avian
Coronaviruses: Strategies for Diagnosis, Surveillance and Vaccination”,
supported by COST (European Cooperation in Science and Technology).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.vetimm.2017.10.001.

References

Alexander, D.J., 2001. Gordon memorial lecture. Newcastle disease. Br Poult Sci . 42,
5–22.

Al-Garib, S., Gielkens, A., Gruys, D., Hartog, L., Koch, G., 2003. Immunoglobulin class
distribution of systemic and mucosal antibody responses to Newcastle disease in
chickens. Avian Dis. 47, 32–40.

Ariaans, M., van de Haar, P., Lowenthal, J., van, E., Hensen, E., Vervelde, L., 2008.
ELISPOT and intracellular cytokine staining: novel assays for quantifying T cell re-
sponses in the chicken. Dev. Comp. Immunol. 32, 1398–1404.

Ariaans, M., van de Haar, P., Hensen, E., Vervelde, L., 2009. Infectious Bronchitis Virus
induces acute interferon-gamma production through polyclonal stimulation of

chicken leukocytes. Virology 385, 68–73.
Breed, D., Dorrestein, J., Schetters, T., Waart, L., Rijke, E., Vermeulen, A., 1997.

Peripheral blood lymphocytes from Eimeria tenella infected chickens produce
gamma-interferon after stimulation in vitro. Parasite Immunol. 19, 127–135.

DaMatta, R.A., Manhães, L., Lassounskaia, E., de Souza, W., 1999. Chicken thrombocytes
in culture: lymphocyte-conditioned medium delays apoptosis. Tissue Cell 31,
255–263.

Dalgaard, T., Vitved, L., Skjodt, K., 2005. Molecular characterisation of major histo-
compatibility complex class I (B-F) mRNA variants from chickens differing in re-
sistance to Marek’s disease. Scand. J. Immunol. 62, 259–270.

Dalgaard, T., Boving, M., Handberg, K., Jensen, K., Norup, L., Juul-Madsen, H., 2009.
MHC expression on spleen lymphocyte subsets in genetically resistant and susceptible
chickens infected with Marek’s disease virus. Viral Immunol. 22, 321–327.

Dalgaard, T.S., Norup, L.R., Pedersen, A.R., Handberg, K.J., Jorgensen, P.H., Juul-
Madsen, H.R., 2010a. Flow cytometric assessment of chicken T cell-mediated immune
responses after Newcastle disease virus vaccination and challenge. Vaccine 28,
4506–4514.

Dalgaard, T.S., Norup, L.R., Rubbenstroth, D., Wattrang, E., Juul-Madsen, H.R., 2010b.
Flow cytometric assessment of antigen-specific proliferation in peripheral chicken T
cells by CFSE dilution. Vet. Immunol. Immunopathol. 138, 85–94.

Dalgaard, T.S., Norup, L.R., Juul-Madsen, H.R., 2016. Detection of avian antigen-specific
T cells induced by viral vaccines. Methods Mol. Biol. 1404, 77–88.

De Rosa, S.C., Lu, F.X., Yu, J., Perfetto, S.P., Falloon, J., Moser, S., Evans, T.G., Koup, R.,
Miller, C.J., Roederer, M., 2004. Vaccination in humans generates broad T cell cy-
tokine responses. J. Immunol. 173, 5372–5380.

Desombere, I., Meuleman, P., Rigole, H., Willems, A., Irsch, J., Leroux-Roels, G., 2004.
The interferon gamma secretion assay: a reliable tool to study interferon gamma
production at the single cell level. J. Immunol. Methods 286, 167–185.

Desombere, I., Clement, F., Rigole, H., Leroux-Roels, G., 2005. The duration of in vitro
stimulation with recall antigens determines the subset distribution of interferon-
gamma-producing lymphoid cells: a kinetic analysis using the Interferon-gamma
Secretion Assay. J. Immunol. Methods 301, 124–139.

Dimitrov, K.M., Afonso, C.L., Yu, Q., Miller, P.J., 2017. Newcastle disease vaccines-a
solved problem or a continuous challenge? Vet. Microbiol. 206, 126–136.

Entrican, G., 2002. New technologies for studying immune regulation in ruminants. Vet.
Immunol. Immunopathol. 87, 485–490.

Ferdous, F., Scott, T., 2015. Bacterial and viral induction of chicken thrombocyte in-
flammatory responses. Dev. Comp. Immunol. 49, 225–230.

Ferdous, F., Saski, C., Bridges, W., Burns, M., Dunn, H., Elliott, K., 2016. Transcriptome
profile of the chicken thrombocyte: new implications as an advanced immune ef-
fector cell. PLoS One 11.

Fulton, J., Juul-Madsen, H., Ashwell, C., 2006. Molecular genotype identification of the
Gallus gallus major histocompatibility complex. Immunogenetics 58, 407–421.

Hagiwara, E., Abbasi, F., Mor, G., Ishigatsubo, Y., Klinman, D., 1995. Phenotype and
frequency of cells secreting IL-2 IL-4, IL-6, IL-10, IFN and TNF-alpha in human per-
ipheral blood. Cytokine 7, 815–822.

Huang, X., Zou, J., Xu, H., Ding, Y., Yin, G., Liu, X., Suo, X., 2011. Transgenic Eimeria
tenella expressing enhanced yellow fluorescent protein targeted to different cellular
compartments stimulated dichotomic immune responses in chickens. J. Immunol.
187, 3595–3602.

Jayawardane, G., Spradbrow, P., 1995. Cell-mediated immunity in chickens vaccinated
with the V4 strain of Newcastle disease virus. Vet. Microbiol. 46, 37–41.

Karaca, K., Sharma, J., Tomai, M., Miller, R., 1996. In vivo and in vitro interferon in-
duction in chickens by S -28828: an imidazoquinolinamine immunoenhancer. J.
Interferon Cytokine Res. 16, 327–332.

Kasahara, Y., Chen, C., Cooper, M., 1993. Growth requirements for avian gamma delta T
cells include exogenous cytokines, receptor ligation and in vivo priming. Eur. J.
Immunol. 9, 2230–2236.

Kaspers, B., Kaiser, P., 2014. Avian antigen-presenting cells. In: Schat, K.A., Kaspers, B.,
Kaiser, P. (Eds.), Avian Immunology. Elsevier Science, pp. 169–188.

Koets, A., Hoek, A., Langelaar, M., Overdijk, M., Santema, W., Franken, P., Eden, W.,
Rutten, V., 2006. Mycobacterial 70 kD heat-shock protein is an effective subunit
vaccine against bovine paratuberculosis. Vaccine 24, 2550–2559.

Lambrecht, B., Gonze, M., Meulemans, G., van den Berg, T.P., 2000. Production of an-
tibodies against chicken interferon-gamma: demonstration of neutralizing activity
and development of a quantitative ELISA. Vet. Immunol. Immunopathol. 74,
137–144.

Lambrecht, B., Gonze, M., Meulemans, G., Van den Berg, T., 2004. Assessment of the cell-
mediated immune response in chickens by detection of chicken interferon-gamma in
response to mitogen and recall Newcastle disease viral antigen stimulation. Avian
Pathol. 33, 343–350.

Lawson, S., Rothwell, L., Lambrecht, B., Howes, K., Venugopal, K., Kaiser, P., 2001.
Turkey and chicken interferon-gamma, which share high sequence identity, are
biologically cross-reactive. Dev. Comp. Immunol. 25, 69–82.

Maecker, H., Ghanekar, S., Suni, M., He, X., Picker, L., Maino, V., 2001. Factors affecting
the efficiency of CD8+ T cell cross-priming with exogenous antigens. J. Immunol.
166, 7268–7275.

Martin, A., Lillehoj, H., Kaspers, B., Bacon, L., 1994. Mitogen-induced lymphocyte pro-
liferation and interferon production following coccidia infection. Avian Dis. 38,
262–268.

McConnell, S., Dawson, D., Wardle, A., Burke, T., 1999. The isolation and mapping of 19
tetranucleotide microsatellite markers in the chicken. Anim. Genet. 30, 183–189.

Miller, M.M., Bacon, L.D., Hala, K., Hunt, H.D., Ewald, S.J., Kaufman, J., Zoorob, R.,
Briles, W.E., 2004. 2004 Nomenclature for the chicken major histocompatibility (B
and Y) complex. Immunogenetics 56, 261–279.

Neulen, M.L., Viertlboeck, B.C., Straub, C., Gobel, T.W., 2015. Identification of novel

S.H. Andersen et al. Veterinary Immunology and Immunopathology 193–194 (2017) 18–28

27

http://dx.doi.org/10.1016/j.vetimm.2017.10.001
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0005
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0005
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0010
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0010
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0010
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0015
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0015
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0015
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0020
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0020
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0020
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0025
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0025
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0025
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0030
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0030
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0030
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0035
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0035
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0035
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0040
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0040
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0040
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0045
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0045
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0045
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0045
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0050
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0050
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0050
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0055
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0055
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0060
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0060
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0060
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0065
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0065
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0065
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0070
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0070
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0070
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0070
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0075
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0075
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0080
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0080
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0085
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0085
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0090
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0090
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0090
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0095
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0095
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0100
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0100
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0100
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0105
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0105
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0105
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0105
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0110
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0110
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0115
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0115
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0115
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0120
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0120
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0120
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0125
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0125
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0130
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0130
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0130
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0135
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0135
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0135
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0135
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0140
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0140
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0140
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0140
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0145
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0145
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0145
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0150
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0150
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0150
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0155
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0155
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0155
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0160
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0160
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0165
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0165
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0165
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0170


chicken CD4(þ) CD3(−) blood population with NK cell like features. Dev. Comp.
Immunol. 49, 72–78.

Pei, J., Briles, W., Collisson, E., 2003. Memory T cells protect chicks from acute infectious
bronchitis virus infection. Virology 306, 376–384.

Prowse, S., Pallister, J., 1989. Interferon release as a measure of the T-cell response to
coccidial antigens in chickens. Avian Pathol. 18, 619–630.

Rauw, F., Gardin, Y., Palya, V., 2009. Humoral, cell-mediated and mucosal immunity
induced by oculo-nasal vaccination of one-day-old SPF and conventional layer chicks
with two different live Newcastle disease vaccines. Vaccine 27, 3631–3642.

Rauw, F., Gardin, Y., Palya, V., 2010. Improved vaccination against Newcastle disease by
an in ovo recombinant HVT-ND combined with an adjuvanted live vaccine at day-old.
Vaccine 28, 823–833.

Reemers, S.S., van Haarlem, D.A., Sijts, A.J., Vervelde, L., Jansen, C.A., 2012.
Identification of novel avian influenza virus derived CD8+ T-cell epitopes. PLoS One
7, e31953.

Roederer, M., 2001. Spectral compensation for flow cytometry: visualization artifacts,
limitations, and caveats. Cytometry 45, 194–205.

Ruiz-Hernandez, R., Peroval, M., Boyd, A., Balkissoon, D., Staines, K., Smith, A., Butter,
C., 2015. An infected chicken kidney cell co-culture ELISpot for enhanced detection
of T cell responses to avian influenza and vaccination. J. Immunol. Methods 416,
40–48.

Sassu, E.L., Ladinig, A., Talker, S.C., Stadler, M., Knecht, C., Stein, H., Frombling, J.,
Richter, B., Spergser, J., Ehling-Schulz, M., Graage, R., Hennig-Pauka, I., Gerner, W.,
2017. Frequency of Th17 cells correlates with the presence of lung lesions in pigs
chronically infected with Actinobacillus pleuropneumoniae. Vet. Res. 48, 4.

Schijns, V.E.J.C., van de Zande, S., Lupiani, B., Reddy, S.M., 2014. Practical aspects of
poultry vaccination. In: Schat, K.A., Kaspers, B., Kaiser, P. (Eds.), Avian Immunology.
Elsevier Science, pp. 345–362.

Scott, T., Owens, M., 2008. Thrombocytes respond to lipopolysaccharide through Toll-
like receptor-4, and MAP kinase and NF-kappaB pathways leading to expression of
interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2. Mol.
Immunol. 45, 1001–1008.

Seder, R., Darrah, P., Roederer, M., 2008. T-cell quality in memory and protection: im-
plications for vaccine design. Nat. Rev. Immunol. 8, 247–258.

Seliger, C., Schaerer, B., Kohn, M., Pendl, H., Weigend, S., Kaspers, B., Hartle, S., 2012. A
rapid high-precision flow cytometry based technique for total white blood cell
counting in chickens. Vet. Immunol. Immunopathol. 145, 86–99.

Singh, S., Briles, W., Lupiani, B., Collisson, E., 2010. Avian influenza viral nucleocapsid
and hemagglutinin proteins induce chicken CD8+ memory T lymphocytes. Virology
399, 231–238.

Sopp, P., Howard, C.J., 2001. IFNg and IL-4 production by CD4, CD8 and WC1 gd TCR+
T cells from cattle lymph nodes and blood. Vet. Immunol. Immunopathol. 81, 85–96.

St Paul, M., Paolucci, S., Barjesteh, N., Wood, R.D., Schat, K.A., Sharif, S., 2012.
Characterization of chicken thrombocyte responses to Toll-like receptor ligands. PLoS
One 7 (8), e43381.

Suni, M., Picker, L., Maino, V., 1998. Detection of antigen-specific T cell cytokine ex-
pression in whole blood by flow cytometry. J. Immunol. Methods 212, 89–98.

Sutton, K.M.C., Hu, T., Wu, Z., Siklodi, B., Vervelde, L., Kaiser, P., 2015. The functions of
the avian receptor activator of NF-κB ligand (RANKL) and its receptors, RANK and
osteoprotegerin, are evolutionarily conserved. Dev. Comp. Immunol. 51, 170–184.

Thiel, A., Scheffold, A., Radbruch, A., 2004. Antigen-specific cytometry?new tools ar-
rived!. Clin. Immunol. 111, 155–161.

Vitale, M., Caruso, A., Licenziati, S., 2000. Differential production of IFN-gamma, ana-
lyzed at the single-cell level, by specific subsets of human NK and T cells from healthy
and HIV(+) subjects. Cytometry 39, 189–194.

Weining, K.C., Schultz, U., Münster, U., Kaspers, B., Staeheli, P., 1996. Biological prop-
erties of recombinant chicken interferon-gamma. Eur. J. Immunol. 26, 2440–2447.

Wu, Z., L, Rothwell, Young, J.R., Kaufman, J., Butter, C., Kaiser, P., 2010. Generation and
characterization of chicken bone marrow-derived dendritic cells. Immunology 129,
133–145.

Zoth, S., Gomez, E., Carillo, E., Berinstein, A., Braz, J., 2008. Locally produced mucosal
IgG in chickens immunized with conventional vaccines for Newcastle disease virus.
Med. Biol. Res. 41, 318–323.

S.H. Andersen et al. Veterinary Immunology and Immunopathology 193–194 (2017) 18–28

28

http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0170
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0170
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0175
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0175
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0180
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0180
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0185
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0185
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0185
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0190
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0190
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0190
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0195
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0195
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0195
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0200
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0200
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0205
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0205
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0205
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0205
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0210
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0210
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0210
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0210
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0215
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0215
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0215
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0220
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0220
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0220
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0220
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0225
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0225
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0230
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0230
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0230
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0235
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0235
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0235
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0240
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0240
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0245
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0245
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0245
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0250
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0250
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0255
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0255
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0255
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0260
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0260
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0265
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0265
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0265
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0270
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0270
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0275
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0275
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0275
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0280
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0280
http://refhub.elsevier.com/S0165-2427(17)30380-X/sbref0280

	Quantification and phenotypic characterisation of peripheral IFN-γ producing leucocytes in chickens vaccinated against Newcastle disease
	Introduction
	Materials and methods
	Method establishment and optimisation
	Transfection of CHO cells and test of antibodies for intracellular IFN-γ staining
	Optimisation of PBMC surface staining conditions
	Optimisation of PBMC stimulation and intracellular IFN-γ staining

	NDV vaccination experiment
	Animals and experimental design
	MHC haplotyping
	ELISA for NDV specific antibodies in serum
	PBMC stimulation
	Staining antibodies used in ICS assay
	Surface staining of PBMC
	Intracellular cytokine staining
	Flow cytometry
	Ethics and animal care
	Statistical analysis


	Results
	CHO cell ICS staining
	Optimisation of PBMC surface staining conditions
	Optimisation of PBMC stimulation and intracellular IFN-γ staining
	Antibody responses to NDV vaccination
	IFN-γ production in PBMC stimulated ex vivo with ConA
	IFN-γ production in ex vivo NDV-activated PBMC

	Discussion
	Conflicts of interest
	Acknowledgements
	Supplementary data
	References




