

Edinburgh Research Explorer

Correctness of SQL Queries on Databases with Nulls

Citation for published version:
Guagliardo, P & Libkin, L 2017, 'Correctness of SQL Queries on Databases with Nulls' SIGMOD Rec., vol.
46, no. 3, pp. 5-16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SIGMOD Rec.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/132608907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/correctness-of-sql-queries-on-databases-with-nulls(f699d365-11ba-48cd-bfea-4dd6d33974e2).html

Correctness of SQL Queries on Databases with Nulls

Paolo Guagliardo
School of Informatics

The University of Edinburgh
pguaglia@inf.ed.ac.uk

Leonid Libkin
School of Informatics

The University of Edinburgh
libkin@inf.ed.ac.uk

ABSTRACT
Multiple issues with SQL’s handling of nulls have been
well documented. Having efficiency as its main goal,
SQL disregards the standard notion of correctness on in-
complete databases – certain answers – due to its high
complexity. As a result, the evaluation of SQL queries
on databases with nulls may produce answers that are
just plain wrong. However, SQL evaluation can be mod-
ified, at least for relational algebra queries, to approxi-
mate certain answers, i.e., return only correct answers.
We examine recently proposed approximation schemes
for certain answers and analyze their complexity, both
theoretical bounds and real-life behavior.

1. INTRODUCTION
The way incomplete information is handled in com-

mercial DBMSs, specifically by SQL, has been heavily
criticized for producing counter-intuitive and just plain
incorrect answers [4, 9]. This is often blamed on SQL’s
3-valued logic (3VL), and there are multiple discussions
in the literature on the relative merits of SQL’s 3VL and
some alternatives; see, e.g., [11, 33, 6]. They often try to
justify a logic within itself, without having an external
yardstick definition of correctness. Given the futility of
such an approach, we first need to settle on what consti-
tutes the notion of correctness.

For this, we adapt the standard approach found in the
database literature: correct answers are those that we are
certain about. Intuitively, this means that such answers
will be true no matter how we interpret incomplete in-
formation that is present in the database. This approach,
first proposed in the late 1970s [13, 26], is now domi-
nant in the literature and it is standard in all applications
where incomplete information appears (data integration,
data exchange, ontology-based data access, data clean-
ing, etc.).

Why cannot SQL then just compute certain answers?
The reason is that SQL’s designers had first and fore-
most efficient evaluation in mind, but correctness and
efficiency do not always get along. Computing certain
answers is CONP-hard for most reasonable semantics,

if we deal with relational calculus/algebra queries [2].
On the other hand, SQL evaluation is very efficient; it is
in AC0 (a small parallel complexity class) for the same
class of queries, and so it provably cannot compute cer-
tain answers.

If SQL provably cannot produce what is assumed to
be the correct answers, then what kinds of errors can it
generate? To understand this, consider the simple data-
base in Figure 1. It shows orders for books, information
about customers paying for them, and basic information
about customers themselves.

Decision support queries against such a database may
include finding unpaid orders:

SELECT O.order_id FROM Orders O
WHERE O.order_id NOT IN

(SELECT order_id FROM Payments)

or finding customers who have not placed an order:

SELECT C.cust_id FROM Customers C
WHERE NOT EXISTS

(SELECT * FROM Orders O, Payments P
WHERE C.cust_id = P.cust_id
AND P.order_id = O.order_id)

As expected, the first query produces a single answer
Ord3, while the second returns the empty table. But now
assume that just a single entry in these tables is replaced
by NULL: specifically, the value of order id in the sec-
ond tuple of Payments changes from Ord2 to NULL. Then
the answers to queries change drastically, and in differ-
ent ways: now the unpaid orders query returns the empty
table, and the customers without an order query returns
Cust2. That is, due to the presence of nulls, we can both
miss answers, and invent new answers!

Let us analyze this in more detail. If we consider cer-
tain answers as the correct behavior of query answering
over incomplete databases, then SQL evaluation can dif-
fer from it in two ways:
• SQL can miss some of the tuples that belong to cer-

tain answers, thus producing false negatives; or
• it can return some tuples that do not belong to cer-

tain answers, that is, false positives.
In the previous example, Cust2 returned by the second

ORDERS

order id title price

Ord1 Big Data 30
Ord2 SQL 35
Ord3 Logic 50

PAYMENTS

cust id order id

Cust1 Ord1
Cust2 Ord2

CUSTOMERS

cust id name

Cust1 John
Cust2 Mary

Figure 1: A database of orders, payments, and customers.

query is a false positive. The unpaid orders query does
not generate any false negatives: certain answers are ac-
tually empty since we cannot know which order was un-
paid. But a simple query

SELECT cust_id FROM Payments
WHERE order_id = 'Ord2' OR order_id <> 'Ord2'

returns only Cust1 in the database with null as described
above, while the certain answer is {Cust1, Cust2 }.

To sum up, SQL cannot compute certain answers due
to the complexity gap. Furthermore, it can produce both
false positives and false negatives. However, the gap in
complexity does not yet justify such a behavior: it leaves
open the possibility that a query evaluation scheme pro-
duces only one type of undesirable results.

For now we take the view that false positives are the
worst of the two: after all, they produce an outright lie
as opposed to hiding some of the truth. We admit that
an alternative point of view has merits too [6], and in
fact we shall address it later. One can accept one type
of errors – false negatives – as the price to be paid for
lowering complexity.

This idea is not new: it was first explored more
than 30 years ago [29, 32]. Those papers assumed the
model of databases as logical theories and could not
lead to implementations that would handle familiar rela-
tional databases with nulls. Some ad hoc translations of
SQL queries were studied later but without any formally
proved correctness guarantees [19].

The first approach to fixing SQL’s evaluation scheme
that provides provable correctness guarantees was pre-
sented surprisingly recently, in [25] (with the conference
version appearing in 2015). It showed how to translate
a relational algebra query Q into a query Qt of true an-
swers such that:
• false positives never occur: Qt returns a subset of

certain answers to Q;
• data complexity of Qt is still AC0; and
• on databases without nulls, Q and Qt coincide.
Given the attractive theoretical properties of the ap-

proach, it was natural to ask two questions. First, do we
address a real problem, that is, do false positives occur
in real queries? And second, do theoretical guarantees
of the approach translate into good behavior in practice?
What is the price to pay, in terms of query evaluation

performance, for correctness guarantees?
These questions were addressed in [15]. It provided

experimental evidence that false positives are indeed a
real-life problem. It then noticed that the translation
of [25] cannot be implemented as-is: queries in trans-
lations tend to build very large Cartesian products and
are thus impractical, despite very good theoretical com-
plexity bounds.

To remedy this, [15] proposed a new translation Q 7→
(Q+, Q?) of relational algebra queries. The query Q+

shares the desirable properties of Qt, and Q? addresses
the alternative point of view that false negatives are evil:
it eliminates false negatives but can produce false posi-
tives instead. The translations are by mutual recursion,
hence one cannot define Q+ without Q? and vice versa.

Algorithms in [15] introduced extra steps to restore
correctness. We do not, therefore, expect them to out-
perform native SQL evaluation, which was designed to
optimize execution time. We can hope, however, that the
overhead is sufficiently small. If this is so, one can envi-
sion two modes of evaluation: the standard one, where
efficiency is the only concern, and an alternative, per-
haps slightly more expensive one, that provides correct-
ness guarantees. The difference between the two is the
price of correctness.

The goal of this short survey is to report recent de-
velopments in finding efficient approximations of SQL
queries on databases with nulls that come with correct-
ness guarantees. Experimental evidence shows that false
positives are a real issue. We present the approximation
schemes of [25] and [15] and provide theoretical guar-
antees for both. For the latter, we also present an exper-
imental evaluation showing that its real-life behavior in
terms of the price of correctness falls into three major
categories:
• for the first, and largest, group of queries, the price

of correctness is small, as was indeed hoped (the
overhead ranges between 1% and 4%);
• for another group, somewhat surprisingly, there is

a significant improvement in performance despite
the query performing additional checks;
• for the last group, performance becomes an issue,

but it has to do with the well documented issues in
the way commercial optimizers handle disjunctions
in queries [5]; depending on the size of the data-

base, the approximating query Q+ runs at between
one quarter to half the speed of Q.

These results point to a real opportunity to fix many of
the issues related to the handling of nulls in RDBMSs,
at a reasonable cost in terms of query evaluation.

2. PRELIMINARIES
We consider incomplete databases with nulls inter-

preted as missing values. Much of the following is stan-
dard in the literature on databases with incomplete in-
formation; see, e.g., [1, 18, 31]. The usual way of mod-
eling missing values in a database is to use marked (or
labeled) nulls, which often appear in applications such
as data integration and exchange [3, 22]. In this model,
databases are populated by two types of elements: con-
stants and nulls, coming from countably infinite sets de-
noted by Const and Null, respectively. Nulls are denoted
by ⊥, sometimes with sub- or superscripts. For the pur-
pose of the general model we follow the textbook ap-
proach assuming one domain Const for all non-null ele-
ments appearing in databases. In real life, such elements
can be of many different types, and those appearing in
the same column must be of the same type. Adjusting
results and translations of queries for this setting is com-
pletely straightforward.

A relational schema is a set of relation names with as-
sociated arities (numbers of attributes). With each k-ary
relation symbol S from the vocabulary, an incomplete
relational instanceD associates a k-ary relation SD over
Const ∪ Null, that is, a finite subset of (Const ∪ Null)k.
When the instance is clear from the context, we write S
instead of SD for the relation itself. We denote the arity
of S by ar(S), and use the same notation for queries.
Note that we now assume set semantics of queries; we
shall comment on bag semantics, which is used in real-
life DBMSs, in Section 5.

The sets of constants and nulls that occur in a database
D are denoted by Const(D) and Null(D), respectively.
The active domain of D is the set adom(D) of all ele-
ments occurring in it, that is, Const(D) ∪ Null(D). If
D has no nulls, we say that it is complete. A valuation
v on a database D is a map v : Null(D) → Const. We
denote by v(D) the result of replacing each null ⊥ with
v(⊥) in D. An incomplete database represents the col-
lection of complete databases {v(D) | v is a valuation};
this is often referred to as the closed-world semantics of
incompleteness [28].

Query languages. As our query language, we consider
relational algebra with the standard operations of selec-
tion σ, projection π, Cartesian product × (or join ./),
union ∪, and difference−. This corresponds to the basic
fragment of SQL – which we use in the experiments of
Section 4 – consisting of the usual SELECT-FROM-WHERE

queries, with (correlated) subqueries preceded by IN and
EXISTS, as well as their negations. We shall comment in
more detail about the correspondence between SQL and
relation algebra in Section 5.

We assume that selection conditions are positive
Boolean combinations of equalities of the form A = B
and A = c, where A and B are attributes and c is a
constant value, and disequalities A 6= B and A 6= c.
Note that these conditions are closed under negation,
which can simply be propagated to atoms: e.g., ¬

(
(A =

B) ∨ (B 6= 1)
)

is equivalent to (A 6= B) ∧ (B = 1).
We also use conditions const(A) and null(A) in se-

lections, indicating whether the value of an attribute is a
constant or a null. These correspond to A IS NOT NULL

and A IS NULL in SQL.

Correctness guarantees. The standard notion of cor-
rect query answering on incomplete databases is certain
answers, that is, tuples that are present in the answer to
a query regardless of the interpretation of nulls. For a
query Q and a database D, they are typically defined as
tuples ā that are present inQ(v(D)) for all valuations v;
see [1, 18].

This definition has a serious drawback, though, as tu-
ples with nulls cannot be returned, while standard query
evaluation may well produce such tuples. For instance,
if we have a relation R = {(1,⊥), (2, 3)}, and a query
returning R, then the only certain answer according to
the above definition is (2, 3), while intuitively we would
expect the entire relation.

In light of this, we use a closely-related but more gen-
eral notion from [27], called certain answers with nulls
in [25]. Formally, for a query Q and a database D, these
are tuples ā over adom(D) such that v(ā) ∈ Q

(
v(D)

)
for every valuation v on D. The set of all such tuples is
denoted by cert(Q,D). In the above example, the cer-
tain answers with nulls are (1,⊥) and (2, 3). The stan-
dard certain answers are exactly the null-free tuples in
cert(Q,D) [25].

Definition 1. A query evaluation algorithm has cor-
rectness guarantees for query Q if for every database D
it returns a subset of cert(Q,D).

In other words, with correctness guarantees, false posi-
tives are not allowed: all returned tuples must be certain
answers.

Often our evaluation algorithms will be of the follow-
ing form: translate a queryQ into another queryQ′, and
then run Q′ on D. If Q′(D) ⊆ cert(Q,D) for every D,
then we say that Q′ has correctness guarantees for Q.

Some results concerning correctness guarantees are
known. By naı̈ve evaluation for a fragment of relational
algebra we mean the algorithm that treats elements of
Null as if they were the usual database entries, i.e., each

evaluation ⊥ = c for c ∈ Const is false and ⊥ = ⊥′ is
true iff ⊥ and ⊥′ are the same element in Null.

Recall that the positive fragment of relational algebra
is the fragment without the difference operator and with-
out disequalities in selection conditions. It corresponds
to the fragment of SQL in which negation does not ap-
pear in any form, i.e., EXCEPT is not allowed, there are
no negations in WHERE conditions and the use of NOT IN

and NOT EXISTS for subqueries is prohibited.

FACT 1 ([12, 18, 25]). For positive relational alge-
bra queries, naı̈ve evaluation computes exactly certain
answers with nulls, and thus it has correctness guaran-
tees. This remains true even if we extend the language
with the division operator as long as its second argu-
ment is a relation in the database.

Recall that division is a derived relational algebra op-
eration; it computes tuples in a projection of a relation
appearing in all possible combinations with tuples from
another relation (e.g., ‘find students taking all courses’).

SQL evaluation. The query evaluation procedure in
SQL is different from naı̈ve evaluation: it is based on a
3-valued logic. Comparisons such as⊥ = c, or⊥ = ⊥′,
evaluate to unknown, which is then propagated through
conditions using the rules of 3VL.

More precisely, selection conditions can evaluate to
true (t), false (f), or unknown (u). If at least one attribute
in a comparison is null, the result of the comparison is
u. The interaction of u with Boolean connectives fol-
lows the rules of SQL’s 3VL (which is Kleene’s 3-valued
logic) shown below for the cases when u is involved:

¬u = u u ∧ f = f u ∨ t = t
u ∧ t = u u ∧ u = u
u ∨ f = u u ∨ u = u

Then, σθ selects tuples on which θ evaluates to t (that is,
f and u tuples are not selected). We refer to the result of
evaluating a query Q in this way as EvalSQL(Q,D).

FACT 2 ([25]). EvalSQL has correctness guarantees
for positive relational algebra.

Thus, it is the negation in queries – that may appear
in various forms – that causes SQL’s behavior to deviate
from correct answers. Not surprisingly, all the example
queries in the introduction used some form of negation.

3. APPROXIMATION SCHEMES WITH
CORRECTNESS GUARANTEES

Due to the high complexity of certain answers, we
must settle for approximations that can be computed ef-
ficiently. As we have seen, although efficient, standard

SQL evaluation may produce answers that are not cer-
tain, so we need alternative evaluation schemes that have
correctness guarantees and tractable complexity.

One such scheme was first devised in [25], but despite
its promising complexity bounds it was not effectively
applicable in practice. For this reason, [15] proposed a
new evaluation scheme with correctness guarantees and
the same theoretical complexity of the previous one, but
that can also be implemented efficiently.

We will now present and discuss these two schemes in
more detail for queries expressed in relational algebra.

3.1 A simple translation
The key idea of the approximation scheme of [25] is

to translate a queryQ into a pair (Qt, Qf) of queries that
have correctness guarantees for Q and its complement
Q, respectively. That is, tuples in Qt(D) are certainly
true, and tuples in Qf(D) are certainly false:

Qt(D) ⊆ cert(Q,D) (1)

Qf(D) ⊆ cert(Q,D) (2)

To describe the translation, we need the following.

Definition 2. Two tuples r̄ and s̄ of the same length
over Const∪Null are unifiable, written as r̄ ⇑ s̄, if there
exists a valuation v of nulls such that v(r̄) = v(s̄).

For example, (⊥, 2,⊥′)⇑ (2,⊥, 3) with the valuation
v(⊥) = 2 and v(⊥′) = 3, but (⊥, 3,⊥′) and (2,⊥, 3)
do not unify. Checking whether tuples unify is very ef-
ficient: it can be done in linear time, and in fact can be
expressed by a condition in WHERE.

The translations of [25] are shown in Figure 2, where
adom refers to the query computing the active domain.
For a single relation R with attributes A1, . . . , An, this
is adom(R) = πA1(R) ∪ . . . ∪ πAn(R), and for a da-
tabase D with relations R1, . . . , Rm, it is adom(D) =
adom(R1) ∪ . . . ∪ adom(Rm). Recall that ar(Q) is the
arity of Q, so adomar(Q) refers to the Cartesian product
adom× . . .× adom taken ar(Q) times.

The translation also uses conditions θ∗ which are ob-
tained by translating selection conditions θ as defined
inductively by the following rules:

(A = B)∗ = (A = B)

(A = c)∗ = (A = c) if c is a constant
(A 6= B)∗ = (A 6= B) ∧ const(A) ∧ const(B)

(A 6= c)∗ = (A 6= c) ∧ const(A)

(θ1 ∨ θ2)∗ = θ∗1 ∨ θ∗2
(θ1 ∧ θ2)∗ = θ∗1 ∧ θ∗2

THEOREM 1 ([25]). The translations of Figure 2
have correctness guarantees: (1) and (2) hold. More-
over, both queriesQt andQf have AC0 data complexity,
and Qt(D) = Q(D) for complete databases.

Rt = R

(Q1 ∪Q2)t = Qt
1 ∪Qt

2

(Q1 −Q2)t = Qt
1 ∩Qf

2(
σθ(Q)

)t
= σθ∗(Q

t)

(Q1 ×Q2)t = Qt
1 ×Qt

2(
πα(Q)

)t
= πα(Qt)

Rf =
{
s̄ ∈ adomar(R) | @ r̄ ∈ R : r̄ ⇑ s̄

}
(Q1 ∪Q2)f = Qf

1 ∩Qf
2

(Q1 −Q2)f = Qf
1 ∪Qt

2

(σθ(Q))f = Qf ∪ σ(¬θ)∗
(
adomar(Q)

)
(Q1 ×Q2)f = Qf

1 × adomar(Q2) ∪ adomar(Q1) ×Qf
2(

πα(Q)
)f

= πα(Qf)− πα
(
adomar(Q) −Qf)

Figure 2: Relational algebra translations of [25].

While (1) and (2) ensure correctness guarantees for
all relational algebra queries, and queries Qt and Qf

have good theoretical complexity, they suffer from a
number of problems that severely hinder their practi-
cal implementation. Crucially, they require the compu-
tation of active domains and, even worse, their Carte-
sian products. While expressible in relational algebra,
the Qf translations for selections, products, projections,
and even base relations become prohibitively expensive.
Several optimizations have been suggested in [25] (at
the price of missing some certain answers), but the cases
of projection and base relations do not appear to have
any reasonable alternatives. Yet another problem is the
complicated structure of the queries Qf. When transla-
tions are applied recursively, this leads to very complex
queries Qt if Q used difference.

In fact we tried a simple experiment with the transla-
tions in Figure 2, and found that they are already infea-
sible for very small databases: some of the queries start
running out of memory on instances with fewer than 103

tuples.
All this tells us that good theoretical complexity is

not yet a guarantee of real-life efficiency, and we need
an implementable alternative, which we present next.

3.2 An implementation-friendly transla-
tion

To overcome the practical difficulties posed by the
translation in Figure 2, [15] proposed an alternative
translation that is implementation-friendly and comes
with sufficient correctness guarantees. This translation
does not produce a second query Qf that underapprox-
imates certain answers to the negation of the query,
which was the main source of complexity. To see what
we can replace it with, note that, in the Qt translation,
Qf was only used in the rule for difference: a tuple ā is
a certain answer to Q1 −Q2 if

1. ā is a certain answer to Q1, and
2. ā is a certain answer to the complement of Q2.

That necessitated working with the complex Qf transla-
tion.

But we can use a slightly different rule: a tuple ā is a
certain answer to Q1 −Q2 if

1. ā is a certain answer to Q1, and
2. ā does not match any tuple that could possibly be

an answer to Q2.

The advantage of this is that the query that approxi-
mates possible answers can be built in a much simpler
way than Qf. For instance, for a base relation R, it will
be justR itself, as opposed to the complex expression in-
volving adom we used before. Then the rule forQ1−Q2

involves a left anti-semijoin (to be defined soon) of the
approximation of certain answers toQ1 and possible an-
swers to Q2.

We need to formally say what “(not) matching possi-
ble answers” means. To this end, we define approxima-
tions of possible answers and two matching-based semi-
join operators. There already exists a notion of maybe-
answers [2, 31] – answers that appear in Q

(
v(D)

)
for

at least one valuation v – but those can be infinite, and
include arbitrary elements outside of adom(D). What
we need instead is a compact representation.

Definition 3. Given a k-ary query Q and an incom-
plete database D, we say that a set A ⊆ adom(D)k

represents potential answers to Q on D if Q
(
v(D)

)
⊆

v(A) for every valuation v. A query Q′ represents po-
tential answers to Q if Q′(D) represents potential an-
swers to Q on D, for every D.

Obviously, there are trivial ways of representing po-
tential answers: take, e.g., adom(D)k. But we shall be
looking for good approximations, just as we are looking
for good approximations of cert(Q,D), for which bad
ones can also be found easily (e.g., the empty set). In
general, testing if a set A represents potential answers
to a query is computationally hard:

PROPOSITION 1 ([15]). There is a fixed relational
algebra query Q such that the following problem is
CONP-complete: given a database D and a set A of tu-
ples over adom(D), does A represent potential answers
to Q on D?

R+ = R (3.1)

(Q1 ∪Q2)+ = Q+
1 ∪Q

+
2 (3.2)

(Q1 −Q2)+ = Q+
1 n⇑ Q?

2 (3.3)(
σθ(Q)

)+
= σθ∗(Q

+) (3.4)

(Q1×Q2)+ = Q+
1 ×Q

+
2 (3.5)(

πα(Q)
)+

= πα(Q+) (3.6)

R? = R (4.1)

(Q1 ∪Q2)? = Q?
1 ∪Q?

2 (4.2)

(Q1 −Q2)? = Q?
1 −Q+

2 (4.3)(
σθ(Q)

)?
= σθ∗∗

(
Q?
)

(4.4)

(Q1 ×Q2)? = Q?
1×Q?

2 (4.5)(
πα(Q)

)?
= πα

(
Q?
)

(4.6)

Figure 3: Improved relational algebra translations of [15].

However, we shall see that potential answers can be
efficiently approximated, which is what we need for the
translation.

To express conditions involving matching, we shall
need two semijoin operations based on unifiable tuples
(see Definition 2).

Definition 4. For relations R,S over Const ∪ Null,
with the same set of attributes, the left unification semi-
join is

Rn⇑ S =
{
r̄ ∈ R | ∃ s̄ ∈ S : r̄ ⇑ s̄

}
and the left unification anti-semijoin is

Rn⇑ S = R− (Rn⇑ S) =
{
r̄ ∈ R | @ s̄ ∈ S : r̄ ⇑ s̄

}
These are similar to the standard definition of (anti)

semijoin; we simply use unifiability of tuples as the join
condition. They are definable operations: we have that
Rn⇑ S = πR

(
σθ⇑(R×S)

)
, where the projection is on

all attributes of R and condition θ⇑ is true for a tuple
r̄s̄ ∈ R×S iff r̄ ⇑ s̄. The unification condition θ⇑ is ex-
pressible as a selection condition using predicates const
and null [25]. Note that, in this notation, Rf of Figure 2
is adomar(R) n⇑ R.

We now define the translation Q 7→ (Q+, Q?). For
Q+ with correctness guarantees, all of the rules are the
same as in Figure 2, except the one for difference, which
becomes

(Q1 −Q2)+ = Q+
1 n⇑ Q?

2

This is precisely the set of tuples certainly in Q1 that do
not match potential answers to Q2.

For queriesQ?, the translation follows the structure of
the query closely, but it needs a different translation of
selection conditions: θ 7→ θ∗∗ is given by θ∗∗ = ¬(¬θ)∗.
Recall that negating selection conditions means propa-
gating negations through them, and interchanging = and
6=, and const and null. For completeness, we provide it
below:

(A 6= B)∗∗ = (A 6= B)

(A 6= c)∗∗ = (A 6= c) if c is a constant

(A = B)∗∗ = (A = B) ∨ null(A) ∨ null(B)

(A = c)∗∗ = (A = c) ∨ null(A)

(θ1 ∨ θ2)∗∗ = θ∗∗1 ∨ θ∗∗2
(θ1 ∧ θ2)∗∗ = θ∗∗1 ∧ θ∗∗2

The full translation is given in Figure 3.

THEOREM 2 ([15]). For the translation Q 7→ (Q+,
Q?) in Figure 3, the query Q+ has correctness guaran-
tees for Q, and Q? represents potential answers to Q.

In particular, Q+(D) ⊆ cert(Q,D) and

v
(
Q+(D)

)
⊆ Q

(
v(D)

)
⊆ v

(
Q?(D)

)
(5)

for every database D and every valuation v.
The theoretical complexity bounds for queries Q+

and Qt are the same: both have the low AC0 data com-
plexity. However, the real world performance of Q+

will be significantly better, as it completely avoids large
Cartesian products.

We conclude this section with a few remarks. First,
the translation of Figure 3 is really a family of transla-
tions: our result is more general.

COROLLARY 1. If in the translation in Figure 3 one
replaces the right sides of rules by queries
• contained in those listed in (3.1)–(3.6), and
• containing those listed in (4.1)–(4.6),

then the resulting translation continues to satisfy the
claim of Theorem 2.

This opens up the possibility of optimizing translations
(at the expense of potentially returning fewer tuples).
For instance, if we modify the translations of selection
conditions so that θ∗ is a stronger condition than the
original and θ∗∗ is a weaker one, we retain overall cor-
rectness guarantees. In particular, the unification condi-
tion θ⇑ is expressed by a case analysis that may become
onerous for tuples with many attributes; the above ob-
servation can be used to simplify the case analysis while
retaining correctness.

Next, we turn to the comparison ofQ+ with the result
of SQL evaluation, i.e., EvalSQL(Q,D). Given that the

latter can produce both types of errors – false positives
and false negatives – it is not surprising that the two are
in general incomparable. To see this, consider first a
database D1 where R = {(1, 2), (2,⊥)}, S = {(1, 2),
(⊥, 2)} and T = {(1, 2)}, and the query Q1 = R −
(S ∩ T). The tuple (2,⊥) belongs to EvalSQL(Q1, D)
and it is a certain answer, while Q+

1 (D) = ∅. On the
other hand, for D2 with R = {(⊥,⊥)} over attributes
A,B, and Q2 = σA=B(R), the tuple (⊥,⊥) belongs to
Q+

2 (D2), but EvalSQL(Q2, D2) = ∅.

4. EXPERIMENTAL EVALUATION
We now report on the experiments carried out in [15]

that answer two questions posed in the introduction: Do
false positives occur in real-life queries? Does the ap-
proximation scheme (Q+, Q?) perform well in practice?

We have seen that what breaks correctness guarantees
is queries with negation; the example in the introduction
was based on a NOT EXISTS subquery. To choose con-
crete SQL queries for our experiments, we consider the
well established TPC-H benchmark that models a busi-
ness application scenario and typical decision support
queries [30]. Its schema contains information about cus-
tomers who place orders consisting of several items, and
suppliers who supply parts for those orders.

Only few TPC-H queries use NOT EXISTS, so we sup-
plement them with very typical database textbook [10]
queries (slightly modified to fit the TPC-H schema) that
are designed to teach subqueries.

Another issue is that the standard TPC-H data gener-
ator, DBGen, only produces instances without nulls, so
we need to insert nulls to make them fit for our purpose.
To this end, we separate attributes into nullable and non-
nullable ones; the latter are those where nulls cannot oc-
cur (due to primary key constraints, or NOT NULL decla-
rations). For nullable attributes, we choose a probability,
referred to as the null rate of the resulting instance, and
simply flip a coin to decide whether the corresponding
value is to be replaced by a null. The resulting instances
contain a percentage of nulls in nullable attributes that is
roughly equal to the null rate with which nulls are gen-
erated. We consider null rates in the range 0.5%–10%.

The smallest instance DBGen generates is about 1GB
in size, containing just under 9·106 tuples. We measured
the relative performance of our translated queries w.r.t.
the original ones on instances of size comprised between
1GB and 10GB.

Estimating the amount of false positives in query an-
swers in queries is trickier, since finding certain answers
is computationally hard. We overcome this difficulty by
using ad hoc algorithms for the specific queries we ex-
periment with, and by using smaller instances generated
by a configurable data generator, DataFiller [7]. These
instances are compliant with the TPC-H specification in

everything but size, which we scale down by a factor of
103. For additional details of the experimental setup, we
refer to [15].

4.1 How many false positives?
A false positive answer is a tuple that is returned by

the SQL evaluation and yet is not certain; that is, the set
of false positives produced by a query Q on a database
D is Q(D)− cert(Q,D). They only occur on databases
with nulls; on complete databases,Q(D) = cert(Q,D).
A simple example was given in the introduction; our
goal now is to see whether real-life queries indeed pro-
duce false positives. For this, we shall run our test
queries on generated instances with nulls and compare
their output with certain answers. As explained above,
for each test query we designed a specialized algorithm
to detect (some of the) false positives. This will tell us
that at least some percentage of SQL answers are false
positives.

Recall that null values in instances are randomly gen-
erated: each nullable attribute can be null with the same
fixed probability, referred to as the null rate. To get good
estimates, we generated 100 instances for each null rate
in the range 0.5%–10%, and we ran each query 5 times,
with randomly generated values for its parameters. At
each execution, a lower bound on the percentage of false
positives is calculated by means of the algorithms men-
tioned above.

The outcome of the experiment showed that the prob-
lem of incorrect query answers in SQL is not just the-
oretical but it may well occur in practical settings: ev-
ery single query we tested produced false positives on
incomplete databases with as low as 0.5% of null val-
ues. In extreme cases, false positives constitute almost
the totality of answers, even when few nulls are present.
Other queries appear to be more robust (as we only find
a lower bound on the number of false positives), but the
overall conclusion is clear: false positives do occur in
answers to very common queries with negation, and ac-
count for a significant portion of the answers.

4.2 The price of correctness
Our goal was to test whether the translation Q 7→

Q+ works in practice. For this, we executed our test
queries and their translations with correctness guar-
antees on randomly generated incomplete TPC-H in-
stances to compare their performance.

The translation Q 7→ Q+ was given at the level of
relational algebra. While there are multiple relational
algebra simulators freely available, we carried out our
experiments using a real DBMS on instances of realis-
tic size (which rules out relational algebra simulators).
Thus, we took test SQL queries, applied the translation
Q 7→ Q+ to their relational algebra equivalents, and

then ran the results of the translation as SQL queries.
Note that we measured the relative performance of

the correct translations Q+s, i.e., the ratio between the
running times of Q+ and of the original queries Q. We
used the DBGen tool to generate instances and popu-
lated them with nulls, depending on the prescribed null
rate. For each null rate in the range 1%–5%, in steps of
1%, we generate multiple incomplete instances, and ran
queries multiple times for randomly generated values of
their parameters. The reported results were averages of
those runs.

Regarding the size of instances, it seems, intuitively,
that the ratio of execution times of Q+ and Q should
not significantly depend on the size of the generated in-
stances. With this hypothesis in mind, we first did a
detailed study for the smallest allowed size of TPC-H
instances (roughly 1GB). After that, we tested our hy-
pothesis using instances up to 10GB. For the majority
of queries relative performances indeed remained about
the same for all instance sizes as we expected, although
we did find an exception (we shall discuss this later).

One of the key changes that our translation introduces
is to convert conditions of the form A=B to

A=B OR A IS NULL OR B IS NULL

inside correlated NOT EXISTS subqueries. The reason for
this should be clear when one looks at the translation
θ 7→ θ∗∗ of conditions in queries Q?. This is the trans-
lation that is applied to negated subqueries, due to the
rule (Q1 − Q2)+ = Q+

1 n⇑ Q?
2, thus resulting in such

disjunctions.
In general, and this has nothing to do with our transla-

tion, when several such disjunctions occur in a subquery,
they may not be handled well by the optimizer [5]. One
could in fact observe that for a query of the form
SELECT * FROM R WHERE NOT EXISTS
(SELECT * FROM S, ..., T

WHERE (A=B OR A IS NULL OR B IS NULL)
AND · · · AND

(X=Y OR X IS NULL OR Y IS NULL))

the estimated cost of the query plan can be thousands
of times higher than for the same query from which the
IS NULL conditions are removed.

One way to overcome this is quite simple and takes
advantage of the fact that such disjunctions will oc-
cur inside NOT EXISTS subqueries. We can then prop-
agate disjunctions in the subquery, which results in a
NOT EXISTS condition of the form ¬∃x̄

∨
φi(x̄), where

each φi now is a conjunction of atoms. This in turn can
be split into conjunctions of ¬∃x̄ φi(x̄), ending up with
a query of the form
SELECT * FROM R WHERE NOT EXISTS

(SELECT * FROM Si, i ∈ I1 WHERE
∧

j ψ
1
j)

AND · · · AND NOT EXISTS
(SELECT * FROM Si, i ∈ Ik WHERE

∧
j ψ

k
j)

where formulae ψlj are comparisons of attributes and
statements that an attribute is or is not null, and relations
Si for i ∈ Il are those that contain attributes mentioned
in the ψljs.

Based on the experiments we conduct, we observe
three types of behavior, discussed below.

Small overhead. In half of the queries, the price of cor-
rectness is negligible for most applications, under 4%.
The IS NULL disjunctions introduced by our translation
are well handled by the optimizer, resulting in small
overheads. In some cases, these overheads get lower
as the null rate gets higher. This is most likely due to
the fact that with a higher null rate it is easier to sat-
isfy the IS NULL conditions in the WHERE clause of the
NOT EXISTS subquery. As a result, a counterexample to
the NOT EXISTS subquery can be found earlier, resulting
in an overall faster evaluation.

Significant speedup. The translation with correctness
guarantees is much faster than the original query; in fact
we observed that it could be more than 3 orders of mag-
nitude faster on average. This behavior arises when the
translation with correctness guarantees results in decor-
related subqueries, which allows one to quickly detect
that the correct answer is empty and terminate execu-
tion early, while the original query, on the other hand,
spends most of its time looking for incorrect answers.
In fact, this behavior was observed for queries with a
rate of false positive answers close to 100%. As in-
stances grow larger, the speedup of the translated query
increases, since the original query is forced to spend
more time looking for incorrect answers.

Moderate slowdown. The translated queries with cor-
rectness guarantees run at roughly half the speed of the
original ones on 1GB databases. The slowdown is worse
for bigger instances, increasing to about a quarter of the
speed on 10GB databases, but it may still be tolerable if
correctness of results is very important.

This behavior may arise when there are complex multi-
way joins with large tables in NOT EXISTS subqueries.
Without splitting the IS NULL disjunctions introduced
by our translation, PostgreSQL produces query plans
with astronomical costs, as it resorts to nested-loop joins
even for large tables. This is due to the fact that it under-
estimates the size of joins, which is a known issue for
major DBMSs [21]. In order to make the optimizer pro-
duce better estimates and a reasonable query plan, the
direct translation of these queries may also require some
additional hand-tuning involving common table expres-
sions.

We conclude our experimental evaluation by address-
ing the standard measures for assessing the quality of
approximation algorithms, namely precision and recall.

The first refers to the percentage of correct answers
given. With the correctness guarantees proven in Sec-
tion 3, we can state that the precision of our algorithms
is 100%. Recall refers to the fraction of relevant answers
returned. In our case, we can look at the certain answers
returned by the standard SQL evaluation of a query Q,
and see how many of them are returned by Q+. The
ratio of those is what we mean by recall in this scenario.

In some artificial examples, Q+ may miss several, or
even all, certain answers returned by Q. Thus, we can-
not state a theoretical bound on the recall, but we can see
what it is in the scenarios represented by our test queries.
For this, we could use algorithms for identifying false
positives, as explained in Section 4.1, on smaller TPC-
H instances generated by DataFiller. In all those cases,
the behavior we observed was that the translated queries
returned precisely the answers to the original queries ex-
cept false positive tuples. That is, for those instances,
the recall rate was 100%, and no certain answers were
missed.

5. THEORETICAL MODELS VS. REAL
LIFE

We saw that good theoretical complexity bounds do
not guarantee efficiency in real systems: the evaluation
schemes with correctness guarantees presented in Sec-
tion 3 are both very efficient in theory, yet only one of
them performs well in practice. The mismatch between
theoretical results and their practicality is not limited to
efficiency. Before our approach [15] could be success-
fully applied in real life scenarios, several other impor-
tant factors must be taken into account. We discuss them
below.

5.1 Bag semantics and certain answers
As prescribed by the SQL Standard, relational data-

base management systems use bag semantics in query
evaluation. With bags, a tuple ā can have a multiplicity
(number of occurrences) #(ā, R) in a table R, which is
a number in N. Thus, instead of saying that a tuple is
certainly in the answer, we have more detailed informa-
tion: namely, the range of the numbers of occurrences
of the tuple in query answers. This is captured by the
following definitions, that extend the notion of certain
answers with nulls:

min
Q

(D, ā) = min
v

#
(
v(ā), Q(v(D))

)
(6a)

max
Q

(D, ā) = max
v

#
(
v(ā), Q(v(D))

)
(6b)

where v ranges over valuations. Note that, if ā has no
nulls, minQ(D, ā) and maxQ(D, ā) are simply the min-
imum and the maximum numbers of occurrences of ā in
the answer to Q over all databases v(D) represented by
D. Then we know with certainty that every query an-

swer must contain at least minQ(ā, D) occurrences of
ā, and no answer will contain more than maxQ(ā, D)
of them. When a query is evaluated under set semantics,
minQ(D, ā) = 1 means that ā ∈ cert(Q,D).

Relational algebra operations under bag semantics are
interpreted in a way that is consistent with SQL evalu-
ation: union, for example, adds up occurrences and, for
difference, #(ā, R−S) = max

(
#(ā, R)−#(ā, S), 0

)
.

We refer to [14] for a survey on the subject and the
full definition of all operations of relational algebra
(σ, π,×,∪,−) under bag semantics.

The complexity of the bounds (6a) and (6b) mimics
analogous results for set semantics: for every relational
algebra query Q interpreted under bag semantics, and
for every m ∈ N, checking whether minQ(D, c̄) > m
or whether maxQ(D, c̄) < m can be done in CONP
with respect to data complexity, and the problems could
be CONP-hard already without duplicates.

The difference with the set case comes when we look
at positive relational algebra which, as before, excludes
difference.1

THEOREM 3 ([8]). For each positive relational al-
gebra query Q, under bag semantics, minQ(D, c̄) can
be computed in polynomial time (in fact, DLOGSPACE)
with respect to data complexity.

However, there is a positive relational algebra query
Q such that checking, for given D, ā, and m, whether
maxQ(D, ā) < m is CONP-complete.

In fact, CONP-hardness is witnessed by an extremely
simple query that returns a relation in a database, that is,
SELECT * FROM R.

Next, we look at possible extensions of the approxi-
mation schemes of Section 3 to bag semantics. A simple
analysis of the definition of queriesQt, Qf shows that for
every tuple ā,

#
(
ā, Qt(D)

)
≤ min

Q
(D, ā)

#
(
ā, Qf(D)

)
≤
(
1 + max

Q
(D, ā)

)
mod 2

This suggests a natural extension of the translation
scheme (Qt, Qf) to bags: we simply omit modulo 2 from
addition, since it was only needed to force multiplicities
to be either 0 or 1. But this is suddenly very problematic,
as maxQ(D, ā) is hard computationally, for all queries,
since we cannot even compute it efficiently for base re-
lations! Thus, implementing this approximation scheme
in a real-life RDBMS (which is bag-based) is infeasible
not only practically but also theoretically when we use
bag semantics.
1Please note that Theorems 3 and 4, as stated in [8], referred
to languages that also erroneously included duplicate elimina-
tion. However, the claims hold only when this operation is not
part of the language.

On the other hand, (5) suggests a natural extension of
the correctness criterion for the translation scheme (Q+,
Q?), namely:

#(ā, Q+(D)) ≤ minQ(ā, D) ≤ #(ā, Q?(D)) (7)

for every database D and every tuple ā of elements of
D. Indeed, for bags B1 and B2, we have that B1 ⊆ B2

iff #(b, B1) ≤ #(b, B2) for every element b.

THEOREM 4 ([8]). The translation Q 7→ (Q+, Q?)
in Figure 3 satisfies (7) when queries are interpreted un-
der bag semantics.

In summary, the translation of Figure 2 loses its good
theoretical complexity bounds and becomes intractable
under bag semantics, while the approximation scheme
of Figure 3 remains provably feasible also under bag se-
mantics, thus strengthening the claim of its efficiency,
practicality, and robustness.

5.2 Relational algebra vs SQL
The translations [15] in Section 3 work at the level of

relational algebra, while the experimental evaluation in
Section 4 was carried out with concrete SQL queries on
a real DBMS. This was achieved by first translating an
SQL query Q to relational algebra, applying the trans-
lation with correctness guarantees, and then translating
the resulting RA query Q+ back to SQL.

Unfortunately, database textbooks provide only a few
examples of translations between SQL and RA, and de-
tailed translations that appeared in the literature made
simplifying assumptions that deviate significantly from
the behavior of SQL specified by the Standard, such as
the use of set semantics and the omission of nulls along
with the associated three-valued logic.

Recently, [16] proposed a formal semantics of SQL
that captures the core of the real language and that was
experimentally validated on a very large number of ran-
domly generated queries and databases. The semantics
was applied to provide precise translations between the
core fragment of SQL and relational algebra, yielding
the first formal proof that they have the same expressive
power. Using this formal semantics, [16] also showed
that the three-valued logic of SQL is not really neces-
sary for query evaluation, despite what is commonly be-
lieved, and that the usual Boolean logic with only true
and false suffices.

The test queries we used in Section 4 go slightly be-
yond relational algebra as used in the translations of Fig-
ure 3. Given their decision support nature, many TPC-H
queries involve aggregation, but this is not important for
our purposes: if a tuple without an aggregate value is a
false positive, it remains so even when an extra attribute
value is added. Thus, since we only need to measure the
ratio of false positives, and the relative change of speed

in query evaluation, we can safely drop aggregates from
the output of those queries. As for aggregate subqueries,
we just treated them as a black box, that is, we viewed
the result of such a subquery as a constant value c.

5.3 Marked nulls vs SQL nulls
The approximation schemes of [25] and [15] rely on

the standard theoretical model of incompleteness where
missing values in a database are represented by marked
nulls. In SQL, however, we only have a single syntactic
object for this purpose: NULL. Marked nulls are more
expressive than SQL nulls, in that two unknown values
can be asserted to be the same simply by denoting them
with the same null. Indeed, ⊥1 = ⊥1 is true indepen-
dently of which concrete value is assigned to⊥1. On the
other hand, the comparison NULL = NULL in SQL evalu-
ates to unknown, because we do not know whether the
two occurrences of NULL refer to the same value.

Due to the coarseness of SQL nulls, the translations
Q+ and Q? must be slightly adjusted to work correctly
when evaluated as SQL queries. As expected, the adjust-
ment occurs in selection conditions. For the θ∗ transla-
tion in Q+, we need to make sure that attributes com-
pared for equality are not nulls (the existing translation
already does that for disequality). For the θ∗∗ translation
inQ?, the situation is symmetric: we need to include the
possibility of attributes being nulls for disequality com-
parisons (the existing translation already does that for
equality). That is, we change the translations as follows:

(A = B)∗ = (A = B) ∧ const(A) ∧ const(B)

(A 6= B)∗∗ = (A 6= B) ∨ null(A) ∨ null(B)

and likewise for (A = c)∗ and (A 6= c)∗∗. Observe that,
as stronger conditions are used for equality rules in θ∗

and weaker ones for disequality rules in θ∗∗, by Corol-
lary 1 the adjusted translations ensure thatQ+ continues
to underapproximate certain answers and Q? continues
to represent potential answers on databases with marked
nulls, but now we also take into account SQL’s behavior
in comparisons with nulls.

There is one more issue we need to address. Usually,
at least in the theoretical literature, SQL nulls are iden-
tified with Codd nulls, that is, marked nulls that do not
repeat. The idea is to interpret each occurrence of NULL
as a fresh marked null that does not appear anywhere
else in the database. However, [17] recently showed that
this way of modeling SQL nulls does not always work.
If SQL nulls are to be interpreted as Codd nulls, this in-
terpretation should apply to input databases as well as
query answers, which are incomplete databases them-
selves. To explain this point, let codd(D) be the result
of replacing SQL nulls in D with distinct marked nulls;
as this choice is arbitrary, technically codd(D) is a set
of databases, but these are all isomorphic. To ensure that

Codd nulls faithfully represent SQL nulls for a query Q,
we need to enforce the condition in the diagram below:

D

D′

Q(D)

Q(D′)

Q

Q

codd codd

Intuitively, it says the following: take an SQL database
D, and compute the answer to Q on it, i.e., Q(D). Now
take some D′ in codd(D), and compute Q(D′). Then
Q(D′) must be in codd

(
Q(D)

)
, that is, there must be a

way of assigning Codd nulls to SQL nulls in Q(D) that
will result in Q(D′).

Unfortunately, [17] showed that this condition does
not hold already for simple queries computing the Carte-
sian product of two relations. Furthermore, the class of
relational algebra queries that transform SQL databases
into Codd databases is not recursively enumerable, and
therefore it is impossible to capture it by a syntactic frag-
ment of the language. Exploiting NOT NULL constraints
declared on the schema, [17] then proposes mild syntac-
tic restrictions on queries that can be checked efficiently
and are sufficient to guarantee the condition in the above
diagram (i.e., that SQL nulls behave like Codd nulls).

We remark that the queries – and their translations –
used for the experimental evaluation in Section 4 satisfy
these restrictions and therefore they work correctly with
the SQL implementation of nulls. However, the results
of [17] tell us that in full generality we cannot guarantee
correctness for all queries unless a proper implementa-
tion of marked nulls is available.

6. OUTLOOK & OPEN PROBLEMS
The main conclusion is that it is practically feasible to

modify SQL query evaluation over databases with nulls
to guarantee correctness of its results. This applies to the
setting where nulls mean that a value is missing, and the
fragment of SQL corresponds to first-order, or relational
algebra, queries. We saw that the modified queries with
correctness guarantees run at roughly a quarter of the
speed in the worst case, to almost 104 times faster in the
best case. For several queries, the overhead was small
and completely tolerable, under 4%. With these trans-
lations, we also did not miss any of the correct answers
that the standard SQL evaluation returned.

Given our conclusions that wrong answers to SQL
queries in the presence of nulls are not just a theoretical
myth – there are real world scenarios where this hap-
pens – and correctness can be restored with syntactic
changes to queries at a price that is often tolerable, it is
natural to look into the next steps that will lift our solu-
tion from the first-order fragment of SQL to cover more

queries and more possible interpretations of incomplete-
ness. We shall now discuss those.

Aggregate functions. An important feature of real-life
queries is aggregation which, in fact, is present in most
of the TPC-H queries. However, here our understanding
of correctness of answers is quite poor; SQL’s rules for
aggregation and nulls are rather ad-hoc and have been
persistently criticized [4, 9]. Therefore, much theoreti-
cal work is needed in this direction before practical al-
gorithms emerge.

Incorporating constraints. In the definition of certain
answers we disregarded constraints, even though every
real-life database will satisfy some, typically keys and
foreign keys. While a constraint ψ can be incorporated
into a query φ by finding certain answers to ψ → φ, for
common classes of constraints we would like to see how
to make direct adjustments to rewritings. One example
of this that we actually used in query rewriting is that
the presence of a key constraint let us replace Rn⇑S by
R − S. Ideally such query transformations need to be
automated for common classes of constraints.

Other types of incomplete information. We dealt with
nulls representing missing values, but there are other in-
terpretations. For instance, non-applicable nulls [23, 34]
arise commonly as the result of outer joins. We need to
extend the notion of correct query answering and trans-
lations of queries to them. One possibility is to adapt
the approach of [24] that shows how to define certainty
based on the semantics of inputs and outputs of queries.
At the level of missing information, we would like to see
whether our translations could help with deriving partial
answers to SQL queries, when parts of a database are
missing, as in [20].

Direct SQL rewriting. We have rewritten SQL queries
by a detour via relational algebra. With the assistance of
the formal semantics of [16], we should look into direct
rewritings from SQL to SQL, without an intermediate
language. This would also allow us to run queries with
correctness guarantees directly on a DBMS.

Marked nulls in SQL. The results of [17] show us that
with standard SQL nulls we can only guarantee correct-
ness for a restricted class of queries, which cannot even
be captured syntactically. To overcome this limitation,
we are currently working towards extending SQL with a
proper implementation of marked nulls.

Acknowledgments
This survey is based on the work originally published in
[15, 25], which greatly benefited from discussions with

Marco Console, Chris Date, Hugh Darwen, Ron Fagin,
Chris Ré, and Cristina Sirangelo. Work partly supported
by EPSRC grants N023056 and M025268.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations

of Databases. Addison-Wesley, 1995.
[2] S. Abiteboul, P. C. Kanellakis, and G. Grahne. On

the representation and querying of sets of possible
worlds. Theoretical Computer Science,
78(1):158–187, 1991.

[3] M. Arenas, P. Barceló, L. Libkin, and F. Murlak.
Foundations of Data Exchange. Cambridge
University Press, 2014.

[4] J. Celko. SQL for Smarties: Advanced SQL
Programming. Morgan Kaufmann, 1995.

[5] J. Claußen, A. Kemper, G. Moerkotte,
K. Peithner, and M. Steinbrunn. Optimization and
evaluation of disjunctive queries. IEEE Trans.
Knowl. Data Eng., 12(2):238–260, 2000.

[6] E. F. Codd and C. J. Date. Much ado about
nothing. In C. J. Date, editor, Relational Database
Writings 1991–1994. 1995.

[7] F. Coelho. DataFiller – generate random data from
database schema. https://www.cri.ensmp.fr/
people/coelho/datafiller.html.

[8] M. Console, P. Guagliardo, and L. Libkin. On
querying incomplete information in databases
under bag semantics. In IJCAI, pages 993–999.
ijcai.org, 2017.

[9] C. Date and H. Darwen. A Guide to the SQL
Standard. Addison-Wesley, 1996.

[10] C. J. Date. An Introduction to Database Systems.
Pearson, 2003.

[11] G. H. Gessert. Four valued logic for relational
database systems. SIGMOD Record, 19(1):29–35,
1990.

[12] A. Gheerbrant, L. Libkin, and C. Sirangelo. Naı̈ve
evaluation of queries over incomplete databases.
ACM Trans. Database Syst., 39(4):31:1–31:42,
2014.

[13] J. Grant. Null values in a relational data base. Inf.
Process. Lett., 6(5):156–157, 1977.

[14] S. Grumbach, L. Libkin, T. Milo, and L. Wong.
Query languages for bags: expressive power and
complexity. SIGACT News, 27(2):30–44, 1996.

[15] P. Guagliardo and L. Libkin. Making SQL queries
correct on incomplete databases: A feasibility
study. In PODS, pages 211–223. ACM, 2016.

[16] P. Guagliardo and L. Libkin. A formal semantics
of SQL queries, its validation, and applications.
PVLDB, 11(1), 2017.

[17] P. Guagliardo and L. Libkin. On the Codd
semantics of SQL nulls. In AMW, 2017.

[18] T. Imielinski and W. Lipski. Incomplete
information in relational databases. J. ACM,
31(4):761–791, 1984.

[19] H. Klein. How to modify SQL queries in order to
guarantee sure answers. SIGMOD Record,
23(3):14–20, 1994.

[20] W. Lang, R. V. Nehme, E. Robinson, and J. F.
Naughton. Partial results in database systems. In
SIGMOD, pages 1275–1286, 2014.

[21] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz,
A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3):204–215, 2015.

[22] M. Lenzerini. Data integration: A theoretical
perspective. In PODS, pages 233–246, 2002.

[23] N. Lerat and W. Lipski. Nonapplicable nulls.
Theor. Comput. Sci., 46(3):67–82, 1986.

[24] L. Libkin. Certain answers as objects and
knowledge. Artificial Intelligence, 232:1–19,
2016.

[25] L. Libkin. SQL’s three-valued logic and certain
answers. ACM TODS, 41(1):1:1–1:28, 2016.

[26] W. Lipski. On semantic issues connected with
incomplete information databases. ACM
Transactions on Database Systems, 4(3):262–296,
1979.

[27] W. Lipski. On relational algebra with marked
nulls. In PODS, pages 201–203, 1984.

[28] R. Reiter. On closed world data bases. In Logic
and Data Bases, pages 55–76, 1977.

[29] R. Reiter. A sound and sometimes complete query
evaluation algorithm for relational databases with
null values. Journal of the ACM, 33(2):349–347,
1986.

[30] Transaction Processing Performance Council.
TPC Benchmark™ H Standard Specification,
Nov. 2014. Revision 2.17.1.

[31] R. van der Meyden. Logical approaches to
incomplete information: A survey. In Logics for
Databases and Information Systems, pages
307–356, 1998.

[32] M. Vardi. Querying logical databases. Journal of
Computer and System Sciences, 33(2):142–160,
1986.

[33] K. Yue. A more general model for handling
missing information in relational databases using
a 3-valued logic. SIGMOD Record, 20(3):43–49,
1991.

[34] C. Zaniolo. Database relations with null values. J.
Comput. Syst. Sci., 28(1):142–166, 1984.

https://www.cri.ensmp.fr/people/coelho/datafiller.html
https://www.cri.ensmp.fr/people/coelho/datafiller.html

	Introduction
	Preliminaries
	Approximation Schemes with Correctness Guarantees
	A simple translation
	An implementation-friendly translation

	Experimental Evaluation
	How many false positives?
	The price of correctness

	Theoretical Models vs. Real Life
	Bag semantics and certain answers
	Relational algebra vs SQL
	Marked nulls vs SQL nulls

	Outlook & Open Problems
	References

