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Summary 

A strong connection exists between the cell cycle and mechanisms required for executing 

cell fate decisions in a wide-range of developmental contexts. Terminal differentiation is 

often associated with cell cycle exit, while cell fate switches are frequently linked to cell 

cycle transitions in dividing cells. These phenomena have been investigated in the context 

of reprogramming, differentiation and trans-differentiation but the underpinning molecular 

mechanisms remain unclear. Most progress to address the connection between cell fate 

and the cell cycle has been made in pluripotent stem cells where the transition through 

mitosis and G1-phase is critical for establishing a window of opportunity for pluripotency 

exit and the initiation of differentiation. This Review will summarize recent developments 

in this area and place them in a broader context that has implications for a wide-range of 

developmental scenarios.  

 

Introduction 

The identity of a cell can be defined by its specific, metastable program of transcription 

and by the activity of cell-type specific transcription factors. Cell-type specific patterns of 

chromatin organization and epigenetic modifications are crucial for the establishment and 

maintenance of these transcriptional programs. In order to transition from one state to 

another, cells must modify their transcriptome, epigenetic landscape and chromosome 

architecture in a highly coordinated way. Over the last quarter of a century, numerous 

observations have established a role for the cell cycle in broad aspects of cell fate 

decisions, and have shown that the expression of cell fate 'decision' genes is often 

coupled to cell cycle regulatory mechanisms (Fig. 1). These studies show that the cell 

cycle machinery impacts chromosome architecture, the epigenome and transcriptional 

programs required for cell identity in multiple contexts including differentiation, 

reprogramming and trans-differentiation.  

 Reprogramming differentiated cells was first demonstrated by exposing the 

nucleus of a somatic cell to the cytoplasm of an enucleated egg using somatic cell nuclear 

transfer (SCNT), generating animals ranging from frogs to primates (Briggs and King, 



1952; Campbell et al., 1996; Gurdon, 1962; Tachibana et al., 2013; Wakayama et al., 

1998). Similarly, it is possible to trans-differentiate cells from one differentiated type to 

another by exposing the nucleus of a donor cell to the cytoplasm of another cell. An 

example of this is the fusion between human fibroblasts and mouse muscle cells, which 

results in the induction of muscle-specific genes in the human genome (Blau et al., 1983). 

Pre-existing trans-acting factors in the recipient cytoplasm can therefore reset the 

transcriptional program of a donor somatic genome. Shortly after this discovery, ectopic 

expression of MYOD was shown to be sufficient for the conversion of fibroblasts to 

myoblasts, demonstrating that specific transcription factors can redirect cell identity 

(Davis et al., 1987). More recently, Takahashi and Yamanaka showed that OCT4, SOX2, 

KLF4, and MYC (together abbreviated as OSKM), are sufficient to convert somatic cells 

to the pluripotent state, thereby generating induced pluripotent stem cells (iPSCs) 

(Takahashi and Yamanaka, 2006). Together, these studies reveal that cell-type specific 

transcription factors are central to the cell fate decision making process (Graf and Enver, 

2009; Xu et al., 2015). Numerous observations have identified important connections 

between these transcriptional master regulators, cell-state transitions and the cell cycle, 

although the molecular mechanisms that connect these processes are only starting to be 

elucidated. This Review will begin by broadly summarizing the role of the cell cycle in 

differentiation, reprogramming and trans-differentiation in developmental models ranging 

from yeast to humans. Then, attention will specifically focus on the role of cell cycle 

regulatory mechanisms in cell fate decisions made by pluripotent stem cells (PSCs).  

Finally, we put forth our views on how placing cell fate decisions within the context of cell 

cycle will have implications for a broad spectrum of developmental decisions and will likely 

change our current methods in manipulating cell identity for clinical purposes and for 

understanding human disease. 

 

Progression through the cell cycle as a cell fate decision 

Progression through the cell cycle involves a sequence of events in which chromosomes 

are replicated during S-phase and then segregated to daughter cells during M-phase 

(Morgan, 1995). These key events are separated by gap phases that serve as regulatory 



windows to ensure that cell cycle events occur at the correct time and in the right order. 

All of these events are orchestrated by the activity of cyclin-dependent kinases (CDKs) 

that phosphorylate substrates required for the different cell cycle transitions. The gap 

phase separating M-phase from S-phase is known as G1-phase and marks the time when 

cells make the decision to exit the cell cycle or continue through further rounds of division. 

This decision is classically thought of as being controlled through the phosphorylation of 

retinoblastoma (RB) family proteins by CDKs, thereby establishing a binary switch 

mechanism known as the Restriction (R-) point that gates cell cycle progression in G1-

phase (Blagosklonny and Pardee, 2002). Recent evidence suggests that the CDK-

dependent G1 decision point in cycling cells may actually initiate upon mitotic exit and 

may precede the classically defined R-point (Cappell et al., 2016; Spencer et al., 2013). 

The R-point mechanism links the cell cycle machinery to mitogenic signals and under the 

appropriate signaling conditions, genes required for G1-S progression are activated. This 

mechanism has enormous implications for control of normal cell growth and de-regulated 

proliferation in cancer. In a stem cell context, R-point control is critical in determining the 

balance between self-renewal, quiescence and differentiation of stem cell populations (Li 

and Clevers, 2010; Tetteh et al., 2015). For example, proliferative control of hematopoietic 

stem cells is a critical determinant that distinguishes normal and cancer-related 

hematopoietic function (Pietras et al., 2011). The developmental state of pluripotent cells 

can also be regulated by exit from the cell cycle. For example, PSCs exit the cell cycle 

and enter a 'dormant' developmental state that mimics diapause following MYC depletion 

(Scognamiglio et al., 2016). This is likely to be related to MYCs ability to control CDK 

activity and is an interesting example of how proliferation and developmental status are 

coupled. 

 Another broad example where cell cycle decisions are coupled to cellular decisions 

is exemplified by size control mechanisms in a wide-range of organisms (Ginzberg et al., 

2015). In principle, cells are required to achieve a critical volume in G1-phase before 

entering S-phase and committing to another round of cell division. If a cell is too small to 

sustain itself, it will delay progression into S-phase in an attempt to acquire sufficient 

volume by growth before it commits to another round of DNA replication and cell division. 

If size homeostasis is deregulated, a cell could potentially overgrow or reduce in size to 



the point where its function would be severely compromised. This process has been 

studied extensively in the budding yeast where size-regulated commitment to the cell 

cycle occurs at a point in G1-phase known as 'Start' (Jorgensen and Tyers, 2004). This 

control point is generally considered to be the equivalent of the mammalian R-point and 

involves a regulatory mechanism where nutrient and biosynthesis-regulated signaling 

pathways converge with the cell cycle machinery to coordinate cell volume with 

progression into S-phase (Ferrezuelo et al., 2012). The cell cycle machinery is also linked 

to cellular decisions that occur following environmental stress where cells undergo a 

checkpoint arrest or, alternatively undergo apoptosis (Carvajal and Manfredi, 2013). 

These fundamental examples of coordination between cellular decisions and the cell 

cycle have broad relevance to the function of multipotent cells in development. 

 

Cell identity and its coordination with the cell cycle  

Early work in yeast provided a mechanistic link between cell cycle machinery and 

changes in cell identity through double-strand break-induced recombination (Haber, 

1998). In this study, haploid budding yeast were found to switch between two different 

alleles of the mating-type (MAT) locus; a and , leading to mixtures of a and  cells that 

can mate and form a/ diploids. In each cell cycle, haploid cells could potentially undergo 

a mating type switch driven by expression of the HO endonuclease that acts on the MAT 

locus in G1-phase. In Dictyostelium development, amoeba decide to become pre-spore 

cells if they sense starvation conditions in G1-phase but, choose a pre-stalk fate under 

the same conditions in S- and G2-phases (Gomer and Firtel, 1987). This example is 

interesting because it indicates that commitment to different cell fates is determined at 

different stages of the cell cycle in multipotent cells. A similar conclusion has emerged 

from studies of C. elegans vulval development (Ambros, 1999). Here, the point at which 

lin-12 acts in the cell cycle impacts cell fate choice. Overall, these reports show that linking 

the cell cycle to cell fate decisions is a common theme in multipotent cells and is not 

restricted by species boundaries (Fig. 1). This principle also broadly applies to 

mammalian embryogenesis. During pancreatic development for example, endocrine 

progenitor cells adopt different fates depending on whether they are exposed to 



differentiation signals in early or late G1-phase (Kim et al., 2015). If exposure to signals 

occurs in early G1-phase, cells differentiate and exit the cell cycle through an asymmetric 

cell division. In contrast, if pancreatic progenitors are programmed in late G1-phase they 

complete the cell cycle and generate two differentiated endocrine cells. The time at which 

pancreatic progenitors receive induction signals in G1-phase is therefore critical in 

determining how they respond. This concept is reiterated in studies of murine neocortical 

development (McConnell and Kaznowski, 1991). Here, multipotent cortical progenitors 

respond to local induction cues generating different cell fate outcomes depending on 

where they are in the cell cycle at the time of induction. In murine fetal erythropoiesis, 

entry and progression through S-phase is required for activation of the erythroid 

differentiation program through the erythroid master regulator, GATA1 (Pop et al., 2010). 

Down-regulation of the cyclin-dependent kinase inhibitor (CDKI) KIP2p57 and the GATA1 

antagonist PU1 are key requirements of this cell cycle-dependent regulatory mechanism. 

Linking S-phase progression to cell fate decisions in multipotent cells has also been 

reported in the Drosophila central nervous system (Weigmann and Lehner, 1995).  

 So far, examples of cell fate decisions being initiated during G1- and S-phase have 

been described, but G2-phase is also potentially important for cellular decisions. During 

bristle patterning in Drosophila, Notch signaling controls transition through late stages of 

the cell cycle such that cells with elevated Notch signaling divide first and those with lower 

signaling extend their G2-phase and delay division (Hunter et al., 2016). This G2-phase 

transition time is critical in determining the decision of sensory organ precursor cells to 

undergo a microchaete fate or a neural fate. The timing of mitotic entry and duration of 

G2-phase in which cells are exposed to differentiation cues therefore impacts Notch-

mediated lateral inhibition and consequently, cell fate decisions. Studies in zebrafish 

(Bouldin and Kimelman, 2014), sea squirts (Ogura et al., 2011), frogs and flies (Davidson 

et al., 2009) reinforce this concept. Together, these studies show that although there are 

variations to the central theme, the mechanistic coupling of the cell cycle to cell fate 

decisions is a strong recurring biological theme in multipotent cells from diverse origins.  

 

Terminal differentiation and cell cycle exit 



Exit from the cell cycle in G1-phase is frequently required for terminal differentiation of 

cells during development. The mechanisms underlying this have been reviewed 

elsewhere (Buttitta and Edgar, 2007; Ruijtenberg and van den Heuvel, 2016) and so only 

the coordination between developmental programs and terminal differentiation will be 

highlighted here. In most cases, terminal differentiation is linked to the up-regulation of 

CDK inhibitor proteins (CDKIs), ensuring inhibition of CDK during G1 as well as hypo-

phosphorylation of the RB tumor suppressor protein family, which serves to repress the 

E2F target genes required for further cell cycle activity. It has been difficult to 

unequivocally establish the precise mechanism linking terminal differentiation to cell cycle 

exit but the two processes seem to be linked at several levels and are often mutually 

antagonistic. During skeletal myogenesis, CDKs inhibit the activity of myogenic 

transcription factors such as MYOD, thereby maintaining cells in a proliferative, immature 

state (Guo and Walsh, 1997; Rao et al., 1994; Skapek et al., 1995). A similar scenario 

has been described during neurogenesis where CDKs inhibit pro-differentiation 

transcription factors such as NGN2 (Hardwick and Philpott, 2014). It is also true, however, 

that MYOD counteracts the impact of CDKs by activating the expression of genes for 

CDK inhibitors such as CIP1p21 and KIP2p57 (Busanello et al., 2012; Halevy et al., 1995; 

Parker et al., 1995). Inhibition of CDKs then leads to cell cycle arrest in conjunction with 

the activation of terminal myogenic events. This theme is also seen during terminal 

differentiation of Drosophila neuroblasts (Choksi et al., 2006; Li and Vaessin, 2000). Here, 

the homeo-domain transcription factor Prospero (Pro) activates genes required for 

differentiation but also inhibits transcription of key cell cycle regulatory genes such as 

cyclin E and string and promotes transcription of the CDKI gene, dacapo (Choksi et al., 

2006; Li and Vaessin, 2000). These and other studies (Ruijtenberg and van den Heuvel, 

2016) indicate an inverse mechanistic relationship between the cell cycle and terminal 

differentiation in a broad spectrum of cell types. These events depend on the activity of 

G1-specific CDKs and their regulation of transcription factors required for developmental 

decisions. Conversely, transcription factors required for cell fate decisions serve to 

modulate CDK activity and drive exit from the proliferative state. The balance between 

CDK activity and transcription factor activity therefore serves as a cell fate decision 

'tipping point'. 



 

Reprogramming, trans-differentiation and tissue regeneration 

The examples considered so far cover the relationship between cell cycle stage and 

cellular decisions during the process of differentiation. It is important however, to 

emphasize the requirement for cell cycle controls in other decision-making contexts such 

as reprogramming, trans-differentiation and regeneration, and to establish the similarities 

and differences among these contexts. Interestingly, several reports indicate that cell 

proliferation per se is not a critical determinant for changes in cell identity. In addition to 

terminal differentiation (Falcone et al., 1984), trans-differentiation of fibroblasts to 

myoblasts (Chiu and Blau, 1984) and reprogramming by SCNT (Halley-Stott et al., 2010; 

Jullien et al., 2010; Jullien et al., 2011) have no requirement for active cell division. This 

observation may also apply to some examples of transcription factor-induced cell fate 

changes. This includes the switch in exocrine to endocrine pancreatic identity following 

ectopic expression of NGN3, PDX1 MAFA in mice (Zhou et al., 2008) and the generation 

of neurons from fibroblasts following ectopic expression of ASCL1, BRN2 and MYT1L 

(Vierbuchen et al., 2010). Interestingly, ASCL1 was found to drive somatic cells to exit 

the cell cycle in trans-differentiation (Treutlein et al., 2016), while ASCL1 seems to drive 

quiescent adult hippocampal stem cells to re-enter the cell cycle during differentiation 

(Urbán et al., 2016). This suggests that the mechanistic coupling between transcription 

factors and the cell-cycle machinery is context dependent and may be determined by the 

specific level of the protein as well as the pre-existing molecular landscape specific to the 

starting cell (masserdotti et al., 2016). C/EBP-induced conversion of pre-B cells to 

macrophage-like cells however, can occur under proliferative and non-proliferative 

conditions (Di Tullio and Graf, 2012), but whether this involves two separate mechanisms 

is unclear. A caveat to some studies is that limited molecular characterization of trans-

differentiated cells has been performed, making it unclear whether a complete cell fate 

switch was accomplished in the absence of cell division (Cahan et al., 2014; Morris et al., 

2014). A growing amount of evidence however, does show a key role for active cell 

division in cell fate switching. During regeneration in Medusae, trans-differentiation of 

mono-nucleated muscle cells to other cell types including sensory cells requires active 



cell division (Schmid et al., 1988). Cardiac regeneration in zebrafish is also intimately 

linked to cell cycle regulators such as polo-like kinase 1 (plk1) in proliferating 

cardiomyocytes (Jopling et al., 2010; Poss et al., 2002). It is also clear that reduced 

proliferative capacity represents a major barrier for reprogramming to the pluripotent state 

(Hong et al., 2009; Kawamura et al., 2009; Ruiz et al., 2011; Utikal et al., 2009) and there 

are several cases where active cell division is an important requirement for directed trans-

differentiation (Feng, 2016; Jiang et al., 2015) in response to reprogramming factors.  

 Although continued cell division is a requirement for cell fate changes in many 

instances, it is unclear why it may not be necessary in all situations. Subtle differences in 

the barriers that cells face as they undergo identity changes could explain variations in 

cell cycle-dependency. For example, reprogramming of fibroblasts to the pluripotent state 

is generally associated with extensive erasure and reestablishment of a DNA methylation 

signature (Lister et al., 2009; Lister et al., 2011) but in B-cells, no major changes in DNA 

methylation are required (Di Tullio and Graf, 2012). If the erasure of DNA methylation or 

other epigenetic signatures requires active cell division, this could explain some of the 

discrepancies described above. It is also possible that DNA replication rather than cell 

division is mechanistically important for reprogramming (Lavagnolli et al., 2015). Also, the 

dependency of a lineage-specifying transcription factor on CDK for activation could 

explain differences in various stem/progenitor cells.  

 

Cell fate decisions are linked to G1-phase progression in PSCs 

In the early mammalian embryo, cells transition through pluripotency during the pre-, peri, 

and post-implantation phases. Pluripotent cells that exist during peri-implantation 

development have short generation times but the cell cycle lengthens significantly as cells 

differentiate along the germ layer lineages (Lawson and Pedersen, 1992; Mac Auley et 

al., 1993; Snow and Bennett, 1978). Similar trends have been described for PSCs 

cultured in vitro (Boward et al., 2016). Rapid cell division is associated with a truncated 

G1-phase and only a short delay before cells enter S-phase after exiting M-phase. The 

absence of fully-formed gap phases establishes a situation wherein PSCs spend 50-65% 



of their time in S-phase. As PSCs commit to one of the three embryonic germ layers their 

progeny acquire an extended G1-phase, resulting in increased cell division times. This 

can be accounted for by a fundamental change in the regulation of CDK activity (Faast et 

al., 2004; Stead et al., 2002; White et al., 2005). It has been assumed, mainly for 

anecdotal reasons, that the low G1-phase/high S-phase cell cycle structure of PSCs 

supports pluripotency by limiting the time cells are exposed to specification signals. As 

differentiation initiates, an elongated G1-phase would then make cells more susceptible 

to irreversible germ-layer commitment. Several reports have now established this concept 

experimentally. For example, if the length of G1-phase is increased through inhibition of 

CDK activity, PSCs spontaneously differentiate (Neganova et al., 2008; Ruiz et al., 2011). 

More recently, the strategic advantage of having a cell cycle with a short G1-phase has 

been demonstrated at the molecular level (Boward et al., 2016).  

 Although multiple laboratories showed that PSCs respond to induction signals in 

G1-phase over two decades ago (Mummery et al., 1987; Pierce et al., 1984; Wells, 1982) 

this general observation was not fully explored until recently, when the fluorescence 

ubiquitin cell cycle indicator (Fucci) reporter system was used to explore this phenomenon 

(Sakaue-Sawano et al., 2008). In a seminal report, Pauklin and Vallier (Pauklin and Vallier, 

2013) confirmed that PSCs initiate cell fate decisions when in G1-phase, but they also 

identified an unanticipated mechanism where mesoderm and endoderm commitment 

occurs in early G1-phase and ectoderm commitment is restricted to late G1-phase (Fig. 

2). This partitioning of G1-phase along germ layer boundaries is related the elevated 

activity of SMAD2,3 in early G1 and its inactivation in late G1. The former is dependent 

on ACTIVIN A signaling and the latter dependent on the removal of SMAD2,3 from target 

genes by Cyclin D activity. Because mesoderm and endoderm differentiation requires 

SMAD2,3 activity and because ectoderm requires pan-SMAD inhibition, this mechanism 

provides an insightful explanation for how cell fate commitment is partitioned into different 

stages of G1-phase. It also provides a mechanistic link between the cell cycle regulated 

activity of G1-phase cyclins and developmental genes required for cell fate decisions.  

 An additional report using the Fucci system to dissect cell cycle events has since 

been published, focusing on the links between epigenetic events and the cell cycle (Singh 



et al., 2016). In this study, Singh and co-workers characterized the epigenetic changes 

that occur in self-renewing hPSCs and found that H3K4 trimethylation within bivalent 

domains of developmental genes increases in G1-phase while H3K27me3 repressive 

marks remain constant (Fig. 2). This establishes that bivalent domains of H3K4me3 and 

H3K27me3 are enriched in G1-phase and that throughout the remaining part of the cell 

cycle developmental genes are marked primarily by H3K27me3. This is an intriguing 

observation because it establishes a level of dynamic epigenetic regulation at 

developmental genes that was not previously appreciated. Consistent with changes in 

H3K4me3 in G1-phase, developmental genes become transcriptionally competent (Singh 

et al., 2013). The study suggests that developmental genes are primed for activation each 

time they go through G1-phase but are not activated unless the appropriate signaling 

networks are also active. In support of this, chromatin conformation-capture assays (4C) 

showed that G1-specific epigenetic changes at developmental genes coincide with the 

establishment of DNA loops that bridge distal enhancers with proximal promoters (Fig. 

2). Chromosome architectural changes in G1-phase require increased H3K4me3 at the 

bivalent domain along with increased CDK2 activity, indicating a functional link between 

epigenetic remodeling, chromosome architectural changes and the cell cycle machinery. 

Although the mechanism by which CDKs control chromosome architecture at bivalent 

genes hasn't yet been established these studies indicate that in each G1-phase, the 

epigenetic landscape and chromosome architecture changes so that it puts 

developmental genes in a 'lineage-primed' state. The potential mechanisms by which 

CDKs remodel chromatin and activate developmental genes in G1-phase could be direct 

or indirect, but potentially could involve the direct phosphorylation of chromatin 

remodeling enzymes or sequence-specific transcription factors. In summary, a 

combination of epigenetics, chromosome architecture and transcription factor recruitment 

appear to be involved in priming developmental genes for G1-specific differentiation. CDK 

activity has been implicated in control of these regulatory steps (Pauklin and Vallier, 2013; 

Singh et al., 2015) (Fig. 2), establishing a link between cell fate decisions and the cell 

cycle machinery.  

 



Entry to and exit from G1 phase  

The idea that the transition from mitosis to G1-phase might establish conditions in which 

switching of lineage-specific transcriptional programs is possible is supported by studies 

showing that this window of the cell cycle represents a hyperactive, dynamic 

transcriptional state (Hsiung et al., 2016). This is consistent with earlier reports showing 

that developmental genes are primed for transcription in G1-phase (Singh et al., 2013; 

Singh et al., 2015). Increased transcription as cells transition into G1-phase is thought to 

localize at genomic regions pre-marked with H3K27ac. This hyper-transcriptional activity 

is not uniform and may also account for cellular heterogeneity (Hsiung et al., 2016). A 

recent study has revealed another interesting connection between exit from pluripotency 

and early cell fate decisions, this time involving S-phases and G2-phase. In this study, a 

high-throughput RNAi screen performed in hESCs identified cell-cycle genes involved in 

DNA replication and G2-phase progression that restrict exit from pluripotency or, 

'pluripotent state dissolution' (Gonzales et al., 2015). This is another line of evidence that 

supports the idea that the cell cycle state of PSCs is related to maintenance of the 

pluripotency. By devoting most time to S-phase and minimizing the time spent in G1-

phase, cells have little opportunity for dissolution of the pluripotent state. As G1-phase 

lengthens during differentiation, this would presumably cause an irreversible breakdown 

of the pluripotency network and enhance germ layer commitment. This is further evidence 

indicating that G1-phase represents a gateway for the initiation of cell fate decisions. 

 By integrating what we know so far, it is possible to envisage a model where the 

initiation of differentiation consists of at least two phases. The first phase would be 

pluripotent state dissolution in which the pluripotency network is inactivated, and second 

phase would be lineage commitment, where new transcriptional programs corresponding 

to germ layer formation are established. This latter step could involve a combination of 

bookmarking events during mitosis (see below and Box 1) and lineage priming in G1-

phase. Pluripotent state dissolution is then attenuated in S-phase and G2-phase by 

activities in these respective cell cycle phases, maintaining high levels of pluripotency 

factors such as NANOG and OCT4. This increase of NANOG and OCT4 is tightly 

controlled and more homogenous at the transcriptional level after DNA replication 



(Skinner et al., 2016). These findings support the model that G1-phase represents a 

window of time when cells are predisposed to initiate fate decisions. Thus, entry and exit 

from G1-phase is mechanistically linked to cell fate decisions in PSCs. 

 

Cyclin D connects the cell cycle to activation of developmental genes 

Paulkin and Vallier previously found that the CDK4,6-Cyclin D complexes impact 

ACTIVIN/NODAL signaling and promote human embryonic stem cell differentiation 

through phosphorylation of SMAD2,3 (Pauklin and Vallier, 2013). More recently however, 

the same laboratory reported that Cyclin D can influence cell fate decisions independently 

of SMAD2,3 inhibition and independently of its association with CDK4,6 (Pauklin et al., 

2016). This second mechanism of action requires the ability of Cyclin D to recruit 

transcriptional co-activators and co-repressors to developmental target genes as it 

accumulates during G1-phase (Fig. 2). For example, when Cyclin D1 is absent in early 

G1, the co-activator p300 is recruited to endoderm genes. However, when Cyclin D1 

accumulates in late G1, it recruits histone deacetylases (HDAC) in place of p300, which 

functions as a histone acetyltransferase (HAT) resulting in loss of the active histone 

acetylation and an increase in the repressive histone methylation H3K27me3 at these 

genes. Consistent with the G1-phase partitioning model, neuroectoderm genes are 

activated in late G1 by Cyclin D-dependent recruitment of p300 and increased H3K4me3 

at these genes. Recruitment of Cyclin D to ectoderm genes is dependent on SP1 whereas 

Cyclin D recruitment to endoderm genes is E2F-dependent. This work reinforces a 

number of principles that help us to understand how pluripotent stem cells initiate cell fate 

decisions from G1-phase. Importantly, Cyclin Ds can interact with transcription factors 

bound to developmental genes in G1-phase and have vastly differing effects on their 

regulation via their ability to recruit co-repressors or co-activators. The principle that CDK 

activities coordinate cell fate decisions at developmental genes in G1-phase is 

underscored by these observations. 

 

Mitosis and epigenetic memory  



DNA replication and mitosis represent two events that could facilitate global restructuring 

of chromatin during the cell cycle. During S-phase, re-establishing the chromatin state on 

newly synthesized DNA is potentially important for maintaining or switching cell identity. 

It is therefore conceivable that this represents a time when new, cell-type specific 

epigenetic landscapes can be founded. The inheritance of this epigenetic state through 

the S-phase can use the mother chromatin state as a template or be directly coupled to 

the DNA replication machinery (for recent reviews see (Ma et al., 2015; Probst et al., 

2009)). It is mitosis however, that has recently attracted most attention in this area, in part 

because of studies where asymmetric cell divisions have been implicated in cell fate 

changes (Arsenio et al., 2015; Congdon and Reya, 2008; Tran et al., 2012). The hallmarks 

of mitosis include chromosome condensation and nuclear envelope breakdown - both of 

which are under control of CDK activity. During M-phase, most transcription-associated 

factors including RNA polymerases dissociate from chromatin and the cell-type specific 

transcription programs temporarily halts (Egli et al., 2008; Gottesfeld and Forbes, 1997; 

Spencer et al., 2000). Furthermore, histone modifications such as global histone 

acetylation, which are associated with active gene expression, are generally diminished 

during mitosis (Kruhlak et al., 2001; McManus and Hendzel, 2006). Loss of histone tail 

acetylation such as H4K16 has been found to be directly linked to the mitotic-specific 

histone phosphorylation (H3S10P), promoting chromatin fiber condensation (Wilkins et 

al., 2014). However residual amounts of histone acetylation, which bookmarks a select 

group of gene promoters, has also been reported (Dey et al., 2009; Kouskouti and 

Talianidis, 2005; Valls et al., 2005; Zhao et al., 2011). Despite many repressive marks 

such as H3K9me3 and H3K27me3 being retained in mitotic chromatin (Follmer et al., 

2012; Li et al., 2006; McManus et al., 2006; Peters et al., 2002; Singh et al., 2015), the 

functional proteins - known as 'writers' and 'readers' - that deposit and associate with 

these marks, such as SUV39H1, HP1 and BMI1, are generally excluded from mitotic 

chromatin (Egli et al., 2008; Kellum et al., 1995; Minc et al., 1999; Voncken et al., 1999). 

Histone modifications during mitosis have been reviewed in more detail elsewhere (Wang 

and Higgins, 2013). In addition, the precise nucleosome positioning and histone variant 

distribution that usually mark cell-type specific promoters and enhancers are also lost 

during mitosis (Deniz et al., 2016; Kelly et al., 2010; Komura and Ono, 2005). This 



culminates in the erasure of cell type-specific, three-dimensional genomic organization 

(Dileep et al., 2015; Naumova et al., 2013) and the loss of genome-nuclear lamina 

interactions (Kind et al., 2013). Epigenetic erasure and chromosome remodeling could 

therefore explain the requirement for transition through mitosis in order to enhance 

cellular reprogramming, as discussed in more detail below.  

 Despite the global reorganization of the epigenome during mitosis, mitotic memory 

of active gene expression programs is retained. In effect, this may allow newly divided 

cells to pick up where they left off, either by preventing mitotic compaction of previously 

active DNA loci, or by facilitating reassembly of transcription complexes on the promoter, 

or both. This phenomenon is referred to as mitotic bookmarking (see Box 1), and has 

been shown to be important for the rapid reactivation of certain genes upon entry into G1-

phase. Thus, it is possible that the selective retention of certain marks over others may 

represent a means to instructing cell fate change in the newly divided cell. 

 

Mitosis as a window of opportunity for changes in cell fate  

It is well-established that chromosome condensation and nuclear envelope breakdown 

during mitosis are important for successful SCNT reprogramming of mammalian cells 

(Campbell et al., 1996). This general model is also supported by studies of SCNT in 

amphibians where somatic cells are most responsive to reprogramming factors present 

in the cytoplasm of unfertilized, metaphase II (MII)-arrested oocytes (Halley-Stott et al., 

2014). Histone H2A de-ubiquitination on mitotic chromatin but not interphase chromatin 

seems to contribute to this reprogramming responsiveness. Surprisingly, no other histone 

modification or epigenetic mechanism has been identified that, together with H2A de-

ubiquitination, enhances SCNT reprogramming in M-phase. It has been postulated that 

histone de-ubiquitination and chromatin condensation may enhance SCNT 

reprogramming not through the eviction or exclusion of factors from mitotic chromatin but 

instead, by facilitating factor exchange (Halley-Stott et al., 2014). Hyper-dynamic protein 

exchange is a feature of pluripotency which decreases following exit from the pluripotent 

state (Meshorer et al., 2006). This is also consistent with the dynamic binding of pioneer 



factors to mitotic chromatin (Caravaca et al., 2013). This pattern of dynamic protein 

exchange on chromatin may therefore be critical for establishing of the pluripotent state, 

but it could also establish conditions that predispose PSCs to differentiation or 

reprogramming following mitotic exit under the appropriate signaling conditions.   

 Mitosis may serve to provide a window of opportunity for reprogramming because 

reprogramming factors have preferential access to condensed chromatin and therefore 

face less competition from other factors that are excluded from target loci. It has been 

shown that OSK can access closed chromatin by acting as pioneer factors during iPSC 

reprogramming (Soufi et al., 2012; Soufi et al., 2015). However, whether these pioneer 

factors interact with mitotic chromatin is yet to be examined. Nevertheless, one can 

hypothesize that reprogramming factors have a unique ability to bookmark mitotic 

chromatin, enabling gene priming immediately following exit from mitosis and prior to 

gene reactivation (Fig. 3). Another mitotic advantage may be due to the exclusion of HP1 

and SUV39H1 from heterochromatin, which blocks access of the reprogramming factors 

to key pluripotency genes during interphase (Soufi et al., 2012) (Fig. 3). The association 

and dynamic exchange of reprogramming factors with mitotic chromatin functions to 

bookmark the genome, both specifically and non-specifically (Fig. 3). This landscape is 

then reset upon mitotic exit and potentially establishes a new epigenomic state for cell 

fate conversion.  

 The mitotic advantage in reprogramming is not restricted to unfertilized oocytes 

but is applicable to other advanced embryonic stages as well. For example, mouse 

zygotes and electro-fused blastomeres arrested in mitosis can acquire a reprogramming 

capacity in SCNT (Egli et al., 2007; Riaz et al., 2011). However, a recent study has shown 

that even the cytoplasm of interphase two-cell mouse embryos can reprogram somatic 

cells in SCNT, if the donor nucleus and recipient cytoplasm are synchronized (Kang et 

al., 2014). This suggests that the mitotic advantage is due to effective cell-cycle 

coordination, and not necessarily the presence of special reprogramming proteins only 

present in the recipient mitotic cytoplasm or a special mitotic chromatin configuration of 

the donor nucleus. It has long been known that the cytoplasm of an MII-arrested oocyte 

retains high activity of CDK that can efficiently lead to nuclear envelope breakdown, 



chromatin condensation and subsequent DNA replication of the donor nucleus from all 

cell cycle stages (Campbell et al., 1993). However, the cytoplasm of S-phase cells is less 

effective at synchronizing a G2-phase donor nucleus, unless the nuclear envelope is 

chemically permeabilized (Blow and Laskey, 1988). Thus, the nuclear envelope may act 

as a barrier for cell synchronization, which is eliminated during mitosis. Taken together, 

these seemingly conflicting reports seem to agree on the idea that resetting the somatic 

epigenome to pluripotency or totipotency can only be tolerated if supported by active cell 

division.     

 

Conclusions 

Throughout this Review, the link between cell fate decisions and the cell cycle has been 

emphasized in a developmental context using examples ranging from yeast to humans. 

The emerging general themes from this work indicate that cell fate decisions are context 

dependent with regard to their requirement for cell division. Both cell cycle-dependent 

and cell cycle-independent mechanisms have been highlighted. For example, terminal 

differentiation of muscle cells from immature precursors requires cell cycle exit whereas 

differentiation towards pancreatic and erythroid progenitors requires active division and 

phase-specific cell cycle activities. Similar variations have been reported in 

reprogramming to the pluripotent state and trans-differentiation across lineages. 

Irrespective of the requirement for cell division, the cell cycle machinery impacts these 

cellular decisions (see Table 1). For example, CDKI-regulated CDK inhibition is central to 

cell fate decisions made in a cell cycle-independent context, while elevated CDK activity 

is a requirement for most cell cycle-dependent cell fate decisions. Clearly then, it is critical 

to better understand the molecular basis underpinning cell fate decisions in each scenario 

in order to place the cell cycle in a broader developmental perspective.  

 We used PSCs as an example to highlight mechanisms that coordinate cell fate 

commitment with the cell cycle. In this scenario, cells transitioning through G1-phase are 

highly responsive to differentiation cues that target developmentally-regulated 

transcription factors and chromatin remodelers. In conjunction with developmental 



signals, the G1-CDK machinery collaborates with signal-regulated transcription factors 

such as SMADs to recruit co-repressors and co-activators to developmental genes. All 

together, these events result in chromosome remodeling, enhancer recruitment and the 

coordinated activation of a transcriptional program required for cell fate decisions. We 

refer to this G1-specific mechanism as lineage-priming. Interestingly, SMADs are known 

to act on loci primed by master transcription factors (Mullen et al., 2011), indicating the 

existence of a more elaborate mechanism for cell fate specification. Along with lineage-

priming, G1-phase represents a time when the pluripotency network is vulnerable to 

inactivation, also called dissolution, whereas in S-phase and G2-phase it is stabilized. 

Since pluripotent cells spend most time in the S-phase, this further suggests a connection 

between cell cycle stage and pluripotency wherein S-phase supports pluripotency while 

G1-phase represents a period of differentiation competency. Establishing a cell cycle 

where cells spend most time in S-phase and a brief time in G1-phase therefore minimizes 

the opportunity for pluripotent cells to switch state. Partitioning networks that sustain 

pluripotency or promote differentiation between different cell cycle phases seems a logical 

strategy to activate developmental genes and silence pluripotency genes in a coordinated 

manner.  Another mechanism implicated in marking chromatin for future decisions in 

pluripotent cells is mitotic bookmarking. These observations indicate that mitosis is 

required to lay the epigenomic foundations for a cell fate switch in G1-phase. In total, 

these observations imply that the entire cell cycle is part of a coordinated network that 

orchestrates cell fate decisions.  

 It is important to note that the cell cycle machinery components present in the 

cytoplasm must co-ordinate with the chromatin configuration of the genome in the nucleus 

in order to effectively make a cell fate decision. This is highly relevant to reprogramming 

and trans-differentiation as the field is moving towards generating cell types for clinical 

applications and disease modeling - especially when the efficiency and the fidelity of the 

current protocols represent the biggest challenge in the field. In order to achieve these 

prerequisite requirements, future research must not only concentrate on how to 

manipulate chromatin and gene expression but also how these changes fit within the cell 

cycle. Defining in greater detail the mechanistic aspects that connect cell fate switches to 

the cell cycle machinery will be instrumental in developing novel and effective methods 



to control cell types, as well as understanding whether this mechanism is a general 

feature of cell fate decisions or is restricted to specific cases.  
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Box 1: Mitotic bookmarking 

Mitotic bookmarking refers to the retention of epigenetic marks during mitosis that 

enables rapid gene activation upon entry into G1-phase. The 'bookmarks' include 

DNase-hypersensitive sites that mark accessible and active promoters and enhancers 

(Hsiung et al., 2015; Martínez-Balbás et al., 1995), acetylated H4K5 marks and residual 

bromodomain protein 4 (BRD4) marks (Dey et al., 2009; Zhao et al., 2011). The mixed 

lineage leukemia (MLL), an epigenetic modifier that maintains gene activity through 



catalyzing trimethylation of H3K4 at promoters (Blobel et al., 2009) and the poly(ADP-

ribose) polymerase-1 (PARP-1) are also retained in mitotic chromatin (Lodhi et al., 

2014). Interestingly, 'bookmarked' genes are rapidly reactivated upon entry into G1-

phase  (Fig. 3). In addition to chromatin modifiers, a select group of transcription factors 

such as FOXA1, GATA1, RUNX2, ESRRB and RBPJ also bind and 'bookmark' mitotic 

chromatin (Caravaca et al., 2013; Kadauke et al., 2012; Lake et al., 2014; Young et al., 

2007; Festuccia et al., 2016). Interestingly however, these factors maintain mitotic 

chromatin binding at only a subset of the specific sites bound during interphase 

(Caravaca et al., 2013; Kadauke et al., 2012). This reduced number of specific binding 

sites is not due to lower transcription/chromatin factor levels but instead, the majority of 

bookmarking events occur at non-specific sites with a highly dynamic exchange rate 

(Caravaca et al., 2013). Transcription factors with bookmarking activity such as FOXA1 

and GATA1 are thought to act as pioneer factors that reset the chromatin landscape 

and potentially, re-establish cell identity after mitosis (Zaret, 2014). Because OCT4, 

SOX2 and KLF4 (OSK) act as pioneer factors during reprogramming to pluripotency 

(Soufi et al., 2012) and because ASCL1 functions as a pioneer factor during trans-

differentiation of fibroblasts to neurons (Wapinski et al., 2013), it will be important to 

investigate the association of these reprogramming factors with mitotic chromatin and 

the role of this in cell cycle regulated cell fate decisions. 

 
 
 
 
 
 
 
Table. Cell cycle regulation of cell fate decisions and its regulation  

Cell cycle target Cell fate decision   Mechanism 

HDAC, SP1  pluripotent cell fate determination CYCLIN D  (G1-phase) 

SMAD2,3  pluripotent cell fate determination CDK4/6-CYCLIN D  (G1-phase) 

MLL2   pluripotent stem cell differentiation CDK2 (G1-phase) 

HO   budding yeast    CDK (G1-phase)  

unknown  pancreatic endocrine cell fate  G1-phase CDK regulated (?) 

GATA1   erythroid differentiation   KIP2p57 (S-phase)    



NOTCH   Drosophila sensory organ formation unknown (G2-phase) 

NGN2     neural progenitor differentiation  inhibition by CDK (G1-phase) 

unknown  cortical progenitor differentiation  unknown (G1-phase)  

Prospero  Drosophila neuroblast differentiation pro-differentiation, inhibits cell cycle 
machinery 

H2A    differentiation, reprogramming  window for reprogramming factors (mitosis) 

chromatin  reprogramming    OSK binding (mitosis) 

unknown  Dictyostylium pre-spore/stalk decision  nutritional conditions (G1-, S-, G2-phases) 

 
 
Figure legends 
 
Fig. 1. The cell cycle controls developmental decisions. The intersection between 
cell cycle control and cell fate determination mechanisms involves developmental 
signals and cyclin-dependent protein kinases (CDKs) targeting transcription factors that 
control developmental genes. CDKs also work in parallel to this pathway by modulating 
the epigenetic landscape and chromosome architecture around developmental genes. 
The activation of certain target genes determines important cell fate decisions and 
subsequent lineage commitment.  
 
Fig. 2. Mechanisms of lineage-priming and pluripotency dissolution in the G1-
phase of pluripotent stem cells (PSCs). As PSCs exit M-phase, G1-CDK activities 
are activated and in concert with developmental signals act through transcription factors 
which load onto developmental target genes. Developmental genes are 'bookmarked' 
epigenetically in mitosis for rapid activation in the upcoming G1-phase. In conjunction 
with this, epigenetic modifiers, such as MLL2, modify the local epigenetic landscape 
around developmental genes in G1-phase and Cyclin D recruits co-repressors and co-
activators. Chromosome loops are then formed, recruiting enhancers to the proximal 
promoter, thereby establishing the lineage-primed state. Before and after G1-phase, 
developmental genes are decommissioned due to the erasure of some epigenetic 
marks and chromosome loops. Outside of G1-phase, the pluripotency network is 
stabilized by S-phase and G2-phase regulators that block pluripotency dissolution. 
Dissolution of pluripotency and lineage-priming work in concert to orchestrate exit from 
pluripotency and initiate cell fate decisions in G1-phase. 
 
Fig. 3. Mitotic 'bookmarking' and entry into the lineage-primed state in G1-phase. 
(A) During mitosis the nuclear membrane is broken down and chromatin is highly 
condensed, as depicted by densely packed nucleosomes. Transcription then halts, 
coinciding with exclusion of the transcription machinery and most transcription factors 
from the nucleus. Pioneer factors are retained in mitotic chromatin both specifically and 
non-specifically. Chromatin modifiers such as MLL are retained by mitotic chromatin and 
'bookmark' promoters in preparation for activation in G1-phase. A subset of histone 
modifications, such as H3K9me3, are also retained in mitosis. H3 is specifically 



phosphorylated at S10 by the mitotic kinase AURORA B, resulting in the eviction of 
HP1. SUV39H is also phosphorylated during mitosis and dissociates from chromatin. 
(B) Upon mitotic exit, cells respond to differentiation signals, which are transduced to 
the nucleus through the action of Cyclin D, SMADs and other effectors. SMADs for 
example, bind with other transcription factors to sites specifically 'bookmarked' by 
pioneer factors during mitosis or primed by other transcription factors during early G1-
phase. Chromatin modifiers such as MLL or newly recruited transcription factors and 
CDK components re-establish histone modifications at enhancers and promoters and 
developmental genes are reset to the lineage-primed state. Also in G1-phase, H3S10 
phosphorylation is lost and HP1 and SUV39H bind to H3K9me3-enriched chromatin to 
re-establish heterochromatin, blocking access to transcription factors in these regions.  
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