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A highly nonlocal optical response in space has been shown to heal several shortcomings
of beam self-action in nonlinear optics. At the same time, nonlocality is often connected
to limits and constraints in both temporal and spatial domains. We provide a brief and
rather subjective review of what we consider the main benefits and some drawbacks of
a highly nonlocal response in light localization through nonlinear optics, with several
examples related to reorientational soft matter, specifically nematic liquid crystals.
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1. Introduction

In times during which globalization has become a common term and information

is available beyond physical and temporal barriers, a “nonlocal” response is readily

perceived as the causal link between a disturbance and its effects at points (in space

or time or both) which do not coincide, but can be separated by some distance, the

nonlocality range. Such a concept is rather intuitive, as we often include the notion

of propagation in our description of reality, not only with reference to waves (sound,

ocean, light, radio-frequency, gravitational), but also to diffusive processes such as

heat transfer, epidemics, rumors, pain etc. In essence, most phenomena in everyday

life are often associated to a certain degree with either spatial or temporal nonlo-

calities, or both. In optics a nonlocal response is certainly not a novel ingredient as

many phenomena rely on a nonlocal behavior at microscopic or macroscopic scales.

1
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These include the thermo-optic response of materials for which a point-wise heat

source (e.g. absorbed light at a given point) affects the optical properties even at lo-

cations well removed1, the charged particle response of semiconductors/conductors

and plasmas for which drift and diffusion take place and “relocate” carriers in

space/time2, the photorefractive response of crystals in which optical perturba-

tions and carriers tend to be mutually displaced3, the reorientational nonlinearity

of liquid crystals for which elastic interactions tend to spread the effect of a local

electromagnetic perturbation4 and cascading (parametric or otherwise) phenomena

which occur through propagation and interplay of wave components5,6,7. This list is

far from being complete as it is just an enumeration of a few rather common effects

in optics. A thorough discussion of nonlocality in optics would require an extended

treatment and a major commitment, as it should embrace several scales and mech-

anisms, dimensions and materials, effects and spectral domains. In this Paper we

do not have such an ambition: based on our own modest contributions in nonlinear

optics and related understanding, we aim to illustrate a few basic phenomena which

benefit from a highly nonlocal response in nonlinear optics, with specific emphasis

on reorientational soft matter, i.e. nematic liquid crystals.

Spatial nonlocality was invoked in the early days of nonlinear optics with refer-

ence to absorption and thermo-optical responses, whereby a light beam would heat a

material region larger that the excitation, altering the temperature and so the opti-

cal properties at points transversely and/or longitudinally displaced from the illumi-

nated region. A nonlocal response could, thereby, yield feedback even in geometries

without back propagating waves or reflectors, leading to the occurrence of bistability

or multistability for propagating beams even without cavities/resonators8,9. Early

reports on optical bistability in cavity-less configurations relied on distributed cou-

pling using prisms or gratings to couple beams into semiconductor thin film waveg-

uides, yielding standard S-shaped hysteresis loops, as well as butterfly-shaped bista-

bility cycles via the longitudinal feedback mediated by temperature increases via

absorption10,11,12,13,14. Such effects would require a nonlocality range comparable

with the coupling distance between radiation and guided mode(s) in the waveg-

uide, a condition readily satisfied by varying the air gap between the prism and the

planar waveguide or the groove depth and profile of a surface grating.

With the advent of photorefractive crystals and the successful demonstration

of low power spatial optical solitons15, a weakly nonlocal response was found to

stabilize solitary waves in two transverse dimensions, solving the issue of filamen-

tation and catastrophic collapse in local Kerr media16,17. Such stable self-localized

beams, however, could also support the confined propagation of additional signals

due to the light-induced waveguides associated with the Kerr-like intensity depen-

dent response. The latter concept was expanded towards one of “light-guiding-light”

in highly nonlocal nonlinear dielectrics for which optical spatial solitons could be

described as normal modes periodically oscillating in width and intensity as they

propagate, alternating diffraction and self-lensing18,19,20,21. The nonlocal range de-

termines the width of the light-induced waveguide and, hence, the numerical aper-
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ture of a nonlocal soliton waveguide can be high and permit the confinement of

light signals of smaller, and even larger, wavelengths22,23, including higher order

modes24. A transverse nonlocal response mediates the interaction between adja-

cent spatial solitons, which can attract or repel depending on their relative phase

and can therefore give rise to light-induced elements such as directional couplers

and X- and Y-junctions20,25. In highly nonlocal media for which the nonlocal range

well exceeds the size of a solitary wave, their mutual interaction tends to be always

attractive due to the incoherent nature of these self-localized beams26. Incoherent

solitary waves in highly nonlocal media can be excited by multi-color beams, or

even spatially incoherent “speckled” distributions27,28,29. In photorefractive crys-

tals bright spatial solitary waves were demonstrated using incoherent white light30.

The above features of nonlocal spatial solitary waves can actually yield

additional effects, including their resilience to propagation near obstacles or

interfaces31,32,33,34,35,36, boundaries37,38,39 and external perturbations40,41. More-

over, vortex beams which tend to be transversely unstable can become stable in

nonlinear, nonlocal media and be guided and routed with the aid of a coaxial bright

solitary wave42.

After an initial section dealing with the equations governing the reorientational

response of nematic liquid crystals, we discuss several examples of light self-

localization— specifically spatial solitons— in such materials. Then, we present

and discuss a generalized model of a nonlocal, nonlinear response in optics, i.e. the

nonlocal, nonlinear Schrödinger equation (NLSE). This model deals with a simpli-

fied response chosen to make the analysis of nonlocal solitary waves, their stability

and interaction tractable. Finally, we list a few drawbacks often accompanying non-

locality in optics.

2. Nematic Liquid Crystals

Nematic liquid crystals (NLC) are uniaxial dielectrics between crystalline and liquid

states and exhibit a large reorientational (nonlinear) optical response4,43,44,45. Their

molecular anisotropy is such that, in the presence of an intense electric field E at a

finite angle (> 0 and < π/2) with respect to the local optic axis (i.e. the molecular

director n̂), the latter tends to rotate and align with the field under the action of

the torque

Γ = ǫ0ǫa(n̂ ·E)(n̂ ∧E). (2.1)

Here ǫa = n2
‖ − n2

⊥ is the optical anisotropy with n‖ and n⊥ the refractive indices

for electric fields parallel and orthogonal to n̂, respectively. Such light-induced

action can increase the refractive index and yield self-focusing for finite beam

excitations43,44. For planar rotation of the NLC molecules, the propagation of an
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optical beam in a nematic liquid crystal can be modeled by the coupled equations

2ik
∂A

∂z
+∇2A+ k20∆n

2A = 0, (2.2)

4K∇2
xyθ + ǫ0ǫa|A|2 sin 2θ = 0, (2.3)

with A the beam envelope and |A|2 its intensity distribution, z the direction of prop-

agation, ∆n2 = n2
e(θ)−n2

e(θ0) the photonic potential with θ the angle between the

wave vector and the optic axis in a principal plane (θ0 is the rest angle, i.e. without

optical forcing), k0 the vacuum wavenumber, k = ne(θ0)k0, and K a (scalarized)

elastic constant for the inter-molecular interactions in the fluid 22,29,46,47. It is noted

that birefringent walkoff has been factored out of the equations (2.2) and (2.3) by

a phase transformation48, assuming a straight beam trajectory. In usual uniaxials

the refractive index ne for the extraordinary field polarization is of the form

ne =
n⊥n‖

[n2
‖ cos

2 θ + n2
⊥ sin2 θ]1/2

. (2.4)

When a finite beam carries sufficiently high power its natural diffraction can

be balanced by nonlinear self-lensing, generating an optical spatial solitary wave,

usually termed nematicon in NLC49,50. Such a spatial solitary wavepacket, in its

fundamental state and in the absence of losses, is invariant in width and shape and

is associated with a bell-shaped photonic potential ∆n2 able to waveguide copo-

larized signal(s) of different wavelength(s)28. Thereby, a nematicon is well suited

for guiding optical signals along light defined paths, the latter being tailorable by

altering the soliton direction using, for example, applied voltage(s), index perturba-

tions, collisions and interactions with boundaries26,40,49,50,51,52,53,54. Due to these

features nematicons have been thoroughly investigated over the past fifteen years

in various types of NLC mixtures, including low and high birefringence, doped and

dual frequency, twisted and chiral55,56,57,58,59,60,61,62,63. In contrast to the simplistic

model Eqs. (2.2) and (2.3), when the molecular director n̂ and the beam wavevec-

tor k are neither parallel nor perpendicular to each other, but at a finite angle

θ, similar to plane waves, nematicons undergo birefringent walkoff and acquire a

transverse velocity in the plane of propagation64. The pertinent Poynting vector S

of nematicons forms a finite angle δ with k and the walkoff is given by

δ = arctan

[

ǫa sin 2θ

ǫa + 2n2
⊥ + ǫa cos 2θ

]

. (2.5)

In standard NLC walkoff is of the order of several degrees in the visible and

near-infrared and is maximum for angles θ close to π/4 64. Any change in di-

rector distribution can, therefore, modify the solitary wave trajectory and the

layout of the associated waveguides through refractive index as well as walk-off

variations, leading, for example, to voltage or beam controlled signal routers and

switches65,66,67,68,69,70,71,72,73. Typical configurations for spatial solitary waves in

NLC include capillaries74,75,76 and planar cells50,77. Hereby, we refer to planar cells

of thickness of the order of 100µm and parallel glass interfaces mechanically rubbed



Highly Nonlocal Optical Response: benefit or drawback? 5

in order to provide the desired molecular anchoring. Additional input and output

glass interfaces can be used to seal the cell after filling it with NLC and prevent

the formation of menisci and unwanted beam depolarization22.

The system of equations (2.2) and (2.3) governing the propagation of optical

beams in nematic liquid crystals is highly nonlinear due to the dependence on the

angle director θ. A reduced system of equations which can be analysed is obtained

in the limit of small light-induced rotation of the nematic molecules46,78. We then

set θ = θ0 + ψ, where |ψ| ≪ θ0 is the all-optical (nonlinear) rotation due to the

light beam. The photonic potential ∆n2 to first order in ψ is then

∆n2 = 2ne(θ0)n
′
e(θ0)ψ, (2.6)

where n′
e = dne/dθ. The electric field equation (2.2) becomes

ik
∂A

∂z
+

1

2
∇2

xyA+ k20ne(θ0)n
′
e(θ0)ψA = 0 (2.7)

to the same order in ψ. Similarly, the director equation (2.3) becomes

4K∇2ψ + ǫ0ǫa sin 2θ0|A|2 = 0. (2.8)

These equations can be set in non-dimensional form, assuming an input beam

of power P0 and width W0. Then a scale amplitude for the optical field is

α =

√
P0√
γW0

, (2.9)

where γ is a constant which depends on the beam profile, for instance γ = πǫ0cn⊥/4

for a Gaussian beam, where c is the speed of light79. Dimensionless spatial variables

X , Y and Z are defined by

x = βX, y = βY, z =
2k

k20ne(θ0)n′
e(θ0)

Z, (2.10)

where

β =

[

2

k20ne(θ0)n′
e(θ0)

]1/2

. (2.11)

A non-dimensional electric field amplitude u is also given by

A = αu. (2.12)

With these non-dimensional variables, the perturbed nematic equations (2.7) and

(2.8) can be set in the non-dimensional form

i
∂u

∂Z
+

1

2
∇2u+ 2ψu = 0, (2.13)

ν∇2ψ + 2|u|2 = 0, (2.14)

where the Laplacian ∇2 is now in the transverse non-dimensional coordinates

(X,Y ). In Eq. (2.14) the derivative along z has been neglected, i.e. the longitudi-

nal nonlocality. This is valid in NLC bulk (away from input and output interfaces)
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and whenever the nonlinear wave changes slowly along z80. Equation (2.14) is a

Poisson equation and is the same as the medium equation arising for thermal op-

tical media, thus establishing an equivalence between NLC in the perturbational

regime and thermal media39. Since the solutions of Eq. (2.14) depend strongly on

the boundary conditions, the degree of nonlocality is determined by geometry/size

of the sample, which yield the Green’s function of the director equation (2.14)39,81.

The non-dimensional elastic parameter ν is given by

ν =
8K

ǫ0ǫaα2β2 sin 2θ0
. (2.15)

In most NLC experimental situations ν is large, ν = O(100)79,82. The most im-

portant result of this high nonlocality is the stabilization of a (2 + 1) dimensional

solitary wave in nematic liquid crystals7. This stems from the director equations

(2.14) and (2.19) being elliptic, so that their solutions depend on the entire domain

of the liquid crystal83. Local (2 + 1) dimensional solitary waves governed by NLS-

type equations of the form (2.13) with ψ determined by the value of u at a point

are unstable to catastrophic collapse17.

To overcome the optical Freédericksz threshold for molecular rotation44, the

elongated nematic molecules are usually pre-tilted at a finite angle θ0 to the z

direction, either in the plane xz of the material thickness or in the plane yz. This

finite orientation of the molecular director to the beam wave vector results in the

ability of the optic axis to reorient even at modest excitations, i.e. without a power

threshold50. The pre-tilt can be produced either via “rubbing” the cell walls (plane

yz), leading to the director equation (2.3), or through the application of an external

low frequency electric field Es, i.e. a voltage bias across the thickness (plane xz)22;

the latter bias determines an additional (electro-optic) weakly-guiding refractive

index transverse potential 64. When the external electric field is accounted for the

director equation (2.3) is replaced by

4K∇2θ + 2∆ǫRFE
2
s sin 2θ + ǫ0ǫa|A|2 sin 2θ = 0, (2.16)

with ∆ǫRF the low frequency anisotropy. As mentioned above, this director equa-

tion is also highly nonlinear and unsuitable for detailed analysis. The simplifying

assumption that the nonlinear rotation ψ is small, so that |ψ| ≪ θ0, can therefore

be made again, so that the director equation (2.16) can be expanded to first order

in ψ, yielding

4K∇2θ0 + 2∆ǫRFE
2
s sin 2θ0 + 4K∇2ψ + 4∆ǫRFE

2
s cos 2θ0 ψ + ǫ0ǫa sin 2θ0|A|2 = 0.

(2.17)

The first order balance between the pre-tilt field Es and the director distribution

θ0 in the absence of the optical beam requires

4K∇2θ0 + 2∆ǫRFE
2
s sin 2θ0 = 0. (2.18)

Then, using the non-dimensionalization (2.10) and (2.12), the director equation
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(2.17) becomes

ν∇2ψ − 2qψ + 2|u|2 = 0, (2.19)

where, when θ0 ≈ π/4 in order to maximize the nonlinear response with the linear

term in ψ negative, the effect of the bias field is given by the parameter78

q =
4∆ǫRF

ǫ0ǫaα2
E2

s | cot 2θ0|. (2.20)

A better approximation to the pre-tilt parameter q can be derived by setting

θ(x, y, z) = θ̂(x) + θ̂(x)
θ0
ψ(x, y, z), where now θ̂(x) is the director orientation due

to the bias only and θ0 is the maximum θ̂(x) in the mid-plane of the cell7. The

result is still (2.19), i.e. a screened Poisson equation, but with q given by

q =
2∆ǫRF

ǫ0ǫaα2

sin(2θ0)

θ0

[

1− 2θ0
cos(2θ0)

sin(2θ0)

]

E2
s . (2.21)

Since the parameter q determines the degree of nonlocality in the director equation

Eq. (2.19), a bias change implies varying simultaneously the nonlocality and nonlin-

earity, both decreasing as the voltage increases84. In summary, in a uniform bias-free

cell the nonlocality is determined by the geometry and the nonlinearity, for a given

NLC mixture, depends on the rest angle θ0, with a maximum nonlinear response

for θ0 ≈ π/4. In a biased cell, both the nonlinearity and the nonlocality depend on

the applied bias, which in turn changes the average rest angle θ0. These findings

and the degree of nonlocality were experimentally verified by direct inspection of

the light-induced waveguides 85,86 as well as by exploiting nematicon-nematicon

interactions87,88,89.

The non-dimensional system of equations (2.13) and (2.14) or (2.13) and (2.19)

have been derived in the context of optical beam propagation in nematic liquid

crystals. However, these systems of equations are more general and model a wide

variety of physical situations. In general, they arise for nonlinear optical beam

propagation in media for which there is some type of diffusive response to the optical

perturbation90. In particular, these systems describe nonlinear light propagation

in thermo-optical media91 such as lead glasses 81,92,93 and certain photorefractive

crystals15,94. More broadly, similar equations arise in simplified models of quantum

gravity95,96 and the so-called α models of fluid turbulence97,98.

2.1. Spatial solitons and optical signal guidance

As Snyder pointed out in his pioneering papers18,19, optical spatial solitons in in-

tensity dependent Kerr-like media can be viewed as normal modes of a self-induced

graded-index waveguide. In nonlocal, nonlinear Kerr-like dielectrics such waveg-

uides are stable even in two transverse dimensions, allowing for the confinement of

an intense input beam, as well as weaker signals of different wavelengths. Nonlocal

systems of equations are usually non-integrable, so that the inverse scattering tech-

nique cannot be applied17,99. While in integrable systems the number of solitons and
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Fig. 1. Two basic geometries of planar NLC cells. (a) Planar cell with director oriented along z.
Thin film electrodes on top and bottom planar interfaces allow the application of a voltage V across
the thickness of the sample and pre-tilting the director in the plane xz. A linear extraordinary-wave
(x-polarized) beam launched with wavevector k along z diffracts in the linear regime and/or in the
absence of voltage (top). When pre-tilt is applied through the bias and the beam is intense enough,
a nematicon propagates in xz with Poynting vector S at the walkoff angle δ. (b) Bias-free planar
cell with director initially oriented in the plane yz. A linear extraordinary-wave (y-polarized) beam
launched with wavevector k along z diffracts in the linear regime with Poynting vector at angle δ

with respect to k (top). When the beam is intense enough, a nematicon propagates in yz.

the accompanying radiation are uniquely determined by the input, the size of light-

induced waveguides in nonlocal media is such that several modes can be excited

by a given input beam and continuously exchange power while remaining trapped

for long propagation distances, leading to a much more complex phenomenology.

Thereby, in nonlocal media generic self-trapped waves tend to exhibit a long term

periodic or quasi-periodic longitudinal evolution, leading them often to be referred

to as breather solitons, although they are not exact solitary wave solutions with

periodic internal structure100. In the highly nonlocal limit when the self-induced

guide can be approximated by a parabola this behavior can be interpreted in terms

of the quantum harmonic oscillator, with strength proportional to the power18,21.

At variance with breathers in integrable systems, breathing soliton solutions in

nonlocal media form a continuous family with respect to the input beam, as the

extended nonlinear waveguide enables more long term light confinement (no light

can escape in the limit of an infinitely large thermo-optic sample101).

In nematic liquid crystals the large nonlocal response results in soliton waveg-

uides with a large numerical aperture, thereby permitting the guidance and routing

of extraordinary wave signals of shorter, as well as longer, wavelengths22,62. Figure

2 displays typical examples of nematicons and guided optical signals of different

colors, but with the same linear polarization. Owing to the different wavelengths
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and the nonlocal refractive potential induced by the reorientational response, the

guided modes of a nematicon waveguide can also be higher order, as predicted, and

later verified, experimentally24,102. Selected examples are shown in Figure 3. Signal

guidance can also be exploited when an angular off-set is introduced between the

solitary wave and the input signal, as reported in early experiments23 and later

exploited in more complex geometries using multiple solitary waves (see below).

Fig. 2. Experimental examples of nematicons and guided probe signals of different wavelengths.
(a) Upper left: beam launched at 514nm (ordinary wave) and diffracting in the plane yz in a
biased cell at V ≈ 1V. Lower left: nematicon (extraordinary wave) of input power 2mW in the
same cell. Upper right: propagation of a weak longer wavelength probe at 633nm in the absence
of green nematicon. Lower right: probe guided by a collinear nematicon. (b) same as in (a), but
with a beam at 1064nm in a bias-free cell with director at 45◦ with respect to z in the plane yz.
Upper left: diffraction with walkoff in yz. Lower left: nematicon with walkoff δ ≈ 7◦. Upper right:
output profile of diffracting probe of shorter wavelength 633nm without nematicon. Lower right:
output profile of probe guided by a collinear nematicon propagating with the same walkoff.

2.2. Soliton-soliton interactions

Since the typical nonlocality range in nematic liquid crystals well exceeds the size of

a nematicon, co-propagating nematicons launched with an initial transverse separa-

tion can interact through the wide refractive index potential, as illustrated in Fig. 4.
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Fig. 3. Examples (output profiles and 3D distribution) of high order guided modes (633nm) at
the output of a 532nm nematicon waveguide excited by a 1.5mW beam in a bias-free cell with
director at 45◦ with respect to z in the plane yz. (Adapted from Ref. 24)

Such a “shared” graded index distribution provides a “long-range” attractive force

between self-guided beams, leading to their mutual “pulling” action: depending on

the input power, initially parallel or slightly diverging co-propagating beams will

then converge and eventually interleave in space as they propagate26,87, giving rise

to configurations such as X- and Y-junctions, which can be employed in logic gates

or programmable circuits, as illustrated in Fig. 5 53,54,103. Such interactions tend to

be attractive independent of the initial relative phase(s) of the beams, which is the

result of the incoherent nature of nematicons104. Only in the limit of an interference

fringe (destructive interference), comparable in size with the nonlocality range, can

repulsive interaction be observed87. It is not surprising that when two equal power

solitary waves are skew on launching with an initial angular momentum, the bound

state mediated by attraction corresponds to the two solitary wave trajectories de-

scribing a helix with its axis along the propagation direction105 and an associated

radial spin which depends on the input power106. For fixed launch conditions the

angular speed of a two nematicon system with angular momentum can be controlled

by the excitation power, as shown in Fig. 6 107,108. Since nematicons are incoher-

ent entities as their interactions depend on beam intensity rather than amplitude,

co-polarized beams of different colors can contribute to the same potential well and
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form vector soliton states, as demonstrated in Ref. [52] and later modelled with the

aid of modulation theory48,109. Finally, when launching counter-propagating beams

of sufficient powers the corresponding solitary waves and index potentials can inter-

act despite the opposite directions of propagation (opposite wavevectors)110, even

when a transverse offset is present88. Hence, through nonlocality and the attrac-

tive interaction described above, within a finite range of powers and offsets, such

independent solitary waves can bend towards each other and eventually merge into

a single vector nematicon, i.e. one bent waveguide connecting two entrance ports

transversely displaced in the propagation plane111.

Fig. 4. Interaction of two coplanar solitons. (a) Top: simulated evolution of two identical solitons
launched in distinct directions in a nonlocal, nonlinear medium such as NLC. The solitons attract
and tend to interleave versus propagation. Bottom: same as before, but in a Kerr (local) medium.
The insets show the corresponding 3D index distributions at the input and in the center of the
sample. (b) Experimental observation of two green nematicons interacting in the plane yz of a
biased cell for different input powers (legends). (Adapted from Ref. [26])

2.3. Soliton interactions with perturbations

In the uniaxial dielectric corresponding to liquid crystals in the nematic phase any

perturbation in the distribution of the molecular director results in a change of the
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Fig. 5. Experimental demonstration of logic gates based on three nematicon interactions in the
plane yz of a biased cell. (a) Beam intensity evolution in yz for the cases described by the NOR
truth table in (b) based on presence or absence of the control inputs A and B, respectively,
and producing a soliton (signal) waveguide ending at S. (c) Beam profiles at the cell output,
transversely displaced as coded in (b). (d–f) same as in (a–c), but for an XNOR gate. (Adapted
from Ref.[103])

orientation with respect to the wave vector and a refractive index change for extraor-

dinary waves. Such changes can be designed and tailored when preparing the planar

cells with prescribed anchoring conditions at the interfaces, induced by applied volt-

age(s) via thin film electrodes on the cell boundaries or by external light beams go-

ing through the sample thickness, including light valve configurations with a photo-

conductive slab112. A variety of index perturbations has been explored with nemati-

cons, including planar NLC-NLC interfaces to study soliton refraction and total in-

ternal reflection31, lateral (Goos-Hänchen type) shifts113 and tunnelling114, lenses40

and dielectric particles115,116. Modulation theory and beam propagators have been

successfully used to reproduce the experimental results33,35,36,46,47,83,117,118,119. In

all cases, however, nonlocality plays an important role: on the one hand it prevents

spatial solitary waves from breaking up in the proximity of an altered region of

the medium, on the other hand it mediates an adiabatic soliton interaction with

the perturbation, providing a smooth transition between both final states of the

medium configuration and beam parameters37. This nonlocal “smoothing” action
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is exploited in standard experiments with nematicons38,120, both at the input inter-

face near the cell entrance22 and near its planar boundaries where there is a fixed

anchoring boundary condition39. Depending on the relative size of the nematicon

and the refractive defect, a propagating nematicon tends to behave as either a par-

ticle or a wave34. Fig. 7 shows examples of nematicon interactions with refractive

index defects induced by external beams in a photo-conductive liquid crystal light

valve, i.e. a planar cell in which external illumination mediates localized changes in

applied voltage and, therefore, optic axis distribution54,67. In this Figure a 1 (input)

×8 (output ports) spatial de-multiplexer is illustrated, elucidating the importance

of nonlocality in solitary wave robustness and long-range interactions with light

induced perturbations of various shapes and index contrasts53. Solitary wave in-

teractions with charged conductive microelectrodes in nematic liquid crystals were

reported by Izdebskaya121.

Fig. 6. Spiralling nematicons due to mutual attraction during propagation when launched with
angular momentum. (a) Simulated evolution along z. (b) Output profiles in xy at the cell output
for increasing input power P . (Adapted from Ref. [108])
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Fig. 7. Spatial 1 x 8 demultiplexer based on three external beams impinging on a planar NLC
cell with a nematicon. (a) Photograph of soliton evolution in the plane yz as three external beams
of different shapes and positions are switched on/off (green contour maps) (b) corresponding
transverse profiles at the cell output for the three bit combinations corresponding to the presence
or absence of the control beams, as in the legend on the far right. (Adapted from Ref. [53])

2.4. Soliton interaction with boundaries

One of the striking outcomes of nonlocality is the interaction of solitons with

boundaries37,38. Due to the boundaries being at a finite distance from the beam,

the system is no longer translation invariant and linear momentum is no longer con-

served. The boundaries can be understood to exert an equivalent force on the beam.

In self-focusing media this force causes beam repulsion from them (Fig. 8(a)), in

turn leading to periodic power dependent oscillations in its trajectory (Fig. 8(b)).

In a typical unbiased planar NLC cell infinitely extended along y, but finite

along x, when a beam is launched in the mid-plane the (repelling) forces from top

and bottom interfaces balance with one another and the trajectory is a straight line.

However, in the presence of a transverse offset (vertical shift or angular tilt in xz) the

beam will be pushed up and down across x in a periodic fashion. The period of this

motion depends on the launch position, i.e. the beam trajectory shows anharmonic

oscillations (Fig. 8(c)). Moreover, it is also proportional to P−1/2, confirming the

nonlinear nature of the phenomenon (Fig. 8(d)). Mathematically, the effective force

originates from the asymmetric Green’s function which displaces the beam center-
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of-mass with respect to the axis of the self-induced waveguide39.

Fig. 8. Nematicon interaction with boundaries. (a) Sketch: the beam is launched at variable
offsets across x with an input angle ξ. Gray and black lines are the trajectories for low and large
powers, respectively. (b) Beam-propagation-method simulations of a Gaussian beam (waist 2.8µm,
wavelength 633nm and planar phase front) evolution in the side plane xs, with s the propagation
distance along the Poynting vector. Here the initial power is 3mW and the input position is 70µm
(20µm off the mid-plane). (c) Oscillation period versus input position for various powers, from
theory (lines) and BPM simulations (symbols), respectively. (d) Output beam x position versus
input power: solid line and squares are theoretical predictions and experimental data, respectively.

2.5. Vortex stabilization and guidance

Vortex light beams, optical wavepackets with a phase singularity on axis (a point

of destructive interference where the field amplitude vanishes and the phase is un-

defined) and a toroidal intensity profile, tend to have azimuthal instabilities when

propagating in nonlinear Kerr-like media122,123. This instability results in vortex

break-up with the formation of pairs of spatial solitary waves and radiation. A

highly nonlocal response was predicted to stabilize a vortex beam by means of the

wide refractive potential associated with nonlinear self-focusing, i.e. a wide graded-

index waveguide able to prevent vortex diffraction and fragmentation122,124. A more

versatile approach to stabilize vortex beams in nonlinear, nonlocal dielectrics con-

sists of co-launching a coaxial spatial solitary wave in such a way that the latter

provides the refractive index distribution able to guide and even route a vortex,
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independent of its power: a weak vortex beam can be confined by the soliton waveg-

uide, an intense vortex beam will give rise to a vector soliton together with the co-

propagating bright soliton42,125,126. The demonstration of this concept was recently

reported in bias-free nematic liquid crystals for which stable vortex propagation was

observed as the result of generating a two color vector soliton encompassing a (single

charged) vortex and a nematicon in a planar cell79,127.

Fig. 9. Example of a red vortex (633nm) of power 8mW launched in a bias-free cell collinearly
with a green nematicon. (a) The vortex breaks when colaunched with a 0.4mW green beam. (b)
The vortex remains unstable in the presence of a 2.6mW nematicon. (c) The vortex is stabilized
by a 4.9mW green nematicon. (Adapted from Ref. [79])

The nematic systems (2.13), (2.14) and (2.13), (2.19) and their associated ne-

maticon and optical vortex solutions have been widely studied, both using analyt-

ical tools, such as modulation theory46,77,78,99, particular exact solutions for fixed

parameter values83, as well as numerical solutions77. The corresponding predic-

tions have given results in good agreement with the experimental ones47,79,82,128,

highlighting the importance of nonlocality, linked to parameter ν in the director

equations (2.14) and (2.19). In a medium with a local response an optical vortex

is unstable to an n = 2 azimuthal mode122, as noted above. However, in a medium

with a nonlocal response, such as liquid crystals, this instability is suppressed due to

the broad response of the director underpinning and supporting the vortex core124,

and an optical vortex can remain stable in media with a sufficiently large nonlocal-

ity range. The nonlocal stabilization of an optical vortex can be strong enough to

enable it to survive refraction at an interface at which there is a sharp change in the

background director angle θ0, due, for instance, to an external electric field31,118.

The stabilization of a vortex can be enhanced by a collinear coaxial nematicon,

either incoherent or at a different wavelength: the vortex, unstable in the absence

of the nematicon, remains localized in the nematicon potential125,129. The equa-

tions describing this interaction of two beams at different wavelengths (two color

interaction) are a direct extension of the equations (2.13) and (2.14) or (2.13) and
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(2.19) for a single beam

i
∂u

∂Z
+

1

2
∇2u+ 2ψu = 0, (2.22)

i
∂v

∂Z
+

1

2
∇2v + 2ψv = 0, (2.23)

with the director equation

ν∇2ψ + 2|u|2 + 2|v|2 = 0 (2.24)

in the absence of a pre-tilting bias and

ν∇2ψ − 2qψ + 2|u|2 + 2|v|2 = 0 (2.25)

in the presence of one.

The nonlocal interaction with and stabilization of an optical vortex by a co-

propagating nematicon can also provide stable vortex refraction in the presence of

index changes and perturbation42,126, as illustrated in Figure 10.
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Fig. 10. Optical vortex guided through a refractive index change by a nematicon as governed by
two colour equations (2.22), (2.23) and (2.25). (a) Evolution of nematicon |u| in the xz plane, (b)
evolution of vortex |v| in the XZ plane, (c) nematicon |u| at Z = 100, (d) vortex |v| at Z = 100.
The white curve encloses the region of refractive index change. Here q = 2 and ν = 200.
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2.6. Transverse evolution and profile transformation

Since the nonlocal response in transverse space acts as a low-pass filter, using non-

local, nonlinear soft matter with self-focusing means that a light distribution with

fine transverse features, such as a high order guided mode, is expected to evolve

into a less structured profile and, eventually, into a bell-shaped single hump mode.

This concept was experimentally demonstrated in nematic liquid crystals130 as well

as in chiral NLC, where the initial superposition of a few one-dimensional guided

modes was observed to evolve in propagation towards a fully two dimensional bell-

shaped wavepacket131. The power dependent modal transformation with increased

dimensionality stemmed from nonlocal re-orientation and was independent of the

wavelength used, as expected from a non-resonant response. Figure 11 shows an

example of such a modal transformation as acquired by using a laser beam at

793nm131. Recently, planar cells with chiral NLC were employed to combine a

one-dimensional discrete waveguide structure supporting discrete diffraction and

discrete solitons132,133,134 with a graded-index planar waveguide yielding continu-

ous diffraction in the orthogonal plane; in such metastructures the resulting dual

diffraction (i.e. discrete and continuous) was compensated by self-focusing through

the nonlocal reorientational response to produce astigmatic spatial solitons135.

Fig. 11. Experimental observation (photographs at the cell output) of increased dimensionality
in chiral nematic liquid crystals. A quasi one-dimensional higher-order mode launched at sub-
mW power in (a) evolves as power increases to (b) 5mw and (c) 10mW, eventually having two-
dimensional bell shaped (d) for P=25mW. (Adapted from Ref. [131])

2.7. Spatio-Temporal light bullets

Spatio-temporal light localization has been proposed in nematic liquid crystals by

exploiting the simultaneous synergistic action of a fast local electronic response and

the slow nonlocal re-orientational response by the use of laser pulse trains of suit-

able peak and average powers. Taking advantage of the different intensities and time
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scales of the two nonlinear mechanisms, in fact, nonlocal reorientation (responding

to average excitation) can take care of the (stable) spatial confinement in 2D trans-

verse space, whereas the Kerr electronic response (responding to peak intensity)

can result in self-phase modulation and counteract group velocity dispersion136,137.

Combining slow and fast nonlinearities, local and nonlocal, respectively, therefore

results in a useful nonlinear synergy, as reported earlier, for example, with reference

to third harmonic generation with the aid of nematicons138. Regrettably, owing to

difficulties in engineering the material dispersion, an experimental demonstration

of light bullets in reorientational/electronic media is not yet available.

3. Kerr-like nonlocal model

Even though the nematic equations (2.13) and (2.14) or (2.13) and (2.19) have

been substantially simplified from the full form (2.2) and (2.3) or (2.2) and (2.16)

valid for arbitrary deviations from the background θ0, they still form a highly

nonlinear, coupled system for which, to date, there are no known exact general

solitary wave or other solutions. Exact solitary wave solutions exist for fixed values

of the parameters83, but are not general as they have a fixed amplitude and width.

The director equation (2.14) is a linear elliptic equation, so it can, in principle, be

solved using a Green’s function G(x, y) to give

ψ =

∫ ∫

G(X −X ′, Y − Y ′)|u(X ′, Y ′, Z)|2 dX ′dY ′. (3.1)

The Green’s function for the director equation depends on the geometry. For ex-

ample, in a cylindrical geometry for a bias-free cell for which the director equation

is (2.14), the Green’s function is G(X,Y ) = − ln(X2 + Y 2)/4π, while for the direc-

tor equation (2.19) with a bias field it is G(X,Y ) = −K0(
√
2q
√
X2 + Y 2/

√
ν)/2π,

where K0(z) is the modified Bessel function of the second kind of order 0. These

Green’s function solutions do not provide a significant simplification in terms of

solutions of the nematic equations, especially in the presence of a bias field. For

this reason, there has been a large amount of research done on nonlocal, nonlinear

Schrödinger equations with model Green’s functions G, or kernels, in (3.1). These

are chosen so that the solution for ψ and the resulting analysis of the nonlocal

system (2.13) and (3.1) are manageable.

The use of general kernelsG in the solution (3.1), while somewhat detached from

actual material responses, is useful as the qualitative behavior of an optical beam

does not usually depend on the detailed form of G139. The most used kernels140 are

the Gaussian and the “hat” profile in one spatial dimension

G(X) =
σ√
π
e−X2/σ2

, G(X) =

{

1
σ , −σ/2 < X < σ/2,

0, otherwise
, (3.2)

and in two spatial dimensions

G(X,Y ) =
σ2

π
e−r2/σ2

, G(X,Y ) =

{

1
πσ2 , r ≤ σ,

0, r > σ
, (3.3)
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respectively141,142. Here, r is the polar radius r2 = X2 + Y 2. The parameter σ

measures the degree of nonlocality of the response. A highly nonlocal response

corresponds to σ ≫ w, where w is the width of the optical beam.

While existence and stability of solitary waves in nonlocal, nonlinear media with

these idealized models can be subject to a more straightforward analysis143 than

for the actual NLC144, he simplified kernels have to be handled with care. The

chosen Green’s functions are continuous and differentiable everywhere, unlike the

actual response functions stemming from many diffusive mechanisms. In fact, the

latter tend to exhibit singularities in the origin, which lead to relevant differences

when applying the Snyder-Mitchell model145. The Gaussian kernel (3.3) was used to

study the role of nonlocality in modulational instability and the resulting formation

of solitary waves139,140,141 in a general Kerr-like nonlocal medium as, in general,

nonlocality acts to quench modulational instability146.

Finally, as for bright solitary waves, the analysis of dark solitary waves is in-

volved due to the Green’s function in the solution (3.1) for the director θ being

in terms of a modified Bessel function. The medium responses (3.2) have again

proved useful in gaining insight into the general role of nonlocality on the propaga-

tion and interaction of dark nonlocal solitary waves142,147,148. In addition, suitable

combinations of local and nonlocal, focusing and defocusing responses were recently

predicted to support the formation of two dimensional patterns through modulation

instability149.

4. A few shortcomings of nonlocality

It is worthwhile mentioning that the benefits of a highly nonlocal response are

accompanied by a few drawbacks. One major limitation is due to the spatial reso-

lution achievable with light, as this is limited by the nonlocality range. The material

response tends to wash out fine features with characteristic lengths well below the

nonlocal range, as expected by the low-pass filtering action in the spatial domain.

Therefore, the definition of short period gratings or patterns is hampered, both

with external illumination and with applied voltages. Similar considerations apply

to boundary conditions, e.g. anchoring at the interfaces of a liquid crystalline cell:

a nonlocal response gives rise to a smooth transition between the boundaries and

the bulk of a sample, with the nonlocality range usually defined by the thickness

of the cell70. Moreover, highly packed light (or voltage) induced structures cannot

be generated in the presence of a highly nonlocal response, with the exception of

coherent patterns of spontaneous nature, as observed in liquid crystal light valves

with feedback150. Another main drawback of spatial nonlocality is temporal nonlo-

cality, i.e. a non-instantaneous response151, stemming from the finite propagation

velocity of any physical disturbance. While a slow response needs be evaluated with

reference to the excitation dynamics in time, temporal nonlocality is often a limiting

factor when dealing with optical signal processing. Additional limitations imposed

by a nonlocal response in the spatial domain include changes in the collisional be-
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havior of spatial solitons in random potentials152,153,154, transverse instabilities of

self-guided beams under elastic forces155, etc.

5. Conclusions

We have addressed the major benefits and a few drawbacks of a nonlocal, nonlin-

ear response supporting formation, propagation and interactions of optical spatial

solitons. In this non-exhaustive discussion we have presented a number of exam-

ples linked to the authors’ expertise with reorientational soft-matter, i.e. nematic

liquid crystals. It is apparent that the benefits of a nonlocal response for light

self-confinement largely outnumber the drawbacks, although specific effects and

applications do require a fast and local response. The conclusion naturally arising

is that the advantages and disadvantages need to be carefully assessed with refer-

ence to specific aims. Nevertheless, the attention paid in recent years to nonlocality

in optics has certainly been beneficial to the nonlinear optics community as a whole

and, specifically, to the soliton, community.
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nonlocal solitons. Phys. Rev. E, 68(3):036614, Sep 2003.
7. C. Conti, M. Peccianti, and G. Assanto. Route to nonlocality and observation of

accessible solitons. Phys. Rev. Lett., 91:073901, 2003.
8. G.I. Stegeman, G. Assanto, R. Zanoni, C.T. Seaton, E. Garmire, A.A. Maradudin,

R. Reinisch, and G. Vitrant. Bisbability and switching in a nonlinear prism coupling.
Appl. Phys. Lett., 52(11):869–871, MAR 14 1988.

9. G. Vitrant, R. Reinisch, J.C. Paumier, G. Assanto, and G.I. Stegeman. Nonlinear
prism coupling with nonlocality. Opt. Lett., 14(16):898–900, AUG 15 1989.

10. G. Assanto, B. Svensson, D. Kuchibhatla, U. J. Gibson, C. T. Seaton, and G. I.
Stegeman. Prism coupling into zns waveguides: a classic example of a nonlinear
coupler. Opt. Lett., 11:644, 1986.



22 Noel F. Smyth, Armando Piccardi, Alessandro Alberucci, Gaetano Assanto

11. B.C. Svensson, G. Assanto, D. Kuchibhatla, U.J. Gibson, C.T. Seaton, and G.I.
Stegeman. Observation of optical bistability in zns wave-guides. J. Opt. Soc. Amer.

A, 3(13):P22, DEC 1986.
12. J.E. Ehrlich, G. Assanto, and G.I. Stegeman. Butterfly bistability in grating coupled

thin-film wave-guides. Opt. Commun., 75(5–6):441–446, MAR 15 1990.
13. G. Assanto, J.E. Ehrlich, and G.I. Stegeman. Feedback-enhanced bistability in grat-

ing coupling into insb wave-guides. Opt. Lett., 15(8):411–413, APR 15 1990.
14. J.E. Ehrlich, G. Assanto, G.I. Stegeman, and T.H. Chiu. Guided-wave optical bista-

bility in indium-antimonide thin-films. IEEE J. Quant. Electron., 27(3):809–816,
MAR 1991.

15. M. Segev, B. Crosignani, A. Yariv, and B. Fischer. Spatial solitons in photorefractive
media. Phys. Rev. Lett., 68:923, 1992.

16. S. Trillo and W. E. Torruellas. Spatial Solitons. Springer-Verlag, Berlin, 2001.
17. Y. S. Kivshar and G. P. Agrawal. Optical Solitons. Academic, San Diego, CA, 2003.
18. A. W. Snyder and D. J. Mitchell. Accessible solitons. Science, 276:1538, 1997.
19. D. J. Mitchell and A. W. Snyder. Soliton dynamics in a nonlocal medium. J. Opt.

Soc. Amer. B, 16:236, 1999.
20. G. I. Stegeman and M. Segev. Optical spatial solitons and their interactions: Uni-

versality and diversity. Science, 286(5444):1518–1523, 1999.
21. C. Conti, M. Peccianti, and G. Assanto. Observation of optical spatial solitons in a

highly nonlocal medium. Phys. Rev. Lett., 92:113902, 2004.
22. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo. Elec-

trically assisted self-confinement and waveguiding in planar nematic liquid crystal
cells. Appl. Phys. Lett., 77(1):7–9, 2000.

23. M. Peccianti and G. Assanto. Signal readdressing by steering of spatial solitons in
bulk nematic liquid crystals. Opt. Lett., 26(21):1690–1692, 2001.

24. Y.V. Izdebskaya, A.S. Desyatnikov, G. Assanto, and Y.S. Kivshar. Multimode ne-
maticon waveguides. Opt. Lett., 36(2):184–186, 2011.

25. Z.G. Chen, M. Mitchell, and M. Segev. Steady-state photorefractive soliton-induced
y-junction waveguides and high-order dark spatial solitons. Opt. Lett., 21(10):716–
718, MAY 15 1996.

26. M. Peccianti, K. Brzadkiewicz, and G. Assanto. Nonlocal spatial soliton interactions
in nematic liquid crystals. Opt. Lett., 27:1460, 2002.

27. M. Mitchell, Z.G. Chen, M.F. Shih, and M. Segev. Self-trapping of partially spatially
incoherent light. Phys. Rev. Lett., 77(3):490–493, JUL 15 1996.

28. M. Peccianti and G. Assanto. Incoherent spatial solitary waves in nematic liquid
crystals. Opt. Lett., 26:1791, 2001.

29. G. Assanto and M. Peccianti. Spatial solitons in nematic liquid crystals. IEEE J.

Quantum Electron., 39:13–21, 2003.
30. M. Mitchell and M. Segev. Self-trapping of incoherent white light. Nature,

387(6636):880–883, JUN 26 1997.
31. M. Peccianti, Andriy Dyadyusha, Malgosia Kaczmarek, and G. Assanto. Tunable

refraction and reflection of self-confined light beams. Nat. Phys., 2:737–742, 2006.
32. M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek. Non-specular total

internal reflection of spatial solitons at the interface between highly birefringent
media. Phys. Rev. Lett., 98:113902, 2007.

33. G. Assanto, Antonmaria A. Minzoni, Noel F. Smyth, and Annette L. Worthy. Re-
fraction of nonlinear beams by localized refractive index changes in nematic liquid
crystals. Phys. Rev. A, 82:053843, 2010.

34. Chandroth P. Jisha, A. Alberucci, Ray-Kuang Lee, and G. Assanto. Optical solitons



Highly Nonlocal Optical Response: benefit or drawback? 23

and wave-particle duality. Opt. Lett., 36(10):1848–1850, 2011.
35. A. Alberucci, G. Assanto, A.A. Minzoni, and N.F. Smyth. Scattering of reorienta-

tional optical solitary waves at dielectric perturbations. Phys. Rev. A, 85:013804,
2012.

36. G. Assanto, N.F. Smyth, and W. Xia. Refraction of nonlinear light beams in nematic
liquid crystals. J. Nonlin. Opt. Phys. Mater., 21:1250033, 2012.

37. B. Alfassi, C. Rotschild, O. Manela, M. Segev, and D. N. Christodoulides. Boundary
force effects exerted on solitons in highly nonlocal nonlinear media. Opt. Lett., 32:154,
2007.

38. A. Alberucci, M. Peccianti, and G. Assanto. Nonlinear bouncing of nonlocal spatial
solitons at the boundaries. Opt. Lett., 32(19):2795–2797, 2007.

39. A. Alberucci and G. Assanto. Propagation of optical spatial solitons in finite-size
media: interplay between nonlocality and boundary conditions. J. Opt. Soc. Amer.

B, 24(9):2314–2320, 2007.
40. A. Pasquazi, A. Alberucci, M. Peccianti, and G. Assanto. Signal processing by opto-

optical interactions between self-localized and free propagating beams in liquid crys-
tals. Appl. Phys. Lett., 87:261104, 2005.

41. A. Piccardi, G. Assanto, L. Lucchetti, and F. Simoni. All-optical steering of soliton
waveguides in dye-doped liquid crystals. Appl. Phys. Lett., 93:171104, 2008.

42. G. Assanto, Antonmaria A. Minzoni, and Noel F. Smyth. Vortex confinement and
bending with nonlocal solitons. Opt. Lett., 39(3):509–512, FEB 1 2014.

43. N.V. Tabiryan and B.Y. Zeldovich. The orientational optical nonlinearity of liquid-
crystals. Mol. Cryst. Liq. Cryst., 62:237–250, 1980.

44. I. C. Khoo. Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena.
Wiley, New York, 1995.

45. F. Simoni. Nonlinear Optical Properties of Liquid Crystals. World Scientific, Singa-
pore, 1997.

46. A.A. Minzoni, N.F. Smyth, and A.L. Worthy. Modulation solutions for nematicon
propagation in non-local liquid crystals. J. Opt. Soc. Amer. B, 24:1549–1556, 2007.

47. G. Assanto, A.A. Minzoni, and N.F. Smyth. Light self-localization in nematic liquid
crystals: modelling solitons in nonlocal reorientational media. J. Nonlin. Opt. Phys.

Mater., 18:657–691, 2009.
48. B.D. Skuse and N.F. Smyth. Interaction of two colour solitary waves in a liquid

crystal in the nonlocal regime. Phys. Rev. A, 79:063806, 2009.
49. G. Assanto and Mirek Karpierz. Nematicons: self-localized beams in nematic liquid

crystals. Liq. Cryst., 36:1161, 2009.
50. M. Peccianti and G. Assanto. Nematicons. Phys. Rep., 516:147–208, 2012.
51. S. V. Serak, N. V. Tabiryan, M. Peccianti, and G. Assanto. Spatial soliton all-optical

logic gates. IEEE Photon. Techn. Lett., 18:1287, 2006.
52. A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek. Two-

color vector solitons in nonlocal media. Phys. Rev. Lett., 97:153903, 2006.
53. A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto. Readdressable

interconnects with spatial soliton waveguides in liquid crystal light valves. IEEE

Photon. Techn. Lett., 22:694–696, 2010.
54. A. Piccardi, A. Alberucci, U. Bortolozzo, S. Residori, and G. Assanto. Soliton gating

and switching in liquid crystal light valve. Appl. Phys. Lett., 96:071104, 2010.
55. U. A. Laudyn, M. Kwasny, A. Piccardi, M. A. Karpierz, R. Dabrowski, O. Cho-

jnowska, A. Alberucci, and G. Assanto. Nonlinear competition in nematicon propa-
gation. Opt. Lett., 40(22):5235–5238, NOV 15 2015.

56. A. Piccardi, M. Trotta, M. Kwasny, A. Alberucci, R. Asquini, M. Karpierz,



24 Noel F. Smyth, Armando Piccardi, Alessandro Alberucci, Gaetano Assanto

A. D’Alessandro, and G. Assanto. Trends and trade-offs in nematicon propagation.
Appl. Phys. B—Lasers Opt., 104(4):805–811, SEP 2011.

57. M. Kwasny, U.A. Laudyn, F.A. Sala, A. Alberucci, , M.A. Karpierz, and G. Assanto.
Self-guided beams in low-birefringence nematic liquid crystals. Phys. Rev. A, 86(1),
JUL 17 2012.

58. S.V. Svetlana, V. Tabiryan, V. Nelson, and G. Assanto. Nematicons in azobenzene
liquid crystals. Mol. Crys. Liq. Crys., 559(SI):202–213, 2012.

59. A. Piccardi, A. Alberucci, N. Tabiryan, and G. Assanto. Dark nematicons. Opt. Lett.,
36:1356–1358, 2011.

60. A. Piccardi, A. Alberucci, O. Buchnev, M. Kaczmarek, I.C. Khoo, and G. Assanto.
Frequency-controlled deflection of spatial solitons in nematic liquid crystals. Appl.

Phys. Lett., 101(8), AUG 20 2012.
61. A. Piccardi, A. Alberucci, and G. Assanto. Self-turning self-confined light beams in

guest-host media. Phys. Rev. Lett., 104:213904, 2010.
62. U.A. Laudyn, K. Jaworowicz, and M.A. Karpierz. Spatial solitons in chiral nematics.

Mol. Crystals Liq. Crystals, 489:214–221, 2008.
63. U. A. Laudyn, Filip A. Sala, and M. A. Karpierz. Nematicon properties and stability

in chiral nematic liquid crystal. J. Nonl. Opt. Phys. Mat., 21(3), SEP 2012.
64. M. Peccianti, A. Fratalocchi, and G. Assanto. Transverse dynamics of nematicons.

Opt. Express, 12:6524, 2004.
65. M. Peccianti, C. Conti, G. Assanto, A. DeLuca, and C. Umeton. Routing of

anisotropic spatial solitons and modulational instability in nematic liquid crystals.
Nature, 432:733, 2004.

66. M. Peccianti and G. Assanto. Observation of power-dependent walk-off via modula-
tional instability in nematic liquid crystals. Opt. Lett., 30:2290–2292, 2005.

67. A. Alberucci, A. Piccardi, U. Bortolozzo, S. Residori, and G. Assanto. Nematicon
all-optical control in liquid crystal light valves. Opt. Lett., 35(3):390–392, 2010.

68. A. Piccardi, A. Alberucci, and G. Assanto. Power-dependent nematicon steering via
walk-off. J. Opt. Soc. Amer. B, 27:2398–2404, 2010.

69. A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto. Propagation
of spatial optical solitons in a dielectric with adjustable nonlinearity. Phys. Rev. A,
82(2):023806, 2010.

70. A. Alberucci and G. Assanto. Nematicons beyond the perturbative regime. Opt.

Lett., 35(15):2520–2522, 2010.
71. A. Alberucci and G. Assanto. Nonparaxial (1+1)d spatial solitons in uniaxial media.

Opt. Lett., 36(2):193–195, 2011.
72. A. Piccardi, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek. Voltage-

driven in-plane steering of nematicons. Appl. Phys. Lett., 94(9):091106, 2009.
73. A. Piccardi, A. Alberucci, R. Barboza, O. Buchnev, M. Kaczmarek, and G. Assanto.

In-plane steering of nematicon waveguides across an electrically adjusted interface.
Appl. Phys. Lett., 100:251107, 2012.

74. E. Braun, L.P. Faucheux, and A. Libchaber. Strong self-focusing in nematic liquid
crystals. Phys. Rev. A, 48(1):611–622, Jul 1993.

75. M. Warenghem, J. F. Henninot, and G. Abbate. Bulk optical frédericksz effect: Non
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