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1. ABSTRACT 
 
 Angiogenesis is regulated by a number of 
angiogenic factors through many signalling pathways. The 
VEGF pathway and Notch signalling are perhaps two of the 
most important mechanisms in regulation of embryonic 
vascular development and tumour angiogenesis. Blockade 
of the VEGF pathway effectively inhibits tumour 
angiogenesis and growth in preclinical models. The 
successes in phase III trials have added anti-VEGF agents 
to standard cancer therapy in several major cancers. A 
recent flurry of findings indicate that DLL4/Notch 
signalling decreases angiogenesis by suppressing 
endothelial tip cell formation; importantly, blockade of 
DLL4/Notch signalling strikingly increases non-productive 
angiogenesis but significantly reduces the growth of 
VEGF-sensitive and VEGF-resistant tumours. The VEGF 
pathway interplays at several levels with DLL4/Notch 
signalling in vasculature. VEGF induces DLL4/Notch 
signalling while DLL4/Notch signalling modulates the 
VEGF pathway. DLL4 and VEGF emerge to be the yin and 
yang of angiogenesis. Combination therapy by blocking 
DLL4/Notch and VEGF pathways synergistically inhibits 
tumour growth in preclinical models. Thus, targeting the 
DLL4/Notch pathway, though still at an early stage, may 
lead to exciting new therapies for clinical application. 

 
 
 
 
 
 
 
2. INTRODUCTION 
 
 The maintenance, growth and metastasis of solid 
tumours requires angiogenesis, a complex process 
involving matrix breakdown, endothelial sprouting, 
proliferation, migration, differentiation, and recruitment of 
pericytes/smooth muscle cells (1). Tumour angiogenesis is 
triggered by a variety of pro-angiogenic molecules, largely 
produced by tumour and stromal cells and regulated by 
many angiogenic pathways. Of these, the most prominent 
and best characterised is perhaps the vascular endothelial 
growth factor (VEGF) pathway (2). Blockade of the VEGF 
pathway has been shown to reduce tumour vascular density 
and inhibit xenograft tumour growth in various preclinical 
mouse models (3, 4). The phase III clinical trials have 
shown that blockade of the VEGF pathway inhibits tumour 
progression and prolongs patient survival in several major 
cancers (5-8). However, a number of tumours did not 
respond or responded in an early stage but became 
resistance in a late stage to VEGF inhibition in preclinical 
mouse models (9-12). In addition, anti-VEGF therapy alone 
appears to be ineffective in some clinical trials (13). It is, 
therefore, suggested that other factors or pathways are also 
important for tumour angiogenesis and growth, and that 
additional anti-angiogenic therapies are required for 
tumours that are resistant to VEGF inhibition. 
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Figure 1. The VEGF pathway. There are five ligands (VEGF/VEGF-A, PLGF, VEGF-B, VEGF-C and VEGF-D) and five 
receptors (VEGFR1, VEGFR2, VEGFR3, NRP1, and NRP2). VEGFR1 and VEGFR2 are expressed in the cell surface of most 
blood ECs while VEGFR3 is largely restricted to lymphatic ECs. VEGF-A binds VEGFR1, VEGFR2, NRP1 and NRP2; VEGF-B 
interacts with VEGFR1 and NRP1; VEGF-C binds VEGFR2, VEGFR3 and NRP2; VEGF-D interacts with VEGFR2 and 
VEGFR3; and PLGF interacts with VEGFR1, RPN1 and NRP2. Various strategies have been used to block the VEGF pathway: 
to target VEGF-A with monoclonal antibodies such as bevacizumab (A) and VEGF-trap (B), to inhibit VEGFR2 with specific 
antibodies (C) and a variety of small-molecule VEGF RTK inhibitors that inhibit ligand-dependent autophosphorylation of 
VEGFR2 (D), to disrupt VEGFR1 with anti-VEGFR1 antibodies (E), and to block the interaction between VEGF-A and VEGFR2 
with soluble VEGFR1 protein (F). Additional approaches to disrupt VEGF signalling include antisense and siRNA targeting 
VEGF-A or its receptors and anti-PLGF antibodies targeting PLGF. 
 

Many processes involved in tumour angiogenesis 
are mirrored during embryonic vascular development (14). 
In past decade, the Notch pathway has been shown to play 
a key role in vascular development (15, 16). Recently, several 
studies have shown that DLL4/Notch signalling plays an 
important role in tumour growth by decreasing angiogenesis 
but improving vessel structure and function. Interruption of 
DLL4/Notch signalling increased non-productive angiogenesis 
but dramatically inhibited the growth of either VEGF-sensitive 
or VEGF-resistant tumours (17-20). The emerging evidence 
has shown that Notch signalling is highly interacted with the 
VEGF pathway: VEGF induces DLL4/Notch signalling at 
several levels while Notch signalling modulates the VEGF 
pathway, leading to an appropriate formation of functional 
vasculature in embryonic development and in tumour 
angiogenesis. 

3. THE VEGF PATHWAY 
 
3.1. VEGF ligands and receptors 
 There are five ligands (VEGF/VEGF-A, PLGF, 
VEGF-B, VEGF-C, and VEGF-D) and five receptors 
(VEGFR1, VEGFR2, VEGFR3, NRP1 and NRP2) in the 
VEGF pathway (Figure 1), of which VEGF and VEGFR2 
appear to be the primary players in endothelial cells (ECs). 
Alternative exon splicing of the VEGF gene yields five 
isoforms ranging from 121 to 206 amino acids after signal 
sequence cleavage (VEGF121, VEGF145, VEGF165, 
VEGF189 and VEGF206). VEGF121 is a freely diffusible 
protein. VEGF189 and VEGF206 are almost completely 
sequestered in the extracellular matrix. VEGF165, exists as 
the predominant and most physiologically relevant isoform, 
and has intermediary properties as it is secreted, but a 
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significant fraction remains bound to the cell surface and 
the matrix (21). VEGF binds to two related receptor 
tyrosine kinases (RTKs), VEGFR1 (Flt-1) and VEGFR2 
(Flk-1, KDR), of which VEGFR2 is the major mediator of 
VEGF effects. The third receptor, VEGFR3 (Flt-4), binds 
VEGF-C and VEGF-D rather than VEGF. Neuropilins 
(NRP1 and NRP2) bind class 3 semaphorins and mediate 
repulsive signals during neuronal guidance (22). NRP1 also 
binds to VEGF, PLGF and VEGF-B while NRP2 interacts 
with VEGF, PLGF and VEGF-C. NRP1 and NRP2 act as 
co-receptors, enhancing VEGF-VEGFR2 interactions and 
promoting VEGF stimulated signalling (23, 24). VEGFR1 
and VEGFR2 are predominantly expressed on the surface 
of vascular ECs whereas VEGFR3 is present on all ECs in 
developing blood vessels but in adult becomes largely 
restricted to lymphatic ECs and certain fenestrated blood 
ECs (25). Activation of VEGFR2 results in 
autophosphorylation and downstream signalling through 
pathways such as PI3K/Akt and thus mediates the 
mitogenic, angiogenic, anti-apoptotic and permeability-
enhancing effects of VEGF. Activation of VEGFR1 may 
have a decoy effect on ECs, suppressing the availability of 
VEGF to VEGFR2 (21). There is growing evidence that 
VEGFR1 may also have important roles in haematopoiesis 
and in the recruitment of angiocompetent bone marrow 
progenitors that may home in on the tumour vasculature 
and promote angiogenesis (26, 27). 
 
3.2. Role in embryonic vascular development 
 Genetic alternations have yielded insights into 
fundamental functions of the VEGF pathway in embryonic 
vascular development. Mice deficient for various 
components of the VEGF pathway die in utero of severe 
vascular abnormalities. Haploinsufficiency of VEGF results 
in embryonic lethality between embryonic day E11 and 
E12 (28, 29). VEGF deficiency impaired most steps of 
early vascular development, including differentiation of 
blood islands, sprouting from pre-existing vessels, the 
formation of large vessels, the establishment of 
interconnections and the spatial organisation of intra- and 
extra-embryonic vessels. Embryos homozygous for 
VEGFR2 mutation die between E8.5 and E9.5 due to lack 
of development of the blood islands, embryonic vasculature 
and haematopoietic cells. Organised blood vessels could 
not be observed in the embryo or yolk sack at any stage, 
suggestive of an essential role of VEGFR2 in early 
developmental vasculogenesis and angiogenesis (30). In 
contrast, embryos homozygous for VEGFR1 mutation not 
only formed ECs in both embryonic and extra-embryonic 
regions but also increased endothelial progenitors, resulting 
in abnormal vascular disorganisation and thus died at mid-
somite stages (between E8.5 and E9.5) (31, 32), indicating 
that VEGFR1 is a negative regulator of the VEGF pathway 
during early development. Mice lacking only the kinase 
domain of VEGFR1 appeared rather normal except for 
slightly impaired angiogenesis during pathological 
conditions, consistent with the notion that the primary role 
of VEGFR1 may be that of a decoy receptor (33, 34). 
Targeted inactivation of VEGFR3 resulted in defective 
blood vessel development in early mouse embryos. 
Vasculogenesis and angiogenesis occurred but large vessels 
became abnormally organised with defective lumens, 

leading to embryonic lethality at E9.5 prior to the initiation 
of lymphangiogenesis (35). However, VEGFR3, like 
VEGF-C, is also essential for development of lymphatic 
vessels (36, 37). NRP1 gene targeted mice die at E13 from 
vascular defects such as insufficient development of yolk 
sac vascular networks, deficient neural vascularisation and 
transposition of large vessels (38). Although NRP2-
deficient mice have normal vasculature, double 
NRP1/NRP2 knockout mice die in utero at E8.5, with an 
abnormal vascular phenotype resembling those of the 
VEGF and VEGFR2 knockouts (39).  
 
 Developing zebrafish embryos are almost 
transparent, making them ideal for high-resolution imaging 
studies of segmental and intersegmental vessel 
development. Knockout of VEGF using morpholino 
oligonucleotides results in severe defects of the dorsal aorta 
and intersegmental arteries and reduces artery-specific gene 
expression, whereas veins are largely unaffected (40). 
Formation of arteries and veins in the zebrafish embryo is 
actually governed in part by different combinations of 
VEGFR2a, VEGFR2b and VEGFR3 (41). 
 
3.3. Role in tumour angiogenesis 
 VEGF is overexpressed by the vast majority of 
solid human tumours and in a variety of haematological 
malignancies. Increased VEGF expression has been shown 
to be associated with malignant progression in many 
tumours and patient survival in various cancers (21). In 
fact, many tumour cell lines secrete a large amount of 
VEGF in vitro (3, 42). Although tumour cells represent the 
major source of VEGF, tumour-associated stromal cells 
including ECs and macrophages are also important sites of 
VEGF production. VEGF expression is upregulated by 
numerous growth factors including EGF, TGF-alpha, TGF-
beta, IGF-1, HGF and bFGF in a local tumour environment, 
by hypoxia through HIF-1alpha, a characteristic feature of 
solid tumours, by inflammatory cytokines such as IL-
1alpha and IL-6, and by activation of oncogenes such as 
Ras, Src HER2/neu and Bcr/Abl or inactivation of tumour 
suppressor genes such as p53 and PTEN, an intrinsic 
characteristic of many tumours (21, 43). Elevated VEGF 
induces endothelial proliferation, migration, survival and 
vessel formation in tumours (Figure 1). It is well known 
that expressions of VEGFR1, VEGFR2 and VEGFR3 are 
upregulated in tumour ECs and tumour hypoxia increases 
expressions of VEGFR1 and VEGFR2.  
 
 Due to its critical role in tumour angiogenesis and 
growth, the VEGF pathway has become an important target 
for anticancer therapy. Early works revealed that anti-
VEGF monoclonal antibodies exert a potent inhibitory 
effect on the growth of several tumour cell lines in nude 
mice, whereas the antibody has no effect on tumour cells in 
vitro (44). Subsequent studies have shown that many other 
tumour cell lines, regardless of tumour origins, are also 
inhibited by anti-VEGF antibodies in various preclinical 
mouse models (3). Indeed, inhibition of tumour 
angiogenesis and tumour progression in numerous 
xenograft tumour models have been further demonstrated 
using different strategies (Figure 1) for targeting either 
ligands (VEGF, PLGF) or receptors (VEGFR1, VEGFR2 
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and VEGFR3) with specific antibodies, soluble VEGF 
receptors, VEGF-traps, aptamers, and small-molecule 
VEGFR tyrosine kinase inhibitors (3, 4, 42, 45-48). 
 
 Importantly, in randomised phase III clinical 
trials, two approaches of blockade of the VEGF pathway 
have yielded survival benefit in patients with several 
different metastatic cancers. Addition of bevacizumab, a 
humanised specific anti-human VEGF monoclonal 
antibody, to a standard chemotherapy in 4 different phase 
III trials improved overall survival in colorectal (20.3 
months versus 15.6 months in total 813 cases, hazard 
ratio=0.66, P<0.001) and lung (12.3 months versus 10.3 
months in total 878 cases, hazard ratio=0.79, P=0.003) 
cancer patients (6, 8) or progression-free survival in breast 
(11.8 months versus 5.9 months in total 722 cases, hazard 
ratio=0.60, P<0.001) and renal-cell (10.2 months versus 5.4 
months in total 649 cases, hazard ratio=0.63, P=0.0001) 
cancer patients (5, 7). The second approach is to target both 
ECs and tumour cells with small molecule inhibitors that 
block VEGF receptor and other tyrosine kinases with or 
without chemotherapy. Sunitinib (SU11248), a multi-
targeted inhibitor of VEGFR2, PDGFR-beta, Flt-3 and c-
Kit, significantly improved progression-free survival of 
patients with metastatic renal-cell carcinoma when 
compared with interferon-alpha control (11 months versus 
5 months in total 750 cases, hazard ratio for progression of 
0.42, P<0.001) (49). Sorafenib (BAY 43-9006), targeting 
VEGFR2, VEGFR3, PDGFR-alpha, PDGFR-beta, Raf, Flt-
3 and c-Kit, when compared with placebo control 
prolonged progression-free survival (5.5 months versus 2.8 
months in total 903 cases, hazard ratio for progression of 
0.44, P<0.01) in patients with advanced clear-cell renal-cell 
carcinoma in whom previous therapy has failed (50).  
 
4. THE NOTCH PATHWAY  
 
4.1. Notch ligands and receptors 
 The Notch pathway is an evolutionarily 
conserved intercellular signalling pathway affecting many 
biological processes including cell-fate determination, 
cellular differentiation, proliferation, survival and apoptosis 
(51-53). Five Notch ligands [Jagged1, Jagged2, delta-like 1 
(DLL1), DLL3 and DLL4] and four Notch receptors 
(Notch1-Notch4) have been described in mammals. Both 
ligand and receptor are transmembrane proteins with large 
extracellular domains that consist of epidermal growth 
factor (EGF)-like repeats. Activation of Notch signalling is 
initiated by ligand binding of Notch receptor between 
bordering cells, resulting in two proteolytic cleavages of 
the Notch receptor (Figure 2). The first cleavage is 
mediated by ADAM-family metalloproteases (ADAM10 or 
TACE (TNF-alpha-converting enzyme; also known as 
ADAM17)) while the second is catalysed by gamma-
secretase, a protein complex that is composed of presenilin, 
nicastrin, PEN2 and APH1 (54). The last cleavage releases 
the Notch intracellular domain (NICD) from the cell 
membrane, which subsequently translocates to the nucleus. 
NICD then interacts with the DNA-binding protein 
CBF1/RBP-Jkappa and cooperates with Mastermind to 
displace corepressor proteins from RBP-Jkappa, thus 
activating the transcription of Notch target genes. Members 

of the Hes (hairy/enhancer of split) and Hey families (such 
as Hes1, Hes5, Hes7, Hey1, Hey2 and HeyL) of basic 
helix-loop-helix (bHLH) transcription factors and 
EphrinB2 are perhaps the best characterised downstream 
targets of the Notch pathway (55-58). 
  
4.2. Role in vascular development and homeostasis 
 The Notch pathway is involved in multiple 
aspects of vascular development. Major components of the 
Notch pathway expressed in vasculature comprise four 
ligands (DLL1, DLL4, Jagged1 and Jagged2), three 
receptors (Notch1, Notch3 and Notch4), and three 
downstream targets (Hey1, Hey2 and HeyL) (59-61). Gene 
alteration strategies in mice and zebrafish have provided 
clear evidence for an absolute requirement of Notch 
signalling for vascular development and homeostasis.  
 
 Targeted deletion of Notch1 leads to embryonic 
lethality at approximately E10.5 (62-64). Although the 
initial formation of a primitive vascular network proceeds 
normally, some homozygous embryos display severe 
defects in yolk sac vascular remodelling, massive 
embryonic haemorrhages, enlarged pericardial sacs, 
absence or loss of large embryonic blood vessels, and 
impaired placental development (63, 65). Mice deficient for 
Notch4 are viable and exhibit no obvious mutant 
phenotype. However, Notch1/Notch4 double mutants 
display even more severe defects than the embryos 
deficient in Notch1 alone in angiogenic vascular 
remodelling that affected the embryo, yolk sac and 
placenta, suggesting a partial functional redundancy of 
Notch1 and Notch4 (65). Interestingly, overexpression of 
activated Notch4 in ECs results in embryonic lethality 
around E10. The mutants display substantial defects in the 
embryonic and extraembryonic vasculature, resembling 
those in Notch1/Notch4 double knockouts (66), suggesting 
that an optimal window of Notch signalling is critical for 
proper vascular development.  
 
 Both DLL1 and Jagged1 homozygous mutant 
embryos die from vascular defects and haemorrhaging at 
approximately E10.5 (67, 68). Mice lacking Jagged1 
develop some of the vascular abnormalities seen in the 
Notch1-null mutants. DLL4, the latest identified Notch 
ligand, is initially restricted to ECs of large arteries in the 
embryo while in adult it is specifically expressed in smaller 
arteries and microvessels, with a striking break in 
expression just as capillaries merge into venules (65, 69-
71). Mice heterozygous for DLL4 display vascular defects 
similar in patterns to those seen in Notch1/Notch4 double 
knockouts. Interestingly, haploinsufficiency of DLL4 also 
results in embryonic lethality from severe vascular defects 
at E10.5 (69, 72, 73). Haploinsufficiency for angiogenic 
factors is uncommon and highlights the importance of 
DLL4 over other components of the Notch pathway. Such 
embryonic lethality caused by gene deletion of single-copy 
has been only described in VEGF knockout mice (28, 29).  
 
 Hey1-knockout mice have no apparent 
phenotypical defect whereas Hey2-deficient mice exhibit a 
quite strong, albeit variable, phenotype of cardiac 
impairment with high postnatal lethality. The combined 
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Figure 2. The Notch pathway. Notch is synthesised as a precursor protein that is processed by a furin-like convertase (S1 
cleavage) in the Golgi before being transported to the cell surface, where it resides as a heterodimer. Interaction of Notch 
receptors with Notch ligands, such as Delta-like or Jagged, between two bordering cells leads to a cascade of proteolytic 
cleavages. The first cleavage (S2 cleavage) is mediated by ADAM-family metalloproteases such as ADAM10 or TNF-alpha-
converting enzyme (TACE, also known as ADAM17), generating a substrate for S3 cleavage by the gamma-secretase complex. 
This cleavage releases the Notch intracellular domain (NICD) from the cell membrane. NICD then translocates to the nucleus, 
where it interacts with the DNA-binding protein RBP-Jkappa (also known as CBF1) and cooperates with Mastermind to displace 
corepressor proteins, thus activating the transcription of Notch target genes. The basic helix-loop-helix proteins hairy/enhancer of 
split (such as Hes1, 5 and 7) and Hes-related proteins (Hey1, 2 and L) and EphrinB2 are the best characterised downstream 
targets. Blockade of Notch signalling has been achieved by using different strategies, including (A) anti-DLL4 monoclonal 
antibodies, (B) gamma-secretase inhibitors such as DBZ and DAPT, (C) soluble DLL4-Fc, (D) anti-Notch1 neutralising 
antibodies, and (E) Notch1-trap. 
 
loss of Hey1 and Hey2, however, results in embryonic 
lethality after E9.5 with a global lack of vascular 
remodelling and massive haemorrhage, reminiscent of the 
phenotypical changes in Notch1-null mice (74). Mice 
nullizygous for RBP-Jkappa display similar vascular 
defects to those observed in Notch1/Notch4 double mutant 
embryos (73). A similar phenotype is also seen in 
presenilin1/presenilin2 double mutant embryos (75). 
 
 Understanding of the function of the Notch 
pathway in postnatal vascular homeostasis is directly 
clinical significant. In human, mutations in Jagged1 or 
Notch3 cause the autosomal dominant disorders Alagille 
syndrome and CADASIL (cerebral autosomal dominant 

arteriopathy with subcortical infarcts and 
leukoencephalopathy), respectively, and both display 
abnormal vascular phenotypes (76-78). In mice, Notch3 is 
required to generate functional arteries by regulating 
arterial differentiation and maturation of vascular smooth 
muscle cells. In adult Notch3-null mice, distal arteries 
display structural defects and arterial myogenic responses 
are defective (79). Notch3-transgenic mice, in which 
human Notch3 carrying the R90C mutation, a CADASIL 
archetypal mutation, is specifically expressed in vascular 
smooth muscles cells, could recapitulate the characteristic 
vascular lesions observed in CADASIL (80). Mice 
heterozygous for a null allele of Jagged1 and a 
hypomorphic allele of Notch2 phenocopy many of the 
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defects of Alagille patients (81, 82).  Targeted expression 
of constitutively active Notch4 (int3) (or active Notch1) in 
adult ECs has shown to cause reversible arteriovenous 
defects and mouse lethality within weeks of its expression. 
The int3-mediated vascular defects are accompanied by 
arterialisation, including ectopic venous expression of 
EphrinB2, increased smooth muscle cells and upregulation 
of endogenous Notch signalling (83). DLL1 has 
demonstrated to be an essential Notch ligand in postnatal 
arterial ECs, which regulates Notch signalling-dependent 
EphrinB2 expression and postnatal arteriogenesis in 
response to ischemia (60).  
 
 Blood vessels in mouse retina develop only after 
birth, initiating from the avascular region of the optic nerve 
head and growing radially toward the periphery in a highly 
reproducible spatial and temporal pattern; during these 
stages, the retinal vasculature is accessible both for 
observation and for experimental manipulation with drugs 
or other agents. Recently, several independent studies in the 
mouse retinal model show that genetic inactivation of one 
allele of DLL4, inhibition of DLL4/Notch signalling using 
gamma-secretase inhibitors, soluble DLL4 and specific 
anti-DLL4 antibodies, or EC-specific inactivation of 
Notch1, all increase numbers of filopodia-extending 
endothelial tip cells, promote endothelial proliferation, and 
thus enhance angiogenic sprouting and branching, resulting 
in a much denser and more highly interconnected 
superficial capillary plexus (19, 84-86). DLL4 is 
prevalently expressed in tip cells and stalk cells that sit in 
close to the sprouting margin (84, 85, 87, 88) while Notch1 
is frequently absent in tip cells but is prominently 
expressed in stalk cells that are in close to the tip cells (88).  
 
 In zebrafish DLL4, as in the mouse, is expressed 
in the dorsal aorta and intersegmental arterial ECs but not 
the posterior cardinal venous ECs. Knockout of DLL4, 
Notch1b, or Rbpsuh using specific morpholino 
oligonucleotides and inhibition of Notch signalling by the 
gamma-secretase inhibitor DAPT, all result in increased 
numbers of tip cells, excessive sprouting, aberrant 
branching of the intersegmental vessels, and severely 
reduced blood flow in the embryonic zebrafish; in contrast, 
activation of Notch signalling by overexpression of active 
NICD has opposite consequences (89, 90). The tip cells 
extend protrusions that sense the local environment and 
guide growth of these sprouts along the gradients of VEGF 
protein. The results from both the mouse retina and the 
zebrafish embryo indicate that DLL4 acts as a negative 
feedback regulator of VEGF-mediated vascular sprouting, 
ensuring the timely formation of well-differentiated and 
maturated vascular networks. 
 
4.3. Role in tumour angiogenesis 
 Role of the Notch pathway in angiogenesis has 
been evaluated by manipulating the expression of different 
components in ECs, displaying either increased or 
decreased angiogenic processes such as endothelial 
proliferation, migration and tube formation in vitro, 
depending on the component, cell type and contexts (16, 
91, 92). Information about Notch signalling in tumour 
angiogenesis in vivo was very limited until recently. It was 

reported that Jagged1 expressed in head and neck 
squamous cell carcinoma (HNSCC) cells activates Notch 
signalling in human dermal microvascular ECs and thus 
promotes tumour angiogenesis and tumour growth in a 
SCID mouse model. In human HNSCC clinical samples, 
Jagged1 expression is not only positively correlated with 
blood vessel density but also associated with HNSCC 
development (93).  
 
 DLL4 appears to play much more important roles 
in tumour angiogenesis than any other Notch component. 
We and others have previously shown that DLL4 is 
strongly upregulated in tumour vasculature in mouse 
models (18, 20, 69, 70, 94) and in human breast, kidney 
and bladder cancers (70, 95, 96). Knockdown of basal 
DLL4 levels in ECs inhibited multiple endothelial 
functions (96), whereas overexpression of DLL4 reduced 
endothelial proliferation, migration, tube-like formation 
and sprouting (97, 98), suggesting that an optimal level of 
DLL4 expression is essential for EC functions. These 
characteristics, together with the single-copy lethality, have 
attracted us and at least other three groups to further 
address the precise function of DLL4 in tumour 
angiogenesis and growth. 
 
 Regeneron (18) developed a mouse model in 
which rat C6 glioma tumour cells were transduced to 
express either mouse full-length DLL4 (mDLL4) or a 
soluble dimerised DLL4 in which the extracellular region 
conjugated with human IgG1 Fc constant region (soluble 
mDLL4-hFc). When implanted into mice, soluble mDLL4-
hFc inhibited but mDLL4 stimulated Notch signalling in 
mouse stromal cells within C6 tumour. There were no clear 
effects of both on growth characteristics of the tumour cell 
line in vitro. Surprisingly, soluble mDLL4-hFc 
dramatically increased vascular density, angiogenic 
sprouting and branching in the tumour but significantly 
inhibited tumour growth; whereas mDLL4 significantly 
reduced vessel density and sprouting in the tumour but did 
not affect tumour growth. This increased vasculature was 
non-productive, as revealed by poor perfusion and 
increased tumour hypoxia. Systemic delivery of soluble 
mDLL4-hFc by intravenous injection of adenoviruses at the 
time of implanting C6 or mouse mammary tumours also 
inhibited tumour growth but increased tumour vessel 
density.  
 
 Genentech (19) generated a specific DLL4-
neutralizing humanised phage antibody, YW152F. 
Systemic treatment of several tumours with YW152F in 
mouse models including human colon cancer (HM7 and 
Colo205), lung carcinoma (Calu6 and MV-522) and 
melanoma (MDA-MB-435) cells, and mouse leukaemia 
(WEHI-3) and lymphoma cells (EL4), starting from tumour 
size of ≥250mm3 or after tumours established, dramatically 
increased tumour vascular density but decreased tumour 
growth because of poor perfusion of tumour vasculature. 
 
 We (17) generated five tumour cell lines 
including human glioblastoma (U87), prostate 
adenocarcinoma (PC3), breast carcinoma (MDA-MB-231) 
and fibrosarcoma (HT1080) cells, and mouse melanoma 
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Figure 3. Vessel morphology in B16 allograft tumours. B16F10 melanoma cells were retrovirally transduced to overexpress 
DLL4 and then allografted into C57 black mice. DLL4 expressed in tumour cells decreases vascular density but increases vessel 
lumen size in B16 melanoma allograft tumours as revealed by mCD31/PECAM staining. 
 
(B16) cells which overexpress human full-length DLL4. 
DLL4 expressed in tumour cells significantly inhibited the 
growth of U87 and HT1080 but not of other three cell lines 
in vitro; however, after implanted into SCID mice, DLL4 
promoted tumour growth for U87 and PC3 but not for other 
three tumour types. DLL4 expressed in tumour cells 
dramatically inhibited tumour angiogenesis, but 
surprisingly improved the structure and function of tumour 
vasculature by inducing larger vessels with large lumina 
(Figure 3) and increased vessel perfusion and tumour 
oxygenation. The promotion of tumour growth was, to 
some extent, due to a reduction of tumour hypoxia, 
apoptosis and necrosis. Effects of DLL4 on tumour 
vascular phenotype are consistent and reproducible in all 
five models. In sharply contrast, soluble DLL4-mFc 
secreted from co-implanted tumour cells or CHO cells 
reversed the phenotype of DLL4-overexpressing tumours, 
displaying decreased tumour growth but paradoxically 
increased vascular density with decreased vessel sizes in 
U87 and PC3 tumours. Strikingly, both upregulation and 
downregulation of DLL4 resulted in decreased pericyte 
coverage around tumour vessels, suggesting an important 
interaction of DLL4 with pericytes. We also found that 
DLL4 is upregulated in ECs and, to some extent, in tumour 
cells of human glioblastoma. Thus, the paracrine Notch 
signalling from tumour cells to ECs may be important for 
some specific tumours (16, 93). 
 
 Scehnet et al. (20) overexpressed human full-
length DLL4 or soluble DLL4 (sDLL4-Fc and sDLL4-His) 
in human colon carcinoma (HT29) and Kaposi sarcoma 
(KS-SLK) cells and implanted into athymic nu/nu mice. 
DLL4 was not found to affect the growth and vasculature 
of both HT29 and KS-SLK tumours; whereas, soluble 
DLL4 significantly inhibited tumour growth but increased 
vascular density in both tumours. The vessels in sDLL4-
expressing tumour appeared thin and often lacking apparent 
lumen but showed more branching points. Soluble DLL4 
resulted in more hypoxia, less perfusion and decreased 

coverage of alpha-SMA-positive pericytes around vessels 
in tumour. Treatment of the tumour by pre-mixing soluble 
DLL4 with either HT29 or KS-SLK cells just before the 
implantation also exhibited significantly reduced tumour 
growth over 2 weeks.  
 
 Taken together, all these studies (17-20) indicate 
that DLL4 in mouse tumour models functions as a negative 
regulator of tumour angiogenesis by reducing number of 
tumour vessels, but acts as a positive driver for tumour 
growth by improving the structure and function of tumour 
vasculature only in a few specified tumour types.  
 
5. INTERACTIONS BETWEEN VEGF AND NOTCH 
PATHWAYS  
 
5.1. Genetic interaction 
 Information on the interaction of the VEGF 
pathway and the Notch pathway initially came from genetic 
studies of vascular development in zebrafish embryos. Loss 
of Notch signalling in embryos such as mutation of the 
Hey2 homologue, gridlock, and blockade of Su(H) leads to 
molecular defects in arterial-venous differentiation, 
including loss of arterial specific markers such as 
EphrinB2a and ectopic expression of venous markers such 
as EphB4a and Flt4 within the dorsal aorta. Conversely, 
ectopic activation of Notch signalling results in repression 
of venous cell fate (99, 100). VEGF lies downstream of 
sonic hedgehog and acts in a common signalling cascade 
with Notch signalling to induce arterial differentiation (40). 
A reduction in VEGF activity results in a loss of arterial 
marker expression from the dorsal aorta and increases the 
ectopic arterial expression of vein markers. Exogenous 
expression of VEGF causes ectopic expression of arterial 
markers in the posterior cardinal vein in wild-type embryos 
but is incapable of eliciting this effect in mib mutant 
embryos that lack Notch activity. However, activation of 
the Notch pathway in response to exogenous Notch1 
intracellular form is sufficient to induce arterial 
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differentiation in the absence of VEGF function. Thus, the 
results suggest that Notch signalling acts downstream of 
VEGF to induce arterial differentiation (40). Recently, it 
was reported that blood flow recovery and postnatal 
neovascularisation in response to ischemia in heterozygous 
Notch1 global or EC-specific knockout mice is impaired 
compared with wild-type mice. Expression of VEGF in 
response to ischemia, however, is comparable between 
wild-type and Notch1 mutant mice, suggesting that Notch1 
functions downstream of VEGF signalling in postnatal 
neovascularisation (101). More recently, it was showed that 
Notch signalling directly upregulates VEGFR3 expression 
in ECs and Notch1 genetically interacts with VEGFR3 to 
regulate embryonic vascular development in mice (102).  
 
5.2. VEGF induces Notch signalling 
 Activation of Notch signalling by the VEGF 
pathway has been demonstrated in studies of cultured 
mammalian cells in vitro. Addition of VEGF to cultured 
human ECs significantly increases DLL4 expression in 
human iliac and femoral arterial ECs (HIAECs and 
HFAECs) (103) and umbilical vein ECs (HUVECs) (19, 
94, 96). Apart from DLL4, VEGF also induces expression 
of Notch1 (60, 103), DLL1 and EphrinB2 in human aortic 
ECs (HAECs) (60). Upregulation of Notch1 and EphrinB2, 
but not upregulation of DLL1, by VEGF appears to be 
gamma-secretase-dependent (60). In fact, VEGF has been 
shown to upregulate both presenilin and ADAM10 
expression, increase presenilin proteolytic processing and 
gamma-secretase activity in HUVEC, and result in 
activation of Notch1 and Notch4, leading to increased 
expression of Hes1 and EphrinB2 and decreased expression 
of EphB4 (94, 101). The PI3K/Akt pathway seems to be 
critical for the induction of expression of DLL4 and Notch1 
and for the activation of gamma-secretase and Notch1 by 
VEGF, because inhibitors and dominant-negative mutants 
of PI3K/Akt both completely inhibited the 
induction/activation while constitutively active forms of 
PI3K/Akt enhanced the induction/activation (101, 103). We 
and others have previously shown that DLL4, Hey1 and 
Hey2 are upregulated by hypoxia (70, 104) probably 
through HIF-1alpha in EC (96, 104). VEGF is one of main 
hypoxia regulated genes and, therefore, also acts as an 
important mediator in regulating DLL4/Notch signalling by 
the hypoxia pathway. 
 
 As described previously, VEGF expression is 
upregulated by numerous growth factors including bFGF, 
EGF, TGF-alpha, TGF-beta and HGF. bFGF was reported 
to increase expression of DLL4 in HFAECs and HUVECs 
alone (96, 103) and, together with VEGF, induce 
expression of DLL1, DLL4, Notch1 or Notch4 in HUVECs 
and HAECs synergistically (60, 96, 103). The synergistical 
activation of Notch signalling by induction of DLL1 
seemed to be necessary and sufficient to regulate EphrinB2 
and to induce EphrinB2 and EphB4-dependent branching 
morphogenesis in human arterial EC (60). Interestingly, 
HGF, EGF and TGF-alpha are able to induce the protein 
expression of Jagged1 in HNSCC cells by activation of the 
MAPK pathway but not by the PI3K/Akt pathway and thus 
activate Notch signalling from tumour cells to ECs (93) 
 

 Evidence on the induction of Notch signalling by 
VEGF signalling has obtained from in vivo studies as well. 
The first in vivo clue came from transgenic mouse studies, 
in which VEGF overexpression in cardiac muscle, probably 
through Notch signalling, increased the number of 
EphrinB2-positive capillaries but reduced the number of 
EphB4-positive venules in the mouse heart (105). Studies 
on mouse tumour and retinal models have yielded clear 
insights on regulation of DLL4 expression in vivo by the 
VEGF pathway. Blockade of VEGF signalling by 
administration of bevacizumab or VEGF-trap caused a 
rapid and profound decrease of endogenous DLL4 
expression in tumour ECs in several mouse tumour models, 
demonstrating that DLL4 expression in tumour vasculature 
depends on VEGF (17, 18). During normal retinal vascular 
development, DLL4 expression is most pronounced at the 
growing front of the superficial vascular network where 
VEGF is expressed at the highest levels. Similarly, 
disruption of the VEGF pathway by intraocular 
administration of soluble VEGFR1 or VEGF-trap 
significantly decreased DLL4 expression at the leading 
front of the growing superficial vascular plexus (85, 86). 
Conversely, enhanced VEGF signalling by intravitreal 
injection of VEGF protein increased DLL4 expression in 
retinas within 24 hours (85). In human clinical samples, the 
expression level of DLL4 mRNA is 9-fold higher in clear-
cell renal-cell carcinoma and 2-fold higher in superficial 
bladder cancer than those in corresponding normal tissues 
and is strongly associated with high levels of VEGF for 
both tumours (95, 96). 
 
5.3. Notch signalling regulates VEGF signalling 
 Although VEGF induces Notch signalling, Notch 
signalling is also capable of regulating the VEGF pathway 
by altering expression of its ligands (VEGF and PLGF) and 
receptors  (NRP1, NRP2, VEGFR1, VEGFR2 and 
VEGFR3). Early studies showed that Hey2 
(CHF1/HRT2/HESR2, gridlock in zebrafish) interacts with 
arylhydrocarbon receptor nuclear translocator (ARNT) in a 
yeast two-hybrid screen and inhibits binding of 
ARNT/EPAS1 (HIF-2) to VEGF promotor, suggesting that 
Hey2 may downregulate expression of VEGF (106). 
Recently, we showed that activation of DLL4/Notch 
signalling significantly downregulates expression of PLGF 
and inhibits angiogenesis in vitro (97). Apart from PLGF, 
DLL4/Notch signalling also downregulates mRNA 
expression of NRP1 and NRP2 in ECs and consequently 
may alter angiogenic processes (97, 98). The possibility 
that expression of NRP1 and NRP2 may be regulated by 
Notch signalling was raised by a recent discovery that the 
larger arteries developed in Notch1 homozygous or 
Hey1/Hey2 double mutant mice did not express NRP1 (74). 
In addition, expression of VEGFR1 appears to be also 
regulated by Notch signalling. DLL4 heterozygous mice 
displayed decreased expression of VEGFR1 in retinal 
vessels, potentially increasing their responsiveness to 
VEGF (86). In contrast, activation of Notch signalling by 
DLL4 led to increased expression of VEGFR1 at both 
mRNA and protein levels in cultured HUVECs; however, 
the soluble splice variant of VEGFR1 (sVEGFR1) was also 
upregulated in response to DLL4 contributing to the 
impairment of VEGF signalling (97).  
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 A stream of evidence has been accumulated on 
downregulation of VEGFR2 by Notch signalling. 
Overexpression of Hey1 (CHF2/HRT1/HESR1), N1ICD 
or N4ICD in ECs decreased the luciferase activity 
driven by VEGFR2 promoter, mRNA expression of 
VEGFR2 and proliferative responses to VEGF in vitro 
(107-109). Activation of Notch signalling in HUVECs 
by DLL4, either transduced in ECs or immobilised on 
culture plate, reduced expression of VEGFR2 mRNA 
and protein and inhibited VEGF-induced EC function in 
vitro (19, 97, 98). Reciprocally, inhibition of Notch 
signalling by the gamma-secretase inhibitor 
dibenzazepine (DBZ) or specific anti-DLL4 antibodies 
increased expression of VEGFR2 in vitro (19). In 
addition, increased expression of VEGFR2 in vivo was 
observed in the region of retinal hyperfused vascular 
plexus in DLL4 heterozygous mice (86). Interestingly, 
in the xenograft tumour model of U87 DLL4 expressed 
in tumour cells downregulated expression of mouse 
VEGFR2 only in large vessels within tumour (17). 
 
 More recently, VEGFR3 was demonstrated to 
be a direct downstream target of Notch signalling (102). 
Activation of Notch signalling by overexpressing 
Notch4/Int-3 (or N1ICD) significantly induced VEGFR3 
expression in human primary ECs (HUVECs, HUAECc 
and HMVECs) in vitro. Cocultures containing either 
Jagged1- or DLL4-expressing HUVECs mixed with 
Notch4-expressing HUVECs enhanced the induction of 
VEGFR3, indicating that ligand-mediated Notch4 
signalling also induces VEGFR3. In vitro, Notch in 
complex with RBP-Jkappa bound the VEGFR3 promoter 
and transactivated VEGFR3 specifically in ECs. 
Through induction of VEGFR3 expression but reduction 
of VEGFR2 expression, Notch signalling modulated the 
response of ECs to angiogenic factors by making them 
more responsive to VEGF-C but less responsive to 
VEGF-A, promoting EC survival and morphological 
changes. In transgenic embryos, activated Notch4 
induced VEGFR3 expression within the intersomitic 
ECs but not within other EC types. In the adult, Notch4, 
Notch1 and VEGFR3 are actually coexpressed in the 
vasculature of mouse ovarian follicles, suggesting a role 
for Notch/VEGFR3 signalling in follicular angiogenesis. 
In human invasive micropapillary breast carcinomas, 
Notch1 and Notch4 are coexpressed in the extratumoural 
blood and lymphatic vasculature with VEGFR3. The 
cleaved and activated Notch1 was present in the 
majority of the lymphatic endothelial nuclei, indicating 
that Notch1 is not only expressed but also activated in 
tumour lymphatic vessels. Thus, Notch/VEGFR3 
signalling may participate in tumour lymphangiogenesis 
and tumour metastasis in human breast cancer.  
 
 Notably, in zebrafish ectopic Notch activation 
repressed expression of Flt4, the zebrafish orthologue of 
VEGFR3, in all blood vessels (99), whereas in Rbpsuh-
deficient embryos loss of Notch signalling induced 
expression of Flt4 in the dorsal aorta and segmental arteries 
(90). Thus, the effects of Notch signalling on VEGF 
signalling seems to depend on species, microenvironments 
and specific cell types.  

5.4. Role in tumour angiogenesis 
 Clearly, proper coordination of the VEGF 
pathway with Notch signalling in tumour is critical for 
tumour angiogenesis and growth (17-19). DLL4 and VEGF 
emerge to be the yin and yang of tumour angiogenesis. At 
an early stage, tumour cells may secrete VEGF that acts as 
a driver to induce endothelial proliferation and migration 
toward tumour cells from the surrounding tissue, leading to 
growth of new vessels. The resulting vasculature is 
structurally and functionally abnormal and tumour is 
hypoxic. Tumour hypoxia not only increases expression of 
VEGF by tumour and stromal cells but also induces 
expression of DLL4, Hey1 and Hey2. Increased VEGF in 
tumour tissue further induces vascular sprouting and 
branching. However, VEGF also induces expression of 
DLL4 in a subset of tumour ECs, particular tip cells. 
DLL4/Notch signalling modulates the actions of VEGF on 
tumour ECs, particularly on stalk cells that are adjacent the 
sprouting tip cells by downregulating expression of 
VEGFR2 and upregulating VEGFR1 and sVEGFR1 and 
consequently decreases vascular sprouting and branching 
by suppressing the formation of tip cells. Therefore, DLL4 
seems to act as a caretaker to make sure that the 
vascularisation induced by VEGF do not go out of control, 
promoting the timely and spatially formation of functional 
vasculature. Upregulating expression of VEGFR3 by 
DLL4/Notch signalling might help maintain sufficient 
amounts of functional blood and lymphatic vessels in 
response to stimulation of VEGF-C and/or VEGF-D for 
tumour growth and metastasis. However, it should be noted 
that VEGF signalling regulates a number of downstream 
pathways and DLL4/Notch signalling is only one of these 
pathways. DLL4 is also regulated by other pathways 
including Notch signalling itself (17, 19, 83, 97, 102). In 
addition, many connections between the Notch pathway 
and other signalling pathways such as hypoxia, TGF-beta, 
Hedgehog and Wnt (52, 110) may also contribute to the 
complexity of tumour angiogenesis.  
 
 Recent findings, although not directly from the 
studies in ECs, showed that the hypoxia pathway integrates 
with Notch signalling at different levels: a) HIF-1alpha can 
interact with NICD under hypoxia to stabilise the NICD in 
nucleus and thus increase the Notch downstream response 
(111); b) factor-inhibiting HIF-1 (FIH-1), apart from the 
regulation of HIF activity, can also hydroxylate NICD at 
two critical residues (N1945 and N2012) and thus 
negatively regulate Notch signalling in vivo (112, 113); and 
c) hypoxia can directly upregulate expression of DLL1 and 
Hes1 and increase preexisting Notch signalling in various 
tumour cell lines (114). Conversely, Notch signalling can 
mediate hypoxia-induced epithelial-mesenchymal 
transition, increased motility and invasiveness either by 
upregulating Snail-1 transcription through NICD directly or 
by increasing HIF-1alpha recruitment to the lysyl oxidase 
(LOX) promoter and elevated the hypoxia-induced 
upregulation of LOX, which stabilises the Snail-1 protein 
(114). In addition, we and others have shown that 
DLL4/Notch and Jagged1/Notch signalling upregulates 
expression of Slug (Snail-2) and that block of Notch 
signalling inhibits tumour growth and metastasis in an in 
vivo tumour (97, 115). 
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6. THERAPEUTIC COMBINATION BY 
DISRUPTION OF VEGF AND DLL4/NOTCH 
PATHWAYS 
 
 As described previously, blockade of VEGF 
signalling inhibits tumour growth and angiogenesis by 
extensive pruning of the rapidly growing tumour 
vasculature in numerous preclinical models. To some 
extent, blockade of VEGF may also normalise the 
remaining vessels in tumour to help deliver nutrients and 
oxygen (116). In phase III clinical trials, blocking VEGF 
prolongs patient survival for several major cancers. 
However, there are a number of tumours that did not 
respond at all or responded in an early stage but became 
resistant in a late stage to VEGF inhibition in preclinical 
mouse models (9-12). In addition, anti-VEGF therapy alone 
appears to be ineffective in most, if not all, clinical trials 
(13). Thus, additional factors/pathways may directly drive 
tumour angiogenesis or switch on at certain stages to 
regulate tumour angiogenesis and growth in anti-VEGF-
resistant tumours and combined approaches for interrupting 
the VEGF pathway and additional pathways may improve 
anti-angiogenic therapeutic efficacy.  
 
 DLL4/Notch signalling may represent such an 
additional pathway. Recently, we and others have shown 
that therapeutic treatment of tumours in various preclinical 
models by disruption of DLL4/Notch signalling (Figure 2) 
remarkably inhibit tumour growth in vivo (17-20). It has 
been thought that tumour growth is positively correlated 
with tumour vascular density and more angiogenesis 
always translates to more aggressive tumours. Thus, 
conventional angiogenesis-based treatments of tumours, for 
example, anti-VEGF therapy, have focused on blocking 
angiogenesis. However, blockade of DLL4/Notch 
signalling resulted in a marked increase in tumour 
angiogenesis but a dramatic decrease in vessel function, 
providing a striking example of an uncoupling of tumour 
growth from tumour vascular density (117). The fact that 
blockade of DLL4/Notch signalling and VEGF-inhibition 
have paradoxical effects on tumour vasculature but both 
consistently reduce tumour growth accentuates that in 
tumour, vessel function is much more important than vessel 
density for tumour growth. Fewer but larger vessels can be 
as efficient as a much greater number of smaller vessels 
within tumour (17). Blockade of DLL4/Notch signalling 
could treat a wide range of tumour types. Regeneron has 
reported the effects on all 10 tumour lines tested in mice 
and Genentech also observed tumour inhibition in 13 
tumour lines in mouse models (118, 119).  
  
 Importantly, blockade of DLL4/Notch signalling 
is also effective in growth inhibition of VEGF-resistant 
tumours. Systemic treatment of mice bearing resistant 
HT1080-RM tumours or mouse mammary tumours with 
soluble DLL4-Fc or blocking DLL4 antibodies resulted in a 
prolonged suppression of tumour growth, whereas anti-
VEGF treatment with either bevacizumab or VEGF-trap 
had almost no impact on tumour growth (18). WEHI3 
tumours were highly resistance to anti-VEGF mAb therapy; 
however, treatment with anti-DLL4 antibodies (YW152F) 
significantly suppressed tumour growth (19). PC3 tumours, 

when implanted in mouse, were hardly responsive to 
bevacizumab, but soluble DLL4-mFc secreted from co-
implanted tumour cells resulted in a significant decrease in 
tumour growth (17). Thus, targeting DLL4/Notch 
signalling may have become an alternative therapy for anti-
VEGF-resistant cancers. 
 
 The potent anti-tumour activity observed with 
DLL4/Notch signalling blockade and its dependence on 
VEGF raised the exciting possibility that anti-DLL4/Notch 
and anti-VEGF combination therapy may improve anti-
angiogenic efficacy. Indeed, Genentech has already shown 
that in MV522 xenograft tumours, treatment with anti-
DLL4 or anti-VEGF antibodies alone was only modestly 
effective at reducing tumour growth, revealing some 
intrinsic resistance of this tumour to each therapy; 
strikingly, the combination therapy with both antibodies 
resulted in a robust additive inhibition of tumour growth 
(19). In HT1080 xenograft tumours, we have found that 
therapeutic administration of either bevacizumab or DBZ 
had little effects on tumour growth; however, the 
combination therapy yielded a synergistical suppression of 
tumour growth (Li et al., unpublished data). In addition, we 
have revealed that in U87 glioblastoma xenograft tumours, 
the combination therapy with bevacizumab and DBZ 
resulted in the synergistical effect on tumour progression 
(Li et al., unpublished data). Therefore, blockade of 
DLL4/Notch signalling may have provided a potent option 
for combination therapy with anti-VEGF agents for solid 
tumours. 
 
 It has not been clear yet how blockade of 
DLL4/Notch signalling is capable of suppressing the 
growth of both VEGF-sensitive and VEGF-resistant 
tumours and enhancing the anti-VEGF therapeutic efficacy. 
Apart from VEGF signalling, DLL4/Notch signalling might 
have broad and diverse interactions with other angiogenic 
pathways and thus DLL4/Notch blockade becomes 
effective in tumours that either are intrinsically VEGF-
independent or become VEGF-resistant at certain stages 
when other angiogenic pathways switch on. Another 
potential explanation is that blockade of DLL4/Notch 
signalling upregulates VEGFR2 and consequently make 
tumour ECs more sensitive to anti-VEGF therapy. A third 
possibility is that blockade of DLL4/Notch signalling 
reduces the recruitment of pericytes and accordingly 
tumour vasculature becomes more vulnerable to VEGF-
inhibition. Finally, blockade of DLL4/Notch signalling may 
also have some non-EC effects, that is, DLL4/Notch 
signalling between tumour and/or other stromal cells in the 
tumour microenvironment, such as macrophages and 
dendritic cells. Clearly, to understand detailed mechanisms 
will facilitate extrapolation of anti-DLL4/Notch treatments 
to the clinic.  
 
7. CONCLUDING REMARKS 
 
 The formation of a hierarchical vascular network 
in embryonic development and tumour angiogenesis in 
postnatal growth require highly coordinated interactions of 
various signalling pathways. VEGF signalling and 
DLL4/Notch signalling are perhaps two most important 
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pathways during vascular development and tumour 
angiogenesis. Agents that block the VEGF pathway 
effectively inhibit tumour angiogenesis and growth in 
preclinical tumour models. Some of them have been 
validated in phase III clinical trials and already become an 
integrant part of standard cancer therapy. Both in vitro and 
in vivo studies have demonstrated that the VEGF pathway 
interacts at several levels with DLL4/Notch signalling, 
VEGF induces DLL4/Notch signalling while DLL4/Notch 
signalling modulates the VEGF pathway. The recent flurry 
of findings have shown that DLL4/Notch signalling 
regulates angiogenesis by suppressing the formation of 
endothelial tip cells and blockade of DLL4/Notch 
signalling strikingly induces non-productive angiogenesis 
but remarkably reduces the growth of tumours that are 
either sensitive or resistant to anti-VEGF therapy. 
Combination therapies by blocking DLL4/Notch signalling 
and the VEGF pathway synergistically inhibit tumour 
growth in preclinical mouse models. Thus, targeting the 
DLL4/Notch pathway may lead to exciting new therapies 
for clinical investigation.  
 
 However, a host of issues still remains. The 
diverse functions of DLL4/Notch signalling in vascular 
development and tumour angiogenesis can be only partially 
explained by its interaction with the VEGF pathway. The 
role of other signalling pathways and relevant interaction 
partners will need to be addressed. Given that four Notch 
ligands (DLL1, DLL4, Jagged1 and Jagged2) exist in 
vasculature, we wonder whether all of these ligands are 
involved in tumour angiogenesis or not and how Notch 
signalling initiated by different ligands is coordinated in 
tumour angiogenesis. For example, Jagged1-triggered 
Notch signalling stimulates tumour angiogenesis and 
growth in HNSCC xenograft tumours while DLL4-
initiated Notch signalling inhibits tumour angiogenesis 
in various preclinical tumour models. It will be 
interesting to investigate which Notch signalling affects 
tumour angiogenesis and growth if both are activated in 
the same tumour type. Due to the lethality of the global 
knockout mice, we have only known relatively little 
about DLL4/Notch function in postnatal vasculature and 
in tumour malignant progress. Establishment of 
preclinical tumour models by using EC-specific 
inducible DLL4-knockout and DLL4-knockin mice will 
help address this question. Apart from indirect vessel-
spacing effects, DLL4/Notch signalling could have 
direct effects on tumour growth. For example, DLL4 
binding to Notch receptors on tumour cells could help 
maintain tumour stem cell populations because Notch is 
crucial for maintaining the stem cell niche. It becomes 
increasingly evident that targeted cancer therapies are 
normally most effective when started treatment at an 
early course of tumours and combined with other agents 
that target a complementary pathway or other therapies 
such as anti-angiogenic therapy, chemotherapy and 
radiation therapy. It will be important to investigate 
whether disruption of DLL4/Notch signalling could 
make tumour cells more vulnerable to chemotherapy and 
radiation therapy by increasing the number of rapidly 
dividing ECs in the expanding vascular network.  
 

 Before anti-DLL4/Notch treatments extrapolate 
to the clinic, it will be essential to further examine the 
effects of DLL4/Notch blockers on normal vessels, 
particularly those in female ovarian follicles and uterine 
endometrium (70, 120), and on non-vascular cells, 
particularly those in brain neural tissues (70, 121, 122) and 
immune systems such as macrophages, lymphocytes and 
thymus (70, 123) that are known to express DLL4. In 
addition, it will be interesting to investigate whether or not 
DLL4/Notch inhibitors affect stem cell populations in 
normal tissues since Notch signalling is important in 
regulation of stem cell functions (111). Understanding the 
side-toxic effects of anti-DLL4/Notch treatment will help 
establish a therapeutic index and yield the highest benefits 
for clinical patients of cancers.  
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