
Effective Bug Finding

Iago Abal Rivas

Advisors: Andrzej Wąsowski and Claus Brabrand
Submitted: March 1st, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/132608267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Abstract

Lightweight bug finders (also known as code scanners) are be-
coming popular, they scale well and can find simple yet common
programming errors. It is now considered a good practice to in-
tegrate these tools as part of your development process. The Linux
project, for instance, has an automated testing service, known as
the Kbuild robot, that runs a few of these code scanners.

In this project, I have carefully studied tens of historical Linux
bugs, and I have found that many of these bugs, despite being con-
ceptually simple, were not caught by any code scanning tool. The
reason is that, by design, code scanners will find mostly superficial
errors. Thus, when bugs span multiple functions, even if simple,
they become undetectable by most code scanners. The studied set
of historical bugs contained many of such cases.

This PhD thesis proposes a bug-finding technique that is both
lightweight and capable of finding deep interprocedural resource
manipulation bugs. The core of this technique is a shape-and-effect
analysis for C, that enables efficient and scalable inter-procedural
reasoning about resource manipulation. This analysis is used to
build an abstraction of the program. Then, bugs are found by
matching temporal bug-patterns against the control-flow graph of
this program abstraction.

I have implemented a proof-of-concept bug finder based on this
technique, EBA, and confirmed that it is both scalable and effective
at finding bugs. On a benchmark of historical Linux double-lock
bugs, EBA was able to detect significantly more bugs, and more
complex, than two other baseline tools. EBA was able to analyze
nine thousand files of device drivers from Linux-4.7 in less than half
an hour, in which time it uncovered five previously unknown bugs.
So far, EBA has found more than a dozen double-lock bugs in Linux 4.7–
4.10 releases, most of them already confirmed and many fixed.

v

Resumé

Automatiske letvægts-fejlfindere (også kaldet kode-scannere)
er ved at blive populære. De er skalérbare og kan finde simple,
men ofte forekommende programmeringsfejl. Det er efterhånden
betragtet som god praksis at integrere disse fejlfindingsværktøjer
i udviklingsprocessen. Linux-projektet har eksempelvis tilknyttet en
automatisk test-service kaldet "Kbuild robot", som afvikler en ræk-
ke kode-scannere.

I dette projekt har jeg nærstuderet et halvt hundrede historiske
fejl i Linux og fundet frem til at mange af disse - selv om der er tale
om begrebsmæssigt simple fejl - ikke kan findes med nuværende
kode-scannere. Årsagen til dette er at kode-scannere - som konse-
kvenser af designvalg - går efter de mest overfladiske fejl. Når der
er tale om fejl der involverer flere funktioner, så kan de ikke fin-
des af kode-scannere, også selv om der er tale om ganske simple
fejl - faktisk indeholdte den mængde af historiske fejl vi studerede
adskillige sådanne fejl.

Denne Ph.D.-afhandling foreslår en ny fejlfindingsteknik, som
er både letvægts samt i stand til at finde dybe interprocedurelle res-
soucemanipulationsfejl. Denne fejlfindingsteknik er baseret på form
og effekt analyse for C, som muliggør skalérbar interprocedurel ræ-
sonnemang omkring manipulation af ressourcer. Analysen bruges
til at bygge en abstraktion af programmet. Fejl findes efterfølgende
ved at anvende temporal mønstergenkendelse på programabstrak-
tionens graf over kontrol-flow.

Jeg har implementeret en prototype-fejlfinder ved navn EBA, ba-
seret på denne teknik og bekræftet at denne teknik er både skalér-
bar samt effektiv til at finde fejl. På en samling af historiske dob-
beltlåsfejl i Linux var EBA i stand til at finde signifikant flere - og mere
komplekse - fejl sammenlignet med to andre fejlfindingsværktøjer.
EBA var i stand til at analysere ni tusinde device-driver-filer fra Linux-
4.7 på mindre end en halv time samt finde fem hidtidigt ukendte
reelle fejl. EBA har indtil nu fundet mere end et dusin dobbeltlås-
fejl i i Linux 4.7–4.10 - de fleste af dem er allerede bekræftet samt
udbedret.

† This abstract in Danish has been automatically generated, and it is
intended for the (possibly empty) set of people fulfilling the following
requirement: knows Computer Science, yet is unable to read English.

If you want more effective programmers, you will discover that
they should not waste their time debugging, they should not intro-
duce the bugs to start with.

Edsger W. Dijkstra

Acknowledgements

Apart from our efforts, the success of any project depends largely on the
encouragement and guidelines of many others.

I would like to thank the Danish Council for Independent Research, for
funding this work under the Sapere Aude 2 / VARIETE grant.

I would like to thank my advisors Andrzej Wąsowski and Claus Brabrand
for their help, support, and guidance over the past three years and a half.
We have made a great team.

I would like to thank to all those who contributed to my education. I
owe a special debt of gratitude to Jorge Sousa Pinto, a mentor and a
friend, who introduced me to static program analysis.

Last but not least, I would like to thank my parents, my wife, and my
son, for their unconditional love and support. I love you.

Contents

Contents xi

1 Introduction 1
1.1 Context . 1
1.2 Problem . 3
1.3 Method . 4
1.4 Thesis . 5

2 Related Work 11
2.1 Empirical study of software bugs . 11
2.2 Side-effect analysis . 14
2.3 Static resource safety . 17

3 A Qualitative Study of Bugs in Linux 27
3.1 Background . 28
3.2 Methodology . 31
3.3 Threats to validity . 35
3.4 Dimensions of analysis . 37
3.5 Diversity of bugs in VBDb . 40
3.6 RQ1: Variability characteristics of bugs in Linux 43
3.7 RQ2: Challenges in analyzing Linux source code 48
3.8 RQ3: Opportunities for bug finders in Linux 55

4 A Shape and Effect System for C(IL) 63
4.1 The shape language . 64
4.2 Shape-type compatibility. 67
4.3 Shape casting . 69
4.4 Environments and shape schemes 70
4.5 Typing rules . 71

xii Contents

4.6 Soundiness . 81

5 Shape-Region and Effect Inference for C(IL) 83
5.1 Unification . 83
5.2 Most general shape . 85
5.3 Subeffecting constraints . 86
5.4 Inference rules . 87
5.5 Limitations . 92
5.6 Principality . 93

6 Effective Bug Finding with EBA 99
6.1 Front-End: from C to CIL . 99
6.2 Shape-and-effect inferrer . 102
6.3 Model-checker . 107
6.4 Bug filter . 110

7 Evaluation 115
7.1 Method . 115
7.2 Performance on a benchmark of historical Linux bugs 117
7.3 Performance of analyzing device drivers in Linux-4.7 121

8 Conclusion 125

Bibliography 129

Chapter 1

Introduction

1.1 Context

This PhD project is part of a wider research project, VARIETE (Variabil-
ity in Portfolios of Dependable Systems), funded by the Danish Council
for Independent Research (DFF). The purpose of the VARIETE project
has been to develop techniques to approach the verification of highly-
configurable dependable software systems.

Configurable software (also known as, variable software) arises as a ne-
cessity to adapt software systems to different demands, like hardware
platforms or usage scenarios. Software variability supports the develop-
ment of program families. A program family is a piece of parameterized
software, from which many software systems (program variants) can be
derived by setting configuration options (features). Software variability
is a cost-effective strategy to develop and maintain multiple variations
of a core software system, that if conceived individually would multiply
development and maintenance costs [PBL05].

Variability is ubiquitous in system-level software (e.g. operating and
embedded systems), and in any scenario where performance and low
resource utilization are required. Such software is mostly written in
C, and implements compile-time variability through the C preprocessor
(CPP). Features are represented by macro symbols —often identified by a
prefix like CONFIG_, and variable code is surrounded by CPP #if condi-
tional directives over those symbols. The code associated with a disabled
feature is removed by CPP during compilation, thus reducing the final bi-
nary size. The Linux kernel, with thousands of configuration options, is
a prime example of a highly-configurable software system [LSB+10].

2 Chapter 1. Introduction

1 void foo(void) {
2 int *p = malloc(sizeof(int)); // allocation
3 if (!p) return;
4
5 printf("%d",p);
6
7 #ifdef CONFIG_FREE // disabled
8 free(p); // not compiled
9 #endif

10
11 return; // BUG
12 }

Figure 1.1: Example of a program family with a variability bug. A
memory-leak error occurs upon the return of the function whenever
FREE is disabled.

Figure 1.1 should serve to illustrate the kind of configurable software
that we are interested in. Function foo allocates memory for an integer
variable *p in line 2, and prints the memory address of that variable in
line 5. Since the memory assigned to p will not be accessible after foo
returns, returning without freeing p constitutes a memory leak. This is
the case if feature FREE is disabled, since in such configuration the free

statement in line 8 will not be compiled. (If FREE is enabled, then p is
freed and there is no memory leak.) A bug like this one, which is present
in some configurations but not in others, is a variability bug [ABW14].

Whereas variable software is widespread, we lack tools capable of
verifying all derivable variants of a program family. It is completely in-
feasible to verify each configuration individually: highly-configurable
systems are parameterized by tens of configuration options, and in-
volve billions of different variants. Even if we could verify one program
variant per second, it will still take us 30 years to verify a billion vari-
ants. Some have proposed the use of family-based analyses [TAK+14], that
tackle this problem by considering all configurable program variants as
a single unit of analysis, instead of analyzing the individual variants
separately [KA08, ASW+11, CHSL11, BTR+13, BRT+13].

For the time being, the verification of configurable software is ap-
proached through configuration sampling. A sample of the many possible
configurations is selected, according to some criterion, and each pro-
gram variant is verified in isolation. For instance, the Kernel Instant bug

1.2. Problem 3

testing Service (KIS) uses a server farm to test 141 configurations of the
Linux kernel per day [CWY+13]. Yet, due to the discrete nature of soft-
ware, the successful verification of a program variant cannot be used to
predict the correctness of even a slightly different variant. Hence, if the
right configuration is not hit by sampling, a critical bug can be missed.

The development of improved verification techniques and methods
for configurable software is one of the main goals of VARIETE. A small
team of people, myself included, have worked together in pursuing this
goal. First of all, we have studied the nature of feature-interaction bugs
in configurable software [ABW14, MFBW16, MBW16]. Then, we have
worked on two different approaches to verifying configurable software.
One research direction has focused on family-based analyses [MDBW15,
DBW15]. The other research direction has focused on exploiting single-
program static analyzers to verify configurable software [PS08].

My mission has been to investigate effective ways of finding bugs in
large-scale systems-level software [ABW17], a problem that is elaborated
in the following section 1.2. Other colleagues have worked on making
a single-program verification technique —such as the one developed in
this thesis— work, efficiently, on a family of C programs by rewriting
variability [IMD+17].

1.2 Problem

Bugs are easier and cheaper to fix when they are found early. Hence,
we would like our verification tools to run directly on developers’ com-
puters, be part of their development environments, and provide them
with continuous feedback on their code. However, the reality today is
that many verification tools are not fast enough for this purpose, taking
hours to analyze just a few tens of thousands lines of code. At best,
they can be run once a day, as part of a nightly build. At worst, in some
scenarios, they are too slow to be run at all.

Unsurprisingly, many developers rely solely on their compilers to
check their code for errors. (Testing is also common, but some kinds of
software, such as device drivers, can be difficult to test in an automated
fashion.) Some developers do use lighter-weight static bug-finding tools,
so-called linters (i.e., Lint-like tools [Joh78]) or code scanners. 1 Linters run

1To my knowledge, there is no standard classification of static analysis tools.

4 Chapter 1. Introduction

fast and can fit into developers’ work-flow, but mostly find relatively
simple and shallow bugs.

Due to timing and resource constraints, linters are the only practical
verification solution for some projects. This problem is amplified when
software variability is taken into consideration. For instance, the afore-
mentioned KIS instant bug testing service for Linux relies exclusively on
linters. KIS could not, otherwise, statically analyze all of the commits
pushed daily to the many Linux repositories, under 141 different config-
urations, within a day.

In the VARIETE project, our objective has been to make static ver-
ification of highly-configurable software systems, like the Linux kernel,
widely affordable. We are consequently interested in lightweight Lint-
like techniques, but we would like to count with tools that uncover more
complex bugs that linters currently do. (After all, the VARIETE project
concerns the verification of dependable software.) Investigating the bal-
ance between the scalability of tools, and the qualities of the bugs found
by these tools, has been a priority for us, and the goal of this PhD thesis.

In summary, my problem has been to answer the following research
question:

How can we effectively analyze large-scale systems-level soft-
ware for non-trivial bugs and do it as fast as linters?

1.3 Method

There is no better way to address scalability, than to consider it from the
very beginning. For that reason, I have selected and concentrated my
efforts on a single yet very large subject, the Linux kernel. Linux is the ideal
subject of study for several reasons: it is open source, comparatively
well documented, and it is a very large and complex piece of software.
With more than ten thousand configuration options, Linux is also a prime
example of a highly-configurable software system [LSB+10].

1.4. Thesis 5

In order to develop a solution for the problem previously discussed, I
followed a simple problem-oriented research method with three steps: 2

Step 1: Study of a collection of historical Linux bugs. First of all, I col-
lected a sample of 43 historical Linux bugs, and analyzed each bug both
from a programming-language and variability perspective (cf. Chap-
ter 3). The goal was two-fold. For the VARIETE project as a whole,
we wanted to understand the nature of bugs in highly-configurable
systems-level software. Before this study, such understanding did not
properly exist. For my PhD problem in particular (cf. Sect. 1.2), I wanted
to identify common bug patterns, and understand the limitations of cur-
rent bug finding techniques for recognizing such bugs.

Step 2: Development of the bug-finding technique. Previously, in
Step 1, I identified a class of non-trivial bugs that were not caught by
state-of-the-art code scanners. Subsequently, I devised an strategy to
find these bugs statically, yet efficiently (cf. Sect. 3.8). The key ingredi-
ents for efficient bug finding are abstraction and decomposition. The chal-
lenge was to find a program abstraction that was cheap to compute, but
provided enough information to analyze programs in a modular fash-
ion (cf. Chapter 4). I formally developed this strategy into a lightweight
bug-finding technique (cf. Chapter 6).

Step 3: Evaluation of the bug-finding technique. I implemented a
prototype, the Effect-Based Analyzer (EBA), to prove that my bug-finding
technique was realizable. During early stages of development, I used the
bugs collected in Step 1 as a benchmark, to test and guide the design
of EBA. I used this prototype as a proxy to evaluate the scalability and
effectiveness of the proposed technique. The evaluation consisted in
comparing the performance of EBA against similar baseline tools, on the
task of analyzing Linux device drivers for bugs.

1.4 Thesis

The study of 43 historical bugs in Linux revealed that, despite the many
resources dedicated to quality assurance, the Linux kernel continues to

2Note that this PhD thesis is only concerned with the analysis of individual pro-
gram variants, see Sect. 1.1.

6 Chapter 1. Introduction

suffer from conceptually simple bugs. A significant amount of these
bugs are related to the mis-manipulation of resources, such as accessing
a de-allocated memory region, or double-acquiring a non-reentrant lock.
Code scanners have been used extensively in an attempt to remove these
bugs from the Linux kernel [LMP09, CWY+13].

In particular, Linux-tailored code scanners Sparse, Coccinelle, and Smatch,
are well-known within the Linux kernel community. These three tools run
on the Linux source tree “out the box”, and are fast and also reasonably
effective at finding certain classes of bugs. For instance, Linux commits
ca9fe15 3 and 65582a7 fix locking bugs found by two of these tools. But
code scanners are largely limited to syntactic intra-procedural analysis,
and they mostly find shallow bugs, not involving nested function calls.

Remarkably, my study of historical Linux bugs shows that:

Bugs often cross the boundaries of a single function, and thus
are out of the reach of most code scanners.

For instance, commits: 1c17e4d (read of uninitialized data), 6252547 (null
pointer dereference), 218ad12 (memory leak), and d7e9711 (double lock),
are all simple yet inter-procedural resource manipulation bugs. This
observation has been key in developing this PhD work.

Figure 1.2 shows a simplified version of one of these historical bugs
in Linux, the double-lock bug fixed by commit d7e9711760a. Function
add_dquot_ref causes a potential deadlock by double-acquiring a non-
reentrant spin lock. The first lock acquisition occurs in line 10, and the
second occurs in line 4 after calling function inode_get_rsv_space (in
line 15). For the error to occur, both conditionals (lines 3 and 11) must
evaluate to false—i.e., take the else branch.

Traditionally, we have relied on heavyweight static analyzers based
on abstract interpretation, inter-procedural data-flow analysis, or sym-
bolic execution, to intercept deep inter-procedural bugs. These analyses
are often not compositional, or rely on computationally expensive ab-
stractions; and hence present scalability challenges, having seen little
adoption in practice.

3See https://github.com/torvalds/linux/commit/hash with hash replaced by the identifier.

https://github.com/torvalds/linux/commit/ca9fe158842
https://github.com/torvalds/linux/commit/65582a7f4ce
https://github.com/torvalds/linux/commit/1c17e4d4437
https://github.com/torvalds/linux/commit/6252547b8a7
https://github.com/torvalds/linux/commit/218ad12f42e
https://github.com/torvalds/linux/commit/d7e9711760a

1.4. Thesis 7

1 void inode_get_rsv_space(struct inode *inode)
2 {
3 if (∗) return;
4 spin_lock(&inode->i_lock); // 2nd lock
5 spin_unlock(&inode->i_lock);
6 }
7
8 void add_dquot_ref(struct inode *inode)
9 {

10 spin_lock(&inode->i_lock); // 1st lock
11 if (∗) {
12 spin_unlock(&inode->i_lock);
13 return;
14 }
15 inode_get_rsv_space(inode); // call
16 spin_unlock(&inode->i_lock);
17 }

Figure 1.2: A simplified version of a double-lock bug in Linux fixed by
commit d7e9711760a.

I argue that a wide class of resource manipulation bugs can be effi-
ciently uncovered with simple Lint-like techniques, even when the ma-
nipulation of resources spans multiple functions. The recipe consists
in performing modular program analysis, supported by lightweight ab-
stractions. I propose that such program abstractions are inferred by a
flow-insensitive type-and-effect analysis [Luc87, NN99].

This PhD thesis shows that:

Flow-insensitive side-effect analysis can be used to construct
lightweight program abstractions, that enable efficient inter-
procedural reasoning about the manipulation of resources. A
software model-checker can use the inferred side-effect sum-
maries to prune the control-flow graph, and effectively analyze
very large code bases, such as the Linux kernel.

To prove this, I have developed a bug-finding technique that consists
in matching temporal bug patterns against shape-and-effect program

8 Chapter 1. Introduction

lock

10

8 IF(*)

11

unlock12

{lock,
unlock}

15

inode_get_rsv_space

unlock 16

return 17

IF(*)

3
1 return 6

lock4 unlock 5

Figure 1.3: An illustration of our bug-finding technique for the double-
lock bug in Figure 1.2. The figure shows the associated CFG annotated
with lock and unlock effects. The numbers next to the CFG nodes show
corresponding line numbers. The gray nodes visualize the (red) path,
via the function call in line 15, to the double-lock (in line 4).

abstractions. The core of this technique, is a shape-and-effect analysis
based on the work of Talpin and Jouvelot on polymorphic type-and-
effect inference [TJ92]. This analysis infers types that approximate the
shape of data in memory—hence the term shape-and-effect analysis, and
also computational effects that describe how data is manipulated by the
program. The inference algorithm is a small variation of the classic
Damas-Milner’s AlgorithmW [DM82].

Next, the inferred shape-and-effect information is superimposed on
the control-flow graph (CFG), what results in the so-called shape-and-
effect abstraction of the program. In this abstraction, each program ex-
pression and statement is described by a set of computational effects.
(The set of inferred effects is extensible and depends on the bug checker,
for instance, to find the bug of Fig. 1.2 we are interested in the acqui-
sition and release of locks.) Bugs are found by matching temporal bug
patterns against this abstraction, using a standard model-checking al-
gorithm. Function calls that, by their effect signature, are deemed ir-
relevant for the analysis, are treated as opaque expressions. Function
calls that manipulate a resource of interest (e.g. a lock), may be inlined
on-demand.

1.4. Thesis 9

Figure 1.3 shows a simplification of the effect-decorated CFG asso-
ciated with the program of Fig. 1.2. For the analysis of double-lock
bugs, the effect abstraction is concerned with the locking effects on
&inode->i_lock. The gray nodes, and edges between them, mark an
execution path leading to the double lock. The call to inode_get_-

rsv_space is abstracted by a flow-insensitive summary of effects (the
set {lock, unlock}). In line 15, from the effect signature of function
inode_get_rsv_space alone, it is unclear as to whether the acquisi-
tion of &inode->i_lock happens before or after its release. In such an
inconclusive scenario, the model-checker proceeds by taking the func-
tion call (represented as following the gray dashed lines), which unveils
the double-lock bug in line 4.

In summary, my contributions are:

• Identification and in-depth analysis of 43 bugs in the Linux kernel (Chap-
ter 3). These bugs comprise common types of errors in systems-
level software, and cover different types of feature interactions.
This study has led to the creation of The Variability Bug Database
(http://VBDb.itu.dk/), which encompasses a detailed data record about
each bug.

• A bug-finding technique that is both effective and efficient at finding
a wide class of resource manipulation bugs, even when these in-
volve deep function call chains (Chapter 6). This technique relies
on an adaptation of Talpin-Jouvelot’s [TJ92] polymorphic type-and-effect
inference system to the C language (chapters 4 and 5), that is used to
infer shape-and-effect abstractions of C programs.

• A proof-of-concept prototype of the shape-and-effect system, and the
proposed bug-finding technique: The Effect-Based Analyzer, EBA
(http://www.iagoabal.eu/eba/). EBA can often analyze individual Linux files
for bugs in a few tenths of a second, and all the x86 allyesconfig
Linux kernel drivers in about half an hour (Chapter 7). So far EBA
has uncovered a dozen of previously unknown double-lock bugs
in Linux-4.7.

Outline. I proceed discussing past and present work on program static
analysis and bug finding (Chapter 2). Next, I present a qualitative

http://VBDb.itu.dk/
http://www.iagoabal.eu/eba/

10 Chapter 1. Introduction

study of 43 historical Linux bugs (Chapter 3), both from a programming-
language and (in the context of VARIETE) variability perspective. This
study motivates the core of this PhD thesis: an effective and effi-
cient bug-finding technique. This technique is based on shape-and-
effect abstractions (Chapter 4). I describe how to infer these abstrac-
tions (Chapter 5), how to use them to find interprocedural resource mis-
manipulation bugs (Chapter 6), and implement EBA: a proof-of-concept
implementation of the proposed bug-finding technique. Finally, I eval-
uate EBA (Chapter 7), provide directions for future work, and draw my
final conclusions (Chapter 8).

Chapter 2

Related Work

First, I discuss previous studies of software bugs (Sect. 2.1), and why
the study of 43 historical Linux bugs of Chapter 3 was needed. Second,
I describe previous work on side-effect inference and pointer analy-
sis (Sect. 2.2), and motivate the choice of the work of Talpin and Jou-
velot [TJ92] as the basis of the shape-and-effect system of Chapter 4. Last
but not least, I briefly survey static checking of resource manipulation
(Sect. 2.3), discuss the pros and cons of each major family of tools, and
related those to the trade-offs made in the design of the bug-finding
technique of Chapter 6.

2.1 Empirical study of software bugs

This section discusses work related to the study of 43 historical bugs in
Linux, and the construction of the VBDb database, described in Chapter 3.
ClabureDB is a database of bug reports for the Linux kernel with simi-

lar purpose to that of VBDb [SST13], albeit ignoring variability. The main
strength of ClabureDB is its size—the database is automatically populated
using existing bug finders, as of February 2017, it contains 221 con-
firmed Linux bugs, and 850 false positives. VBDb is comparatively small,
with only 43 Linux bugs documented. 1 We had to populate it manually,
given that we are interested in the study of bugs that state-of-the-art
tools cannot find efficiently. Incidentally, since no suitable bug finders

1Jean Melo, Stefan Stanciulescu, and Márcio Ribeiro have contributed 55 more bugs
to VBDb from three other open-source projects: the BusyBox *NIX utilities, the Marlin 3D-
printing firmware, and the Apache webserver [AMS+17].

12 Chapter 2. Related Work

handling variability exist, none of the bugs in VBDb is adequately cov-
ered in ClabureDB. The main strength of VBDb is in the detailed analysis
of each bug, and the derived artifacts. We have provided a record with
information enabling non-experts to rapidly understand the bugs and
benchmark their analyses. This includes a simplified version of each
bug where irrelevant details are abstracted away, along with explana-
tions and references intended for researchers with limited knowledge of
the Linux kernel.

Palix et al. [PTS+11] reproduced an empirical study measuring the
frequency of certain kinds of bugs in the Linux kernel as of 2001, ten years
later, in 2011, to reevaluate and investigate the evolution of bugs in Linux
over a decade. The results are available in a public archive.2 This study
has identified a series of Linux-specific bugs and rules, such as “do not use
floating point in the Linux kernel”. They searched for pre-defined types
of bugs in the Linux kernel source code, encoding these rules as Coccinelle
scripts. The bugs found were not confirmed by Linux developers, and it is
unknown how many of them were, in fact, real bugs. In turn, my focus
has been on qualitatively understanding the complexity and nature of
(variability) bugs, for which I have mined and subsequently analyzed
43 historical (confirmed and fixed) bugs in Linux.

Nadi et al. mined the Linux repository to study the occurrence and
nature of variability anomalies in Linux [NDT+13]. An anomaly is a mapping
error, such as mapping code to an invalid configuration, or code that is
mapped to nonexistent features. They could analyze a large number of
commits automatically by using the Undertaker tool [TLSSP11], which is
capable of finding such variability anomalies. While I conduct my study
in a similar fashion, I have focused on semantic errors in the code—and
I had to analyze commits manually.

Apel et al. use a model-checker to find feature interactions in a sim-
ple email client [ASW+11]. They used a technique known as variability
encoding (or configuration lifting [PS08]). This consists in encoding fea-
tures as Boolean variables, and transforming CPP conditional directives
(#if, etc.) into if conditional statements. I focused on understanding
the nature of variability bugs widely. This cannot be done with a model-
checker searching for a particular class of feature interactions. (Tools are
fundamentally biased towards finding specific kinds of bugs.) Under-
standing variability bugs should lead to building scalable bug finders,
enabling studies like [ASW+11] to be run for Linux in the future.

2http://faultlinux.lip6.fr/

http://faultlinux.lip6.fr/

2.1. Empirical study of software bugs 13

Medeiros et al. studied syntactic variability errors [MRG13]. They
used a variability-aware C parser [KKHL10] to automate their bug find-
ing, and exhaustively found all syntax errors. They found only a few
tens of errors in 41 program families, suggesting that syntactic errors
caused by variability are rare in practice. These 41 subjects are quite
diverse, including: web-servers, such as Apache; version-control sys-
tems, such as CVS; text editors, such as vim; programming-language in-
terpreters, such as Lua; etc. These are small to medium-size pieces of
software, which sum up about 4 MLOC and nine thousand files—Linux
drivers/ alone has about 8 MLOC and 13 thousand files. Yet, the main
difference with my work is that I focus on the wider category of more
complex semantic errors.

Tian et al. studied the problem of distinguishing bug fixing commits
in the Linux repository [TLL12]. They use semi-supervised learning to
classify commits according to tokens in the commit log and code metrics
extracted from the patch contents. They significantly improve recall
(without lowering precision) over keyword-based methods like mine.
In my study of Linux bugs, most of the time was invested in analyzing
commits, not in finding commits to analyze in the first place, so I found
a simple keyword-based method sufficient.

Yin et al. collected hundreds of errors caused by mis-configurations
in open source and commercial software [YMZ+11]. They consider sys-
tems in which parameters are read from configuration files, as opposed
to systems configured statically. The main difference is that they docu-
ment errors from the user perspective, as opposed to (in my case) pro-
grammer perspective.

Padioleau et al. studied collateral evolution in Linux device drivers,
following a method close to mine [PLM06]. Collateral evolution occurs
when existing code is adapted to API changes. They developed a tool to
heuristically identify collateral evolutions by analyzing bug-fixing com-
mits, and then manually selected 72 cases for a more careful analysis.
Before this study, the authors already had a good understanding of the
nature of collateral evolutions. Thus, in [PLM06] their approach is quan-
titative, they classify and estimate the amount of collateral evolutions
happened in between Linux 2.2 and 2.6 releases. Note that this study
concerns a very specific kind of bugs, when drivers code is broken due
to changes to kernel interfaces. My intent was to qualitative study (vari-
ability) bugs widely, to better understand the nature of these bugs. Such
an understanding did not previously exist.

14 Chapter 2. Related Work

From the VARIETE perspective, the study of 43 variability bugs in
Linux has increased our understanding about how feature-interactions
lead to (sometimes very subtle) software bugs, in highly-configurable
systems-level software. Before this work, most feature-interaction bugs
have been identified, documented, and published in the telecommuni-
cation domain [CKMRM03]. VBDb provides a unique collection of vari-
ability bugs that, I believe, will be useful in designing future variability-
aware tooling (e.g., [IMD+17]). These bugs are good examples of the
many C intricacies and idioms that make the design of static analyzers
challenging (and fun!). Crucially, it was the careful study of these bugs
that made me recognize the so-called resource mis-manipulation category
of bugs, ultimately leading to this thesis.

2.2 Side-effect analysis

This section discusses work related to the shape-and-effect inference al-
gorithm described in Chapter 6. I begin by discussing type-and-effect
systems, then pointer analysis.

2.2.1 Types and effects

The notion of type-and-effects was introduced by John M. Lucassen in
his Ph.D. thesis “Types and Effects: Towards the Integration of Functional and
Imperative Programming” (1987) [Luc87]. Lucassen proposed that a type-
and-effect system could replace the side-effect flow-analysis performed
by optimizing compilers [Ban78, Ban79, CK84, CK88]. Side-effect analy-
sis is used to compute which memory locations are accessed or updated
by a function call. Traditionally, this information is used by compilers
to determine whether it is legal to perform certain code optimizations.
He presented a polymorphic effect system that could perform inter-
procedural side-effect analysis, in the presence of first-class functions,
or function pointers.

His work was the origin of FX [JG88] by Jouvelot and Gifford, a lan-
guage designed for automatic parallelization, where effects are used to
determine the non-interference of expressions. Two expressions do not
interfere, if they read from and write to disjoint sets of memory loca-
tions. Consequently, non-interfering expressions can be evaluated in
parallel. The FX programming language was a remarkable demonstra-
tion of the possibilities brought by type-and-effect systems, but the lan-

2.2. Side-effect analysis 15

guage lacks a complete type inference algorithm. The need to provide
type and effect annotations is burdensome, and makes the language un-
suitable for mainstream use and adoption.

Talpin and Jouvelot developed a complete type reconstruction algo-
rithm for a polymorphic type-and-effect system with subeffecting [TJ92].
The notion of subeffecting is similar to that of subtyping, and it is re-
quired to handle certain uses of first-class functions. Remarkably, theirs
is a constraint-based type inference algorithm, essentially an extension
of Damas-Milner’s AlgorithmW [DM82]. (Sub-effecting is translated into
a system of inequalities that restrict the lower bounds of effect vari-
ables.) It requires no annotations and infers, for each expression, its
most-general type, and its minimal set of effects. A major limitation of
their approach is that, while efficient at inferring effects, it is inappro-
priate for restricting the effects of expressions—I will explain why this is
useful in the following.
Koka [Lei14] is a functional programming language by Daan Leijen,

featuring row-polymorphic [Rem93] effect types. By modeling sets of
effects as rows of effects, Koka effectively supports effect polymorphism
and a form of subeffecting. Koka is not only concerned about inferring
the effects associated with the evaluation of expressions. It also allows
language designers, or even users, to specify upper bounds for the ef-
fects of certain expressions, enabling the type-checker to catch more er-
rors. For instance, expressions used in assert constructs should not have
side-effects, so that asserts can be removed without altering the behav-
ior of the program. Unlike in Talpin-Jouvelot’s effect system, in Koka it is
possible to enforce such a constraint.

In my bug-finder, EBA, the effect system is an internal tool, used to
determine whether an expression performs certain operations on a set of
resources of interest. But, unlike optimizing compilers, that essentially
track reads and writes to memory locations, EBA relies on user-definable
effects to track arbitrary operations on resources. Complete type infer-
ence is a must here, otherwise the annotation burden would make EBA
unusable. For that reason, I have settled on Talpin-Jouvelot’s type-and-
effect system as a basis. Their inference algorithm is efficient, requires no
annotations, and supports first-class functions—thereby, also C function
pointers. Note that Damas-Milner type inference performs well in prac-
tice [McA96], and lower-bound subeffecting constraints can be solved in
polynomial time.

16 Chapter 2. Related Work

2.2.2 Pointer analysis

Side-effect analysis tracks operations on resources, which are identified
by their location in memory. But, in most programming languages, the
exact location of data in memory is only known at runtime. For in-
stance, two FILE pointers f1 and f2 may, or may not, refer to different
FILE objects in memory. Expressions that denote the same memory lo-
cation are called aliases. Aliasing can make the meaning of programs,
like fclose(f1); fclose(f2);, to change radically, from being a legal
program that closes two files, to undefined behavior, if f1 and f2 refer
to the same file descriptor. Pointer analyses are then used to compute
a set of potential values for a pointer expression at compile-time [SB15].
Naturally, side-effect analysis embeds pointer analysis.

The most popular pointer analyses in the literature are those that
compute points-to graphs. For instance, given the assignment p = &x,
these analyses record that p points-to x. Expressions are consider to alias
if their points-to sets intersect. For a programming language like C, that
allows liberal use of pointers and type casts, computing accurate points-
to information is particularly expensive. Unsurprisingly, the classic and
most popular pointer analyses are whole-program context- and flow-
insensitive analyses [And94, Ste96b, Das00]. Modular points-to analysis
is still an active research topic [SB15], and whole-program flow-sensitive
points-to analysis does not scale to real programs (let alone Linux!).

Side-effect analysis is not so much interested in points-to sets, as
it is in aliasing relations. Given the assignment p = &x, an alias
analysis records that *p and x are aliases, i.e. denote the same ob-
ject in memory. Alias analyses can use representations that are more
amenable to decomposition than a points-to graph. In fact, type-and-
effect inference typically performs polymorphic and modular alias anal-
ysis [TJ92, Lei14]. These type-and-effect systems introduce the concept
of memory region, that abstracts sets of possibly aliased memory loca-
tions. Types are annotated with the regions where objects are stored
in memory, and aliasing relations are recorded by unification. This is
similar to Steensgaard’s points-to analysis [Ste96b], but it is significantly
more precise thanks to region polymorphism [FFA00, Hin01].

Among the many trade-offs to consider in performing pointer analy-
sis, the treatment of records (C structures) is one of the most important in
practice [Ste96a, YHR99]. The simplistic approach consists in “collaps-
ing” record fields, so that only aliasing relations between record objects,
and not between their individual fields, are considered [YHR99]. Yet,

2.3. Static resource safety 17

real software makes extensive use of records, and ignoring their struc-
ture yields poor results in practice. Records are used to describe com-
plex resources, and each field constitutes a sub-resource that also needs
to be tracked individually.

Unfortunately, in C, type casts between structure types make alias
analysis for individual record fields non-trivial. For instance, given
a pointer s to an struct A, what does ((struct B *) s)->x mean?
The answer depends on the memory layouts of struct A and struct

B, which are largely implementation dependent. Many C projects, in-
cluding Linux, do exploit type conversions between structure types, to
implement OO-like abstract interfaces and class hierarchies (for instance
7acf6cd80b2, cf. Sect. 3.7). The Linux device driver model is a good example
of this.

If alias analysis must be sound, there are situations where it is neces-
sary to partially collapse record fields [Ste96a, YHR99]. Fortunately, for
the purpose of bug finding, we are allowed to sacrifice soundness to gain
in precision [LSS+15]. (Unlike for formal verification, where we require
a proof of correctness, we can accept that bug finders may miss bugs
due to unsoundness.) My treatment of record types is a relaxed version
of the common initial sequence approach described in [YHR99], which
captures many common uses of type casts between structure types (cf.
Chapter 4).

2.3 Static resource safety

In this section, I discuss the state of the art techniques and tools for
automatically checking resource manipulation safety at compile-time,
and how the bug finding technique of Chapter 6 relates to them. I have
classified the many available techniques in four groups, according to
their degree of precision and scalability: static typing (Sect. 2.3.1), static
code checking (Sect. 2.3.2), heavyweight static analysis (Sect. 2.3.3), and
software model checking (Sect. 2.3.4).

2.3.1 Type-safe resource manipulation

Many works have developed approaches to type-safe resource manip-
ulation, for instance [SY86, FTA02, PFH06, FJKA06, KS08]. These tech-
niques impose stricter typing disciplines that statically check that opera-
tions are applied on resources, only in the contexts where it is legal. For

18 Chapter 2. Related Work

instance, a read operation on a file, that might not be open at a certain
program location, is rejected by the type-checker.

The simplest approaches to type-safe resource manipulation are still
flow-insensitive analyses, as most type systems. In [KS08], Kyselyoiv
and Shan present a technique to statically ensure the safe use of file
handles (and potentially other kinds of resources) using regions [TT94].
Their approach requires a quite sophisticated underlying type sys-
tem, that provides features such as rank-2 polymorphism [JVWS07]. In
[FFA99], Foster et al. extend the C type system with user-defined type
qualifiers, and provide a constraint-based inference algorithm to check
for qualifier inconsistencies. Type qualifier inference can be used, for
instance, to perform flow-insensitive taint analysis [JW04, BHS03]. They
realized this idea into a tool, CQual [FJKA06], that has found a number of
bugs in Linux, nonetheless it produces an overwhelming amount of false
alarms [JW04].

On the other hand, the more advanced approaches are based on
flow typing [Pea13]. One of the earliest of these works is [SY86], where
Strom and Yemini introduce the concept of typestate. Typestate is a
flow-sensitive (but path-insensitive) abstraction of the state of an ob-
ject, that determines which operations are permitted at a specific pro-
gram location. Operations must be annotated with a typestate precon-
dition (e.g., to write a file this needs to be open for writing), and one
or more postconditions that define typestate transitions (e.g., the fclose

operation turns an open file into a closed file). In essence, this is anal-
ogous to associate each resource type with a state machine description.
However, compile-time typestate tracking is limited to programming lan-
guages with restricted use of pointers (so that two different names can-
not denote the same run-time object), and with a concurrency model
based on message passing (so that two different threads cannot share
data). This is certainly not the case of C, in which I am interested.

In [FTA02], Foster et al. take [FFA99] a step further, and extend their
previous work (and their tool, CQual) with flow-sensitive type qualifiers.
This notion of qualifier, that now tracks the state of objects, is basically
the same as the concept of typestate introduced in [SY86]. Yet, type
qualifiers are more expressive than typestate, and admit subtyping (e.g.,
a file that is open in readwrite mode is also open in read mode). This
work also considers the many intricacies of a language like C although,
due to the lack of shape polymorphism in their system, generic functions
that operate on void pointers are handled by implementation tricks.

2.3. Static resource safety 19

(In EBA, these functions would receive shape-polymorphic signatures.)
The authors use CQual to verify lock management in various Linux device
drivers, and find a number of bugs among a vast amount of false alarms.
In addition, for CQual to be run on Linux, they had to alter the source
code in many non-trivial ways, including the addition of CQual-specific
annotations.

Similar to CQual, Locksmith is a verification tool for detecting data
races in C programs, that builds upon constrained-based type infer-
ence [PFH06]. Locksmith automatically infers the set of locks that protect
each concurrent access to a memory location. A program is considered
free of data races, if every memory location is consistently protected by
the same set of locks. Locksmith requires few annotations, and handles
non-lexically scoped locks. While it can deal with unrestricted aliasing
of memory locations—at the cost of plenty of false positives, Locksmith
does require that every lock variable can be mapped to a unique lock
object at run-time. This linearity condition cannot easily be enforced
when locks are part of data structures, or are involved in non-trivial
type conversions, such as in the Linux kernel—I will show examples of
such problems in Chapter 3.

Approaches to type-safe resource manipulation are interesting addi-
tions to consider when designing new programming languages. Some
of these techniques have, in fact, been considered in the develop-
ment of cutting-edge programming languages, such as Rust.3 It is less
clear that these approaches can be effectively integrated into program-
ming languages like C, that have not been designed with compile-time
safety in mind. Attempts at integrating these techniques into C are
largely unusable in practice due to the noise caused by false positives,
and the burden of rewriting code or adding annotations to remove
these [FTA02, PFH06]. Not least, such rigid typing disciplines would
be hardly adopted by some C programmers, especially in the operating
systems domain. EBA builds on top of a type-and-effect analysis, but uses
the inferred effect information merely as an abstraction—as opposed to
an specification, on which to find bug patterns (cf. Sect. 2.3.2).

2.3.2 Static code checking

Static code checkers (also known as code scanners, or linters) are
lightweight bug-finding tools. Unlike heavyweight static analyzers and

3https://www.rust-lang.org/

https://www.rust-lang.org/

20 Chapter 2. Related Work

software model checkers (cf. sections 2.3.3 and 2.3.4), these are mostly
syntax-based tools that know little about program semantics. They ig-
nore aliasing, rely on heuristics, do not compute summaries, and work
intra-procedurally. With a focus on pragmatism, they analyze incom-
plete source code, sometimes even CPP code, and try to report as fewer
false bugs as possible, at the cost of being unsound. Hence, static check-
ers are easy to set up and use, run fast, and scale well. But, for the same
reasons, they find relatively simple and shallow bugs.

The degree of sophistication of these tools varies significantly. The
simplest ones would not even fully-parse the source code [Kop97,
BNE16], whereas others check finite-state properties against the control-
flow of programs [ECCH00]. To my knowledge, the first tool of this
class was lint [Joh78, Dar86]—hence the name linters, a static checker for
C created by Stephen C. Johnson at Bell Labs in 1970s. Lint will report
probably buggy code and bad coding style, and make portability recom-
mendations if desired. For instance, the statement *p++; is equivalent
to *(p++);, and therefore the pointer dereference (i.e., the *) has no
purpose. This may be a bug if the intention was to write (*p)++; in-
stead.
Splint [EL02] can be regarded as a modernized and more sophisticated

version of lint which, in addition, exploits user-provided code annota-
tions. CppCheck4 supports C and C++, and is able to analyze the different
compile-time alternatives of CPP #if conditionals. It is, to my knowl-
edge, the only production-ready variability-aware bug finder available
(cf. Section 1.1). CppCheck is a good example of the philosophy behind
bug finders: it employs a partial preprocessor [KKHL10], a fuzzy parser,
a simple value analysis, and finds bugs matching patterns at the level of
token. There are many of these tools available that will not be discussed
here. Nonetheless, three of them deserve special attention, for having
been adopted to analyze the Linux kernel source code [CWY+13]. These
are Sparse, Coccinelle, and Smatch.
Sparse5 exploits the GCC attributes extension to define Linux-specific an-

notations. These annotations are essentially type qualifiers, and Sparse
acts like a sort of type-checker by ensuring that their semantics is re-
spected. For instance, the __user and __kernel annotations are used
to specify whether a pointer belongs to user or kernel space, respec-
tively. User and kernel pointers are treated as having incompatible

4http://cppcheck.sourceforge.net
5http://sparse.wiki.kernel.org

http://cppcheck.sourceforge.net
http://sparse.wiki.kernel.org

2.3. Static resource safety 21

types [BA08]. Sparse will also check that user pointers are not derefer-
enced directly by kernel code, for security and other reasons. Among
other kinds, it supports three function-level locking annotations: __-

must_hold, __acquires, and __releases. Sparse will detect errors such
as the release of a lock followed by a call to a function that requires
the caller to hold that same lock. The main drawback of Sparse is that
it makes no effort at inferring these annotations. Hence, locking checks
are unpopular among developers because the annotation burden is too
high—a large number of functions in Linux will operate directly or indi-
rectly on locks [XA05].
Coccinelle6 is a program transformation tool, with an associated

domain-specific language (DSL) to specify flow-based transforma-
tions [BDH+]. These transformations, called semantic patches, resemble
diff-like patches with the addition of metavariables, to abstract away vari-
able and function names, and a wildcard pattern (“...”), to skip unin-
teresting code blocks. While originally conceived for managing collat-
eral evolution of code [PLM06], Coccinelle flow-matching capabilities have
been used to encode bug-finding rules [LLH+10, PTS+11]. The Linux ker-
nel sources include a number of Coccinelle-based bug checkers, located in
scripts/coccinelle/, which can be run with make coccicheck.
Smatch7 realizes the idea of meta-level compilation proposed by Engler

et al. [ECCH00]. It is, essentially, a scriptable intra-procedural data-flow
analysis engine. A checker in Smatch defines a state machine, where
transitions are associated with specific operations: e.g., a call to spin_-

lock will change the state of a spin lock object from unlocked to locked. A
bug is reported whenever an object transits to an error state; for instance,
due to a spin_lock call on an already locked spin lock. It reports a low
number of false positives thanks to Linux-tailored triaging heuristics, and
to a limited yet effective tracking of path correlations. Smatch warnings
have led to thousands of bug-fixing commits in Linux.
EBA, the tool proposed in this project, is also a bug finder. But, unlike

the aforementioned tools, it is able to track manipulation of resources
across functions boundaries. EBA scales well and runs fast and yet, it
finds deep inter-procedural bugs that the other bug finders do not (cf.
Chapter 7). This is achieved thanks to the use of lightweight, and com-
putationally cheap, shape-and-effect abstractions (cf. Chapter 4). Sparse
will miss the bug of Fig. 1.2, because the functions involved have no

6http://coccinelle.lip6.fr
7http://smatch.sf.net

http://coccinelle.lip6.fr
http://smatch.sf.net

22 Chapter 2. Related Work

locking annotations. (Linux developers rarely add Sparse locking annota-
tions.) It is also missed by Smatch, and by the Coccinelle double-lock script
that is shipped with the Linux sources. This is because the second ac-
quisition of the lock happens through a nested call to function inode_-

get_rsv_space, something EBA knows looking at its effect signature (cf.
Fig. 1.3).

It is worth noting that there are workarounds to add some inter-
procedural capabilities to otherwise intraprocedural bug finders. In
fact, Smatch has limited support for inter-procedural bug finding. As
in [ECCH00], Smatch provides a script to traverse the whole program and
collect all functions that, for instance, may perform locking. On a regu-
lar laptop, this script takes a few hours to run on the entire Linux kernel,
and must be run n times to examine n levels of the call graph. Compared
to a proper effect system such ad-hoc scripts are difficult to extend; and
do not track aliasing, nor handle function pointers appropriately.

2.3.3 Static program analysis

Static program analyzers have a good understanding of program seman-
tics. Unlike static checkers, these tools are designed to prove the absence
of certain types of bugs. In practice, though, some trade-offs are re-
quired [LSS+15], and most of these tools have at least a few sources of
unsoundness (e.g., GCC inlined assembly). These analyses can track the
value of expressions at each program location. Consequently, static ana-
lyzers are able to find complex and deep bugs, even when these involve
non-trivial data dependencies. In order to scale, they rely heavily on ab-
straction to model the program state. There is no single abstraction that
works for every problem, and tools use one abstract domain or another
according to their target class of bugs. The use of coarse abstractions
can make these tools report a considerable amount of false positives,
whereas very precise abstractions are expensive to compute.
Astrée is a whole-program analyzer that is designed to show

the absence of runtime errors in mission-critical embedded C soft-
ware [CCF+09]. It detects any potential violation of the C ISO/IEC
9899:1999 standard (division by zero, null-pointer dereference, etc.),
implementation-specific limits (e.g., arithmetic overflows), and user-
provided assertions. It is famous for having proven the absence of run-
time errors in the flight control software of some Airbus airplane models.
Astrée is particularly good at understanding arithmetic, for what it uses

2.3. Static resource safety 23

a combination of abstract domains [CC77, Cou96]. For instance, if the
value of an expression is approximated by the interval [−1, 1], its use
as a divisor will produce a warning about a potential division by zero
(because 0 ∈ [−1, 1]). (Note that the interval is an over-approximation,
and the actual value of the expression at runtime may, in fact, never
be zero.) Astrée targets a very specific kind of software (command/control
software), and only supports a restricted subset of the C language. This
language subset excludes recursion, dynamic memory, concurrency, etc.
Astrée scales up to code bases of hundreds of thousands lines of code,
but its running time is typically measured in hours.

Data-flow analyses compute facts about the program state at each
source location [NNH99]. An example of data-flow fact is, for instance,
whether a variable has been initialized or not. These facts are much
simpler than the abstract domains employed by Astrée. Compiler warn-
ings are good examples of static analysis based on tracking data-flow
facts: e.g., the compiler warns whenever a variable, that may not have
been initialized, is used. For efficiency, compilers implement intra-
procedural analyses, and their warnings can be overly conservative at
times. In [RHS95] Reps, Horwitz and Sagiv show how an important
class of inter-procedural data-flow analyses, coined as IFDS problems,
can be performed precisely and efficiently. This is thanks to an efficient
representation of partial function summaries. Their algorithm, based
on graph reachability, is popularly known as RHS. RHS has been the
basis for many interprocedural static analyzers. The Clang Static Analyzer8,
for instance, has recently gained interprocedural analysis capabilities by
using an adaptation of this technique [SYRS16].
INFER [CD11] is an automated verification tool based on separation

logic [BTSR04]. (It is an industrial-strength development of the research
prototype Smallfoot [BCO05].) At the present time, it is developed at Face-
book, where it is used to find specific kinds of memory and resource ma-
nipulation errors in their mobile applications. INFER was originally de-
signed to prove the absence of memory errors in C programs, for which
it performs (deep-heap) shape analysis [SRW98]. It is capable of reason-
ing about complex dynamic data structures, such as circular and nested
double-linked lists. INFER scales to arbitrarily large code bases, and has
run on projects with millions of lines of code, such as the Linux kernel.
For this, INFER synthesizes function specifications, in the form of Hoare
triples that entail memory safety, using bi-abduction inference [CDOY11]

8http://clang-analyzer.llvm.org

http://clang-analyzer.llvm.org

24 Chapter 2. Related Work

Such specifications are used as summaries to perform compositional
inter-procedural shape analysis [DOY06].
EBA offers a compromise solution between code scanners (cf.

Sect. 2.3.2) and static analyzers. Code scanners search for syntactic pat-
terns, scale well and are fast, but cannot find complex nor deep bugs;
whereas static analyzers rely on abstract semantics, and can find com-
plex and deep bugs, but in turn are slow. EBA employs a lightweight
and cheap abstraction based on computational effects. It knows which
operations are executed at each program location, but it has a shallow
understanding of the heap and how the data flows. EBA is well suited to
find conceptually simple, but interprocedurally deep bugs, when these
can be understood as illegal sequences of operations, and do not involve
complex data dependencies—i.e., “resource mis-manipulation bugs”. It
is moderately slower than most linters, but orders of magnitude faster
than most static analyzers. For instance, calling twice a procedure that
should only be called once, may result in a kernel panic9. Finding a
legal execution trace that leads to a call to panic() is a hard problem,
yet the high-level bug pattern is trivially specified in EBA.

2.3.4 Software model checking

Software model checking (SMC) describes a range of techniques to sys-
tematically explore the state space of a software program. These are also
verification tools, capable of finding deep and even more complex bugs
than static analyzers (cf. Sect. 2.3.3). Unlike static analyzers, which em-
ploy abstractions that combine the analysis of multiple program paths,
SMC tools analyze each individual execution path. Hence, these tools
have to deal with the exponential path explosion problem, in addition to
the state-space explosion problem. SMC tools have bigger scalability prob-
lems than static analyzers, but can be more precise at tracking the value
of expressions. Typically they represent the program state symbolically,
as logical formulas, rather than abstractly. Symbolic representations are
extremely precise, but require the use of automated theorem provers,
which adds significant computational cost.

Bounded model checking (BMC) tackles the state- and path explo-
sion problem by bounding both the size of the state, and the depth of the
paths to analyze. Typical BMC techniques verify programs by translat-
ing them into satisfiability problems: programs are encoded into some

9http://vbdb.itu.dk/#bug/linux/472a474

http://vbdb.itu.dk/#bug/linux/472a474

2.3. Static resource safety 25

(semi-)decidable logic, and a SAT [BBH+09] solver is used to explore the
state space. Among other examples of BMC tools for C, CBMC [CKL04]
encodes programs at the bit-level, into Boolean propositional logic. For
such encodings to be possible, loops must be completely unrolled, and
function calls must be fully inlined. Also, there may be C constructs
that cannot be adequately modeled in the underlying logic. Yet, BMC
is capable of verifying the absence of runtime errors in certain types
of embedded software, that have statically known bounds. When loop
and recursion bounds are unknown at compile-time, or when programs
are large, BMC tools can be used as bug finders by exploring execution
paths up to a given depth. As bug finders, BMC tools are much more
precise, but scale much worse, than the tools discussed in Section 2.3.2.

Symbolic executors exhaustively explore all the paths in a program,
akin to symbolic model checkers. The program state is maintained sym-
bolically for each program path. If, for instance, a pointer dereference is
reached, the executor checks whether the value of the pointer is a valid
memory address. This check consists in one or more queries to a SAT
solver. If the bug is confirmed, the executor is able to produce a test
case; i.e., it provides concrete program inputs that trigger the bug. An
example of such tool is KLEE [CDE08], essentially a symbolic virtual ma-
chine built on top of LLVM [LA04]. In practice, tools like KLEE introduce
certain restrictions to bound the search space; and perform many kinds
of optimizations. Nonetheless, KLEE does not scale to large and complex
software like the Linux kernel.

Another kind of SMC deals with the state-space explosion by means
of predicate abstraction [BMMR01]. These SMC tools consist of an
abstraction-check-refinement loop. The target program is abstracted in
terms of a set of predicates, resulting in a Boolean program [BMMR01].
For instance, given a single predicate x = 0, both a statement x = 1;,
and a condition x > 1, would be abstracted as x 6= 0. This Boolean pro-
gram is model-checked in search of bugs [BR01a]. If no bug is found, the
program can be considered “correct”, given that—at least in theory—the
Boolean abstraction accepts all the behaviors of the original program. If
a bug is found, and the execution path that leads to it is feasible, the
SMC tool provides a test case. If otherwise a false positive is found, it is
possible to use interpolation [McM05] to refine the set of predicates and
restart the process [CGJ+00]. This technique can work well for programs
that are control dominated, such as device drivers. But, if the pro-
gram contains non-trivial data dependencies, the refinement loop can

26 Chapter 2. Related Work

take too many iterations, or even diverge. Examples of SMC tools are
BLAST [BHJM07], used by the Linux Driver Verification Project [ZMM+15],
and SLAM [BR01b], developed and used at Microsoft to statically analyze
Windows device drivers.
EBA can be seen as a model checker based on an abstraction-check-

refinement loop. In a first step, it builds an effect-based abstraction of
the program to analyze. Subsequently, it performs a depth-first search
of the effect-annotated control-flow graph of each function. During this
search, EBA tries to find illegal sequences of operations (i.e., “bug pat-
terns”), such as the double-locking of a non-reentrant lock. EBA scales
because path exploration is, most of the time, confined to a single func-
tion. The majority of function calls will be deemed irrelevant by simply
looking at their effect signature (e.g., the function does not operate any
lock). If a function call does seem relevant but, due to the imprecision
of the abstraction, its effect signature does not allow to draw any con-
clusion, then the function call is inlined and the search resumed. In this
context, function inlining can be understood as a form of abstraction
refinement.

Chapter 3

A Qualitative Study of Bugs in Linux
Originally published in: ASE 20141

While static analysis techniques and tools abound, it seems that, in com-
parison, little effort has been put into understanding the characteris-
tics of bugs in large software systems. Gaining such understanding is
needed to ground research in actual problems. When I started this PhD
project, I could only find a handful of studies of software bugs in the
Linux kernel (cf. Section 2.1). These studies, so far, have focused on an-
alyzing the frequency of a narrow set of pre-defined types of bugs in
Linux [CYC+01, PTS+11]. The question is whether we have a good per-
spective of what bugs Linux developers actually spend time fixing.

In the context of the VARIETE project, we are particularly interested
in studying the occurrence of bugs in highly-configurable software (cf.
Section 1.1). It turns out that there is also little knowledge about the
characteristics of software bugs in Linux, or in any other configurable
system. (Yet, there is a plethora of variability-aware extensions to static
analysis and model-checking algorithms!) Given that Linux supports
about two dozen architectures, and is parameterized by tens of thou-
sands of configuration options, it seems reasonable to assume that it
suffers from numerous variability bugs. But, while bug reports abound,
it is unclear how many of those bugs are caused by feature interactions.

I set off to gain understanding on the complexity and nature of (vari-
ability and feature-interaction) bugs in the Linuxkernel. I have started to

1This chapter corresponds to our paper entitled “42 Variability Bugs in the Linux
Kernel: A Qualitative Analysis”[ABW14], published in the 29th International Conference
on Automated Software Engineering (ASE 2014).

28 Chapter 3. A Qualitative Study of Bugs in Linux

approach this objective via a qualitative in-depth analysis, and docu-
mentation, of 43 cases of such bugs. This study makes the following
contributions:

• Identification of 43 variability bugs in the Linux kernel, including in-
depth analysis and presentation for non-experts.

• A database containing the results of the analysis, encompassing a de-
tailed data record about each bug. These bugs comprise common
types of errors in C software, and cover different types of feature
interactions. The current version is available at http://VBDb.itu.dk/.

• Self-contained simplified versions of all bugs. These ease comprehen-
sion of the underlying causes, and can be used for testing bug-
finders in a smaller scale.

• An aggregated reflection over the collection of bugs. Providing insight
on the nature of bugs in a large project like Linux.

This work is directed to designers of program analysis and bug finding
tools, like myself. I believe that this collection of bugs can inspire others,
as it inspired me, in several ways: (i) it provides a set of concrete and
well described challenges for analyses; (ii) it supports the evaluation of
new techniques at design stage, since they can be tried on simplified
Linux-independent bugs; and (iii) it serves as a benchmark for evaluating
our tools.

3.1 Background

The concepts of configurable software, feature, and variability bug have
been introduced in Section 1.1. This section introduces the concepts of
feature-interaction bugs (Sect. 3.1.1), and variability bug fixes (Sect. 3.1.2).

3.1.1 Feature-interaction bugs

Figure 3.1 presents a tiny preprocessor-based C program family using
two features, INC and DEC, that contains a bug. Note that statements at
lines 10 and 13 are conditionally present. The presence condition of a code
fragment is a minimal (by the number of referred variables) Boolean for-
mula over features, specifying the subset of configurations in which the

http://VBDb.itu.dk/

3.1. Background 29

1 int printf(const char * format, ...);
2
3 void foo(int a) {
4 printf("%d\n",42/a); // ERROR
5 }
6
7 int main(void) {
8 int x = 1;
9 #ifdef CONFIG_INC // DISABLED

10 x = x + 1;
11 #endif
12 #ifdef CONFIG_DEC // ENABLED
13 x = x - 1;
14 #endif
15 foo(x);
16 }

Figure 3.1: Example of a program family and a bug.

code is included in the compilation. For instance, the assignment in line
10 has presence condition INC, this statement is therefore present in con-
figurations INC ∧ DEC and INC ∧ ¬DEC. The concept of presence condition
extends naturally to bugs, that is, the subset of configurations in which
a bug occurs.

If features INC and DEC can be independently set, the program family
of Fig. 3.1 defines four different program variants. But more often than
not features would have interdependencies. This may be because one
feature relies on another, or because two features conflict and cannot be
simultaneously enabled, and so on. For instance, in Linux, support for
the ecryptfs file system (feature ECRYPT_FS) requires the inclusion of the
cryptographic API (feature CRYPTO). Feature dependencies are specified
using a feature model, essentially a propositional formula over features
constraining legal configurations. The Kconfig language, which is part of
the Kernel build (Kbuild) system, is used to specify the feature model of
the Linux kernel.2

Features can also, intentionally or not, influence the functions of-
fered by other features, a phenomenon known as feature interaction. In

2https://www.kernel.org/doc/Documentation/kbuild/
kconfig-language.txt

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

30 Chapter 3. A Qualitative Study of Bugs in Linux

Figure 3.1, the two features interact because both modify the same pro-
gram variable x. Enabling either INC or DEC, or both, results in different
values of x prior to calling foo. If INC is disabled and DEC is enabled, this
interaction causes a crash at line 4, when the program attempts to di-
vide by zero. Bugs that are caused by the (often unexpected) interaction
of two or more features are called feature-interaction bugs. The degree of
a feature-interaction bug counts the number of features involved in the
interaction. Our example division-by-zero bug is thus a 2-degree bug
with presence condition ¬INC∧ DEC.

3.1.2 Variability bug fixes

The Linux kernel, as a program family, is stratified in three layers: the Kcon-
fig feature model, the C code, and the mapping of features to code. In Linux,
this mapping is specified using CPP conditionals (#if and so on), and
also in Makefiles. In the following, I will show how our example division-
by-zero bug could, depending on the interpretation, be assigned to and
fixed in each of these layers separately.

Fix in code. If function foo should accept any int value, then it may be
that the dividend and divisor were erroneously inverted. The following
patch fixes the problem:

1 @@ -4 +4 @@
2 - printf("%d\n",42/a);
3 + printf("%d\n",a/42);

Fix in mapping. If function foo was not supposed to handle a zero
input, then it may be that the original intention was to decrement x only
when both features are enabled. The following patch fixes the problem:

1 @@ -12 +12 @@
2 - #ifdef CONFIG_DEC
3 + #if defined(CONFIG_DEC) && defined(CONFIG_INC)

Fix in model. Alternatively, if foo does not accept zero as input, an-
other possibility is that feature DEC should depend on INC, and that de-
pendency is missing in the feature model. The following Kconfig model
fixes the problem:

3.2. Methodology 31

1 config INC
2 bool "Increment variable x"
3

4 config DEC
5 bool "Decrement variable x"
6 depends on INC

3.2 Methodology

3.2.1 Objective

My objective was to qualitatively understand the complexity and nature
of bugs in highly-configurable systems-level software (cf. Section 1.3).

This includes addressing the following research questions:

RQ1 What are the variability characteristics of bugs?

RQ2 What are the challenges for program analysis tools?

RQ3 What kind of bug finders do we need?

3.2.2 Subject

I study Linux, which is likely the largest highly configurable open-source
system in existence, with more than 14 million lines of code, and 16
thousand configuration options, as of 2016. Crucially, I have free ac-
cess to the bug tracker3, the source code and change history4, and to
public discussions on the mailing list 5 and other forums. There also
exist books on Linux development [BC05, Lov10], which are valuable
resources when understanding a bug-fix.

3https://bugzilla.kernel.org/
4http://git.kernel.org/
5https://lkml.org/

https://bugzilla.kernel.org/
http://git.kernel.org/
https://lkml.org/

32 Chapter 3. A Qualitative Study of Bugs in Linux

Message filters
CONFIG_fid
configuration

config option

if fid is [not]? set

when fid is [not]? set

if fid is [en|dis]abled
when fid is [en|dis]abled

Content filters
select fid
config fid
depends on fid
#if

#ifdef fid
#else

#elif

#endif

Figure 3.2: Regular expressions selecting configuration-related commits;
where fid abbreviates [A-Z0-9_]+, matching feature identifiers.

3.2.3 Part 1: Finding variability bugs

I focus my attention on bugs already found, corrected, and merged into
the stable branch of Linux. These bugs have been publicly discussed
(usually on LKML) and confirmed as actual bugs by the developers, so
the information about the nature of the bug fix is reliable, and I mini-
mize the chance of including fictitious problems. In early 2014, when
this study was conducted, the Linux stable repository had over 400, 000
commits. This large commit history rules out manual investigation of
each commit. Thus, I have settled on a semi-automated search through
Linux commits to find (variability) bugs via historic bug fixes, using the
following steps:

1. Selecting variability-related commits. I find commits whose message
indicates a variability-related change; or whose patch appears to
alter the feature model, the feature mapping, or configuration-
dependent code. This is achieved by matching case insensitively
the regular expressions of Figure 3.2. Expressions on the left, iden-
tify commits in which the author’s message relates the commit to
specific features. Those on the right, identify commits introducing
changes to the Kconfig feature model, the (CPP) feature mapping, or
code near an #if conditional. This step selects in the order of tens
of thousands of commits.

2. Selecting bug-fixing commits. I further narrow to commits that po-
tentially fix bugs and thus, together with the previous filter, we
obtain candidates for variability bug-fixes. This is achieved by

3.2. Methodology 33

Generic filters
bug

fix[es]

closes \#

oops

warn

error

unsafe

invalid

violation

end trace

kernel panic

Specific filters
void *
unused

overflow

undefined

deadlock

double lock

memory leak

uninitialized

dangling pointer

null [pointer]? dereference

. . .

Figure 3.3: Regular expressions selecting bug-fixing commits.

matching (also case insensitively) the regular expressions of Fig-
ure 3.3 against the commit message. Expressions on the left are
generic keywords that can appear in any bug-fixing commit mes-
sage. Expressions on the right of the figure try to identify bug-
fixing commits for specific types of bugs, such as void-pointer
dereferences (void *), undefined symbols (undefined), use be-
fore initialization (uninitialized), and so on. Generic filters may
select thousands of commits in Linux, whereas specific filters may
select only a few hundreds or tens.

3. Manual scrutiny. Finally, I read the commit message or the issue,
and inspect the changes introduced by the commit to remove false
positives. For instance, commit 7518b5890d passes through the pre-
vious two filtering steps yet, after examining the complete commit
message, it became clear that it does not fix a bug, but adds new
functionality. I examined simple commits first. A complex commit
either introduces more than a few changes (I choose a cut-off value
of ten), or affects very complex subsystems (e.g., the kernel/sched
Linux subsystem). The ideal commit has an elaborated message pro-
viding some form of error trace, and introduces few modifications.

The selection of the keywords and patterns of figures 3.2 and 3.3 was
based on my own understanding of the Linux kernel, and a preliminary
analysis of Linux code and commit messages to identify keywords and
phrases used by developers. For instance, I learned that, in Linux, an

34 Chapter 3. A Qualitative Study of Bugs in Linux

Oops refers to a critical condition detected by the kernel, such as a NULL

pointer dereference in kernel code.

3.2.4 Part 2: Analysis of bug candidates

The second part of the methodology is significantly more laborious than
the first part. For each variability bug identified, I manually analyze the
commit message, the patch fix, and the actual code to build an under-
standing of the bug. When more context is required, I find and fol-
low the associated discussion on LKML. Code inspection is supported by
ctags, 6 and the Unix grep utility.

1. The semantics of the bug. For each bug, I want to understand the
cause of the bug, the effect on the program semantics, and the re-
lation between the two. This often requires understanding the in-
ner workings of the kernel, and translating this understanding to
general programming language terms accessible to a broader au-
dience. As part of this process, I try to identify a relevant bug trace,
and collect links to available information about the bug online.

2. Variability related properties. I establish what is the presence condi-
tion of a bug (precondition in terms of configuration choices), and
where it was fixed: in the code, in the feature model, or in the
mapping.

3. Simplified version. I condense my understanding in a simplified ver-
sion of the bug. This serves to explain the original bug, and con-
stitutes an easily accessible benchmark for testing and evaluating
ideas and proof-of-concept prototypes.

I analyzed bugs from the previous step (cf. Section 3.2.3) following this
method, and stored the reports from this analysis in a publicly available
database. The detailed content of the report is explained in Section 3.4.

3.2.5 Part 3: Data analysis

I reflect on the set of collected data in order to find answers to my three
research questions (cf. Section 3.2.1). This step is supported with some

6http://ctags.sourceforge.net/

http://ctags.sourceforge.net/

3.3. Threats to validity 35

quantitative data but, importantly, I do not make any quantitative con-
clusions about the population of bugs in Linux (such conclusions would
be unsound given the above research method). The analysis purely char-
acterizes diversity of the data set obtained. It allows me to present the
entire collection of bugs in an aggregated fashion (see sections 3.5, 3.6,
and 3.7). The qualitative analysis of the bugs suggests directions for de-
veloping tools. Finally, in order to reduce bias I confronted this method,
findings, and hypotheses in an interview with a professional Linux Kernel
Engineer.

3.3 Threats to validity

3.3.1 Bias due to the selection process

Given that I extract bugs from commits, the bug collection is biased
towards bugs that are easier to reproduce—thus more likely to be found
and get fixed. Bugs that occur under very exceptional circumstances, or
that have no visible effect from the user perspective—like many security
flaws, can long remain unnoticed. Also, since users run a small subset
of all the possible configurations of Linux, there are potentially many
unknown variability bugs.

Further, the success of a keyword-based search relies on the ability
(and willingness) of developers to properly describe bugs and identify
the affected configurations. I have mitigated this bias by searching for
generic bug-keywords (e.g. commit f7ab9b407b3 was caught this way),
and by searching for variability-related keywords not only in the commit
message but also in the patch fix (e.g. commit 76baeebf7df).

In order to minimize the risk of introducing false positives, I do not
record bugs if I fail to extract a sensible error trace, or if my under-
standing of the bug does not match with the commit description. This
may introduce bias towards reproducible and lower complexity bugs.
In spite of that, Section 3.7 shows that the bug collection contains many
complex cases, such as 7acf6cd80b2.

Because of inherent bias of a detailed qualitative analysis method,
I am not able to make quantitative observations about bug frequencies
and properties of the entire population of bugs in Linux. Note, however,
that we are able to make qualitative observations, as well as formulate
hypotheses, from this data. Interestingly though, the bug collection still
exhibits very wide diversity as shown in Section 3.5.

36 Chapter 3. A Qualitative Study of Bugs in Linux

3.3.2 False positives and overall correctness

The analysis of the bugs is not run by a domain expert, which introduces
the risk of mistaken identification of bugs. By only considering bugs that
have been identified and fixed by the developers, I mitigate the risk of
introducing false positives. I only take bug-fixing commits from the Linux
stable repository, which have been extensively reviewed.

In addition, the data can be independently verified since it is pub-
licly available, and easily accessible through a web interface. Since the
publication of this study in 2014, many researchers have analyzed and
used this data, and some minor problems have been reported and fixed.

The risk of introducing false positives is not zero though, it also
occurs that developers conservatively fix non-bugs. For instance, Linux
commit b1cc4c55c69 adds a nullity check for a pointer that is guaranteed
not to be NULL.7 It would be tempting to record it as a bug fix, while in
fact it adds a defensive check to handle a potential bug.

The manual analysis of a bug to extract a bug trace is also error
prone, especially for a complex system like Linux. (This also applies to
the derivation of simplified bugs.) Ideally, I would have supported this
manual analysis with a program slicing tool, if any such tool, that scales
up to Linux and ideally copes with variability, existed and were freely
available.

3.3.3 External validity

The focus on a single software project, and the size of the bug collection,
do not allow to generalize the observations derived from this study. The
process of collecting and analyzing these 42 bugs took several months
of work. It is infeasible to study a significantly larger number of bugs
using this method. Nonetheless, I believe that the importance of the Linux
kernel itself justifies a wide and deep investigation of its errors, even if
it limits generalizability.

To my knowledge, there was no better way of answering my research
questions. A more automated approach based on bug-finders would not
be satisfactory. Bug-finders search for certain classes of errors, so they
can give good statistical coverage for those classes, but they would not
be able to assess the diversity of bugs that appear.

7https://lkml.org/lkml/2010/10/15/30

https://lkml.org/lkml/2010/10/15/30

3.4. Dimensions of analysis 37

- 6252547b8a7 -

type: Null-pointer dereference

descr: Null pointer on !OF_IRQ gets dereferenced if IRQ_DOMAIN

In TWL4030 driver, attempt to register an IRQ domain
with a NULL ops structure: ops is de-referenced when
registering an IRQ domain, but this field is only set
to a non-null value when OF_IRQ.

config: TWL4030_CORE && !OF_IRQ

bugfix:

repo: git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

hash: 6252547b8a7acced581b649af4ebf6d65f63a34b

layer: model, mapping

trace:
. dyn-call drivers/mfd/twl-core.c:1190:twl_probe()
. 1235: irq_domain_add(&domain);
.. call kernel/irq/irqdomain.c:20:irq_domain_add()
... call include/linux/irqdomain.h:74:irq_domain_to_irq()
... ERROR 77: if (d->ops->to_irq)

links:

* [I2C](http://cateee.net/lkddb/web-lkddb/I2C.html)

* [TWL4030](http://www.ti.com/general/docs/marketurl.tsp?name=twl4030)

* [IRQ domain](http://lxr.gwbnsh.net.../IRQ-domain.txt)

Figure 3.4: VBDb record for bug 6252547b8a7.

3.4 Dimensions of analysis

I begin by selecting a number of properties of bugs to understand, an-
alyze and document in bug reports. These are described below and ex-
emplified by data from the VBDb database. Figure 3.4 shows an example
record for a NULL-pointer dereference bug found in a Linux driver, which
was traced back to errors both in the feature model and the mapping.
Figure 3.5 shows the simplified version of this bug.

Type of bug. In order to understand the diversity of bugs I establish
the type of each bug (field type) according to the Common Weakness Enu-
meration (CWE)8—a taxonomy of numbered software weaknesses and vul-
nerabilities. However, since CWE is mainly concerned with security, I had

8http://cwe.mitre.org/

http://cwe.mitre.org/

38 Chapter 3. A Qualitative Study of Bugs in Linux

to add a few additional types of bugs, including type errors, among oth-
ers. The types of bugs that I found are listed in Fig. 3.1—my additions
lack an identifier in the CWE column.

Bug description. Understanding a bug requires rephrasing its nature
in general software engineering terms (field descr), so that the bug be-
comes understandable for non-experts. I add a one-line header to the
description, to help identification and listing of bugs. I obtain such
a description by studying the bug in depth, and following additional
available resources (such as mailing list discussions, available books,
commit messages, documentation and online articles). Whenever use
of domain-specific terminology is unavoidable, I provide links to the
necessary background. Obtaining the description is often non-trivial.

Presence condition. I investigate under what presence condition the
bug appears (field config). This enables further investigation of variabil-
ity properties of the bug, for example, the number of features and nature
of dependencies that enable the bug. Obtaining the presence condition
of a bug requires examining the source code and the Makefiles; as well
as the Kconfig files to check for feature dependencies. For instance, Linux
commit 6252547b8a7a (cf. Figure 3.4) fixes a 2-degree bug that occurs
when enabling TWL4030_CORE, and disabling OF_IRQ.

Bug-fix layer(s). I analyze the bug-fixing commit to establish whether
the source of the bug is in the code, in the feature model, or in the
mapping (field layer). The bug of Fig. 3.4 has been fixed both in the model
and in the mapping. The commit message asserts that: first, TWL4030_CORE
should not depend on IRQ_DOMAIN (fixed in the model); and, second, that
the assignment of the variable ops to &irq_domain_simple_ops is part
of the IRQ_DOMAIN code and not of OF_IRQ (fixed in the mapping).

Bug trace. I analyze and document the execution trace that leads to
the bug (field trace). Reconstructing the trace is key in understanding
the nature and complexity of the bug; and, once documented, it allows
other researchers to understand the bug much faster.

There are two types of entries in bug traces: function calls and state-
ments. Function call entries can be either static (tagged call), or dynamic
(dyn-call) if the function is called via a function pointer. A statement en-
try highlights relevant changes in the program state. Every entry starts

3.4. Dimensions of analysis 39

1 # def ine NULL (void *) 0
2
3 # i f d e f CONFIG_TWL4030_CORE
4 # def ine CONFIG_IRQ_DOMAIN
5 # endi f
6
7 # i f d e f CONFIG_IRQ_DOMAIN // ENABLED
8 i n t irq_domain_simple_ops = 1 ;
9

10 void irq_domain_add (i n t * ops)
11 {
12 i n t i r q = * ops ; // (4) ERROR
13 }
14 # endi f
15
16 # i f d e f CONFIG_TWL4030_CORE // ENABLED
17 i n t twl_probe ()
18 {
19 i n t * ops = NULL; // (2)
20
21 # i f d e f CONFIG_OF_IRQ // DISABLED
22 ops = &irq_domain_simple_ops ;
23 # endi f
24
25 irq_domain_add (ops) ; // (3)
26 }
27 # endi f
28
29 i n t main ()
30 {
31 # i f d e f CONFIG_TWL4030_CORE // ENABLED
32 twl_probe () ; // (1)
33 # endi f
34 re turn 0 ;
35 }

Figure 3.5: Simplified version for bug 6252547b8a7.

with a non-empty sequence of dots indicating the nesting of function
calls, followed by the location of the function definition (file and line) or
statement (only the line). The statement in which the bug is manifested
is marked with an ERROR label.

Simplified bug. I synthesize a simplified version of the bug, a small
C program, that exhibits the same essential behavior, and the same es-
sential problem. Simplified bugs are self-contained C files that do not
depend on Linux kernel code, nor any other library than libc. The entire
set of simplified bugs constitute an easily accessible benchmark suite
derived from real bugs, which can be used to evaluate proof-of-concept
tools on a smaller scale.

40 Chapter 3. A Qualitative Study of Bugs in Linux

Simplified bugs are derived systematically from the bug trace. Along
this trace, I preserve relevant statements and control-flow constructs, CPP
conditionals, feature mapping information, and function calls. I keep
the original identifiers for features, functions and variables. However,
I abstract away complex code patterns (e.g. dynamic dispatching via
function pointers) whenever this is not essential to capture the bug. For
this reason, if a tool finds one of these simplified bugs, that does not
imply that it will find the real bug too. When there exist dependen-
cies between features, these are encoded operationally, using #define

directives (cf. lines 4–6 of Figure 3.5). This makes the simplified bugs
independent of any particular configuration modeling notation, such as
Kconfig.

Traceability. The record includes the URL of the repository in which
the bug fix is applied (field repo), the commit id (field hash), and links
to relevant context information about the bug (field links), in order to
support independent verification of my analysis.

3.5 Diversity of bugs in VBDb

I start by characterizing the diversity of VBDb bugs from three different
perspectives: the types of errors, their location in the Linux source tree,
and the configuration options involved.

Observation 1:
VBDb bugs are not limited to any particular type of errors.

Table 3.1 lists the type of bugs I have recorded, along with occurrence
frequencies in the collection. The 43 bugs fall within 21 different error
types, in seven wider bug classes. For example, 11 bugs have been classi-
fied under the category of memory errors, four of which are NULL pointer
dereferences. Note that VBDb bugs cover a wide range of qualitatively
different types of bugs.

Note that at least 11 of these bugs (declaration and type errors) are
caught by the C compiler, and some are fatal (e.g. undefined function).
The buggy code passed several code reviews and made it into the of-
ficial Linux repositories, presumably because neither the author nor the
reviewers compiled the kernel in the right configuration.

3.5. Diversity of bugs in VBDb 41

Observation 2:
VBDb bugs are not confined to any specific location (file or
subsystem) in the Linux kernel.

Figure 3.6 shows in which subsystems the bugs are located and the rel-
ative size of each subsystem as of March 2014—I approximate subsys-
tems by directories. The size of each subsystem is measured in lines
of code (LOC).9 For example, with six squares, the kernel/ subsys-
tem has approximately 150 KLOC and represents about 1% of the Linux
code. Superimposed onto the size visualization, the figure also shows
in which directories the bugs occur. With five red (dark) squares, the
directory kernel/ thus houses five of the bugs in VBDb.
VBDb bugs occur in ten of the main Linux subsystems. Note that Linux

subsystems are often maintained and developed by different people,
which adds to the diversity of VBDb. I have found no bug in nine directo-
ries, but those represent less than the 3% of the Linux kernel code in total.
(Of course, there are bugs fixed in those directories, but likely I have not
found any because of the small sample size and that the search pro-
cess was largely randomized in terms of bug location.) Further, three of

9As reported by cloc (http://cloc.sourceforge.net/), version 1.53.

Table 3.1: Types of bugs among the 43 bugs. The first column gives the
frequency of these bugs in the VBDb collection.

11 memory errors: CWE
4 null pointer dereference 476
3 buffer overflow 120
3 read out of bounds 125
1 write on read only –

10 resource mgmt. errors: CWE
5 uninitialized variable 457
1 memory leak 401
1 use after free 416
2 duplicate operation 675
1 double lock 764
8 logic errors: CWE
5 fatal assertion violation 617
2 weak assertion violation 617
1 behavioral violation 440

7 declaration errors: CWE
4 undefined function –
2 undeclared identifier –
1 mult. function definitions –
4 type errors: CWE
2 incompatible types 843
1 wrong func. arg. number 685
1 void pointer dereference –
2 dead code: CWE
1 unused function 561
1 unused variable 563
1 arithmetic errors: CWE
1 numeric truncation 197

http://cloc.sourceforge.net/

42 Chapter 3. A Qualitative Study of Bugs in Linux

drivers/

7.0M (59%)

arch/

2.0M (17%)

fs/

801k (7%)

sound/

595k (5%)

net/

583k (5%)

include/

372k (3%)

kernel/

139k (1%)

lib/

66k (.6%)

mm/

63k (.5%)

crypto/

62k (.5%)

security/

49k (.4%)

block/

21k (.2%)
Smaller:
• virt/ (6.8k), ipc/ (6.4k), init/ (2.0k), and usr/ (0.6k).

Infrastructure:
• tools/ (102k), scripts/ (44k), and samples/ (2.1k).

Figure 3.6: Location of the 43 bugs in the main Linux directories as of
March 2014. Each square represents 25 thousand lines of code. The
precise number of LOC and its percentage of the total is given below
the squares. A red (dark) square symbolizes the occurrence of one of
the bugs.

them (tools/, scripts/, and samples/) contain example and sup-
port code (build infrastructure, diagnostic tools, etc.) that does not run
on a compiled kernel.

Observation 3:
VBDb bugs are not restricted to a few error prone features.

Table 3.2 shows the complete list of configuration options involved in
the bugs. VBDb bugs involve a total of 78 qualitatively different features,
ranging from debugging options (e.g. QUOTA_DEBUG), to device drivers (e.g.
TWL4030_CORE), to network protocols (e.g. VLAN_8021Q), to computer architec-
tures (e.g. PARISC). Three features are involved in three of the bugs, nine
features occur in two bugs, and the remaining 66 are involved in only a
single bug.

While the VBDb bug collection is not meant to be representative of
the entire population of Linux bugs (cf. Sect. 3.2.3), it does exhibit high
diversity. These 43 bugs involve 21 types of errors, 10 Linux subsystems,
and 78 configuration options. This diversity supports the subsequent

3.6. RQ1: Variability characteristics of bugs in Linux 43

qualitative investigation of the three research questions, in sections 3.6,
3.7, and 3.8.

3.6 RQ1: Variability characteristics of bugs in Linux

I have arrived at six observations (4–9) regarding the variability proper-
ties of VBDb bugs, and by extension Linux bugs, that make my answer to
research question RQ1. Overall, the main conclusion is that reasoning
about variability in Linux requires more than local examination of a piece
of code (observations 4–7). Feature implementations are intermixed and
span multiple subsystems, and reasoning about feature interactions re-
quires looking not only at the code, but also at the Kconfig feature model,
and the Makefiles. A secondary, but interesting, outcome of this study was
the realization that disabling certain features may be an effective way of
triggering bugs in Linux (observations 8–9). I believe that taking these
observations into account will benefit the design of future variability-
aware tools. (While this has not been the objective of my PhD project, it
is one of the main objectives of project VARIETE, cf. Section 1.1.)

Observation 4:
The implementation of features in Linux is scattered across

Table 3.2: Configuration options involved in the bugs.

64BIT IP_SCTP S390
ACPI_VIDEO JFFS2_FS_WBUF_VERIFY S390_PRNG
ACPI_WMI KGDB SCTP_DBG_MSG
AMIGA_Z2RAM KPROBES SECURITY
ANDROID KTIME_SCALAR SHMEM
ARCH_OMAP2420 LBDAF SLAB
ARCH_OPAM3 LOCKDEP SLOB
ARM_LPAE MACH_OMAP_H4 SMP
BACKLIGHT_CLASS_DEVICE MODULE_UNLOAD SND_FSI_AK4642
BCM47XX NETPOLL SND_FSI_DA7210
BDI_SWITCH NUMA SSB_DRIVER_EXTIF
BF60x OF STUB_POULSBO
BLK_CGROUP OF_IRQ SYSFS
CRYPTO_BLKCIPHER PARISC TCP_MD5SIG
CRYPTO_TEST PCI TMPFS
DEVPTS_MULTIPLE_INSTANCES PM TRACE_IRQFLAGS
DISCONTIGMEM PPC64 TRACING
DRM_I915 PPC_256K_PAGES TREE_RCU
EP93XX_ETH PREEMPT TWL4030_CORE
EXTCON PROC_PAGE_MONITOR UNIX98_PTYS
FORCE_MAX_ZONEORDER=11 PROVE_LOCKING VLAN_8021Q
HIGHMEM QUOTA_DEBUG VORTEX
HOTPLUG RCU_CPU_STALL_INFO X86
I2C RCU_FAST_NO_HZ X86_32
IOSCHED_CFQ REGULATOR_MAX8660 XMON
IPV6 REISERFS_FS_SECURITY ZONE_DMA

44 Chapter 3. A Qualitative Study of Bugs in Linux

subsystems, therefore bugs may involve non-locally defined fea-
tures (i.e., features defined in another subsystem than where
the bug occurred).

A total of 30 (70%) of VBDb bugs involve non-locally defined features.
This means that there is often functionality and features involved from
different subsystems, than the one where the bug manifests. Identifying
such bugs requires cross-subsystem knowledge, while it seems that most
Linux developers are dedicated to a single subsystem.

For example, bug 6252547b8a7 (Fig. 3.5) occurs in the drivers/ sub-
system, but one of the interacting features, IRQ_DOMAIN, is defined in
kernel/. Another example is bug 0dc77b6dabe, which manifests when
loading the extcon-class module (drivers/), and is caused by an im-
proper use of the sysfs virtual filesystem API—feature SYSFS in fs/.

Observation 5:
Linux coding conventions encourage the use of configuration-
dependent definitions, introducing a form of variability that
is implicit and cannot be observed by the naked eye.

The following coding guideline on #ifdef usage from How to Get Your
Change Into the Linux Kernel10 advises:

“Code cluttered with ifdefs is difficult to read and maintain. Don’t
do it. Instead, put your ifdefs in a header, and conditionally define
’static inline’ functions, or macros, which are used in the code.”

This and other Linux guidelines encourage the introduction of
configuration-dependent definitions (functions, macros, types, and so on).
At the usage site, there is no indication of the configuration-dependent
nature of these code entities—not even a name convention is used. De-
velopers may reason about the code assuming the most common defini-
tions for configuration-dependent entities, and ignoring the alternative
definitions in exceptional configurations.

A common source of variability build errors is the invocation of func-
tions from configurations in which are not defined. For instance, in bug
242f1a34377, function crypto_alloc_ablkcipher(), which is specific to
feature CRYPTO_BLKCIPHER, is called by a piece a code (in another file) that
assumes that this function always exist, leading to a build error when
CRYPTO_BLKCIPHER is disabled.

10https://www.kernel.org/doc/Documentation/SubmittingPatches

https://www.kernel.org/doc/Documentation/SubmittingPatches

3.6. RQ1: Variability characteristics of bugs in Linux 45

39 single layer:
28 code
5 mapping
6 model
4 multiple layers:
2 code & mapping
1 mapping & model
1 code & mapping & model

Figure 3.7: Bug-fixing layers for VBDb bugs.

Another example is bug 0f8f8094d28, where an array is iterated by a
for loop using an upper-bound that is not the right one for all possible
configurations. In PowerPC architectures, and only for a particular virtual
page size, the for loop will access the array out of its bounds.

Observation 6:
Linux bugs are fixed not only in the code; some are fixed in the
mapping, some are fixed in the model, and some are even fixed
in a combination of these layers.

Figure 3.7 shows whether the bugs in VBDb were fixed in the code, map-
ping, model, or combinations thereof (cf. Section 3.1). Remarkably, 15
bugs (35%) in VBDb involved fixes in the mapping or in the model, four
of which required fixes in multiple layers.

For instance, Linux bug-fix 6252547b8a7 removes a feature dependency
(TWL4030_CORE no longer depends on IRQ_DOMAIN) and changes the map-
ping to initialize the structure field ops when IRQ_DOMAIN (rather than
OF_IRQ) is enabled. Linux commit 63878acfafb removes the mapping of some
initialization code to feature PM (power management), and adds a func-
tion stub. Bug e68bb91baa0 was fixed in all the three layers!

The stratification into code, mapping, and model may obscure the cause
of bugs, because an adequate analysis of a bug requires understanding
all three layers. [MBW16] This complexity may cause a developer to fix
a bug in the wrong place. For instance, the dependency of TWL4030_-
CORE on IRQ_DOMAIN removed by bug-fix 6252547b8a7was added by commit
aeb5032b3f8. Apparently, aeb5032b3f8 introduced this dependency into the
Kconfig model to fix a build error, but this had undesirable side-effects.

46 Chapter 3. A Qualitative Study of Bugs in Linux

8 single-feature bugs:
8 1-degree

35 feature-interaction bugs:
22 2-degree
9 3-degree
1 4-degree
3 5-degree

Figure 3.8: Variability degrees of VBDb bugs.

Observation 7:
The large number of features in Linux, together with the scat-
tering of feature implementations across subsystems, make it
prone to feature interaction bugs.

Figure 3.8 summarizes the degrees of bugs in VBDb. As many as 35 bugs
(81%) are caused by feature interactions, and 13 (30%) involve three fea-
tures or more. Feature-interaction bugs are inherently more complex to
find and reason about [MBW16]. The number of potential interactions to
consider is exponential in the number of features involved. This impacts
both developers and analyzers that, consequently, have to cope with this
combinatorial blow up.

For instance, Linux bug 6252547b8a7 (cf. Fig. 3.5) is a feature interaction
bug. The code slice containing the bug involves three different features,
and represents four variants (corrected for the feature model), but only
one of the variants presents a bug. The ops pointer is dereferenced
in variants with TWL4030_CORE enabled, but it is not properly initialized
unless OF_IRQ is enabled.

Another example is bug ae249b5fa27, a 3-degree bug where an asser-
tion is violated by the interaction of DISCONTIGMEM (efficient handling of
discontinuous physical memory), and the ability to monitor memory
utilization through the proc/ virtual filesystem (feature PROC_PAGE_MON-
ITOR), in PA-RISC architectures (feature PARISC).

Observation 8:
When coding, it is easy to assume that certain functionality
is always present, thus disabling common features from the
kernel is likely to uncover variability bugs.

Figure 3.9 lists and groups the structure of the presence conditions of
VBDb bugs. A total of 22 bugs (51%) are triggered by disabling one or

3.6. RQ1: Variability characteristics of bugs in Linux 47

21 some enabled:
5 a

10 a ∧ b
5 a ∧ b ∧ c
1 a ∧ b ∧ c ∧ d ∧ e

20 some-enabled-one-disabled:
3 ¬a

13 a ∧ ¬b
3 a ∧ b ∧ ¬c
1 a ∧ b ∧ c ∧ d ∧ ¬e
2 other configurations:
1 ¬a ∧ ¬b
1 a ∧ ¬b ∧ ¬c ∧ ¬d ∧ ¬e

Figure 3.9: Presence conditions under which VBDb bugs occur.

more features, 20 of which require disabling just one feature. The other
21 bugs are triggered by enabling one or more features, five of which
(12% of the total) are just errors in the implementation of a feature.
Note that a presence conditions of the form (a ∨ a′) ∧ ¬b are classified
as a ∧ ¬b. Similarly, presence conditions of the form (a ∨ a′) ∧ b. (For
this reason, Fig. 3.8 and Fig. 3.9 may appear inconsistent.)

For instance, in bug 6252547b8a7 (Fig. 3.5), disabling OF_IRQ causes
a NULL pointer dereference, because the initialization of a pointer is
mapped to this feature. Another example is bug 60e233a5660, where
disabling HOTPLUG leads to a buffer overflow. Interestingly, the code as-
sociated with HOTPLUG is unconditionally present in recent versions of
the Linux kernel.

Observation 9:
A test sampling strategy based on disabling isolated groups
of features could be effective at uncovering variability bugs.

Let us consider a one-disabled test sampling strategy, where we test con-
figurations in which at least one feature is disabled (and preferably ex-
actly one, if the feature model permits it). The size of such test sample
is bounded by the number of features, and would cover 96% of bugs
in VBDb. Testing of highly-configurable systems is often approached by
testing maximal configurations, in which as many features as possible are

48 Chapter 3. A Qualitative Study of Bugs in Linux

enabled—i.e., all-enabled, in an attempt to maximize code coverage. Max-
imal configuration testing covers just 21 bugs (49%) in VBDb (cf. Fig. 3.9).

In Linux, make allyesconfig follows a simple algorithm that pro-
duces one pseudo-maximal configuration. Yet, the enumeration of all
one-disabled configurations (e.g., using on a MaxSAT solver) could result
in tens of thousands of configurations to test (as many configurations
as features, in the worst case). In practice, this could be implemented
similarly to allyesconfig, by generating a handful of configurations
where pre-defined (groups of) features are disabled (e.g., 64BIT, SMP, PCI,
IPV6, etc.).

Remarkably, Medeiros et al. [MKR+16] executed a comparative quan-
titative study of the effectiveness of various test sampling strategies for
configurable systems, including the above one-disabled strategy—known
to them through our ASE 2014 paper [ABW14]. According to their study,
one-disabled is the only non-trivial method that is able to scale to all of the
Linux kernel, and was more effective at finding bugs than both all-enabled
and random sampling.

3.7 RQ2: Challenges in analyzing Linux source code

I also analyzed the VBDb bug collection from a programming-language
perspective. This yielded six major observations (10–15) that describe
non-trivial challenges in analyzing Linux code. These challenges are
largely part of the folklore knowledge in the static analysis community
but, some of them, are vaguely described in the literature. This study
shows how these challenges arise in Linux due to specific coding patterns,
using excerpts of real bugs from VBDb.

Observation 10:
A static code analyzer needs to parse CPP conditional direc-
tives (i.e. #if and so on) in order to recognize configuration-
dependent code.

In Fig. 3.5, for instance, it is necessary to associate the initialization of the
ops pointer with feature OF_IRQ. Parsing unprocessed or partially prepro-
cessed C files, that maintain some preprocessor directives, is a difficult
but known problem. Sound approaches that employ fork-merge parsers
are, unfortunately, too slow [KGR+11, GG12]. The alternative is heuris-
tic and fault-tolerant parsing [PWC91, Pad09]. Yet, to my knowledge,

3.7. RQ2: Challenges in analyzing Linux source code 49

1 void inet_ehash_locks_free() {
2 #ifdef CONFIG_NUMA // ENABLED
3 if (size > PAGE_SIZE)
4 vfree(hashinfo->ehash_locks);
5 else
6 #else // DISABLED
7 kfree(hashinfo->ehash_locks);
8 #endif
9 hashinfo->ehash_locks = NULL; // LEAK

10 }

Figure 3.10: Bug 218ad12f42e: when NUMA is enabled, if the condition in
line 3 evaluates to false, line 10 reassigns hashinfo->ehash_locks thus
leaking memory.

there is no production-ready compiler front-end available that supports
CPP-aware parsing.

Note that writing such a parser is difficult for multiple rea-
sons [KGR+11]. The first challenge is to partially preprocess files, in-
cluding headers and expanding macros, while maintaining CPP con-
ditionals. (Note that CPP conditionals can surround #includes and
#defines!) The second challenge is parsing unstructured (or undisci-
plined) uses of #if conditionals, that do not wrap complete C syntactic
entities. (It is relatively simple to extend the C grammar to parse struc-
tured uses of #if conditionals.) For instance, Figure 3.10 shows the use
of unstructured CPP involved in bug 218ad12f42e. In this case, the #ifdef

block wraps only part of the if statement.

Observation 11:
A static code analyzer needs to be configuration-sensitive in
order to identify how variability impacts the data-flow and
the control-flow.

The VBDb bug collection evidences how configuration options can af-
fect the program state and control-flow, with unexpected consequences.
This is particularly the case for VBDb bug examples of use before initial-
ization, NULL pointer dereference, and buffer overflow. For instance, in
Fig. 3.5, the value of ops in line 25 (hence, in line 12) may or not be NULL
depending on OF_IRQ. Figure 3.11 shows a bug in VBDb, where feature HOT-
PLUG determines which function is called in line 17. The function that is
called when HOTPLUG is disabled causes a buffer overflow in line 20.

There are two ways of dealing with variability at this level. The
simplest is a technique known as configuration lifting [PS08], and that

50 Chapter 3. A Qualitative Study of Bugs in Linux

1 #if defined(CONFIG_HOTPLUG) // DISABLED
2 int add_uevent_var(struct kobj_uevent_env *env, const char *str)
3 {
4 int len = sprintf(&env->buf[env->buflen], str);
5 env->buflen += len + 1;
6 return 0;
7 }
8 #else // ENABLED
9 int add_uevent_var(struct kobj_uevent_env *env, const char *str)

10 {
11 return 0;
12 }
13 #endif
14
15 void input_add_uevent_modalias_var(struct kobj_uevent_env *env)
16 {
17 int len;
18
19 if (add_uevent_var(env, "MODALIAS="))
20 return -ENOMEM;
21
22 len = sprintf(&env->buf[env->buflen-1], "X"); // OVERFLOW
23 env->buflen += len;
24 }
25
26 void show_uevent()
27 {
28 struct kobj_uevent_env *env;
29 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
30 input_add_uevent_modalias_var(env);
31 }

Figure 3.11: Bug 60e233a5660: In line 26, function show_uevent al-
locates and zero-initializes a kobj_uevent_env structure, env. This
structure maintains a string buffer env->buf of length env->buflen.
There are two versions of function add_uevent_var depending on
feature HOTPLUG. If HOTPLUG is disabled add_uevent_var does nothing,
env->buflen maintains its zero value, and consequently input_add_-

uevent_modalias_var will write at env->buf[-1] in line 20, outside
of the buffer bounds.

consists in analyzing a meta-program that subsumes all program con-
figurations. Essentially, this meta-program encodes features as Boolean
program variables, and CPP conditionals as regular if statements in
C [IMD+17]. The second option, significantly more laborious, consists
in adapting static analyzers to cope with variability [BRT+13, BTR+13].
This adaptation typically requires that the many data structures of the
analyzer (e.g., the symbol table) are indexed by configurations.

3.7. RQ2: Challenges in analyzing Linux source code 51

1 void pts_sb_from_inode(struct inode *inode)
2 {
3 #ifdef CONFIG_DEVPTS_MULTIPLE_INSTANCES
4 if (inode->i_sb->s_magic == · · ·) // NULL DEREFERENCE
5 · · ·
6 #endif
7 }
8
9 void pty_close(struct tty_struct *tty)

10 {
11 #ifdef CONFIG_UNIX98_PTYS
12 pts_sb_from_inode(tty->driver_data);
13 #endif
14 }
15
16 void tty_release(struct tty_struct *tty)
17 {
18 tty->ops->close(tty); // CALLS TO pty_close
19 }
20
21 #ifdef CONFIG_UNIX98_PTYS
22 void ptmx_open(struct inode *inode)
23 {
24 struct tty_struct *tty;
25 tty = tty_init_dev(ptm_driver);
26
27 if (∗)
28 goto err_release; // TAKEN
29
30 tty->driver_data = inode; // NOT EXECUTED
31 return;
32
33 err_release:
34 tty_release(tty);
35 }
36 #endif

Figure 3.12: Bug 7acf6cd80b2: In line 25, function tty_init-dev allo-
cates and partially initializes a tty_struct structure, tty: tty->ops

is set to ptm_drivers->ops, while tty->driver_data is set to NULL.
Upon some error condition the tty is released, in line 34. Invocation of
function pointer tty->ops->close dynamically calls pty_close, where
tty->driver_data is passed to function pts_sb_from_inode. At this
point, tty->driver_data is still a pointer to NULL. If DEVPTS_MULTIPLE_IN-
STANCES is enabled this NULL pointer is dereferenced in line 4 causing a
kernel crash.

Observation 12:
A static code analyzer needs to resolve the potential targets
of function pointers in a context-sensitive manner, in order to
follow dynamic calls to functions.

52 Chapter 3. A Qualitative Study of Bugs in Linux

Ten bugs in VBDb (33% of runtime bugs) involve dynamic calls through
function pointers. Bug 7acf6cd80b2 (cf. Figure 3.12) is one of these ten
cases. In this example, tty_struct is an abstraction for manipulat-
ing arbitrary terminal devices (TTY), which can have different imple-
mentations. In the context of ptmx_open, the tty object represents
a pseudo-terminal emulator, and tty->ops->close points to function
pty_close. Building a precise call graph for Linux is non-trivial and re-
quires both a configuration- and context-sensitive analysis of function
calls.

This use of function pointers arises mainly from a common idiom
in C, and particularly in Linux, that consists in using function pointer ta-
bles as generic interfaces for manipulating different resources uniformly.
Typically, pointers to data and operations (i.e., functions) are aggregated
in structure types, in order to obtain data and logic encapsulation. For
instance, in Fig. 3.12 the tty_struct structure holds a pointer to driver-
specific data (field driver_data, a void pointer), and a pointer to a
method dispatching table (field ops, a pointer to a tty_operations struc-
ture). In addition to the aforementioned TTY abstraction, another classic
example is the abstraction of file descriptor. Basically, any device driver
in Linux exposes its functionality through an interface of this kind.

Function pointer tables are also used to implement generic traversals
over kernel data structures, akin to the visitor pattern. For instance,
bug 8c8296223f3 is a buffer overflow during the execution of an mm_walk

visitor. An mm_walk object holds a sets of callbacks, which walk_page_-

range executes on the different levels of the virtual memory hierarchy.

Observation 13:
A static code analyzer needs to understand the use of type
casts to workaround the lack of generics and subtyping in C,
in order to track the flow of data effectively.

Generic data manipulation in C relies on the use of type casts to re-
move, and recover, type information associated with memory addresses.
For instance, Figure 3.13 shows a fragment of bug 657e9649e74, where a
long integer is decoded into a function pointer that is subsequently in-
voked (lines 10–11). This bug occurs in the internal timer mechanism
of the Linux kernel. Because timers manipulate different types of data, a
timer_list holds pointers to arbitrary data, that are encoded as long

integers. For this reason, pointer analysis of C code largely ignores the

3.7. RQ2: Challenges in analyzing Linux source code 53

1 void tcp_twsk_destructor()
2 {
3 #ifdef CONFIG_TCP_MD5SIG // ENABLED
4 put_cpu(); // DECREASES preempt_count()
5 #endif
6 }
7
8 void inet_twdr_hangman(long data)
9 {

10 void (*fn)();
11 fn = (void(*)())data;
12 fn(); // CALLS TO tcp_twsk_destructor
13 }
14
15 void __run_timers(struct list_head *head)
16 {
17 struct timer_list *timer;
18 list_for_each_entry(timer, head, entry) {
19 int pc = preempt_count();
20 timer->function(timer->data);
21 if (pc != preempt_count())
22 BUG(); // KERNEL PANIC
23 }
24 }

Figure 3.13: Bug 657e9649e74: Function __run_timers iterates through
a list of timer_list entries and executes each callback function
(timer->function). Each timer has an associated piece of data
(timer->data) that is passed to the callback. One of these callbacks is
inet_twdr_hangman, which obtains and invokes a function pointer to
tcp_twsk_destructor, that is stored in the timer’s data. If feature TCP_-
MD5SIG is enabled, tcp_twsk_destructor will decrement the preemption
counter, violating a code invariant (lines 19, 21–22).

types of variables and expressions, and instead tracks their memory
shape [Ste96b].

Similarly, type casts between structure types are used to achieve
structural subtyping in C. While C forbids direct casts between struc-
ture types, it is legal to cast between pointers to arbitrary structure
types. This is particularly subtle because, in general, the correspon-
dence between the fields of two structures is implementation depen-
dent [Ste96a, YHR99]. For instance, in Linux, generic network sockets are
represented by the sock structure (the base type of sockets), but there
are also specific (sub)types of sockets that have their own representa-
tions. Specialized sockets (e.g. struct inet_timewait_sock) can be
passed to generic socket functions by explicitly “up-casting” them (to
struct sock). For this to work, the first field of any socket structure

54 Chapter 3. A Qualitative Study of Bugs in Linux

holds a sock_common structure, which contains common information to
all socket types.

Observation 14:
A static code analyzer needs to model structure objects pre-
cisely, in order to find non-trivial bugs in Linux code.

It is commonplace, in virtually any programming language, to use a
hierarchy of record types (i.e., C structures) to represent and relate do-
main concepts. Actually, all of the bugs discussed in this section do
involve multiple accesses to structure fields. (Also bug 6252547b8a7 does
involve structures, even though the simplified version shown in Fig. 3.5
has abstracted them away.) Pointer analyses that do not model structure
objects precisely do not work well in practice—they are too imprecise.
However, doing sound pointer analysis of C structure objects is con-
siderably more difficult than the simplistic approach of collapsing their
fields [Ste96a, YHR99].

Ideally, a static analyzer should also model recursive and dynamic
data structures precisely. Linux code makes extensive use of them. For in-
stance, in bug 657e9649e74 (cf. Fig. 3.13), __run_timers receives a linked
list of timer_struct objects to run, one of which will call to inet_-

twdr_hangman. (This code uses the Kernel generic circular double-
linked list implementation, see include/linux/list.h.) Reason-
ing about such data structures requires (deep-)shape analyses [CDOY09,
CDOY11]. Fortunately, as this PhD project shows, it is possible to find
non-trivial bugs in Linux without having a precise model of linked data
structures—as we will see in Chapter 7.

Observation 15:
A static code analyzer needs to perform inter-procedural
analysis, in order to find non-trivial bugs in Linux code.

Figure 3.14 shows a classification of VBDb runtime bugs according to the
depth of their error trace. A total of 25 bugs (83%) of the 30 runtime
bugs in VBDb have an error trace that involves, at least, one nested func-
tion call. Note that all of the bugs discussed in this section cross the
boundaries of a single function. For instance, bug 657e9649e74 involves
seven nested function calls—five more than shown in Fig. 3.13, two of
which are dynamic calls through function pointers. There exist many in-
terprocedural analysis techniques, but these are mainly whole-program
analyses that would not run fast enough on a large Linux-size codebase.

3.8. RQ3: Opportunities for bug finders in Linux 55

5 single-function bugs:
5 0-call deep

25 cross-function bugs:
6 1-call deep
5 2-call deep
4 3-call deep
5 5-call deep
1 6-call deep
1 7-call deep
1 9-call deep
2 10-call deep

Figure 3.14: Function call depths of VBDb runtime bugs.

Note also the need for inter-file analysis. Bug traces often
touch functions defined in multiple C files and subsystems; like bug
657e9649e74, which concerns functions from three files and two subsys-
tems (kernel/ and net/). This definitely calls for static analyzers that
can work compositionally.

3.8 RQ3: Opportunities for bug finders in Linux

The conclusions of studying RQ2 (Sect. 3.7) may be discouraging at first,
but do offer some insight into the opportunities for bug finding tech-
nology. It was the study of this third RQ that lead to the bug finding
technique depicted in Sect. 1.4, and that constitutes the core of this the-
sis. Code scanners (cf. Sect. 2.3.2) must run fast and cannot afford the
cost of reasoning about complex data dependencies. Thus, the study of
RQ3 stems from the following observation:

Observation 16:
Many bugs in Linux can be traced down to API misuses, where
often there are no complex data flows involved. These bugs
are difficult to intercept simply because the sequences of op-
erations that trigger them span multiple functions.

About half of VBDb runtime bugs are violations of control-dominated API
rules. (Also known as finite-state or typestate properties [SY86].) In the
following, I may refer to these type of programming errors as resource

56 Chapter 3. A Qualitative Study of Bugs in Linux

manipulation bugs (CWE-399).11 Resource safety has been the target of
many automated verification techniques [SY86, ECCH00, BR01b, FTA02,
XA05] with relative success (see Section 2.3). Software model check-
ers [BR01b, XA05] have yielded the best results so far but are slow in
comparison with code scanners. From a pragmatic perspective, these
tools put too much effort in tracking changes to program data, whereas
finding resource manipulation bugs is more about tracking sequences of
operations.

Observation 17:
Let us assume that there exist a program abstraction that
reveals the operations performed, directly or indirectly, by
any function call. Then, violations of control-dominated
API rules could be efficiently uncovered by intraprocedural
matching of flow-based bug patterns.

Such an abstraction does exist, and it is based on the concept of side-
effect. A side-effect (or just effect) denotes the execution of a certain
operation that may change the program state. Side-effect analyses (cf.
Sect. 2.2) infer the effects associated with every expression in a program;
and allow to build an effect-based abstraction, where effects reveal the
operations performed through function calls, like that of Fig. 1.3.

The remainder of this section describes a conceptual exercise of test-
ing the effectiveness of this hypothetical bug-finding technique on VBDb
bugs. The goal is to detect violations of API rules, or resource mis-
manipulation bugs, where a resource should be understood broadly.
Table 3.3 shows which bugs from the VBDb collection could potentially
be found by this technique. Bugs are grouped according to weakness
classes from the CWE taxonomy. The following subsections discuss each
bug class with examples, and provides the associated bug patterns, ex-
pressed in Computational Tree Logic (CTL).

3.8.1 Null-pointer dereference (CWE-476)

Three out of four NULL-pointer deference bugs in VBDb can be under-
stood as resource manipulation bugs. Bug 76baeebf7df does not; it is a
complex case for which a static analyzer would have to quite precisely
track integer values, and the contents of arrays. Bug ee3f34e8572 is a

11https://cwe.mitre.org/data/definitions/399.html

https://cwe.mitre.org/data/definitions/399.html

3.8. RQ3: Opportunities for bug finders in Linux 57

single-function bug, where a pointer variable is set to NULL and later
dereferenced in the same function. Bugs 6252547b8a7 and f7ab9b407b3 are
similar to ee3f34e8572, but the pointer dereference happens inside several
nested function calls. Figure 3.15 shows an excerpt of bug 6252547b8a7.

In order to find null-pointer deferences of this kind, we must start
in a state in which some memory location x (a variable or any l-value
expression) is set to NULL (operation Null(x)), and eventually derefer-
enced (operation Use(*x)), without having been assigned in between
(operation Assign(x)). The corresponding CTL query is:

EF (Null(x) ∧ EX (¬Assign(x) EU Use(*x))) (3.1)

3.8.2 Duplicate operation on resource (CWE-675)

There are three resource mis-manipulation bugs of this kind in VBDb. Bug
d7e9711760a has been introduced in Fig. 1.2; and it is, more specifically,

Table 3.3: Resource manipulation bugs in VBDb that can be uncovered by
the hypothetical bug-finding technique proposed in Obs. 17.

Bug class CWE VBDb id Sec

Null-pointer dereference 476 76baeebf7df
ee3f34e8572
6252547b8a7
f7ab9b407b3

3.8.1

Duplicate operation on resource 675 d7e9711760a
0dc77b6dabe
472a474c663

3.8.2

Resource leak 772 218ad12f42e 3.8.3

Use before initialization 908 e39363a9def
1c17e4d4437
30e053248da
bc8cec0dff0

3.8.4

Other Linux-API misuses — 208d89843b7
eb91f1d0a53

3.8.5

58 Chapter 3. A Qualitative Study of Bugs in Linux

1 void irq_domain_to_irq(int *ops)
2 {
3 int irq = *ops; // Use(∗ops)
4 }
5
6 void irq_domain_add(int *ops)
7 {
8 irq_domain_to_irq(ops); // Use(∗ops)
9 }

10
11 void twl_probe()
12 {
13 int *ops = NULL; // Null(ops)
14 irq_domain_add(ops); // Use(∗ops)
15 }

Figure 3.15: Bug 6252547b8a7: null pointer dereference.

a double-lock bug (CWE-764). Similarly, double-free bugs would also be-
long to this class. Bug 0dc77b6dabe is triggered by a load-unload-load
sequence of a kernel module, where the exit function of the module
does not cleanup correctly. Figure 3.16 shows an excerpt of the third
case, bug 472a474c663. Function enable_IR_x2apic is part of an initial-
ization sequence executed during boot, that should not be called more
than once, otherwise resulting in a kernel panic.

Bugs in this category happen when some non-idempotent operation
is applied on a resource (Op(x)), and later on applied again on the same
resource, causing undefined behavior. In between the two applications
the resource must not have been reset or its state altered (Reset(x)). The
corresponding CTL bug pattern is:

EF (Op(x) ∧ EX (¬Reset(x) EU Op(x))) (3.2)

For instance, for bug d7e9711760a, Op(x) = spin_lock(x) and Reset(x) =
spin_unlock(x). For bug 472a474c663 (cf. Fig. 3.16), we have Op() =
enable-IR-x2apic(), and Reset() = ⊥. To my knowledge, there is no
reset operation in this case.

3.8.3 Resource leak (CWE-772)

Figure 3.17 shows an fragment of the one resource (memory) leak bug
in VBDb, namely 218ad12f42e. Function inet_ehash_locks_alloc allo-

3.8. RQ3: Opportunities for bug finders in Linux 59

1 void enable_IR_x2apic(void) { /* ... */ }
2
3 void APIC_init_uniprocessor(void)
4 {
5 enable_IR_x2apic(); // Op
6 }
7
8 void smp_sanity_check(unsigned max_cpus)
9 {

10 if (!smp_found_config)
11 APIC_init_uniprocessor(); // Op
12 }
13
14 void native_smp_prepare_cpus(unsigned int max_cpus)
15 {
16 enable_IR_x2apic(); // Op
17 smp_sanity_check(max_cpus); // Op
18 }

Figure 3.16: Bug 472a474c663: duplicate initialization (kernel panic).

cates an array of locks (hashinfo->ehash_locks) in line 3, and function
inet_ehash_locks_free clears the only reference to this array in line
9 without having freed it. This is clearly a resource mis-manipulation
bug.

A resource leak of this kind happens when there is a path, starting
from a point where some resource (e.g., a chunk of memory) is allocated
at some memory location x (Alloc(x)), to a point where there are no live
references to that resource, without having being freed (¬Free(x)). The
corresponding CTL bug pattern is:

EF (Alloc(x) ∧ AG ¬Free(x)) (3.3)

3.8.4 Use before initialization (CWE-908)

There are four resource mis-manipulation bugs of this kind in VBDb.
In bug e39363a9def, which affects a single function, there is an error
path where variable err is not set to the appropriate error code. This
causes function netpoll_setup to return an arbitrary value. Figure 3.18
shows an excerpt of 1c17e4d4437, where print_cpu_stall_info relies
on a second function, print_cpu_stall_fast_no_hz, to initialize a

60 Chapter 3. A Qualitative Study of Bugs in Linux

1 void inet_ehash_locks_alloc(struct inet_hashinfo *hashinfo)
2 {
3 hashinfo->ehash_locks = kmalloc(· · ·, GFP_KERNEL);
4 }
5
6 void inet_ehash_locks_free(struct inet_hashinfo *hashinfo)
7 {
8 if (hashinfo->ehash_locks)
9 hashinfo->ehash_locks = NULL; // LEAK

10 }
11
12 void dccp(void)
13 {
14 struct inet_hashinfo dccp_hashinfo;
15 inet_ehash_locks_alloc(&dccp_hashinfo); // Alloc
16 inet_ehash_locks_free(&dccp_hashinfo);
17 }

Figure 3.17: Bug 218ad12f42e: memory leak.

string buffer in line 10. The buffer is never initialized but used in line
11. Bug 30e053248da is analogous to 1c17e4d4437, in this case it is func-
tion reiserfs_security_init that expected that function security_-

old_inode_init_security would initialize a structure field. Finally,
bug bc8cec0dff0 causes a kernel panic when jffs2_flash_write attempts
to access an unallocated buffer. Bug bc8cec0dff0 involves more than ten
function calls, and is triggered by a non-obvious flow of control.

Use before initialization bugs happen when a resource is declared
(Decl(x)) and later used Use(x), without having been initialized Init(x).
The corresponding CTL bug pattern is:

EF (Decl(x) ∧ EX (¬Init(x) EU Use(x))) (3.4)

For bug 1c17e4d4437 (cf. Fig. 3.18), operation Decl(fast_no_hz) corre-
sponds to the declaration of the buffer in line 8, and Use(fast_no_hz)
to the read of this buffer in line 11. The buffer could have been initialized
(i.e. Init(fast_no_hz)) by sprintf, for instance.

3.8.5 Other Linux-API misuses

This technique can also catch project-specific API misuse bugs. Two ex-
amples from VBDb are bugs 208d89843b7 and eb91f1d0a53, which are both

3.8. RQ3: Opportunities for bug finders in Linux 61

1 void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2 {
3
4 }
5
6 void print_cpu_stall_info(int cpu)
7 {
8 char fast_no_hz[72]; // Decl
9

10 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
11 printk(KERN_ERR "\t%d: %s\n", cpu, fast_no_hz); // Use
12 }

Figure 3.18: Bug 1c17e4d4437: use before initialization.

violations of Linux interrupt management rules. Hardware interrupts
(IRQs) should only be disabled during very short periods of time, typi-
cally, only during the execution of an interrupt handler. While IRQs are
disabled, kernel code should not sleep, enter a busy wait, or perform
long computations.

Figure 3.19 illustrates bug 208d89843b7, this one enables software inter-
rupts (BHs) while IRQs are disabled. Hardware interrupts are disabled
in line 18 by spin_lock_irq, and subsequently BHs are enabled in line
19, through a chain of function calls that leads to a call to local_-

bh_enable() in line 3. This could allow BH handlers to run with in-
terrupts disabled. Software interrupts deal with time-consuming tasks
and, therefore, must be interruptible. The corresponding CTL bug pattern
is:

EF (IRQsOff∧ EX (¬IRQsOn EU BHsOn)) (3.5)

Bug eb91f1d0a53 happens during kernel boot, when several initializa-
tion procedures are run with interrupts disabled. One of these proce-
dures tries to allocate memory, and does it passing the GFP_WAIT flag to
the memory allocator. Flag GFP_WAIT tells the allocator that, if no con-
tiguous chunk of memory of the adequate size is available, it is allowed
to sleep. The corresponding CTL bug pattern is:

EF (IRQsOff∧ EX (¬IRQsOn EU Sleep)) (3.6)

62 Chapter 3. A Qualitative Study of Bugs in Linux

1 void skb_checksum(struct sk_buff *skb)
2 {
3 local_bh_enable(); // BHsOn
4 }
5
6 void skb_checksum(struct sk_buff *skb)
7 {
8 kunmap_skb_frag(skb); // BHsOn
9 }

10
11 void udp_checksum_complete(struct sk_buff *skb)
12 {
13 skb_checksum(skb); // BHsOn
14 }
15
16 void udp_poll(struct sk_buff_head *rcvq, struct sk_buff *skb)
17 {
18 spin_lock_irq(&rcvq->lock); // IRQsOff
19 udp_checksum_complete(skb); // BHsOn
20 spin_unlock_irq(&rcvq->lock); // IRQsOn
21 }

Figure 3.19: Bug 208d89843b7: BHs get enabled with IRQs disabled.

Chapter 4

A Shape and Effect System for C(IL)
Originally published in: VMCAI 20171

At the core of EBA there is a new type-and-effect inference system for C in
the style of Talpin and Jouvelot [TJ92, JT93]. Because of unsafe casts, the
standard C type system provides only a meager description of run-time
objects. Thus, as done in pointer analysis [Ste96a, Ste96b], types in EBA
describe objects by their shape in memory—hence the name shape-and-
effect system. Shapes are unaffected by type casts, being suitable for
tracking aliasing relations. This system is polymorphic in shapes, regions,
and effects; and it supports sub-effecting. Thanks to shape polymorphism
it can handle common idioms, such as those used to workaround type
genericity in C. Effect polymorphism and sub-effecting allow handling
function pointers.
EBA analyzes programs in CIL (C Intermediate Language), an analysis-

friendly subset of C [NMRW02]. CIL has a simpler syntax-directed type
system than C, without implicit type conversions. Using CIL allowed me
to scaffold a tool prototype faster, while still being able to handle the
entire C (via a C-to-CIL front-end). The abstract syntax and type system
of CIL are discussed in [NMRW02].2 I will not discuss them here, but
the chapter should be readable by any person who is familiar with the
C language.

1Our paper entitled “Effective Bug Finding in C Programs with Shape and Effect Ab-
stractions”[ABW17], presents a simplified version of this inference system, and is pub-
lished in the 18th International Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI 2017).

2For a precise definition of the CIL abstract syntax one must look at the source code:
https://github.com/cil-project/cil/, file src/cil.mli.

https://github.com/cil-project/cil/

64 Chapter 4. A Shape and Effect System for C(IL)

Regions ρ : ρ

Effects fX : ε(ρ)
Effect sets F : ∅ | { fX} | ϕ | F1 ∪ F2

R-shapes ZR : ⊥ | ptr ZL | struct A|n { ZL
i xi } | ζ

F-shapes ZF : ZL
1 × · · · × ZL

n
F−→ ZR

0
L-shapes ZL : refρ ZR | refρ ZF

Figure 4.1: The type language: regions, effects, and shapes.

4.1 The shape language

Types in this system are divided into three categories: regions, effects,
and shapes. Regions describe memory locations, effects describe compu-
tations on regions, and shapes describe the representation of data and
the computational effects of programs. Figure 4.1 shows their corre-
sponding abstract syntax.

4.1.1 Regions

Consider the C program int x; int *y = &x; S, where S is an arbi-
trary statement. Within S’s scope, both x and *y denote the same mem-
ory cell—they alias. Due to aliasing, two different l-values may denote
the same memory location at run-time. But, it would be infeasible to
track the precise memory locations associated with each l-value, at each
point in the program. Instead, this system tracks memory regions (ρ),
which are abstract sets of possibly-aliased memory locations.

Shapes (cf. Sect. 4.1.3) are annotated with regions, and typing rules
will impose aliasing constraints over these regions. Shapes are flow-
insensitive and the constraints over regions are limited to equalities ex-
pressing aliasing relations, that are exploited and inferred by unification.
Shape inference embeds an alias analysis that is similar to Steengaards’s
points-to analysis [Ste96b], but polymorphic.

4.1. The shape language 65

4.1.2 Effects

Types describe what expressions compute, whereas effects describe how
expressions compute [JG91]. From the type perspective, the expression
y = y + x evaluates to an integer value. From the effect perspective, it
reads from locations x and y, and writes to y. Effects are a framework
to reason about such and similar aspects of computations. If variables
x and y are stored in regions ρx and ρy, respectively; then EBA infers
that y = y + x has effects F = {readρx , readρy , writeρy}, which records
reading variables x and y, and writing y. A set of effects is a flow-
insensitive abstraction of an execution. It specifies the effects that may
result from evaluating an expression (or statement), disregarding the
flow of control.

We assume a finite number of effect constructors of finite arity, includ-
ing nullary (Fig. 4.1). A constructor ε applied to a tuple 3 ρ of memory
regions defines a discrete effect ερ taking place on regions in ρ. Built-in
effects, inherent to the C language, include reading and writing of mem-
ory locations, readρ and writeρ; and calling to functions (e.g., through
function pointers), denoted callρ. Other effects can be introduced to cap-
ture new kinds of bugs. The example of Fig. 1.3 used effects lockρ and
unlockρ to represent lock manipulation actions. We use effect variables
(ϕ, cf. Fig. 4.1) to stand for sets of effects, to achieve effect polymor-
phism. Effects are combined into sets (F), ordered by the usual set in-
clusion.

4.1.3 Shapes

A shape approximates the memory representation of an object [Ste96a,
Ste96b]. Whereas, in the base C type system, an expression can be co-
erced to an arbitrary different type, in this system, the shape of an ex-
pression is (supposed to be) fixed and preserved across type casts (cf.
Sect. 4.3). Shapes are split into r-value (ZR), f-value (ZF), and l-value
(ZL) shapes; defined in detail below. The shape language resembles the
base C type language, without integer type but with shape variables (ζ).

R-value shapes

R-shapes (Fig. 4.1) denote the shape of r-value objects; i.e., C expressions
that can be placed on the right-hand side of an assignment (or passed

3We use overline to denote tuples.

66 Chapter 4. A Shape and Effect System for C(IL)

as arguments to a function). An atomic shape ⊥ denotes objects that
have no relevant structure, for instance integers, when these are not
masquerading pointers to implement genericity (see below).

Pointer expressions have pointer shapes, ptr ZL, where ZL is the
shape of the target reference cell of the pointer. A pointer represents
an r-value of the address of a reference cell, which is in itself an l-value.
Therefore, a pointer shape necessarily encloses a reference shape. Point-
ers may be cast to integers to emulate generics; such integer values will
thus have a pointer shape.

There are no array shapes. In order to avoid depending on deci-
sion procedures for determining aliasing, this shape-and-effect system
flattens array shapes and treats them as regular pointers. This makes
the different elements of an array indistinguishable. Two l-values a[i]

and a[j] will have the same shape in this system, independently of the
value of i and j. This is sound, but introduces imprecisions that shall
be addressed by the client of the analysis—the simplest way is through
heuristics, cf. Chapter 6.

We use struct A|n { ZL
i xi } to denote the shape of an struct A

object of which only the first n members are accessed. A struct shape
associates an l-shape ZL

i with each member xi of the n-prefix of A. When
the context allows, we may omit the n and write struct A { · · · } in-
stead. (The reason why struct shapes may refer only to a prefix of the
struct members will become clear in Sect. 4.3.) Each struct member is
treated as a separate variable, and may be assigned a shape that is unre-
lated to the other members. This is unsound, 4 but it is essential to main-
tain both precision and simplicity. (Previous work maintains soundness
at the cost of added complexity [Ste96a, YHR99].) In practice, a client
of this analysis can keep track of the storage regions associated with a
struct object, and recover soundness to the extent desired (e.g., sound-
ness can be fully recovered by treating all of the members as aliases).

Shape variables ζ are used to make shapes polymorphic, they stand for
arbitrary r-value shapes. For instance, functions manipulating a generic
linked list are shape polymorphic, since they abstract from the shape of
objects stored in the list.

4In reality, the members of a struct object are placed in a contiguous region in
memory, and a pointer to one member can be used to update the others. For in-
stance, memset(&s.x,0,sizeof(struct A)) zero-initializes an object s of
type struct A, given a pointer to the first member x.

4.2. Shape-type compatibility. 67

F-value shapes

A function shape, ZL
1 × · · · × ZL

n
F−→ ZR

0 , maps a tuple of reference
shapes (i.e., ZL

1 × · · · × ZL
n), corresponding to the formal parameters, to

a value shape (i.e., ZR
0), corresponding to the result. The shape-and-

effect system describes function parameters as l-value shapes, since ac-
tual parameters are in fact stored in stack variables. The returned value
is an r-value expression. Function shapes carry a so-called latent effect,
F, which accounts for the actions that (depending on the flow of control)
may be performed during execution of the function. As an example, let
us consider a simple function that adds one to an integer:

int plus1(int x) { return x+1; }

In this system, plus1 may have shape refρ ζ
readρ−−→ ζ, where ζ is the shape

of the input integer, and ρ is the region where the formal parameter x
is stored. The use of the shape variable ζ indicates that the function is
polymorphic on the shape of x; and at runtime this may be encoding
a plain integer, or a pointer. The function simply reads the parameter,
hence the effect readρ, and returns its value plus one. The result is an
object of the same shape as x, either a plain integer or a pointer, hence
the output shape is ζ as well.

L-value shapes

L-shapes denote references to either data or functions. Data (r-value)
references have shape refρ ZR, where ρ is a memory region, and ZR

is the shape of the objects that it holds. Data references are mutable
unless declared const. Function references are immutable and have
shape refρ ZF. Whether a reference is mutable or immutable, that is
enforced by the base C type system. If a reference ρ1 holds a pointer to
another reference ρ2, as in refρ1 ptr refρ2 Z, we say that ρ1 points to ρ2. If
two l-values a and b have the same shape refρ Z, we say that a and b are
aliases (i.e., may denote the same object).

4.2 Shape-type compatibility.

A shape Z is compatible with a type T, written Z � T, if a runtime
object of type T can be described by Z. There may be multiple shapes
compatible with a given type. For instance, a value of type int may

68 Chapter 4. A Shape and Effect System for C(IL)

� ⊆ Shape× Type

[Comp-Bot]
T ∈ {void, float, double}

⊥ � T

[Comp-Int]
T ∈ {char, short, int, long, long long}

Z � T

[Comp-Ptr]
Z � T

ptr refρ Z � T*

[Comp-Ptr-Void]

ptr refρ Z � void*

[Comp-Struct]
∀i ∈ [1, n]. Zi � TA

i

struct A|n { refρi Zi xi } � struct A

[Comp-Fun]
∀i ∈ [0, n]. Zi � Ti

refρ1 Z1 × · · · × refρn Zn
F−→ Z0 � T1 × · · · × Tn → T0

Figure 4.2: Shape-type compatibility. (TA
i denotes the type of the i-th

member of the struct A.)

have shape ⊥, if it is a plain integer number, or shape ptr refρ Z (for
some Z) if it denotes a memory address. When the shape-and-effect
system needs to guess5 the shape of an identifier, it chooses a shape that
is compatible with the declared type of the identifier. Figure 4.2 defines
the compatibility relation between shapes and types.

Intuitively, shape-type compatibility requires that the given shape
and type are structurally equivalent—as seen in the rules [Comp-Bot],
[Comp-Ptr], and [Comp-Fun]. There are three small exceptions. First,
any r-value shape is compatible with an integer type (rule [Comp-Int]).
Similarly, any pointer shape is compatible with a pointer to void type
(rule [Comp-Ptr-Void]). In other words, integers and pointers-to-void
can point to arbitrary objects at runtime.

The third exception concerns struct shapes, which may refer only to
an n-prefix of the members of the struct type (rule [Comp-Struct], see
Sect. 4.3). For every member xi in the n-prefix of A, the shape of xi (Zi)

5These guesses will become constraints in the inference algorithm, see Chapter 5.

4.3. Shape casting 69

B ⊆ Shape× Shape

[Cast-Refl]

Z B Z

[Cast-Bot]

Z B ⊥

[Cast-Ptr]
ZB Z′

ptr refρ Z B ptr refρ Z′

[Cast-Struct]
TA

j ∼ TB
j Zj B Z′j j ∈ [1, m] m ≤ n

struct A|n { refρi Zi xi } B struct B|m { refρi Z′i yi }

[Cast-Fun]
Z′i B Zi / i ∈ [1, n] F′ w F Z0B Z′0

refρi Zi
F−→ Z0 B refρi Z′i

F′−→ Z′0

Figure 4.3: Castable shapes. (TA
i denotes the type of the i-th member of

the struct A, and ∼ is the compatibility relation between C types.)

must be compatible with the declared type of xi (TA
i). Finally, a function

shape is compatible with a function type (rule [Comp-Fun]), if the r-
shapes and types of the formals, and the shape and type of the result,
are all compatible. Neither the regions where the formals are stored,
nor the latent effects, are considered for compatibility.

4.3 Shape casting

A shape Z can be cast to another shape Z′, written ZB Z′, if any object
described by Z can be soundly manipulated as having shape Z′. The B
relation is used to ensure that a type cast from type T (shape Z) to type
T′ (shape Z′) does not circumvent the tracking of aliasing through mem-
ory regions. Roughly, it requires that any region of the target shape (Z′)
has a correspondence in the source shape (Z). Thus, after an assignment
x=(T)e, any operation performed on x can be traced back to e.

Figure 4.3 defines the castable relation between shapes. For instance,
a pointer int**, with shape ptr refρ ptr refρ′ Z, can be cast to float* and
manipulated as having shape ptr refρ ⊥ (rules [Cast-Ptr] and [Cast-
Bot]). A cast in the opposite direction would not be sound, because a

70 Chapter 4. A Shape and Effect System for C(IL)

memory access on ρ′ could not be mapped back to ptr refρ ⊥. The B
relation for function shapes is co-variant on the latent effects and the
result shape, and contra-variant on the shapes of the arguments (rule
[Cast-Fun]) [LW94]. A function shape should be cast to another with
the same number of arguments.

The tricky part is to handle casts involving struct types. In C, it is a
common idiom to use casts between (pointers to) structs to work around
the lack of subtyping (see example in Sect. 3.7, obs. 13). For instance, this
allows that a 3D point (with fields double x, y, z;) can always be
passed to a function expecting a 2D point (with fields double x, y;).
Simply put, a struct shape A can be cast to another struct shape B, if both
structs share a type-compatible m-prefix of members, and only members
in that prefix will be accessed after the cast (rule [Cast-Struct]).

4.4 Environments and shape schemes

An environment Γ maps variables x to their reference shapes: Γ(x) =
refρ ZR; and function names f to function shape schemes:

Γ(f) = ∀ υ. refρ0 (ZL
1 × · · · × ZL

n
F−→ ZR

0) where ρ0 /∈ υ

A function shape scheme is a function shape quantified over shape,
region, and effect variables (υ) for which the function poses no con-
straints. We say that the function is polymorphic in such variables, which
should occur free in the function shape (i.e., they are mentioned in

ZL
1 × · · · × ZL

n
F−→ ZR

0). As such, these variables are parameters that
can be appropriately instantiated at each call site. Let us consider again
the function that adds one to an integer:

int plus1(int x) { return x+1; }

The shape of plus1 can be generalized into ∀ ρζ. refρ ζ
readρ−−→ ζ, because

plus1 poses no constraint on the shape of the formal parameter x.
If F is of the form F′ ∪ ϕ0 where ϕ0 ∈ υ, we say that f is effect-

polymorphic: the effect of f is extended by the instantiation of ϕ0. (In our
example, plus1 can be made effect-polymorphic by introducing a new
quantified variable ϕ0, and setting its latent effects to readρ ∪ ϕ0.)

In general, it is unsound to generalize reference types [Tof90], but we
can safely generalize function references because they are immutable.
The memory region ρ0 identifies the function; it is used to track calls to
it through function pointers, and it cannot be generalized (thus ρ0 /∈ υ).

4.5. Typing rules 71

`L ⊆ Env× Lval× Shape× Effects

[Var]
Γ(x) = refρ Z

Γ `L x : refρ Z & ∅

[Deref]
Γ `E E : ptr refρ Z & F
Γ `L *E : refρ Z & F

[Fun]

Γ(f) = ∀ ζ ρ ϕ. refρ0 Z Z = ZL
1 × · · · × ZL

n
F−→ ZR

0

Γ `L f : refρ0 (Z[ζ 7→ Z′][ρ 7→ ρ′][ϕ 7→ F′]) & ∅

[Index]
Γ `L L : refρ1 Z1 & F1 Γ `E E : Z2 & F2

Γ `L L[E] : refρ1 Z1 & F1 ∪ F2

[Member]
Γ `L L : refρ0 struct A { refρi Zi xi } & F

Γ `L L.xj : refρj Zj & F

Figure 4.4: Typing of l-values.

4.5 Typing rules

This section presents the declarative typing rules for the proposed
shape-and-effect system. This system assumes that the given terms al-
ready type-check under the C(IL) type system. The rules are then split
according to CIL syntactic categories: l-values (Section 4.5.1), expressions
(Section 4.5.2), instructions (Section 4.5.3), statements (Section 4.5.4), and
global declarations (Section 4.5.5).

4.5.1 Typing of l-values

Judgment Γ `L L : refρ Z & F (see Fig. 4.4) specifies that, under envi-
ronment Γ, the l-value expression L has shape refρ Z, and evaluating it
may result in effects F. An l-value always denotes a memory location,
therefore has shape refρ Z. Note that, operationally, an l-value is just
a pointer expression. Evaluating an l-value computes the memory ad-
dress of the target memory cell, but this does not necessarily cause any
memory access. I discuss the rules of Fig. 4.4 in order below.

72 Chapter 4. A Shape and Effect System for C(IL)

The shape of a variable x is obtained directly from the environment
(rule [Var]). Pointer dereferencing proceeds by evaluating an expres-
sion E, which produces F side effects, and obtaining the reference object
associated to the resulting memory address (rule [Deref]). Dereferenc-
ing has no effects by itself, when used in an l-value context, that is why
the following holds: &*NULL == NULL (i.e., the NULL memory address is
not really being accessed). The memory address is effectively accessed
when the l-value is used in an r-value context (see rule [Lval], Fig. 4.5).

The shape of a function name f is obtained by appropriately instan-
tiating its shape scheme (rule [Fun]). This instance is generated by sub-
stituting quantified variables with concrete shapes, regions and effects.
In a typing derivation, these will depend on the calling context: the ac-
tual parameters passed to the function, and the expected shape of the
function’s return value in that context.

Subscript expressions (also, array indexing expressions) take a base l-
value expression L, and an index expression E, and compute a reference
to the E-element of L (rule [Index]). Unlike in C, in CIL, L must be of
type array, and these expressions are intended for array indexing only.
Operationally, L is the base memory address, E is an offset, and the
result is obtained through pointer arithmetic. Here, array shapes are
flattened (cf. Sect. 4.1.3).

Member access expressions return a reference to a member in a
structured object (rule [Member]). For pragmatic reasons, this system
unsoundly treats regions ρ0 and ρi as if they were independent (cf.
Sect. 4.1.3). In reality, memory locations ρi are given as an offset to the
location of the struct object ρ0. (That is why this rule does not introduce
the effect readρ0 , there is no such a read operation.) Note that in CIL, an
expression E->x is always represented as (*E).x.

4.5.2 Typing of expressions

Expressions denote values, and have either r-value or function shapes.
CIL expressions are side-effect free, but evaluating an expression may still
involve reading memory locations. Such reads are recorded as effects in
this system. Figure 4.5 introduces the typing rules for expressions. The
judgment Γ `E E : Z & F specifies that, in the environment Γ, evaluat-
ing the expression E results in a value of shape Z, and may produce F
effects.

4.5. Typing rules 73

`E ⊆ Env× Exp× Shape× Effect

[Const-Bot]
typeof(c) ∈ {float,double}

Γ `E c : ⊥ & ∅

[Const-Str]
typeof(str) = char*

Γ `E str : ptr refρ ⊥ & ∅

[Const-Int]
typeof(i) ∈ {char,int,short,long,long long}

Γ `E i : Z & ∅

[Lval]
Γ `L L : refρ Z & F

Γ `E L : Z & F ∪ {readρ}

[Addr]
Γ `L L : refρ Z & F

Γ `E &L : ptr refρ Z & F

[Neg]
Γ `E E : Z & F 	 ∈ {-,~}

Γ `E 	E : Z & F

[Not]
Γ `E E : Z & F

Γ `E !E : ⊥ & F

[Int-A]
⊗ ∈ {+,-,*,/,%,&,ˆ,|,«,»} Γ `E E1 : Z & F1 Γ `E E2 : Z & F2

Γ `E E1 ⊗ E2 : Z & F1 ∪ F2

[Bool-A]
Γ `E E1 : Z1 & F1 Γ `E E2 : Z2 & F2 ⊗ ∈ {&&,||}

Γ `E E1 ⊗ E2 : ⊥ & F1 ∪ F2

[Cmp]
E ∈ {<,>,<=,>=,==,!=} Γ `E E1 : Z1 & F1 Γ `E E2 : Z2 & F2

Γ `E E1 E E2 : ⊥ & F1 ∪ F2

[Question]
Γ `E E1 : Z1 & F1 Γ `E E2 : Z & F2 Γ `E E3 : Z & F3

Γ `E (E1) ? E2 : E3 : Z & F1 ∪ F2 ∪ F3

[Cast]
Γ `E E : Z & F Z′ � T ZB Z′

Γ `E (T)E : Z′ & F

Figure 4.5: Typing of expressions. (We use typeof to refer to the base C(IL)
type system.)

74 Chapter 4. A Shape and Effect System for C(IL)

Constants. Constants are divided into three groups. Constants of C
types that cannot be used to encode pointers have ⊥ shape (rule [Const-
Bot]). String literals have pointer shapes (rule [Const-Str]). These
literals are assigned to some context-dependent region ρ. Constants of
integer types (char or larger) may encode pointers, and thus can have
arbitrary r-value shapes (rule [Const-Int]). The shape of an integer is
unknown a priori, and depends on how this integer value is used by
the program. This is why the system allows an arbitrary shape Z for
integer constants, which will be constrained by the context during type
inference. For instance, in a expression like ptr + 1, where ptr is a
pointer variable, the constant 1 would be given the same pointer shape
as ptr.

L-values. Fetching the content of (the memory location denoted by) an
l-value, results in an expression of the expected shape, and produces
a read effect on the corresponding memory region (rule [Lval]). (In C
there is no explicit operator to read from a reference.) Given an l-value
(i.e., a reference), the address-of operator (&) obtains the address of the
corresponding memory cell (rule [Addr]). This operation is side-effect
free because no memory location is being accessed—a pointer is the r-
value representation of an l-value.

Expressions sizeof() and alignof(). The sizeof() operator com-
putes the storage size of an expression or type in bytes, whereas the
alignof() operator computes the memory alignment requirements. 6

(Rules for these two operators were omitted in Fig. 4.5 for layout rea-
sons, but are given below.) Expressions sizeof(T) and alignof(T) are
statically resolved to constants, and hence produce no effects at runtime
(rules [Sizeof-T] and [Alignof-T]). With the exception of sizeof(T[E]),
a variable length array type, which is interpreted as the value of E
times the size of T (i.e., (E)*sizeof(T)), and requires the evaluation
of the expression E at runtime ([Sizeof-A]). Expressions sizeof(E) and
alignof(E) produce no effects either, because only the type of the ex-
pression is considered (rules [Sizeof-E] and [Alignof-E]). The result of
any these operations can be used to compute a memory address, and for

6The alignment represents the number of bytes between successive addresses at
which objects of a given type can be allocated. The alignment depends on the under-
lying computer architecture, and it is chosen to maximize the efficiency of memory
accesses.

4.5. Typing rules 75

that reason it can take any arbitrary shape, depending on the context.
This system does not check any of the restrictions that ANSI C imposes on
the arguments of sizeof() and alignof()—the base type system does.

[Sizeof-T]
T is not an array type

Γ `E sizeof(T) : Z & ∅

[Sizeof-A]
Γ `E E : Z & F

Γ `E sizeof(T[E]) : Z & F

[Sizeof-E]

Γ `E sizeof(E) : Z & ∅

[Alignof-T]

Γ `E alignof(T) : Z & ∅

[Alignof-E]

Γ `E alignof(E) : Z & ∅

Integer and bitwise operations. The effect of any integer arithmetic
or bitwise operation, is the combined effect of evaluating its operands
(rules [Neg] and [Int-A]). These operations can be used to perform
pointer arithmetic, either directly, or indirectly by masquerading point-
ers as integers. For binary operations, both operands must have the
same shape. Thus, arithmetic between pointers to different memory re-
gions, or with incompatible shapes, is disallowed. For instance, in a
expression like ptr + 1, where ptr is a pointer variable, the constant
1 would be given the same shape as ptr. The result pointer has the
same shape, and belongs to the same region, as the operands. Note that
pointer arithmetic is only well-defined in a few specific cases. This sys-
tem does not prohibit any arithmetic operations on pointers that would
lead to undefined behaviors, but in that case the aliasing information
may be unsound. Unfortunately, precise reasoning about pointer arith-
metic requires automated theorem proving, which would seriously im-
pact performance.

Pointer operations. CIL distinguishes the well-defined cases of adding
an offset to a memory address, and subtracting two memory addresses
(to obtain an offset). For this, CIL relies on the C types of expression,
and therefore it does not recognize cases of pointer arithmetic masquer-
ade as integer arithmetic. Even though rules [Neg] and [Int-A] already
handle arithmetic on pointers, we can also consider the explicit pointer
operations separately. This does not require to assign a pointer shape

76 Chapter 4. A Shape and Effect System for C(IL)

to offset integer constants, and may improve precision if the same offset
is used in computing addresses to different regions. The typing rules
would be:

[Plus-A]
Γ `E E1 : ptr refρ Z1 & F1 Γ `E E2 : Z2 & F2

Γ `E E1+E2 : ptr refρ Z1 & F1 ∪ F2

[Minus-PP]
Γ `E E1 : ptr refρ Z & F1 Γ `E E2 : ptr refρ Z & F2

Γ `E E1-E2 : ⊥ & F1 ∪ F2

Logical operations and comparisons. The effect of any logical oper-
ation or comparison, is the combined effect of evaluating its operands
(rules [Not] and [Bool-A]). These rules pose no requirement on the
shapes of the operands. The result is Boolean and always has shape ⊥.

Conditionals. Both alternatives of a conditional expression contribute
to the effect of the entire expression (rule [Question]). Note that, in
a particular execution, either E1 or E2 will be evaluated, but not both.
The union of all three effects is a flow-insensitive over-approximation.
Both branches shall have the same shape, which is also the shape of the
overall expression.

Type casts. An expression can be cast to a type T if, for some shape
Z′ that is compatible with T, the shape of the expression Z can be cast
to Z′ (see rule [Cast] and Fig. 4.3). The purpose of this rule is to dis-
cern which type casts are handled—mostly—soundly (cf. Sect. 4.3), even
though in practice any cast is allowed, see Sect. 5.5. Most type casts used
to work around type genericity or struct subtyping are correctly handled
by this system.

4.5.3 Typing of instructions

CIL instructions denote basic program steps without control flow. They
correspond to C side-effectful expressions: assignments and function
calls. Figure 4.6 shows the typing rules for instructions. The judgment
Γ `I I : Z & F specifies that, in the environment Γ, evaluating the in-
struction I results in a value of shape Z, and produces F effects. (CIL

4.5. Typing rules 77

`I ⊆ Env× Instr× Shape× Effect

[Set-Exp]
Γ `L L : refρ Z & F1 Γ `E E : Z & F2

Γ `I L = E : Z & F1 ∪ F2 ∪ {writeρ}

[Call]

Γ `E L f : refρ0 (refρ1 Z1 × · · · × refρn Zn
F′−→ Z0) & F0

Γ `E Ei : Zi & Fi / i ∈ [1, n]

Γ `I L f (E1, · · · , En) : Z0 & F0 ∪ (
⋃

i∈[1,n]

Fi) ∪ {callρ0} ∪ F′

[Set-Call]
Γ `L Lx : refρ Z & F Γ `I L f (E1, · · · , En) : Z & F′

Γ `I Lx = L f (E1, · · · , En) : Z & F ∪ F′ ∪ {writeρ}

Figure 4.6: Typing of instructions.

instructions do not produce values when evaluated, but assuming that
they do allows for a more compact formulation of rule [Set-Call], see
below.)

Assignment instructions come in two forms depending on whether
the right-hand side is an expression (rule [Set-Exp]), or a function call
(rule [Set-Call]). In any case, an assignment instruction writes the re-
sult of evaluating the right-hand side into the memory location denoted
by the l-value on the left. In addition to the effects of evaluating both
sides, the system records the effect of writing to memory region ρ. Left-
and right-hand side must have the same shape. Hence, a pointer assign-
ment like ptr = &x; implies that *ptr and x alias (as shapes include
region annotations).

Function application takes a function reference and a tuple of argu-
ments of the right shape (rule [Call]). Calls to functions are recorded
with calling callρ0 effects, where region ρ0 identifies the callee. The la-
tent effects F′ of the function are recorded as potential side-effects of the
invocation. At run-time, a particular application may perform only a
subset of these effects, but shall not perform any effect outside F′.

78 Chapter 4. A Shape and Effect System for C(IL)

4.5.4 Typing of statements

Statements add control flow to CIL instructions. Figure 4.7 shows the
typing rules for statements. The judgment Γ`⇓Z

S S & F specifies that, in
the environment Γ, and in the body of a function that returns values of
shape Z, the statement S is valid, and its evaluation may produce effects
F. Note that a flow-insensitive analysis like this one, basically ignores
control flow. The effects of a statement are computed as the sum of
the effects resulting from the evaluation of all its sub-expressions and
sub-statements.

Basic statements. A semicolon converts an instruction into an state-
ment (rule [Instr]). The value of the instruction is ignored (it may have
been stored in memory), but the effects are propagated. Every return
value must match the result shape of the enclosing function (see rule
[Return-E], and rule [Fun-Def] in Fig. 4.8). No restriction applies to
functions returning void (rule [Return]). Statements can be labeled
(rule [Label]). Unstructured control-flow constructs are basically irrel-
evant for this system and have no effects (rules [Goto], [Break], and
[Continue]).

Composite statements. The effect of a branching statement is the sum
of the effects of all its branches (rules [If] and [Switch]). This is an over-
approximation of the effects at runtime. Similarly, the effects of a loop
statement 7 are those of the loop body, regardless of how many times
the body is executed, if executed at all (rule [Loop]). Finally, statements
can be grouped to be executed sequentially (rule [Block]).

4.5.5 Typing of globals

A C translation unit is made of several global declarations and defini-
tions (for short, globals). Figure 4.8 shows the typing rules for globals.
The judgment Γ `G G & Γ′ specifies that, in the environment Γ, the
global G is valid, and transforms the environment into Γ′. (Note that C
globals have no runtime effects, in particular, the initialization of global
variables occurs at compile-time.) If the translation unit depends on ex-
ternally defined variables or functions, these shall already be present in
the environment at the time of typing.

7In CIL, every C loop is encoded with an infinite loop and the use of unstructured
control-flow (goto, etc).

4.5. Typing rules 79

`S ⊆ Env× Shape× Stmt× Effect

[Instr]
Γ `I I : Z′ & F

Γ`⇓Z
S I; & F

[Return]

Γ`⇓⊥S return; & ∅

[Return-E]
Γ `E E : Z & F

Γ`⇓Z
S return E; & F

[Label]

Γ`⇓Z
S S & F

Γ`⇓Z
S l: S; & F

[Goto]

Γ`⇓Z
S goto l; & ∅

[Break]

Γ`⇓Z
S break; & ∅

[Continue]

Γ`⇓Z
S continue; & ∅

[If]

Γ `E E : Z0 & F0 Γ`⇓Z
S S1 & F1 Γ`⇓Z

S S2 & F2

Γ`⇓Z
S if (E) S1 S2 & F0 ∪ F1 ∪ F2

[Switch]

Γ `E E : Z0 & F0 ∀i ∈ [1, n]. Γ`⇓Z
S Si & Fi

Γ`⇓Z
S switch (E) { S1 · · · Sn } & F0 ∪ (

⋃
i∈[1,n]

Fi)

[Loop]

Γ`⇓Z
S S & F

Γ`⇓Z
S while (1) S & F

[Block]

∀i ∈ [1, n]. Γ`⇓Z
S Si & Fi

Γ`⇓Z
S {S1 · · · Sn} &

⋃
i∈[1,n]

Fi

Figure 4.7: Typing of statements.

At this point, let us focus on the declaration and definition of vari-
ables and functions. For presentation purposes, let us also assume that
there is a single declaration or definition for each variable, and a single
definition for each function; and that there are no mutually recursive
definitions. Multiple variable or function prototype declarations can be
grouped and handled as one. Typing mutually recursive function defi-
nitions requires a simple yet convoluted extension of rule [Fun-Def], so

80 Chapter 4. A Shape and Effect System for C(IL)

`G ⊆ Env×Global× Env

[Var-Decl]
Γ′ = Γ; x : Z Z � T

Γ `G T x; & Γ′

[Var-Def]
Γ `E E : Z & F Γ′ = Γ; x : Z Z � T

Γ `G T x = E; & Γ′

[Fun-Def]

Z f = refρ0 (refρ1 Z1 × · · · × refρn Zn
F−→ Z0)

Γ; f : ∀ . Z f ; x1 : refρ1 Z1; · · · ; xm : refρm Zm`⇓Z0
S S & F0

Zi � Ti / i ∈ [0, m] F w F0
Γ′ = ∀ υ. refρ0 Z f υ = FTV(Z f) \ (FTV(Γ) ∪ {ρ0})

Γ `G T0 f(T1 x1, · · · , Tn xn) { Tn+1 xn+1; · · · Tm xm; S } & Γ′

[Tr-Unit]
Γi−1 `G Gi & Γi i ∈ [1, n]

Γ0 `G G1 · · ·Gn & Γn

Figure 4.8: Typing of globals.

that the functions in a recursive group are typed all together.
Variables are given a shape that is compatible with their declared

type, and introduced into the environment (rules [Var-Decl] and [Var-
Def]). In a variable definition, the effects of evaluating the initializer are
ignored. Note that, in C, global initializers must be constant expressions,
and the initialization of global variables introduces no runtime effects.
(Again, for presentation purposes, I have obviated array and struct ini-
tializers.)

For a function definition f , its body S is typed under an extended
environment, where each parameter or local variable xi is given a shape
compatible with its declared type (rule [Fun-Def]). This environment in-
cludes f itself, with a monomorphic shape, allowing for (monomorphic)
recursion. The latent effects of f must be a superset of those resulting
of evaluating its body. Finally, in the new environment, the shape of f

4.6. Soundiness 81

is generalized over those variables υ, that are unique to f ’s shape and
hence do not occur free in Γ.

A translation unit is typed by typing each one of its globals sequen-
tially, in order of appearance (rule [Tr-Unit]). Each global produces a
new environment that is used to type the subsequent ones.

4.6 Soundiness

In order to be simple and yet useful, the shape and effect system had to
be unsound. Unsoundness affects mainly (but not only) the treatment
of structs and pointer arithmetic. This is a necessary trade-off for a
bug-finding technique [LSS+15]. The biggest challenge, as it is often the
case in static analysis, is to keep track of aliasing in an unsafe language
like C. The language of shapes is of great help to deal with this problem,
but that alone is not enough to deal with the use of certain workarounds
involving type casts, pointer arithmetic, and collections of data elements
(e.g., arrays and linked lists). Table 4.1 summaries these trade-offs.

In particular, this system has been designed to handle struct objects
and casts between struct types precisely, but not soundly. The need
for a precise treatment of structures has been identified by previous
work [Ste96a, YHR99], and in the qualitative study of Linux bugs which is
part of this thesis (cf. Sect. 3.7). I could also confirm this experimentally,
when running early versions of EBA on Linux code. One simply cannot

Table 4.1: Design compromises of the shape-and-effect system.

Decision Pros Cons

Flow-insensitive analysis efficient imprecise

Polymorphic shapes, regions and ef-
fects

precise complex

Struct members are treated as sepa-
rate variables

precise unsound

Collections of data elements (e.g., ar-
rays, linked lists) have flat shapes

sound imprecise

Dynamic memory allocations at a
given location are conflated.

sound imprecise

82 Chapter 4. A Shape and Effect System for C(IL)

expect to get anything useful from an analysis that is not precise on
structures. With a decent handling of structures, EBA finds a dozen bugs
in Linux, with a low number of false alarms, despite handling pointer
arithmetic and data collections naively (see Chapter 7).

There are still some tricky uses of structs that this system does
not handle satisfactorily. This is, for instance, the case of recovering
a pointer to a struct object from a pointer to one of its fields. In C,
an expression of type int* may not only be a pointer to an int, but
may also be a pointer to an int field of some struct object. If one
knows to which field, and of which struct, a pointer points to, it is
possible to compute the memory address of the container struct ob-
ject by means of the offsetof(type,member) macro. 8 The Linux macro
container_of(ptr,type,member) does exactly this: given a pointer
ptr to the member member of an object of struct-type type, it computes
the base pointer of the container struct.

The above trick is used to implement a form of object-downcast in
C. For instance, in Linux, device drivers are maintained in a tree-like data
structure, where data elements are pointers to struct device objects.
Each of these pointers is typically embedded in a driver-specific ob-
ject (i.e., another structured object with a struct device member) that
maintains the state of the device driver. While the driver API requires
that certain functions simply receive a pointer to an struct device ob-
ject as input, the drivers’ code can use container_of to obtain a pointer
to the container driver-specific object from it. This shape-and-effect sys-
tem does not offer a good solution to handle this idiom. One approxi-
mation could be to introduce a new kind of projection shapes, that could
describe pointers to struct members, while retaining information about
the container objects.

8The expression offsetof(struct A,x) returns the offset in bytes of the
member x with respect to the base address of an struct A object.

Chapter 5

Shape-Region and Effect Inference for C(IL)

The shape-and-effect system has been presented in a declarative fash-
ion, which is useful for understanding and reasoning about it. Such
formulation, however, is not directly executable since the typing rules
do not constitute an algorithm. The typing rules often make guesses (i.e.,
non-deterministic choices) of regions, shapes, and effects. For instance,
the l-value rule [Fun] (cf. Fig.4.4) picks arbitrary regions, shapes, and
sets of effects in order to instantiate a function shape scheme.

This chapter describes how to derive an inference algorithm for the
shape-and-effect system of Chapter 4, following the recipe given by
Talpin and Jouvelot in [JT93]. Every set of rules presented here con-
stitutes an algorithm (rules must be applied left to right and top to
bottom). This algorithm shall 1 infer principal types and minimum sets
of effects. The standard way of doing this is to replace all guesses with
fresh variables, and introduce a set of constraints on the values that each
one of these variables can take. This is known as constraint-based type
inference.

5.1 Unification

Whenever a typing rule requires two (a priori different) shapes to be
the same, this translates into an equality constraint in the inference
algorithm. For instance, rule [Int-A] (cf. Fig. 4.5), for typing integer
arithmetic expressions, requires that both of its operands have the same

1I have not proven it, see Sect. 5.6

84 Chapter 5. Shape-Region and Effect Inference for C(IL)

 : Shape× Shape→ Subst

[Unif-Bot]

⊥ ⊥ = ∅

[Unif-Ptr-Bot]

ptr refρ Z ⊥ = ∅

[Unif-Var-Bot]

ζ ⊥ = ∅

[Unif-Var-L]
ζ /∈ FTV(Z)

ζ Z = {ζ 7→ Z}

[Unif-Var-R]
ζ /∈ FTV(Z)

Z ζ = {ζ 7→ Z}

[Unif-Ptr]
Z1 Z2 = θ

ptr refρ1 Z1 ptr refρ2 Z2 = {ρ2 7→ ρ1}θ

[Unif-Struct]
TA

k ∼ TB
k θ

ρ
k = {ρ′k 7→ ρk} k ∈ [1, n]

θ
ρ
k θk−1 · · · θ1Zk θ

ρ
k θk−1 · · · θ1Z′k = θk

struct A { refρi Zi xi } struct B|n { refρ′j Z′j yj } = θn · · · θ1

[Unif-Fun]
θ

ρ
k = {ρ′k 7→ ρk} θ

ρ
k θk−1 · · · θ1Zk θ

ρ
k θk−1 · · · θ1Z′k = θk k ∈ [1, n]

Z0 Z′0 = θ0 θ′ = θn · · · θ0 θ = {θ′ϕ′ 7→ θ′ϕ}θ′

refρ1 Z1 × · · · × refρn Zn
ϕ−→ Z0 refρ′1 Z′1 × · · · × refρ′n Z′n

ϕ′−→ Z′0 = θ

Figure 5.1: Shape unification.

shape. The inference algorithm solves these equations by using unifi-
cation [Rob65], which takes two shapes and either fails, 2 or produces
a substitution mapping type variables to regions, shapes and sets of
effects—depending on the kind of variable.

Another source of constraints are type casts, which require mapping
the memory regions of one shape to another (potentially incompatible)
shape. This mapping is defined by theB relation (cf. Sect. 4.3). Note that
the only typing rule that introduces B-constraints is [Cast] (cf. Fig. 4.5),
because in CIL all type conversions are explicit. The inference algorithm
solves these inequalities in a similar fashion than the equalities, with an

2Unification failures are handled specially, see Sect. 5.5.

5.2. Most general shape 85

algorithm derived from the B relation. In fact, this algorithm, which we
will call B-unification, embeds shape unification and is used to handle
equality constraints as well.

Figure 5.1 presents the B-unification algorithm. In the inference
rules, both Z1 = Z2 and Z1 B Z2 constraints are converted into
Z1 Z2 = θ. The operator B-unifies shapes Z1 and Z2, pro-
ducing a substitution θ, so that θZ1 B θZ2. Any non-struct shape triv-
ially B-unifies with ⊥ (rules [Unif-Bot], [Unif-Ptr-Bot], and [Unif-
Var-Bot].) The B-unification of a shape variable ζ with a shape Z (and
vice-versa) simply maps ζ to Z (rules [Unif-Var-L] and [Unif-Var-R]).
Yet, to avoid cycles, it is required that ζ is not free in Z. For example,
⊥ ζ = {ζ 7→ ⊥} (rule [Unif-Var-R]), but ζ ptr refρ ζ = failure
because ζ ∈ FTV(ptr refρ ζ).

The B-unification of two pointer shapes merges the regions in mem-
ory where they point to (effectively recording them as aliases), and
recursively B-unifies the “pointees” (rule [Unif-Ptr]). For example,
ptr refρ1 ⊥ ptr refρ2 ζ = {ζ 7→ ⊥, ρ2 7→ ρ1} (rules [Unif-Ptr] and
[Unif-Var-R]). Rules for struct ([Unif-Struct]) and function ([Unif-
Fun]) shapes are, despite convoluted, systematically derived from the
corresponding B-rules [Cast-Struct] and [Cast-Fun] of Fig. 4.3. The
astute reader may have noticed that in rule [Cast-Fun] the latent effects
of both function shapes are just effect variables, rather than arbitrary
sets of effects, this will be explained in Sect. 5.3.

5.2 Most general shape

In the declarative type system, whenever a shape Z had to be chosen to
describe an arbitrary object of type T, we required Z to be compatible
with T (Z � T, cf. Sect. 4.2). The inference algorithm introduces the
notion of most general shape, which is derived from the definitions of the
� and B relations (cf. figs. 4.2 and 4.3). The most general shape of a
type T, written shape-of(T), is a shape Z that is compatible with T (i.e.,
Z � T), and for any other Z′ that is also compatible with T, there exist
a substitution θ such that Z Z′ = θ.

Figure 5.2 shows the algorithmic rules for shape-of(). These rules
shall 3 obtain the most-general shape of a given type. Essentially, when-
ever a type is �-compatible with two or more shapes, these rules prefer

3But I have not proven it.

86 Chapter 5. Shape-Region and Effect Inference for C(IL)

shape-of() : Type→ Shape

[Mgs-Bot]
T ∈ {void,float,double}

shape-of(T) = ⊥

[Mgs-Int]
T ∈ {char,short,int,long,long long} ζ fresh

shape-of(T) = ζ

[Mgs-Void-Ptr]
ρ, ζ fresh

shape-of(void*) = ptr refρ ζ

[Mgs-Ptr]
shape-of(T) = Z ρ fresh

shape-of(T*) = ptr refρ Z

[Mgs-Struct]
shape-of(Ti) = Zi ρi fresh i ∈ [1, n]

shape-of(struct A { Ti xi }) = struct A { refρi Zi xi }

[Mgs-Fun]
shape-of(Ti) = Zi / i ∈ [0, n] ρ1, · · · , ρn, ϕ fresh

shape-of(T1 × · · · × Tn → T0) = refρ1 Z1 × · · · × refρn Zn
ϕ−→ Z0

Figure 5.2: Most general shape.

the most general one with respect to B. Hence, fresh shape variables
are preferred whenever possible, since they can be instantiated with ar-
bitrary r-shapes (cf. Fig. 5.1); and pointer shapes are preferred over ⊥
(rule [Cast-Bot] of Fig. 4.3). For instance, according to rule [Comp-Int]
of �, the shape of int could be ⊥, ptr refρ Z, and ζ—for arbitrary Z and
ζ. Rule [Mgs-Int] specifies that the default shape assigned to an object
of type int shall be a fresh shape variable ζ, the most general of the
three.

5.3 Subeffecting constraints

Besides equality and cast constraints between shapes, which are solved
by B-unification, there are also equality and subset constraints between

5.4. Inference rules 87

sets of effects, which are introduced by rule [Fun-Def] (cf. Fig. 4.8).
Solving these two types of constraints on sets of effects will be reduced
to solving a system of subeffecting constraints [TJ92].

A subeffecting constraint written ϕ w F specifies that any solution for
the variable ϕ must include at least the effects F. A system of subeffecting
constraints, denoted by κ, is a set of subeffecting constraints where the
left hand sides of the inequations are distinct. (Note that {ϕ w F1; ϕ w
F2} can be reduced to {ϕ w F1 t F2}.) The restriction of a constraint
system κ on the effect variables υ is defined as κυ = {ϕ w F ∈ κ | ϕ ∈ υ}.

A constraint system κ, by construction, always admits at least one
solution [TJ92]. A solution of κ is a substitution θ such that θϕ w θF
holds for every ϕ w F ∈ κ The principal model of a system κ, written κ,
is inductively defined as {} = ∅, and κ′ ∪ {ϕ w F} = {ϕ 7→ F′}κ′ where
F′ = κ′(ϕ t F). For any solution θ of a system κ, there exist θ’ such that
θ = θ′κ. The minimal solution of κ, denoted by Min(κ), is computed
as Min({}) = ∅, and Min(κ′ ∪ {ϕ w F}) = {ϕ 7→ θ′F \ {ϕ}}θ′ where
θ′ = Min(κ′).

In [TJ92], Talpin and Jouvelot show how to reduce both equality and
subset constraints on effects to subeffecting constraints. The key point
is that, in the inference system, function shape schemes have the form:

∀ υ. κ ⇒ refρ0 (refρ1 Z1 × · · · × refρn Zn
ϕ−→ Z0)

Where the latent effects of the function are specified by a single effect
variable ϕ, which is constrained by the system κ. If the body of the
function has effects F, then κ shall imply the constraint ϕ w F. This
effectively makes every function effect polymorphic. It also simplifies
B-unification of function shapes (cf. rule [Fun], Fig. 5.1), that requires
the latent effects of both shapes to be equal. (If latent effects were sets of
effects as in the declarative type system, what would be a substitution
for ϕ1 t {writeρ1} = {writeρ2} t ϕ2?)

5.4 Inference rules

This section provides an overview of the inference rules, and discuss
a few of these rules that are of key importance. Roughly, in addi-
tion to what the declarative typing rules do, inference rules also take
a subeffecting constraint system as input; and produce a substitution
and a new set of subeffecting inequations. Constraint systems collect

88 Chapter 5. Shape-Region and Effect Inference for C(IL)

`↑L : Env×K× Lval→ Subst× Shape× Effect×K

[Var]
Γ(x) = refρ Z

Γ; κ `↑L x : ∅ & refρ Z & ∅ & κ

[Deref]
Γ; κ `↑E E : θ & ptr refρ Z & F & κ′

Γ; κ `↑L *E : θ & refρ Z & F & κ′

[Fun]

Γ(f) = ∀ ρζ ϕ. κ0 ⇒ refρ0 (refρ1 Z1 × · · · × refρn Zn
ϕ0−→ Z0)

θ = {ρ 7→ ρ′, ζ 7→ ζ ′, ϕ 7→ ϕ′} ζ ′, ρ′, ϕ′ fresh

Γ; κ `↑L f : ∅ & refρ0 θ(Z1 × · · · × Zn
ϕ0−→ Z0) & ∅ & κ t θκ0

[Index]
Γ; κ `↑L L : θ & refρ1 Z1 & F1 & κ′ θΓ; κ′ `↑E E : θ′ & Z2 & F2 & κ′′

Γ; κ `↑L L[E] : θ′θ & θ′(refρ1 Z1) & θ′F1 ∪ F2 & κ′′

[Field]
Γ; κ `↑L L : θ & refρ0 struct A { refρi Zi xi } & F & κ′

Γ; κ `↑L θ : L.xj & refρj Zj & F & κ′

Figure 5.3: Inference rules for lvalues.

and propagate the subeffecting constraints introduced by function call
invocations. The output substitution is a local solution to the equality
constraints imposed by the application of the rule. Unlike subeffecting
constraint systems, these equations are not guaranteed to have a solu-
tion; and it is preferable to compute the solution incrementally, and deal
with errors as early as possible.

5.4.1 Inference rules for l-values

The judgment Γ; κ `↑L L : θ & Z & F & κ′ specifies that, given the envi-
ronment Γ and the constraint system κ, the l-value L has principal shape
Z, its evaluation produces effects F, and introduces typing constraints θ

and κ’. Figure 5.3 shows the inference rules for l-values.
For instance, rule [Fun] instantiates the shape scheme of a function.

Unlike the declarative typing rules, the inference algorithm is not al-
lowed to guess which concrete regions, shapes, and effects must be used.

5.4. Inference rules 89

This choice depends on the context in which the function is used (e.g.,
what are its actual parameters), which in general is yet unknown. Note
that a pointer to this function reference could be passed around and be
applied far away from where the reference was obtained.

The solution is to generate a fresh type variable for each one of the
quantified variables, representing yet-unknown regions, shapes and ef-
fects. A substitution is build to instantiate the shape of the function
accordingly. The latent effect constraints κ0 are also instantiated, and
added to the input system κ.

5.4.2 Inference rules for expressions

The judgment Γ; κ `↑E E : θ & Z & F & κ′ specifies that, given the en-
vironment Γ and the constraint system κ, the expression E has principal
shape Z, its evaluation produces effects F, and introduces typing con-
straints θ and κ′. Figures 5.6, 5.7, and 5.8, show the inference rules for
expressions. For layout reasons, these figures are located at the of the
chapter.

For instance, rule [Int-A] is used to infer the shape of an inte-
ger arithmetic expression, where the operands may be masquerading
pointers. A priori, each operand may have a different shape, and B-
unification is required to constraint them to be equal. (Because, in CIL,
both operands are guaranteed to have the same type, potentially af-
ter inserting type casts, the two shapes are also guaranteed to be type-
compatible, and thus B-unification will effectively enforce both shapes
to be equal, or fail.)

Rule [Cast] allows the system to track operations on memory objects
through type casts. The rule computes the most general shape for the
target type, and then computes a substitution using B-unification that
establishes links between the memory regions of the source and target
shapes. The two shapes may not even be type compatible, e.g., when
casting between struct types with different memory layout.

5.4.3 Inference rules for instructions

The judgment Γ; κ `↑I I : θ & F & κ′ & specifies that, given the envi-
ronment Γ and the constraint system κ, the instruction I may have the
effects F when evaluated, and introduces typing constraints θ and κ′.
Figure 5.4 shows the inference rules for instructions.

90 Chapter 5. Shape-Region and Effect Inference for C(IL)

`↑I : Env×K× Instr→ Subst× Shape× Effect×K

[Set-Exp]
Γ; κ `↑L L : θ & refρ Z1 & F1 & κ′

θΓ; κ′ `↑E E : θ′ & Z2 & F2 & κ′′ θ′Z1 Z2 = θ′′

Γ; κ `↑I L = E : θ′′θ′θ & θ′′Z2 & θ′′(θ′F1 ∪ F2 ∪ θ′{writeρ}) & θ′′κ′′

[Call]

Γ; κ `↑L L f : θ0 & refρ0 (refρ1 Z1 × · · · × refρn Zn
ϕ−→ Z0) & F0 & κ0

θi−1 · · · θ0Γ; κi−1 `↑E Ei : θi & Z′i & Fi & κi
Z′i Zi = θ′i F′i = θn:i+1Fi i ∈ [1, n]

Z′0 = θn:1Z0 ϕ′ = θn:1ϕ θ′ = θ′n:1 θ′′ = θ′θn:0

Γ; κ `↑I L f (E1, · · · , En) : θ′′ & θ′Z′0 & θ′(F′0 ∪
⋃

i∈[1,n]

F′i ∪ ϕ′) & θ′κn

[Set-Call]
Γ; κ `↑L L : θ & refρ Z & F1 & κ′

Γ; κ′ `↑I L f (E1, · · · , En) : θ′ & Z2 & F2) & κ′′

F′1 = θ′F1 ρ′ = θ′ρ θ′Z1 Z2 = θ′′ θ′′′ = θ′′θ′θ

Γ; κ `↑I L = L f (E1, · · · , En) : θ′′′ & θ′′Z2 & θ′′(F′1 ∪ F2 ∪ {writeρ′}) & θ′′κ′′

Figure 5.4: Inferece rules for instructions.

5.4.4 Inference rules for statements

The judgment Γ; κ `⇓Z
↑S S : θ & F & κ′ specifies that, within a function

returning values of shape Z, and given the environment Γ and the con-
straint system κ, the statement S may have the effects F when evaluated,
and introduces typing constraints θ and κ′. Figure 5.9 shows the infer-
ence rules for statements. For layout reasons, this figure is located at the
of the chapter.

5.4.5 Inference rules for globals

The judgment Γ; κ `↑G G & θ & Γ′ & κ′ specifies that, in the environment
Γ and the constraint system κ, the global G is valid, transforms the
environment into Γ′, and and introduces typing constraints θ and κ′.
Figure 5.5 shows the inference rules for globals.

5.4. Inference rules 91

`G : Env×K×Global→ Subst× Env×K

[Var-Decl]
Γ′ = Γ; x : Z shape-of(T) = Z

Γ; κ `↑G T x; & ∅ & Γ′ & κ

[Var-Def]
Γ; κ `↑E E : θ & Z & F & κ′ Γ′ = Γ; x : Z

Γ; κ `↑G T x = E; & θ & Γ′ & κ′

[Fun-Def]
Zi = shape-of(Ti) / i ∈ [0, m] ρ0 · · · ρm ϕ0 fresh

Z f = refρ0 (refρ1 Z1 × · · · × refρn Zn
ϕ0−→ Z0)

Γ′ = Γ; x1 : refρ1 Z1; · · · ; xn : refρn Zn

(Γ′; f : ∀ . Z f ; xj : refρj Zj;
n+1:m

); κ `⇓Z0
↑S S : θ & F & κ′ θ′ = κ′θ

F′ = Observeθ′Γ′,θ′Z f (θ
′F) υ = FTV(θ′Z f) \ (FTV(θ′Γ) ∪ θ{ρ0})

κ f = κ′υ t {θϕ0 w F′} Γ′′ = Γ; f : ∀ υ. κ f ⇒ θZ f κ′′ = κ′ \ κ f

Γ; κ `↑G T0 f(T1 x1, · · · , Tn xn) { Tj xj;
n+1:m S } & θ & Γ′′ & κ′′

[Tr-Unit]
Γi−1; κ0 `↑G Gi & θi & Γi & κi i ∈ [1, n]

Γ0; κ0 `↑G G1 · · ·Gn & θn:1 & Γn & κn

. .

ObserveΓ,Z(F) = {ε(ρ) ∈ F | ∃ρi ∈ FTV(Γ)
∪ FTV(Z)} ∪ {ϕ ∈ F | ϕ ∈ FTV(Γ) ∪ FTV(Z)}

Figure 5.5: Inference rules for globals.

Rule [Var-Decl] infers the shape of a declared variable. We still as-
sume that, as in Sect.4.5.5, CIL translation units are simplified so that
each global variable is either declared or define exactly once. Variables
are simply given the most-general shape possible according to their de-
clared type. This shape typically contains variables that may be con-
strained later on, and therefore the final shape assigned to the variable
will depend on how it is used within the translation unit.

The (fairly complex) rule [Fun-Def] infers the shape scheme of a
function definition. The interesting aspect of this rule is how subeffect-

92 Chapter 5. Shape-Region and Effect Inference for C(IL)

ing is handled. The rule generates a fresh effect variable ϕ0 that repre-
sents the latent effects of the function. Being F0 the effects of evaluating
the body of the function, the shape scheme of the function carries the
constraint ϕ0 w F0. Depending on the contexts where the function may
be used, ϕ0 can be further constrained, but it will always have to include
the effects F. The subeffecting constraints resulting from inferring the
shape and effects of the function body, that is κ′, are split into those that
constrain variables on which the function is polymorphic, that is κυ, and
those that refer to effect variables with global scope. The former are
carried by the shape scheme, whereas the latter are propagated to the
next global.

5.5 Limitations

Real C programs, especially in the operating systems domain, do in-
volve very complex pointer manipulation, and exploit all the possibili-
ties that the C standard allows (and some that are implementation spe-
cific). While a shape and effect system that can handle all these unsafe
uses of C precisely and efficiently might never exist, we still need to an-
alyze C programs. The shape-and-effect inference algorithm presented
here is imperfect, but it does handle a large amount of C constructs and
idioms.

For the cases that it does not handle well, the implementation of
the inferrer—as part of a bug-finding tool—should be able of degrading
gracefully, and continue to operate in the presence of inference-related
failures without crashing. For example, in EBA, the rule [Cast] is relaxed
and, even though the implementation will try to perform B-unification,
even if no [Unif-*] rule matches (cf. Fig. 5.1), a cast will always succeed.
In any case, the implementation shall produce an effect-based abstrac-
tion for any program that the compiler accepts.

The reasons why B-unification may fail include the aforementioned
casts from pointers to struct members to the container struct object (cf.
Sect. 4.6), and also pointer manipulations that result in cyclic shapes. For
instance, in int *b; b = *b;, the assignment b = *b will introduce
the following cyclic constraint ptr refρ Z = Z. (Yet, this is perfectly legal
C code.) The implementation will simply ignore this equality constraint.
Other constructs such as inline assembly can also have arbitrary effects,
that this system does not track.

5.6. Principality 93

Whenever B-unification fails, or there exist unsupported C con-
structs, the produced safe-and-effect abstraction could be unsound. Un-
soundness means that the system can miss aliasing relationships (if B-
unification fails), or effects (e.g., for inline assembly). This can lead to
both false negatives (i.e., bugs are missed) and false positives (i.e., non-
bugs are reported). For instance, the system may infer that, in S1;S2,
the statement S1 has effects {lockρ1}, and S2 has effects {lockρ2}, whereas
in reality ρ1 and ρ2 point to the same object, and therefore a potential
double-lock would not be detected. Similarly, for S1;S2;S3, where the
system infers that S1 has effects {lockρ1}, S2 has effects {unlockρ2}, and S3
has effects {lockρ1}; if ρ1 and ρ2 point to the same object, the bug-finder
may report a non-existent double-lock.

A bug-finding tool built on top of this shape-and-effect system needs
to be aware of the above limitations. EBA, for instance, employs heuristics
to remove false positives caused by aliasing imprecisions (cf. Chapter 6).
A more sophisticated implementation could keep track of which mem-
ory regions are involved in a failed B-unification attempt, and down
prioritize bug alarms concerning those regions. Some false negatives
could be avoided by combining multiple levels of abstractions; e.g., by
performing a more precise alias analysis on specific parts of the code.

5.6 Principality

I have proven no theorems about this shape and effect system. In par-
ticular, I have not proven principality of the inference system. Yet, the
original work of Talpin-Jouvelot [TJ92] does guarantee principality, and
I have followed their method closely. I have no reason to believe that the
same does not hold here—at least in the absence of unsafe casts between
different record types.

In this system, the notion of principal type should correspond to the
notion of most-general shape. Thus, the shape inferred for any expres-
sion E should be the most general possible—with respect to B, that is
�-compatible with the type of E. Note that without requiring compati-
bility with the type of the expression, there may not be a principal shape,
due to struct-to-struct conversions.

In any case, let us assume that the inference algorithm presented here
does not infer the most general shape possible. The side-effect would
be that B-unification could fail more often. Unification failures are han-
dled gracefully, but they introduce more aliasing imprecisions into the

94 Chapter 5. Shape-Region and Effect Inference for C(IL)

inferred abstraction. Hence, this would lead to extra false positives and
negatives (cf. Sect. 5.5). But, since we expect that any implementation
will (at least) have mechanisms to remove false positives, this mostly
translates in less bugs being found. False negatives are inherent to the
design of lightweight bug-finding techniques.

While I have no proofs to show, I do have a proof-of-concept imple-
mentation of this shape-and-effect inference system, and a bug-finding
tool (EBA) built on top of it (cf. Chapter 6). The good results obtained
during the evaluation of this tool (cf. Chapter 7) constitute empirical
evidence that the inference system does allow for efficient and effective
inter-procedural reasoning about resource manipulation.

5.6. Principality 95

`↑E : Env×K× Exp→ Subst× Shape× Effect×K

[Const-Bot]
typeof(c) ∈ {float,double}

Γ; κ `↑E c : ∅ & ⊥ & ∅ & κ

[Const-Str]
typeof(str) = char* ρ fresh

Γ; κ `↑E str : ∅ & ptr refρ ⊥ & ∅ & κ

[Const-Int]
typeof(i) ∈ {char,int,short,long,long long} ζ fresh

Γ; κ `↑E i : ∅ & ζ & ∅ & κ

[Lval]
Γ; κ `↑L L : θ & refρ Z & F & κ′

Γ; κ `↑E L : θ & Z & F ∪ {readρ} & κ′

[Addr]
Γ; κ `↑L L : θ & refρ Z & F & κ′

Γ; κ `↑E *L : θ & ptr refρ Z & F & κ′

[Question]
Γ; κ `↑E E1 : θ1 & Z1 & F1 & κ1 θ1Γ; κ1 `↑E E2 : θ2 & Z2 & F2 & κ2

θ2θ1Γ; κ2 `↑E E3 : θ3 & Z3 & F3 & κ′ θ3Z2 Z3 = θ4

Γ; κ `↑E (E1) ? E2 : E3 : θ4θ3θ2θ1 & θ4Z3 & θ4(θ3(θ2F1 ∪ F2) ∪ F3) & θ4κ′

[Cast]
Γ; κ `↑E E : θ & Z & F & κ′ Z′ = shape-of(T) Z Z′ = θ′

Γ; κ `↑E (T)E : θ′θ & θ′Z′ & θ′F & θ′κ′

Figure 5.6: Inference rules for non-aritmetic expressions.

96 Chapter 5. Shape-Region and Effect Inference for C(IL)

`↑E : Env×K× Exp→ Subst× Shape× Effect×K

[Sizeof-T]
T 6= T′[E] ζ fresh

Γ; κ `↑E sizeof(T) : ∅ & ζ & ∅ & κ

[Sizeof-A]
Γ; κ `↑E E : θ & Z & F & κ′ ζ fresh

Γ; κ `↑E sizeof(T[E]) : θ & ζ & F & κ′

[Sizeof-E]
ζ fresh

Γ; κ `↑E sizeof(E) : ∅ & ζ & ∅ & κ

[Alignof-T]
ζ fresh

Γ; κ `↑E alignof(T) : ∅ & ζ & ∅ & κ

[Alignof-E]
ζ fresh

Γ; κ `↑E alignof(E) : ∅ & ζ & ∅ & κ

Figure 5.7: Inference rules for sizeof() and alignof() expressions.

5.6. Principality 97

`↑E : Env×K× Exp→ Subst× Shape× Effect×K

[Neg]
Γ; κ `↑E E : θ & Z & F & κ′ 	 ∈ {-,~}

Γ; κ `↑E 	E : θ & Z & F & κ′

[Not]
Γ; κ `↑E E : θ & Z & F & κ′

Γ; κ `↑E !E : θ & ⊥ & F & κ′

[Int-A]
Γ; κ `↑E E1 : θ & Z1 & F1 & κ′ θΓ; κ′ `↑E E2 : θ′ & Z2 & F2 & κ′′

θ′Z1 Z2 = θ′′ ⊕ ∈ {+,-,*,/,%,&,ˆ,|,«,»}
Γ; κ `↑E E1 ⊕ E2 : θ′′θ′θ & θ′′Z2 & θ′′(θ′F1 ∪ F2) & θ′′κ′′

[Plus-PI]
Γ; κ `↑E E1 : θ & ptr refρ Z1 & F1 & κ′ θΓ; κ′ `↑E E2 : θ′ & Z2 & F2 & κ′′

Γ; κ `↑E E1+E2 : θ′θ & θ′(ptr refρ Z1) & θ′F1 ∪ F2 & κ′′

[Minus-PP]
Γ; κ `↑E E1 : θ & ptr refρ1 Z1 & F1 & κ′

θΓ; κ′ `↑E E2 : θ′ & ptr refρ2 Z2 & F2 & κ′′

ptr refρ1 Z1 ptr refρ2 Z2 = θ′′

Γ; κ `↑E E1-E2 : θ′′θ′θ & ⊥ & θ′′(θ′F1 ∪ F2) & θ′′κ′′

[Bool-A]
Γ; κ `↑E E1 : θ & Z1 & F1 & κ′

θΓ; κ′ `↑E E2 : θ′ & Z2 & F2 & κ′′ � ∈ {&&,||}
Γ; κ `↑E E1 � E2 : θ′θ & ⊥ & θ′F1 ∪ F2 & κ′′

[Cmp]
Γ; κ `↑E E1 : θ & Z1 & F1 & κ′

θΓ; κ′ `↑E E2 : θ′ & Z2 & F2 & κ′′ E ∈ {<,>,<=,>=,==,!=}
Γ; κ `↑E E1E E2 : θ′θ & ⊥ & θ′F1 ∪ F2 & κ′′

Figure 5.8: Inference rules for arithmetic expressions.

98 Chapter 5. Shape-Region and Effect Inference for C(IL)

`↑S : Env×K× Shape× Stmt→ Subst× Effect×K

[Instr]
Γ; κ `↑I I : θ & Z′ & F & κ′

Γ; κ `⇓Z
↑S I; : θ & F & κ′

[Return]

Γ; κ `⇓Z
↑S return; : ∅ & ∅ & κ

[Return-E]
Γ; κ `↑E E : θ & Z′ & F & κ′ Z′ Z = θ′

Γ; κ `⇓Z
↑S return E; : θ′θ & θ′F & θ′κ′

[Label]
Γ; κ `⇓Z

↑S S : θ & F & κ′

Γ; κ `⇓Z
↑S l: S; : θ & F & κ′

[Goto]

Γ; κ `⇓Z
↑S goto l; : ∅ & ∅ & κ

[Break]

Γ; κ `⇓Z
↑S break; : ∅ & ∅ & κ

[Continue]

Γ; κ `⇓Z
↑S continue; : ∅ & ∅ & κ

[If]
Γ; κ `↑E E : θ0 & Z0 & F0 & κ0

θ0Γ; κ0 `⇓Z
↑S S1 : θ1 & F1 & κ1 θ1θ0Γ; κ1 `⇓Z

↑S S2 : θ2 & F2 & κ2

Γ; κ `⇓Z
↑S if (E) S1 S2 : θ2θ1θ0 & θ2θ1F0 ∪ θ2F1 ∪ F2 & κ2

[Switch]
Γ; κ `↑E E : θ0 & Z0 & F0 & κ0 θi−1:0Γ; κi−1 `⇓Z

↑S Si : θi & Fi & κi / i ∈ [1, n]

Γ; κ `⇓Z
↑S switch (E) { S1 · · · Sn } : θn:0 & θn:1F0 ∪ (

⋃
i∈[1,n]

θn:i+1Fi) & κn

[Loop]
Γ; κ `⇓Z

↑S S : θ & F & κ′

Γ; κ `⇓Z
↑S while (1) S : θ & F & κ′

[Block]
Γ; κi−1 `⇓Z

↑S Si : θi & Fi & κi / i ∈ [1, n]

Γ; κ0 `⇓Z
↑S {S1 · · · Sn} : θn:1 &

⋃
i∈[1,n]

θn:i+1Fi & κn

Figure 5.9: Inference rules for statements.

Chapter 6

Effective Bug Finding with EBA

This chapter presents the bug-finding technique that makes the ultimate
contribution of this PhD work. I have implemented it in the EBA tool.
This technique has been sketched earlier in Sect. 1.4. This chapter also
discusses key aspects of its implementation. EBA is implemented in OCaml
and built on top of the CIL [NMRW02] front-end infrastructure. Its source
code is publicly available under an open-source license.1

Figure 6.1 shows the analysis pipeline implemented by EBA. At
present, and purely for simplicity, EBA analyzes individual C files in iso-
lation. (Multiple C files can be merged into a single file to be analyzed.)
The front-end (Sect. 6.1) is responsible for parsing the C file, and generat-
ing a CIL abstract syntax tree (AST). After this, the inferrer (Sect. 6.2) takes
this AST and decorates it with shape-and-effect information, producing
an effect-annotated control-flow graph (F-CFG). Then, the model-checker
(Sect. 6.3) traverses this F-CFG in search of bugs. Finally, a bug filter
(Sect. 6.4) removes duplicates and false positives.

6.1 Front-End: from C to CIL

EBA uses the CIL front-end to parse the input C file, and transform it into
an analysis-friendly intermediate representation (IR). The input C file
is generated by the build system (Sect. 6.1.1), which already runs the C
preprocessor if necessary. After the C-to-CIL conversion, the constructed
AST is post-processed (Sect. 6.1.2)—right now this is just to eliminate dead
code. The front-end is a quite important part of a tool. Using CIL was

1http://www.iagoabal.eu/eba/

http://www.iagoabal.eu/eba/

100 Chapter 6. Effective Bug Finding with EBA

.c file

Front-EndSect. 6.1

CIL AST

Shape-and-Effect
Inferrer

(Chapter 5)
Sect. 6.2

Axioms

CIL F-CFG

Model-CheckerSect. 6.3

Bug pattern

Bug candidates

Bug filterSect. 6.4

Bug reports

Figure 6.1: The EBA analysis pipeline: Analyzing a single C file. The
blue trapeziums represent analysis data, whereas the orange rectangles
represented analysis processes.

6.1. Front-End: from C to CIL 101

convenient for a proof-of-concept prototype, but there exist interesting
alternatives to consider (Sect. 6.1.3).

6.1.1 Integration with the build system

A typical problem when analyzing a software project, is to know which
files need to be analyzed in the first place. The .c source files will not
contain pure C code, but code with preprocessor directives, macro def-
initions, and macro uses. These files need to be preprocessed before
being suitable for analysis (more on this later), and the way of doing
this is only known to the build system. For example, in Kbuild systems
like Linux, the result of preprocessing depends on which configuration
options are set. It is possible to obtain these files in a way that is ag-
nostic of the build system, by capturing invocations to the preprocessor
or compiler, and extracting the relevant command-line arguments. This
can be done, for instance, by using a debugging tool like strace, which
can monitor all exec syscalls made by a running build command.

Fortunately, no sophisticated mechanism is required to run EBA on
Linux source code. The Linux build system already provides a source code
checking facility. It allows to specify a command to check the C sources,
through the use of the CHECK environment variable. If variable C is
defined, then every .c file to be compiled will be checked with the com-
mand specified in $CHECK, receiving the same command-line arguments
as the compiler. EBA is distributed with a simple script, called eba-gcc,
that provides a GCC-like wrapper, which preprocesses the input file and
then runs EBA on the result. One can run EBA on Linux by simply typ-
ing make C=1 CHECK="eba-gcc". This will run EBA on the files to be
(re)compiled; to force it to run on all the files (regardless of whether
they need to be recompiled), set C=2.

6.1.2 Reducing the input code

CIL takes preprocessed files as input. Preprocessed files tend to be large
(in the order of tens of KLOC) and contain thousands of function defi-
nitions. Most of these function definitions come from included headers,
most of them unused in the input .c file. (Some header files contain
many utility functions, of which each particular input file may only use
a few.) EBA uses CIL dead code elimination facilities to remove all the
unused function definitions (and other unused declarations as well) to

102 Chapter 6. Effective Bug Finding with EBA

decrease the input size. Experiments have shown that, in average, only
2% of the function definitions are used.

6.1.3 Alternative front-ends

I have chosen CIL because it is a native OCaml library, and its intermediate
representation (IR) is stable and, in fact, a subset of C. CIL IR is amenable
to static analysis and, by being a subset of C, it allows EBA to refer to
code that the programmer can recognize as his own. On the other hand,
GCC and LLVM IRs are lower-level representations, designed for efficient
compilation. Also, they are considered part of the compiler internals,
and therefore can easily be subject to backwards incompatible changes.

After I had started developing EBA, Facebook released the source code
of INFER. INFER uses Clang to parse the C files, exports the constructed AST
using a Clang plugin, and finally imports and rebuilds the AST in OCaml.
Then, they perform a transformation of the C AST into a CIL-like IR. This
saves the INFER team from maintaining an industrial-strength C parser. I
would like to consider this approach in the future, perhaps even reusing
the INFER front-end. Although the performance penalty of importing the
AST that is built by Clang into OCaml would need to be quantified.

As discussed earlier, the problem with these compiler front-ends is
that they only handle pure C code. This requires integrating the bug
finding tool with the build system which, in some cases, may not be
trivial to do. Some software projects, like Linux, rely heavily on macros to
define higher-level constructs (e.g., container_of2), or even to annotate
the code (e.g., __acquires3). After preprocessing, the meaning of these
constructs and annotations can be lost. Given enough resources, I would
have considered writing a fuzzy front-end, similar to that of Coccinelle or
CppCheck, capable of parsing C with preprocessor. This would also make
it easier to perform configuration-sensitive analysis (cf. Sect. 1.1).

6.2 Shape-and-effect inferrer

The inferrer implements the shape-and-effect inference algorithm of
Chapter 5. Given a CIL AST, it infers the memory shapes and aliasing
relationships of all program variables, and the effects for all statements.

2http://lxr.free-electrons.com/ident?i=container_of
3http://lxr.free-electrons.com/ident?i=__acquires

http://lxr.free-electrons.com/ident?i=container_of
http://lxr.free-electrons.com/ident?i=__acquires

6.2. Shape-and-effect inferrer 103

!lock

10

8 IF(*)

11

!unlock12

{lock,
unlock}

15

inode_get_rsv_space

!unlock 16

return 17

IF(*)

3
1 return 6

!lock4 !unlock 5

Figure 6.2: An illustration of our bug-finding technique for the double-
lock bug in Figure 1.2. The figure shows the associated CFG annotated
with lock and unlock effects. The numbers next to the CFG nodes show
corresponding line numbers. The gray nodes visualize the (red) path,
via the function call in line 15, to the double-lock (in line 4).

Crucially, each function is assigned a shape-and-effect signature, which
establishes aliasing relationships between inputs and outputs, and pro-
vides a flow-insensitive summary of its observable behavior. This infor-
mation is superimposed on the CFG, obtaining the so-called effect-based
CFG, or F-CFG, of the program. Figure 6.2 shows an example F-CFG
(basically the same as that of Fig. 1.3, repeated here for convenience).

We begin with a standard CFG, where nodes represent program lo-
cations, and edges specify the control-flow. We distinguish branching
decisions (diamond nodes), atomic operations (circles), function calls
(dotted squares), and return statements (double-circles). A F-CFG is
an effect-abstraction of a program obtained from the standard CFG by
annotating variables with their memory shapes, and nodes with the ef-
fects inferred for the corresponding locations. Function call nodes hold
a flow-insensitive over-approximation of the callee’s behavior. For in-
stance, in Fig. 6.2, the call to inode_get_rsv_space is summarized as
{lock, unlock}, indicating that this function call may both acquire and
release inode->lock.

104 Chapter 6. Effective Bug Finding with EBA

`S ⊆ Env× Shape× Stmt× Effect

[If]
Γ `E E : Z0 & F0 Γ`⇓Z

S S1 & F1 Γ`⇓Z
S S2 & F2

Γ`⇓Z
S if (E) S1 S2 & F0 ∪mayF1 ∪mayF2

[Switch]
Γ `E E : Z0 & F0 Γ`⇓Z

S Si & Fi / i ∈ [1, n]

Γ`⇓Z
S switch (E) { S1 · · · Sn } & F0 ∪ (

⋃
i∈[1,n]

mayFi)

[Block]
Γ`⇓Z

S Si & Fi / i ∈ [1, n]

Γ`⇓Z
S {S1 · · · Sn} & F1∪(

⋃
i∈[2,n]

mayFi)

Figure 6.3: Typing of statements with must-effects. Only the rules that
change are shown, and those changes are marked using a bold blue font.

6.2.1 May and must effects

The shape-and-effect system of Chapter 4 infers only may-effects,
whereas EBA also considers must-effects. The may-effects of a function
describe all the effects that may result from applying such function, but
not all applications of the function necessarily have all those effects. For
instance, if a function has a may-effect lockρ, it may or may not acquire
a lock on ρ, depending on the flow of control.

The must-effects of a function describe the effects that any invocation
of the function is guaranteed to have. For instance, function spin_lock

will only return after acquiring a lock. Must-effects are prefixed by a
bang (!), as in !lockρ. Must-effects are useful to mark the basic operations
that perform such effects (see Sect. 6.2.2). The bug-filter (cf. Sect. 6.4)
can rely on must-effects to rank the bug reports, and decide whether
inlining is necessary (more on this later).

However, the inferrer is not able to infer must-effects—that would
require a flow-sensitive analysis. When the inferrer cannot guarantee
that must-effects hold for a statement, it simply downgrades them to may-
effects. Figure 6.3 shows how the typing rules are changed to deal with
must-effects. The operator may turns must-effects into may-effects, e.g.,
may({!lockρ2}) = {lockρ2} (so it just “drops the bang”). Note that in a

6.2. Shape-and-effect inferrer 105

sequence of statements S1;S2, S2 may never execute if S1 either diverges
or aborts the execution (rule [Block]).

6.2.2 Axioms

The shape-and-effect inferrer knows about a few built-in effects that
are inherent to the C language, such as reads and writes to l-values.
Yet, bug checkers are often more interested in tracking effects associated
with specialized APIs. For EBA to track these effects, it is necessary to
mark the elementary API functions that are the root of those effects.
(Functions that are built on top of these elementary functions do not
need to be annotated, if their source code is available to EBA.) EBA offers
two mechanisms for doing this.

Full axioms

A full axiom is simply a shape scheme that is associated with a function
name, and added to the global typing environment as an axiom. The
axiom fully specifies the shape and effects of the function, and even if
a definition of the function exists, it is ignored. Full axioms can be bur-
densome to specify, and thus should be used to specify simple function
signatures, mainly when the code is not available. For instance, in EBA,
the libc function free is axiomatized as follows:

free : ∀ ρ1ρ2ζ. refρ1 ptr refρ2 ζ
{!readρ1 , !freeρ2

}
−−−−−−−−→ ⊥ (6.1)

This axiom specifies that free takes a pointer to an arbitrary memory
location (ρ2), containing an object of an arbitrary shape (ζ), and it has
the effect of freeing that chunk of memory from the heap.

Partial axioms

A partial axiom allows to refine the shape scheme of a function, that has
been previously inferred. Usually, the refinement consists in extending
the set of latent effects. Partial axioms are preferred when functions ma-
nipulate struct types, or when the source code of the function is avail-
able. (It is not a good practice to specify a complete struct shape in
an axiom, since the declaration may change, or even be configuration-
dependent.) For instance, Linux spin locks are mainly manipulated

106 Chapter 6. Effective Bug Finding with EBA

through the use of the spin_lock and spin_unlock functions, which
have the following prototype: void f(spinlock_t *lock). EBA con-
tains the following partial axioms to track operations on spin locks: 4

spin_lock : refρ1 ptr refρ2 Z
+!lockρ2−−−−−→ ⊥ (6.2)

spin_unlock : refρ1 ptr refρ2 Z
+!unlockρ2−−−−−→ ⊥ (6.3)

These two partial axioms shall be understood as patterns; where ρ1, ρ2
and Z are meta-variables. The effects prefixed by a plus (+) symbol on
the function arrow specify additions to the latent effects of the function.
For instance, when EBA finds the definition of spin_lock, it will infer
a shape for it, and then it will match the axiom pattern against the
inferred shape, and add lockρ2 to the latent effects of spin_lock. Note
that function spin_lock will have a readρ1 effect as well, but this effect
will already be inferred by EBA—so it is omitted in the partial axiom.

Full axioms may be preferred over partial axioms because they of-
fer slightly better performance. But, what is more important, they can
be used to circumvent the inference system, since the axiom will be
accepted blindly without even considering the definition of the axioma-
tized function.

6.2.3 Mutually recursive struct types

The shape of a struct type is obtained by recursively computing the
shape of each of its members (cf. Fig. 5.2). For mutually recursive
structs, such as A and B in Fig. 6.4, this would lead to infinite shapes. In
practice, EBA proceeds by first constructing a struct dependency graph,
and then computing the strongly connected components (SCCs). The
SCCs constitute groups of mutually recursive structs. The shape of an
SCC is obtained as a fixpoint of the shapes of the constituent structs.
Thus, for the example of Fig. 6.4, the shape of these two structs is com-
puted as the least fixpoint of the following equations:

ZA = struct A { ζ1 x; ptr refρ1 ZB b; } (6.4)
ZB = struct B { ζ2 y; ptr refρ2 ZA a; } (6.5)

The result is (indeed) a cyclic shape. Cyclic struct shapes are allowed,
and correctly handled, by EBA.

4A spin lock is, in fact, a wrapper around a lower-level raw lock, so EBA tracks the
corresponding operations _raw_spin_lock and _raw_spin_unlock.

6.3. Model-checker 107

1 struct B;
2
3 struct A {
4 int x;
5 struct B *b;
6 }
7
8 struct B {
9 int y;

10 struct A *a;
11 }

Figure 6.4: Two mutually recursive struct declarations in C.

6.3 Model-checker

Matching execution patterns representing bugs can be reduced to the
standard CTL model-checking problem over the F-CFG graph. A F-
CFG is interpreted as a transition system where program statements act
as states, and effects act as propositions. For instance, a proposition
lockρ holds in a state (statement) Si iff the effects of Si include lockρ.
For instance, the absence of double-locks could be expressed as a safety
property: 5

AG (lockρ ⇒ AX (unlockρ AR ¬lockρ)) (6.6)

Essentially, the formula says that the acquisition of a lock ρ at some point
in an execution path, implies that no other acquisition is performed until
the lock is released.

The F-CFG of each function is analyzed in isolation. Function calls
are treated as black-boxes, relying on their effect-summaries. A match (a
counterexample of the safety property) is a bug candidate represented
by an error trace (e.g., the red path in Fig. 6.2). If no counterexample is
found, we may regard the function as “correct” (modulo subtle tricky
uses of pointers and type-casts). Bugs may be missed due to unsound-
ness of the inference system (cf. sections 4.6 and 5.5). This is part of a
necessary trade-off.

5For presentation purposes, these formulas are simplified. The real formulas are
more cumbersome due to the need to rule out false positives. Note that aliasing in-
formation can be imprecise and ρ may not denote a unique runtime lock object. I
encourage the interested reader to look at the actual source code.

108 Chapter 6. Effective Bug Finding with EBA

1 let find_match guard target tree0 =
2 let rec traverse path tree =
3 match tree with
4 | Nil ->
5 backtrack
6 | Assume(e,tree′) ->
7 let path′ = add e to path in
8 traverse path′ tree′

9 | Branch(tree1,tree2) ->
10 traverse path tree1
11 traverse path tree2
12 | Step(step,tree′) ->
13 if target(step)
14 then report match;
15 if guard(step)
16 then traverse path tree′

17 else backtrack
18 in
19 traverse empty-path tree0

Figure 6.5: Reachability checking on the path-tree of an F-CFG.

6.3.1 Reachability checking

EBA implements a simple reachability checker, rather than a fully-fledged
CTL model checker—the full generality was never needed. A reachability
checker is easier to implement, and it naturally provides an error trace
when a bug is found. Figure 6.5 shows a simplified version of the algo-
rithm that EBA implements, in OCaml-based pseudo-code. This algorithm
is capable of finding models for CTL-formulas of the form guard EU target.
That is, it finds paths that reach a state where target holds, and guard
holds in all previous states.
EBA separates the traversal of the CFG from the reachability check.

From the F-CFG, EBA produces a lazy enumerator for all the paths in
the CFG. This enumerator, conceptually a path-tree, is traversed by the
reachability checker in a depth-first manner. The tree has four kinds of
nodes: Nil marks the end of a path (e.g., after a return); Assume char-
acterizes the path with a Boolean condition; Branch provides alternative
flows of execution; and Step specifies a basic program step (i.e., a group
of instructions, a branching condition, or a return statement).

6.3. Model-checker 109

6.3.2 Bug checkers

The first step towards creating a bug checker in EBA is to characterize
the bug pattern using an existential CTL-formula—with effects as atomic
propositions. The formulas must describe incorrect execution paths.
For instance, an execution containing a double-lock bug can be matched
using the following CTL formula (the dual of formula 6.6):

> EU (lockρ ∧ EX (¬unlockρ EU lockρ)) (6.7)

In this formula, the region ρ works as a meta variable specifying that
we are interested in finding a second lock on the same memory object,
rather than two unrelated lock acquisitions. This formula reveals buggy
execution paths of the form (cf. Fig. 6.2):

· · · lockρ · · · lockρ · · ·

︸ ︷︷ ︸ ︸ ︷︷ ︸
> ¬unlockρ

The next step is to decompose this existential CTL-formula into subfor-
mulas (queries) of the form guard EU target, that can be handed to the
reachability checker. The bug checker is then a small OCaml script that
glues these reachability queries to find a model for the bug CTL-pattern.
Continuing with our example, formula 6.7 can be decomposed into two
queries: > EU lockρ and ¬unlockρ EU lockρ.

6.3.3 Path pruning

Path explosion is a problem even when analyzing a single function. A
single loop can add an undetermined number of paths. Besides that,
a sequence of n if statements introduces up to 2n possible execution
paths. EBA deals with this issue in two different ways.

Bounded search. The traversal of the F-CFG is bounded by two pa-
rameters. The first parameter sets a bound to the number of times that
an edge is taken within a path, preventing looping infinitely. The sec-
ond parameter sets a bound to the number of times that a path is forked
due to branching constructs, after which the search will explore only
one of the branching alternatives, preventing path explosion. The de-
fault bounds are generous and allow exploring about a thousand paths,

110 Chapter 6. Effective Bug Finding with EBA

which is enough for most functions, but some large functions will in-
evitably reach these bounds. (Default bounds can be overridden by us-
ing the appropriate command-line options.)

Fact tracking. Not all potential paths are, in fact, feasible. Branching
decisions, and changes to the program state, will exclude some paths.
For instance, let us consider the following program:

1 if (e) S1

2 S2

3 if (e) S3

If e has evaluated to v in line 1, and neither S1 nor S2 alter any of the
memory locations read by e, then e is guaranteed to evaluate to v in line
3 as well. (Recall that CIL expressions are side-effect free.) The model-
checker tracks branching decisions and other simple facts that can be
derived syntactically from the code, and uses them to prune the search.
Equally important, this removes false positives. By default, EBA uses a
small set of rules to make basic deductions from the set of known facts.
This has worked quite well for Linux, but other applications may benefit
from specialized solvers.

6.4 Bug filter

Given a bug pattern and an F-CFG, the model-checker produces a set of
bug candidates. The bug filter is responsible for removing duplicates and
false positives, and deriving a set of bug reports.

6.4.1 Removal of duplicates

Often times, the same bug can be reached through multiple paths. Mul-
tiple occurrences of the same bug are grouped together, and only one of
them (if any) is reported. EBA heuristically tries to pick the simplest bug
trace of each group. Short bug traces that reach the bug in the smallest
number of steps are preferred. For equally short traces, EBA picks the
trace with the longest prefix of false decisions. The false valuation of a
branching decision corresponds with taking the else, or fall-through, al-
ternative of an if statement. This last heuristic is less obvious, but let
us consider the following code containing a double-lock bug:

6.4. Bug filter 111

1 if (e1) S1;
2 if (e2) S2;
3 spin_lock(...);
4 ...
5 spin_lock(...);

Four potential paths can reach the double-lock, depending on the val-
uations of e1 and e2. But the case in which both e1 and e2 evaluate to
false involves less steps, since neither S1 nor S2 are executed. When if

statements do not have an else alternative, which is common, choosing
the false valuation can lead to simpler bug traces.

6.4.2 Detection of spurious aliasing

Alias analysis is imperfect and, under some circumstances, the same re-
gions may be assigned to two different objects, making them appear to
be the same. EBA relies on aliasing information to find bugs across func-
tion calls and, as a result, spurious aliasing relations can lead to false
bug candidates. One way of dealing with these false matches would be
to perform a more careful analysis of the bug trace. For now, EBA relies
solely on heuristics. The two main heuristics used to recognize false
double-lock bugs caused by imprecise aliasing information are detailed
below.

Different struct members. Lock objects are often part of a struct, and
they are used to protect accesses to certain members of the struct. If EBA
finds a double-lock where the two lock acquisitions are performed on
different struct members, as in the example below, it considers the bug
candidate spurious, and removes it. This form of aliasing is unlikely to
happen in practice.

1 mutex_lock(x->mutex);
2 ...
3 mutex_lock(y->ca_mutex);

Updates between accesses. One of the major limitations of the shape
inferrer is that it flattens data structures such as arrays and linked lists.
All the elements in the data structure are given the same memory re-
gions, and hence are indistinguishable from the perspective of the alias
analysis. This leads to false positives when traversing data structures:

112 Chapter 6. Effective Bug Finding with EBA

1 for (int i=0;i<N;i++) {
2 spin_lock(&a[i]);
3 }

In this example, the model-checker will warn that two iterations of the
for loop could lead to a double-lock. EBA recognizes that this may not
be a true bug because in between the two accesses to a[i], the variable
i is updated by i++. Most likely the two accesses are fetching different
objects, and thus the bug candidate is removed. So, as a general rule,
for EBA to report a double-lock bug, the l-value representing the lock
object shall not have been affected by any updates in between the two
acquisitions.

6.4.3 Abstraction refinement

Function summaries tell EBA whether a function call has no interesting
effect. For instance, in Fig. 1.2, a call to a function that does not ac-
quire nor release inode->lock would have effects ∅, and would be
ignored. But function summaries are not enough for claiming that a
bug exists, because they do not tell in which order the effects happen,
nor under which conditions. For instance, in Fig. 1.3, the first check for
bugs in add_dquot_ref (where inode_get_rsv_space is treated as a
black-box) will result in the following bug candidate:

lock

8

7 IF(*)

9

{lock,
unlock}

13

inode_get_rsv_space

Yet, in this match, the second lock acquisition happens at node 13, which
is a call to inode_get_rsv_space. As reflected in its signature, function
inode_get_rsv_space both acquires and releases the lock, but the or-
der of these operations is unknown when model-checking add_dquot_-

ref. In such case, the effect-abstraction of add_dquot_ref can be refined
by inlining the call to inode_get_rsv_space. (Note that function calls
that manipulate no locks, or manipulate locks different than the one
being tracked, will never be inlined.)

Then, the bug-filter instructs the model-checker to resume the search
on the refined F-CFG and a new match, this time conclusive, is found

6.4. Bug filter 113

(cf. Fig. 6.2). This inlining strategy is a simple form of Counter Exam-
ple Guided Abstraction Refinement (CEGAR) [CGJ+00]. It allows EBA to
support precise inter-procedural bug finding with a very simple effect
language—which otherwise would have to capture ordering.

Chapter 7

Evaluation

This chapter evaluates the bug finding technique proposed in Chapter 6,
through the OCaml implementation, EBA. The objective is to assess both
the effectiveness and the scalability of this bug-finding technique.

7.1 Method

Effectiveness and scalability are fairly subjective terms without a base-
line. For instance, a static analyzer that proves the absence of runtime
errors in a 100 KLOC codebase in about ten hours can be considered
scalable. The same would not be tolerable for a linter or bug finder. The
same applies to effectiveness: static analyzers shall find every single
bug, whereas bug finders are good finding most common bugs.

In short, we would like to answer the following research questions:

RQ1 How does EBA compare to similar bug finding tools?

RQ2 How precise is EBA on a large and complex codebase?

This evaluation emphasizes the comparison with well-established bug
finders, which are used as baseline. In order to evaluate the scalability
of bug finding tools it is necessary to test them on complex and large
pieces of software. Linux is a good codebase for this: it is large—more
than 10 MLOC, and uses all sorts of C constructs and idioms, making

116 Chapter 7. Evaluation

it very complex to analyze. Besides, Linux is a popular project that has
traditionally attracted the attention of the static analysis community, and
there exist several Linux-tailored bug finders we can compare with.

Thus, the evaluation consists of two experiments, where the perfor-
mance of EBA is measured in terms of analysis time and bugs found.
EBA is compared against similar bug-finding tools: (1) on a benchmark
of historical Linux bugs (RQ1, cf. Sect. 7.2); and (2) on the set of device
drivers shipped with Linux-4.7 (RQ2, cf. Sect. 7.3). The first experiment
tries to build an argument for the effectiveness of EBA: does it find more
bugs than other similar tools? The second experiment focus on scalabil-
ity: is EBA useful for analyzing a large amount of complex C code?

For simplicity, the experiments only target one type of bug: double
locks. The technique is general and should find other types of bugs
(cf. Sect. 3.8). But, at this stage, adding more bug types has a signifi-
cant implementation cost in terms of modeling features (e.g., to inject
domain-knowledge into EBA). Also, finding out the best heuristics to re-
move false positives. Finding double-locking bugs requires little extra
infrastructure, and these bugs are a good representative of resource mis-
manipulation.

In fact, some studies suggest that locking bugs may represent 30%
of bugs in OS code [CYC+01]. Double locks are introduced regularly
into device drivers, due to the existence of multiple entry points to the
drivers code, and have bad consequences for the user (i.e., the device
hangs). Double-lock checkers are also part of many research tools that
have used the Linux kernel for evaluation [FTA02, XA05, PTS+11], making
it easier to find tools to compare with.

7.1.1 Subjects

This evaluation will compare EBA against Smatch and Coccinelle (cf.
Sect. 2.3.2), two well-known tools among Linux kernel developers. Smatch
is a bug finder by Dan Carpenter, it is an intraprocedural flow-analyzer
similar to early versions of xgcc/metal [ECCH00], that is now funded by
Oracle. Coccinelle is a program matching and transformation tool by Julia
Lawall and others, currently developed at LIP6/INRIA. Coccinelle has a pow-
erful matching engine based on CTL model checking, that can also be
(and often is) used for bug finding purposes [CWY+13].

I selected these two baseline tools for two reasons. First, they are
able to run out-of-the-box on the source code of Linux, without major

7.2. Performance on a benchmark of historical Linux bugs 117

adaptation or further research. Second, there exist double-lock checkers
tailored to the Linux kernel available for both of them. Smatch includes a
Linux-specific double-lock checker built-in, and a double-lock checker for
Coccinelle is shipped with the Linux distribution.1

Neither CppCheck, nor Clang Static Analyzer, nor INFER ship with a double-
lock checker, so they could not be used for an independent comparison.
Writing a good checker for any static analysis tool requires certain knowl-
edge about the tool internals, and doing it myself would inevitably in-
troduce bias. Sparse and CQual can detect double locks, but both require
modifications to the analyzed source code, in the form of annotations.
Finally, I had to exclude Saturn, which I could not build against a recent
version of OCaml.

7.1.2 Reproducibility

Evaluation artifacts and detailed instructions are available online.2 All
experiments have been conducted on a virtualized machine with a phys-
ical 8-core (16-thread) Intel Xeon E5-2660 v3 CPU, running at 2.6 GHz
and with 16 GB of RAM.

7.2 Performance on a benchmark of historical Linux bugs

7.2.1 Setup

I evaluate the EBA tool on a benchmark of 26 double-lock bugs extracted
from historical bug fixes in the Linux kernel. In order to simplify the
execution of the experiment, the benchmark is made of individual C files,
each one containing (at least) one known bug. The experiment consists in
running the three tools on these files, and measuring the analysis time
and the recall (i.e., whether the bug is found).

In establishing this benchmark, I first obtained a set of 77 candidates
by selecting all commits containing the phrase “double lock” in its mes-
sage.3 I filtered out 30 cases that were false positives (i.e., commits not
fixing a double-lock bug), and 18 cases that were bugs spanning multi-
ple files. To avoid bias, I removed two commits (3c13ab1 and 1d23d16) that
were fixes to bugs found by EBA earlier during the development of the

1Located at scripts/coccinelle/locks/double_lock.cocci.
2https://github.com/iagoabal/2017-vmcai
3Extracted from the Linux kernel’s Git repository as of August 3, 2016.

https://github.com/torvalds/linux/commit/3c13ab1
https://github.com/torvalds/linux/commit/1d23d16
https://github.com/iagoabal/2017-vmcai

118 Chapter 7. Evaluation

prototype. However, I kept any bug-fix derived from the two baseline
tools, which introduces bias in favor of Coccinelle and Smatch.

For the 27 remaining commits, I obtained a preprocessed version of
the file where each of these bugs were located, under the 64-bit x86 allyes
configuration. This step excluded one file (commit 553f809) that failed to
preprocess under this configuration. For Coccinelle, I retained the original
source file, since it is designed to run on unprocessed C files. I then
verified that the alleged bug was indeed present in the preprocessed
file. Thus, I arrived at a benchmark of 26 double-lock bugs derived from
historic Linux bugs. This benchmark is available online. 4

7.2.2 Results

Table 7.1 shows the results of running EBA, Smatch, and Coccinelle on this
benchmark. Each bug is identified by the commit that fixes it, and bugs
are grouped by depth. The depth of a bug corresponds to the number of
nested function calls involved from the first to the second acquisition of
the lock. For instance, the bug of Fig. 1.2 involves one nested function
call and therefore has depth one. The three rightmost columns of Tbl. 7.1
give the total analysis time (in seconds) for each of the three tools. For
instance, for the first bug in the table, 00dfff7, EBA takes five seconds and
correctly reports the bug. Smatch and Coccinelle take 1.5 and 0.1 seconds
respectively, yet are unable to find the bug (hence the gray strikeout
font).

Effectiveness. The first thing to point out is that EBA finds 22 out of
the 26 bugs. In comparison, Smatch and Coccinelle find 14 and 12 bugs
respectively. Note that this benchmark is biased in favor of the baseline
tools, since many of the bugs were in fact reported by these two tools.
Further, all bugs can be found without including headers, which is an
advantage for Coccinelle—it has optional support for including headers
but then it makes it significantly slower.

On this benchmark, EBA is significantly more effective (46%) at
finding double-lock bugs than the two baseline tools combined.

4https://github.com/IagoAbal/2017-vmcai/tree/master/5.1/

https://github.com/torvalds/linux/commit/553f809
https://github.com/torvalds/linux/commit/00dfff7
https://github.com/IagoAbal/2017-vmcai/tree/master/5.1/

7.2. Performance on a benchmark of historical Linux bugs 119

In particular, EBA finds six out of the nine interprocedural bugs (depth
one or more), whereas Smatch and Coccinelle do not manage to find any at
all. EBA has been designed with the goal of finding interprocedural bugs
efficiently. Smatch does offer limited inter-procedural support for some
checkers, but—as also confirmed by the author—not for the double-lock
checker. For the remaining 17 intraprocedural bugs (depth zero), EBA
finds all but one (16 out of 17), while Smatch and Coccinelle find 14 and 11,

Table 7.1: Comparison of EBA, Smatch, and Coccinelle on 26 historical
double-lock bugs in Linux. Times in gray strikeout font indicate that
the bug was not found by the tool.

Bug Time (seconds)
hash ID depth EBA Smatch Coccinelle
00dfff7 2 5.0 1.5 0.1
5c51543 2 2.3 1.5 0.3
b383141 2 6.1 2.9 0.3
1c81557 1 5.0 1.9 0.6
328be39 1 8.9 1.7 0.2
5a276fa 1 0.9 1.2 0.2
80edb72 1 6.3 2.1 0.7
872c782 1 1.7 2.8 1.9
d7e9711 1 21 1.3 2.7
023160b 0 1.0 2.6 0.1
09dc3cf 0 1.2 1.4 0.1
0adb237 0 1.1 1.5 0.2
0e6f989 0 0.4 1.0 0.3
1173ff0 0 0.6 1.3 0.1
149a051 0 0.7 0.6 0.3
16da4b1 0 0.4 0.8 0.1
344e3c7 0 0.7 1.3 0.1
2904207 0 5.8 2.0 2.8
59a1264 0 0.2 0.6 0.1
5ad8b7d 0 0.6 3.4 0.1
8860168 0 0.7 1.0 0.1
a7eef88 0 0.6 1.2 0.2
b838396 0 3.3 2.8 1.1
ca9fe15 0 0.4 0.7 1.8
e1db4ce 0 0.4 1.1 0.2
e50fb58 0 0.5 0.9 0.1

https://github.com/torvalds/linux/commit/00dfff7
https://github.com/torvalds/linux/commit/5c51543
https://github.com/torvalds/linux/commit/b383141
https://github.com/torvalds/linux/commit/1c81557
https://github.com/torvalds/linux/commit/328be39
https://github.com/torvalds/linux/commit/5a276fa
https://github.com/torvalds/linux/commit/80edb72
https://github.com/torvalds/linux/commit/872c782
https://github.com/torvalds/linux/commit/d7e9711
https://github.com/torvalds/linux/commit/023160b
https://github.com/torvalds/linux/commit/09dc3cf
https://github.com/torvalds/linux/commit/0adb237
https://github.com/torvalds/linux/commit/0e6f989
https://github.com/torvalds/linux/commit/1173ff0
https://github.com/torvalds/linux/commit/149a051
https://github.com/torvalds/linux/commit/16da4b1
https://github.com/torvalds/linux/commit/344e3c7
https://github.com/torvalds/linux/commit/2904207
https://github.com/torvalds/linux/commit/59a1264
https://github.com/torvalds/linux/commit/5ad8b7d
https://github.com/torvalds/linux/commit/8860168
https://github.com/torvalds/linux/commit/a7eef88
https://github.com/torvalds/linux/commit/b838396
https://github.com/torvalds/linux/commit/ca9fe15
https://github.com/torvalds/linux/commit/e1db4ce
https://github.com/torvalds/linux/commit/e50fb58

120 Chapter 7. Evaluation

respectively. Remarkably, any bug found by either Smatch or Coccinelle, is
also intercepted by EBA.

False negatives. EBA misses five bugs mainly due to limitations of the
pointer analysis (cf. Chapter 4). For instance, in bug 80edb72, the lock ob-
ject is contained in a mv88e6xxx_priv_state struct, and the latter is ob-
tained from a struct dsa_switch pointer, after a non-trivial type cast
involving pointer arithmetic. This case falls outside what the inference
system is designed to handle (cf. Sect. 4.6) and the same lock, obtained
at two different program locations, is seen as two different locks. For
Smatch, false negatives seem to be due to path-insensitivity and lack of
inter-procedural support. Coccinelle lacks inter-procedural support and,
in addition, its double-lock checker does not recognize some common
locking functions—otherwise it may have found more bugs than Smatch.

For instance, Smatch does not recognize bug 09dc3cf, presumably be-
cause the point at which the second lock occurs can be reached in many
different ways, with both the lock held and unheld. It is common that,
in such a case, an intraprocedural analysis will fall on the safe side and
avoid reporting a (potentially false) bug. The same bug, 09dc3cf, is missed
by Coccinelle because it does not “know” about the raw_spin_lock_-

irqsave function. Bug 149a051 is an interesting case, where function
as_merged_requests takes two struct request pointers, and locks
on both. If the two pointers point to the same object, a deadlock hap-
pens. The three bug finders make the assumption that the formal pa-
rameters of a function do not alias one another—as indeed mostly the
case; and thus, all three tools missed that bug.

Analysis time. For the bugs that all three tools find, EBA is on aver-
age about 1.4 times faster than Smatch, yet Coccinelle is about five times
faster than EBA. Note, however, that Smatch is checking for more bugs
than double locks. (The CLI of Smatch does not allow to select specific
bug checkers.) Also, EBA and Smatch analyze a total of 665 KLOC of pre-
processed C code, whereas Coccinelle analyzes 27 KLOC of unprocessed C
files. Preprocessed files typically contains large amounts of dead code
from included headers. EBA does not analyze dead code by default, and
presumably neither does Smatch.

Table 7.1 shows that variance of execution times is higher for EBA,
with six files taking more than five seconds to analyze, and one file
taking 21 seconds. These files contain large functions that manipulate

https://github.com/torvalds/linux/commit/80edb72
https://github.com/torvalds/linux/commit/09dc3cf
https://github.com/torvalds/linux/commit/09dc3cf
https://github.com/torvalds/linux/commit/149a051

7.3. Performance of analyzing device drivers in Linux-4.7 121

multiple locks and, as of now, EBA will check one lock object at a time.
EBA should speed up considerably with some optimization work: e.g.,
by checking the use of all locks in a single traversal. Each Coccinelle check
requires an independent run of the tool, so if it had to scan files for
multiple bug types, it would be considerably slower than both EBA and
Smatch.

7.3 Performance of analyzing device drivers in Linux-4.7

7.3.1 Setup

In this experiment, EBA is used to analyze widely the set of device drivers
shipped with Linux 4.7-rc1, in search of double spin lock bugs. Note that
drivers constitute around 60% of the Linux source code. As in the previ-
ous experiment, the analysis is performed for the 64-bit x86 allyes con-
figuration. EBA is invoked by Kbuild through a “fake” GCC wrapper, during
a parallel build process with 16 jobs (i.e., make -j16). This wrapper ex-
tracts the preprocessor options from the command line arguments, uses
(the real) GCC to preprocess the file, and forwards the output to EBA.

About nine thousand files in drivers/ were analyzed, and every
bug alarm was manually classified as either a true or a false positive.
This process was repeated for Smatch and Coccinelle, in order to confront
analysis times and number of false positives. All tools were given 30
seconds to analyze each file.

7.3.2 Results

Table 7.2 shows the results of analyzing Linux-4.7 drivers/ with EBA,
Smatch, and Coccinelle.

Bugs found. EBA raised nine alarms in nine different files. Five of these
bugs have been reported, confirmed by the respective Linux maintainers,

Table 7.2: Analyzing the entire drivers/ subsystem of the Linux kernel.

EBA Smatch Coccinelle
Bugs found 5 N/A N/A
False positives 4 8 6
Time (minutes) 23 16 2

122 Chapter 7. Evaluation

and three are now fixed in Linux-4.10 (see commits 1d23d16, e50525b and
bea6403).5 These bugs affected five different subsystems—tty, scsi,
usb, iommu, and net; and all of them have depth one or more, thus re-
quiring an inter-procedural analyzer. Smatch and Coccinelle found no bugs,
but that is somewhat expected because these tools are run extensively on
Linux source code and, presumably, any bugs would have already been
reported and fixed.

Analysis time. EBA analyzes all Linux drivers (under the aforementioned
configuration) in less than half an hour (23 minutes) and is only slightly
slower than Smatch which does the same in 16 minutes (1.4 times faster
than EBA). Coccinelle is significantly faster and completes the analysis in
only two minutes, as it scans much smaller unprocessed files. Despite
EBA is not as mature as the two baseline tools, the data shows that EBA
scales well and it can be classified as lightweight bug finder. The same
comments made about the tools in Sect. 7.2.2 apply here as well.

EBA analyzes all Linux drivers in less than half an hour, and
finds five confirmed bugs.

False positives. EBA reported nine bugs—that is an alarm for 0.1% of
the files analyzed, pointing to five real bugs, and just four false alarms.
Thus, EBA can be used to write bug checkers that find real problems,
while producing little noise. Both Smatch and Coccinelle report more false
positives (eight and six, respectively). It is worth noting that, at least in
eight of the 14 false positives reported by the baseline tools, there was an
unlock operation being performed through a nested function call—that
these tools were not aware of.

Two of the four false bugs reported by EBA, can be traced back to lim-
itations in the pointer analysis. Note that these limitations can both lead
to false positives, and false negatives—as for bug 80edb72 in Sect. 7.2.2.
Another case was due to EBA making reasonable but unsound assump-
tions about the aliasing of formal parameters, similar to what caused
a false negative for bug 149a051 in Sect. 7.2.2. However, in this case the

5Bug e50525b was independently found and fixed during beta testing, but that bug-
fix was unknown to me.

https://github.com/torvalds/linux/commit/1d23d16
https://github.com/torvalds/linux/commit/e50525b
https://github.com/torvalds/linux/commit/bea64033dd7b
https://github.com/torvalds/linux/commit/80edb72
https://github.com/torvalds/linux/commit/149a051
https://github.com/torvalds/linux/commit/e50525b

7.3. Performance of analyzing device drivers in Linux-4.7 123

code was particularly confusing, even for a human inspecting the code,
and this bug report still led to a cosmetic fix (see 3e70af8). In the remain-
ing case, the reported error trace was not a feasible execution path.

https://github.com/torvalds/linux/commit/3e70af8

Chapter 8

Conclusion

There is no definitive answer to the problem of program verification.
Lightweight bug finders are becoming increasingly popular, they scale
well and can find common programming errors, but the errors they
find are superficial. Heavyweight static analyzers perform a deeper
semantic-based analysis of code, and find more bugs and more com-
plex, but are orders of magnitude slower. The objective of this work has
been to push the current bug-finding technology a step further, in order
to make these tools find more complex bugs, while retaining their good
scalability properties.

Ultimately, this work has led to the development of a novel bug-
finding technique. In order to ensure both the applicability and the
impact of this technique, I have followed a problem oriented methodol-
ogy. First of all, I studied tens of historical bugs in Linux (cf. Chap. 3),
with the purpose of identifying the challenges of analyzing large and
complex software systems (cf. Sect. 3.7). This analysis revealed that a
significant amount of bugs are due to violations of simple API rules,
such as “spin locks cannot be acquired twice before being released”.

Even if simple, these bugs often span multiple functions, and are
then missed by current bug finders. Inspired by the use of side-effect
analysis in interprocedural program optimization [Ban78, Ban79, CK84,
CK88], I devised a lightweight interprocedural bug finding technique
based on analyzing side-effect abstractions (cf. Sect. 3.8). This thesis has
served to elaborate and formalize such technique, and to show that it
is capable of uncovering deep resource mis-manipulation bugs in large
systems-level software.

126 Chapter 8. Conclusion

The technique consists of two steps. First, a shape-and-effect inference
system is used to build an abstraction of the program to analyze (cf.
Chap. 4). In this abstraction, objects are described by memory shapes,
and expressions and statements by their operational effects. Second,
bugs are found by matching temporal bug-patterns against the control-
flow graph of this program abstraction (cf. Chap. 6). I have implemented
a proof-of-concept bug finder based on this technique, EBA, and con-
firmed that it is both scalable and effective at finding bugs.

I have compared the performance of EBA with respect to Coccinelle and
Smatch, two popular bug-finders within the Linux community (cf. Chap. 7).
On a benchmark of 26 historical Linux bugs, EBA was able to detect signif-
icantly more bugs, and more complex, than the other two baseline tools
combined. EBA is able to analyze nine thousand files of device drivers
from Linux-4.7 in less than half an hour, in which time it uncovered five
previously unknown bugs.

Future Work

The way that the study of Linux bugs has been conducted was influenced
by the objectives of the VARIETE project, in which this thesis is framed.
The focus on variability has biased the selection of bugs. It would be
beneficial to generalize this study, and gather a larger amount of bugs,
without those having to be caused by feature interactions. The good
acceptance of VBDb suggests that a wider effort of documenting bugs in
open-source projects would be greatly appreciated, by the static analysis
community as a whole. There is an evident lack of documented exam-
ples and benchmarks derived from real cases. Research in static analysis
should be more problem oriented, in order to have a greater impact on
the reliability of future software.

I am proud of every single bug that EBA has found. Nonetheless, this
is just a proof-of-concept prototype. EBA was built to demonstrate that
effect-based bug finding is effective,1 but I would not like this argument
to be reversed. The limitations of EBA are not necessarily limitations
of the underlying technique. In particular, a major limitation concerns
tracking aliasing through type casts, and accesses to arrays and dynam-
ically linked data structures. The shape language, and consequently the
inference algorithm, needs more work in this direction. While this is

1Pun intended!

127

a difficult problem, I believe that there should be approximations that
would yield good results in practice.

Much of the criticism that EBA has received was related to having
found only bugs involving double locks. I have no reason to believe that
effect-based bug finding is in any way bound to double locks. In fact,
my study of real bugs in Linux code suggests the opposite. (But you are
right to be skeptical about this.) In any case, it is surely worth adding
more bug checkers to EBA and, in particular, memory management and
security checkers. EBA should be able to find the control-dominated sub-
types of these two bug categories as well; e.g., the use of untrusted data
without sanitizing it first. EBA may offer significant scalability improve-
ments over current tools based on interprocedural data-flow analysis.

Impact

The study of 43 historical bugs in Linux, while of limited scope, has
produced a diverse and well-documented collection of bugs, that ex-
emplifies major research challenges in the area of static analysis. Per-
forming this study has been fundamental in guiding the design of the
bug-finding technique here presented. I do hope that others will find
this study as valuable as I do, in shaping future static analysis tech-
niques. Remarkably, VBDb has attracted much attention from the intersec-
tion of the configurable software and static analysis communities, and
it is slowly becoming an accepted benchmark to test early prototypes of
variability-aware tools[Din15, AKGN+15, AHBT+16, vR16, IMD+17].
EBA has demonstrated that efficient interprocedural bug finding is

possible. Until now, most interprocedural bug finders have been based
on the RHS algorithm [RHS95]. RHS performs interprocedural data-
flow analysis, while using memoization to avoid repeating the analy-
sis of a function under equivalent inputs. This prevents duplication of
work, but it still requires exploring the entire control-flow graph of a
program. For control-dominated bugs, this thesis has shown that an in-
expensive side-effect abstraction of the program can be very effective at
pruning the control-flow graph. EBA is able to find interprocedural bugs
while rarely inlining a function call. EBA is effective and, so far, it has
found more than a dozen double-lock bugs in Linux 4.7–4.10 releases, most of
them already confirmed and many fixed.

Bibliography

[ABW14] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 42
variability bugs in the Linux kernel: A qualitative analysis.
ASE, 2014.

[ABW17] Iago Abal, Claus Brabrand, and Andrzej Wąsowski. Effec-
tive Bug Finding in C Programs with Shape and Effect Abstrac-
tions. VMCAI 2017. 2017.

[AHBT+16] Mustafa Al-Hajjaji, Fabian Benduhn, Thomas Thüm,
Thomas Leich, and Gunter Saake. Mutation operators for
preprocessor-based variability. VaMoS ’16, 2016.

[AKGN+15] Jafar Al-Kofahi, Lisong Guo, Hung Viet Nguyen,
Hoan Anh Nguyen, and Tien N. Nguyen. Static detection
of configuration-dependent bugs in configurable software.
ICSE ’15, 2015.

[AMS+17] Iago Abal, Jean Melo, Stefan Stanciulescu, Claus Brabrand,
Márcio Ribeiro, and Andrzej Wasowski. A hundred vari-
ability bugs in systems software: A qualitative analysis.
2017.

[And94] Lars Ole Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, 1994.

[ASW+11] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexan-
der von Rhein, and Dirk Beyer. Detection of feature
interactions using feature-aware verification. ASE 2011,
Lawrence, USA, 2011. IEEE Computer Society.

[BA08] Suhabe Bugrara and Alex Aiken. Verifying the safety of
user pointer dereferences. In Proceedings of the 2008 IEEE

130 Bibliography

Symposium on Security and Privacy, SP ’08, pages 325–338,
Washington, DC, USA, 2008. IEEE Computer Society.

[Ban78] John Phineas Banning. A Method for Determining the Side
Effects of Procedure Calls. PhD thesis, Stanford, CA, USA,
1978. AAI7905815.

[Ban79] John P. Banning. An efficient way to find the side effects of
procedure calls and the aliases of variables. POPL, 1979.

[BBH+09] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh.
Handbook of Satisfiability: Volume 185 Frontiers in Artificial
Intelligence and Applications. IOS Press, Amsterdam, The
Netherlands, The Netherlands, 2009.

[BC05] D.P. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly Media, 2005.

[BCO05] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn.
Smallfoot: Modular automatic assertion checking with
separation logic. FMCO, 2005.

[BDH+] Julien Brunel, Damien Doligez, René Rydhof Hansen,
Julia L. Lawall, and Gilles Muller. A foundation for
flow-based program matching: Using temporal logic and
model checking. POPL 2009.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Ru-
pak Majumdar. The software model checker blast: Appli-
cations to software engineering. Int. J. Softw. Tools Technol.
Transf., 9(5):505–525, October 2007.

[BHS03] Pete Broadwell, Matt Harren, and Naveen Sastry. Scrash:
A system for generating secure crash information. In Pro-
ceedings of the 12th Conference on USENIX Security Sympo-
sium - Volume 12, SSYM’03, pages 19–19, Berkeley, CA,
USA, 2003. USENIX Association.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sri-
ram K. Rajamani. Automatic predicate abstraction of c
programs. PLDI ’01, 2001.

Bibliography 131

[BNE16] Fraser Brown, Andres Nötzli, and Dawson Engler. How
to build static checking systems using orders of magni-
tude less code. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’16, pages 143–
157, New York, NY, USA, 2016. ACM.

[BR01a] Thomas Ball and Sriram K. Rajamani. Bebop: A path-
sensitive interprocedural dataflow engine. PASTE, 2001.

[BR01b] Thomas Ball and Sriram K. Rajamani. The slam toolkit.
CAV, 2001.

[BRT+13] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni
Winther, and Paulo Borba. Intraprocedural dataflow anal-
ysis for software product lines. Transactions on Aspect-
Oriented Software Development, 10, 2013.

[BTR+13] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus
Brabrand, Paulo Borba, and Mira Mezini. SPLLIFT - stati-
cally analyzing software product lines in minutes instead
of years. In PLDI 2013, 2013.

[BTSR04] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds.
Local reasoning about a copying garbage collector. POPL,
2004.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpreta-
tion: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL ’77, pages
238–252, New York, NY, USA, 1977. ACM.

[CCF+09] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, and Xavier Rival. Why does
astrée scale up? Form. Methods Syst. Des., 35(3), December
2009.

[CD11] Cristiano Calcagno and Dino Distefano. Infer: An auto-
matic program verifier for memory safety of C programs.
In Proceedings of the Third International Conference on NASA

132 Bibliography

Formal Methods, NFM’11, pages 459–465, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’08, 2008.

[CDOY09] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and
Hongseok Yang. Compositional shape analysis by means
of bi-abduction. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’09, pages 289–300, New York, NY, USA,
2009. ACM.

[CDOY11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn,
and Hongseok Yang. Compositional shape analysis by
means of bi-abduction. J. ACM, 58(6):26:1–26:66, Decem-
ber 2011.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan
Lu, and Helmut Veith. Counterexample-guided abstrac-
tion refinement. CAV ’00, 2000.

[CHSL11] Andreas Classen, Patrick Heymans, Pierre-Yves
Schobbens, and Axel Legay. Symbolic model check-
ing of software product lines. In ICSE, 2011.

[CK84] Keith D. Cooper and Ken Kennedy. Efficient computation
of flow insensitive interprocedural summary information.
SIGPLAN 1984, 1984.

[CK88] K. D. Cooper and K. Kennedy. Interprocedural side-effect
analysis in linear time. PLDI, 1988.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A
tool for checking ansi-c programs, 2004.

[CKMRM03] Muffy Calder, Mario Kolberg, Evan H. Magill, and
Stephan Reiff-Marganiec. Feature interaction: A critical
review and considered forecast. Comput. Netw., 41(1), 2003.

Bibliography 133

[Cou96] Patrick Cousot. Abstract interpretation. ACM Comput.
Surv., 28(2):324–328, June 1996.

[CWY+13] Yu Chen, Fengguang Wu, Kuanlong Yu, Lei Zhang,
Yuheng Chen, Yang Yang, and JunJie Mao. HPCC/EUC,
2013.

[CYC+01] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An empirical study of operating sys-
tems errors. In Proceedings of the Eighteenth ACM Sympo-
sium on Operating Systems Principles, SOSP ’01, pages 73–
88, New York, NY, USA, 2001. ACM.

[Dar86] Ian F. Darwin. Checking C Programs with Lint. O’Reilly,
1986.

[Das00] Manuvir Das. Unification-based pointer analysis with di-
rectional assignments. PLDI, 2000.

[DBW15] Aleksandar S. Dimovski, Claus Brabrand, and Andrzej
Wasowski. Variability abstractions: Trading precision for
speed in family-based analyses (extended version). CoRR,
abs/1503.04608, 2015.

[Din15] Nicolas Dintzner. Safe evolution patterns for software
product lines. ICSE ’15, 2015.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for
functional programs. POPL 1982, 1982.

[DOY06] Dino Distefano, Peter W. O'Hearn, and Hongseok
Yang. A local shape analysis based on separation logic.
In Proceedings of the 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, TACAS’06, pages 287–302, Berlin, Heidelberg, 2006.
Springer-Verlag.

[ECCH00] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. OSDI, 2000.

[EL02] David Evans and David Larochelle. Improving security
using extensible lightweight static analysis. IEEE Softw.,
19(1):42–51, January 2002.

134 Bibliography

[FFA99] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken.
A theory of type qualifiers. In Proceedings of the ACM SIG-
PLAN 1999 Conference on Programming Language Design and
Implementation, PLDI ’99, pages 192–203, New York, NY,
USA, 1999. ACM.

[FFA00] Jeffrey S. Foster, Manuel Fähndrich, and Alexander
Aiken. Polymorphic versus monomorphic flow-insensitive
points-to analysis for c. In Proceedings of the 7th Interna-
tional Symposium on Static Analysis, SAS ’00, pages 175–198,
London, UK, UK, 2000. Springer-Verlag.

[FJKA06] Jeffrey S. Foster, Robert Johnson, John Kodumal, and Alex
Aiken. Flow-insensitive type qualifiers. ACM Trans. Pro-
gram. Lang. Syst., 2006.

[FTA02] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-
sensitive type qualifiers. PLDI, 2002.

[GG12] Paul Gazzillo and Robert Grimm. SuperC: Parsing all of
C by taming the preprocessor. PLDI ’12, 2012.

[Hin01] Michael Hind. Pointer analysis: Haven’t we solved this
problem yet? PASTE, 2001.

[IMD+17] Alexandru Florin Iosif-Lazar, Jean Melo, Aleksandar S. Di-
movski, Claus Brabrand, and Andrzej Wasowski. Effec-
tive analysis of C programs by rewriting variability. CoRR,
abs/1701.08114, 2017.

[JG88] Pierre Jouvelot and David K Gifford. The fx-87 inter-
preter. In Computer Languages, 1988. Proceedings., Interna-
tional Conference on, pages 65–72. IEEE, 1988.

[JG91] Pierre Jouvelot and David Gifford. Algebraic reconstruc-
tion of types and effects. POPL ’91, 1991.

[Joh78] S. C. Johnson. Lint, a c program checker. Comp. sci. tech.
rep, Bell Labs, 1978.

[JT93] Pierre Jouvelot and Jean-Pierre Talpin. The type and effect
discipline, 1993.

Bibliography 135

[JVWS07] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie
Weirich, and Mark Shields. Practical type inference for
arbitrary-rank types. Journal of functional programming,
17(01):1–82, 2007.

[JW04] Rob Johnson and David Wagner. Finding user/kernel
pointer bugs with type inference. In Proceedings of the
13th Conference on USENIX Security Symposium - Volume
13, SSYM’04, pages 9–9, Berkeley, CA, USA, 2004. USENIX
Association.

[KA08] Christian Kästner and Sven Apel. Type-checking software
product lines - a formal approach. In Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE’08), L’Aquila, Italy, 2008.

[KGR+11] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel,
Sebastian Erdweg, Klaus Ostermann, and Thorsten Berger.
Variability-aware parsing in the presence of lexical macros
and conditional compilation. OOPSLA ’11, 2011.

[KKHL10] Andy Kenner, Christian Kästner, Steffen Haase, and
Thomas Leich. Typechef: Toward type checking #ifdef
variability in c. FOSD 2010, 2010.

[Kop97] Rainer Koppler. A systematic approach to fuzzy parsing.
Softw. Pract. Exper., 27(6):637–649, June 1997.

[KS08] Oleg Kiselyov and Chung-chieh Shan. Lightweight
monadic regions. Haskell, 2008.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation
framework for lifelong program analysis & transforma-
tion. CGO ’04, 2004.

[Lei14] Daan Leijen. Koka: Programming with Row Polymorphic
Effect Types. MSFP, 2014.

[LLH+10] Julia Lawall, Ben Laurie, René Rydhof Hansen, Nicolas
Palix, and Gilles Muller. Finding error handling bugs in
openssl using coccinelle. EDCC 2010, 2010.

136 Bibliography

[LMP09] Julia L. Lawall, Gilles Muller, and Nicolas Palix. Enforcing
the use of api functions in linux code. In Proceedings of
the 8th Workshop on Aspects, Components, and Patterns for
Infrastructure Software, ACP4IS ’09, 2009.

[Lov10] R. Love. Linux Kernel Development. Developer’s Library.
Pearson Education, 2010.

[LSB+10] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof
Czarnecki, and Andrzej Wąsowski. Evolution of the linux
kernel variability model. SPLC, 2010.

[LSS+15] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis,
Ondřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang,
Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and
Dimitrios Vardoulakis. In defense of soundiness: A mani-
festo. Commun. ACM, 58(2), January 2015.

[Luc87] John M. Lucassen. Types and Effects: Towards the Integration
of Functional and Imperative Programming. PhD thesis, 1987.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral
notion of subtyping. ACM Trans. Program. Lang. Syst.,
16(6), November 1994.

[MBW16] Jean Melo, Claus Brabrand, and Andrzej Wąsowski. How
does the degree of variability affect bug finding? In Pro-
ceedings of the 38th International Conference on Software En-
gineering, ICSE ’16, 2016.

[McA96] David McAllester. Inferring recursive data types. Techni-
cal report, AT&T Labs, 1996.

[McM05] Kenneth McMillan. Applications of Craig Interpolation to
Model Checking. ICATPN 2005. 2005.

[MDBW15] Jan Midtgaard, Aleksandar S. Dimovski, Claus Brabrand,
and Andrzej Wąsowski. Systematic derivation of correct
variability-aware program analyses. Sci. Comput. Program.,
105(C), July 2015.

Bibliography 137

[MFBW16] Jean Melo, Elvis Flesborg, Claus Brabrand, and Andrzej
Wąsowski. A quantitative analysis of variability warnings
in linux. In Proceedings of the Tenth International Workshop on
Variability Modelling of Software-intensive Systems, VaMoS
’16, 2016.

[MKR+16] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit
Gheyi, and Sven Apel. A comparison of 10 sampling al-
gorithms for configurable systems. ICSE ’16, 2016.

[MRG13] Flávio Medeiros, Márcio Ribeiro, and Rohit Gheyi. Investi-
gating preprocessor-based syntax errors. GPCE 2013, 2013.

[NDT+13] Sarah Nadi, Christian Dietrich, Reinhard Tartler,
Richard C. Holt, and Daniel Lohmann. Linux vari-
ability anomalies: what causes them and how do they get
fixed? In Thomas Zimmermann, Massimiliano Di Penta,
and Sunghun Kim, editors, MSR. IEEE / ACM, 2013.

[NMRW02] George C. Necula, Scott McPeak, Shree Prakash Rahul,
and Westley Weimer. Cil: Intermediate language and tools
for analysis and transformation of c programs. CC 2002,
2002.

[NN99] Flemming Nielson and Hanne Riis Nielson. Type and ef-
fect systems. In Correct System Design, Recent Insight and
Advances, volume 1710 of LNCS. Springer, 1999.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin.
Principles of Program Analysis. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1999.

[Pad09] Yoann Padioleau. Parsing C/C++ code without pre-
processing. CC ’09, 2009.

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden.
Software Product Line Engineering: Foundations, Principles
and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005.

[Pea13] David J. Pearce. A calculus for constraint-based flow typ-
ing. FTfJP ’13, 2013.

138 Bibliography

[PFH06] Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks.
Locksmith: Context-sensitive correlation analysis for race
detection. PLDI, 2006.

[PLM06] Yoann Padioleau, Julia L. Lawall, and Gilles Muller. Un-
derstanding collateral evolution in linux device drivers.
EuroSys, 2006.

[PS08] H. Post and C. Sinz. Configuration lifting: Verification
meets software configuration. ASE 2008, 2008.

[PTS+11] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe
Calvès, Julia Lawall, and Gilles Muller. Faults in linux:
Ten years later. ASPLOS XVI, 2011.

[PWC91] Michael Platoff, Michael Wagner, and Joseph Camaratta.
An integrated program representation and toolkit for the
maintenance of C programs. ICSM ’91, 1991.

[Rem93] D. Remy. Type inference for records in a natural extension
of ML. In Theoretical Aspects Of Object-Oriented Program-
ming. MIT Press, 1993.

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise
interprocedural dataflow analysis via graph reachability.
POPL, 1995.

[Rob65] J. A. Robinson. A machine-oriented logic based on the
resolution principle. J. ACM, 12(1):23–41, January 1965.

[SB15] Yannis Smaragdakis and George Balatsouras. Pointer anal-
ysis. Found. Trends Program. Lang., 2(1):1–69, April 2015.

[SRW98] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solv-
ing shape-analysis problems in languages with destructive
updating. ACM Trans. Program. Lang. Syst., 20(1):1–50, Jan-
uary 1998.

[SST13] Jiri Slaby, Jan Strejček, and Marek Trtík. ClabureDB: Clas-
sified Bug-Reports Database. In Roberto Giacobazzi, Josh
Berdine, and Isabella Mastroeni, editors, Verification, Model
Checking, and Abstract Interpretation, volume 7737 of LNCS.
Springer Berlin Heidelberg, 2013.

Bibliography 139

[Ste96a] Bjarne Steensgaard. Points-to analysis by type inference of
programs with structures and unions. CC, 1996.

[Ste96b] Bjarne Steensgaard. Points-to analysis in almost linear
time. POPL, 1996.

[SY86] R E Strom and S Yemini. Typestate: A programming lan-
guage concept for enhancing software reliability. IEEE
Trans. Softw. Eng., 1986.

[SYRS16] Bhargava Shastry, Fabian Yamaguchi, Konrad Rieck, and
Jean-Pierre Seifert. Towards vulnerability discovery using
staged program analysis. In Proceedings of the 13th Inter-
national Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment - Volume 9721, DIMVA 2016,
pages 78–97, New York, NY, USA, 2016. Springer-Verlag
New York, Inc.

[TAK+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer,
and Gunter Saake. A classification and survey of analysis
strategies for software product lines. ACM Computing Sur-
veys, 2014.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type,
region and effect inference. Journal of Functional Program-
ming, 2, 7 1992.

[TLL12] Yuan Tian, Julia Lawall, and David Lo. Identifying linux
bug fixing patches. ICSE 2012, 2012.

[TLSSP11] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and
Wolfgang Schröder-Preikschat. Feature consistency in
compile-time-configurable system software: Facing the
Linux 10,000 feature problem. In Proceedings of the Sixth
Conference on Computer Systems, EuroSys ’11, 2011.

[Tof90] Mads Tofte. Type inference for polymorphic references.
Inf. Comput., 89(1), 1990.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the
typed call-by-value λ-calculus using a stack of regions.
POPL, 1994.

140 Bibliography

[vR16] Alexander von Rhein. Analysis Strategies for Configurable
Systems. PhD thesis, University of Passau, 2016.

[XA05] Yichen Xie and Alex Aiken. Scalable error detection using
boolean satisfiability. POPL, 2005.

[YHR99] Suan Hsi Yong, Susan Horwitz, and Thomas Reps. Pointer
analysis for programs with structures and casting. PLDI,
1999.

[YMZ+11] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lak-
shmi N. Bairavasundaram, and Shankar Pasupathy. An
empirical study on configuration errors in commercial and
open source systems. SOSP 2011, 2011.

[ZMM+15] I. S. Zakharov, M. U. Mandrykin, V. S. Mutilin, E. M.
Novikov, A. K. Petrenko, and A. V. Khoroshilov. Config-
urable toolset for static verification of operating systems
kernel modules. Program. Comput. Softw., 41(1):49–64, Jan-
uary 2015.

	Contents
	Introduction
	Context
	Problem
	Method
	Thesis

	Related Work
	Empirical study of software bugs
	Side-effect analysis
	Static resource safety

	A Qualitative Study of Bugs in Linux
	Background
	Methodology
	Threats to validity
	Dimensions of analysis
	Diversity of bugs in VBDb
	RQ1: Variability characteristics of bugs in Linux
	RQ2: Challenges in analyzing Linux source code
	RQ3: Opportunities for bug finders in Linux

	A Shape and Effect System for C(IL)
	The shape language
	Shape-type compatibility.
	Shape casting
	Environments and shape schemes
	Typing rules
	Soundiness

	Shape-Region and Effect Inference for C(IL)
	Unification
	Most general shape
	Subeffecting constraints
	Inference rules
	Limitations
	Principality

	Effective Bug Finding with EBA
	Front-End: from C to CIL
	Shape-and-effect inferrer
	Model-checker
	Bug filter

	Evaluation
	Method
	Performance on a benchmark of historical Linux bugs
	Performance of analyzing device drivers in Linux-4.7

	Conclusion
	Bibliography

