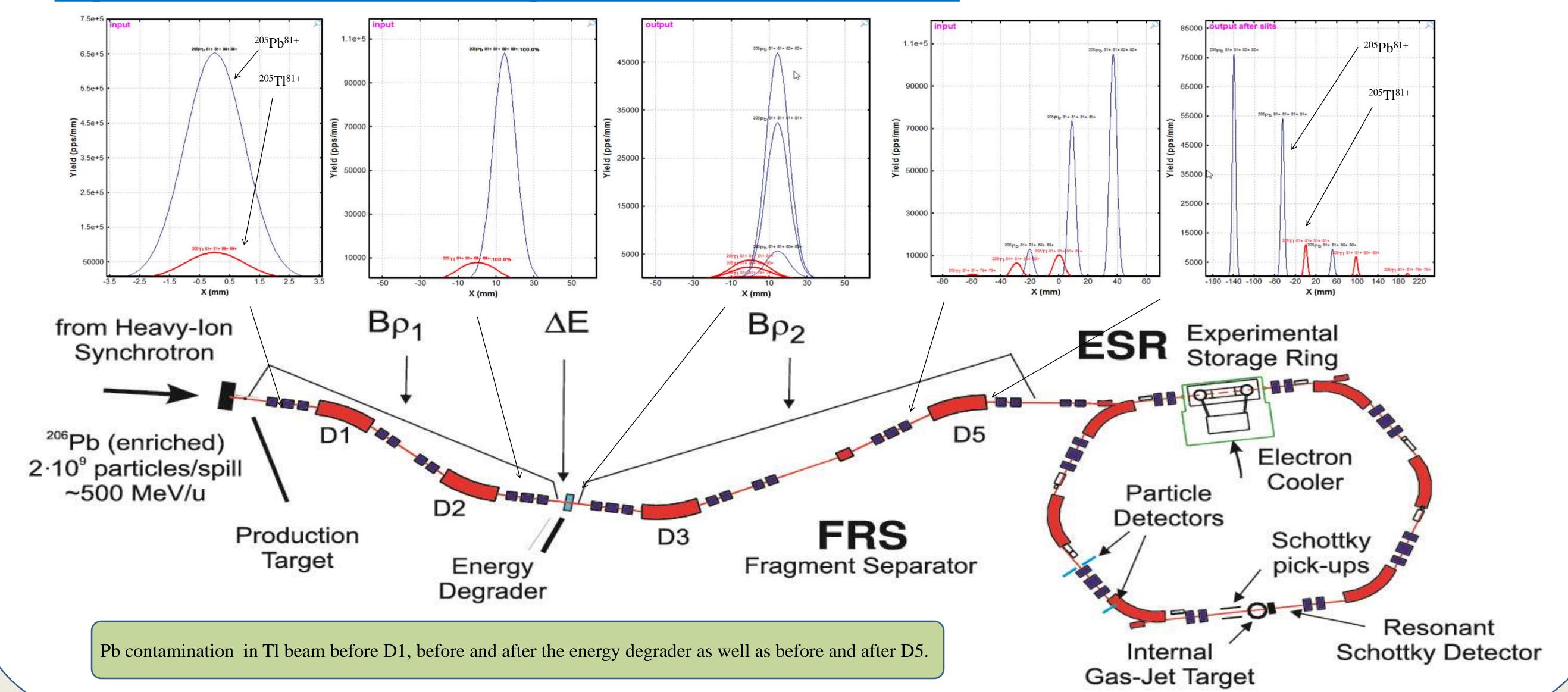

Preparation for the measurement of the bound-state beta-decay of bare ²⁰⁵Tl ions at the ESR

Ragandeep S. Sidhu¹, Fritz Bosch¹, H. Geissel¹, J. Glorius¹, R. Grisenti¹, A. Gumberidze¹, S. Hagmann¹, Ch. Kozhuharov¹, M. Lestinsky¹, S. Litvinov¹, Yu. Litvinov¹, I. Mukha¹, C. Nociforo¹, N. Petridis¹, R. Sánchez¹, M. Sanjari¹, C. Scheidenberger¹, U. Spillmann¹, M. Steck¹, T. Stöhlker¹, K. Takahashi¹, S. Trotsenko¹, H. Weick¹, N. Winckler¹, D. Winters¹, C. Brandau², R. Reifarth³, Ch. Langer³, D. Atanasov⁴, K. Blaum⁴, T. Faestermann⁵, R. Gernhäuser⁵, Paul Kienle⁵, M. Najafi⁵, M. Pavicevic⁶, W. Henningⁿ, Bradley Meyer⁶, D. Schneider⁶, K. Leach¹⁰, V. Pejovic¹¹, B. Boev¹², T. Suzuki¹³, T. Yamaguchi¹³, S. Naimi¹⁴, F. Suzaki¹⁴, T. Uesaka¹⁴, Y. Yamaguchi¹⁴, T. Ohtsubo¹⁵, B. Sun¹⁶, X. Chen¹७, B. Gao¹⊓, X. Ma¹⊓, X. Tu¹⊓, M. Wang¹⊓, H. Xu¹⊓, X. Yan¹⊓, Y. Zhang¹¬, C. Bruno¹⁶, T. Davinson¹⁶, C. Lederer-Woods¹⁶, P. Woods¹⁶, P. Walker¹ゥ, G. Lane²⁰, I. Dillmann²¹, M. Trassinelli²², S. Torilov²³, R. Cakirli²⁴, F. Ozturk²⁴, B. Jurado²⁵ and W. Korten²⁶


¹GSI, Darmstadt, Germany; ²Universität Giessen, Gießen, Germany; ³J.W. Goethe Universität, Frankfurt, Germany; ⁴MPI, Heidelberg, Germany; ⁵TU Munich, Garching, Germany; ⁶Salzburg University, Salzburg, Austria; ¬Argonne National Laboratory, Argonne, Illinois, USA; ⁶Clemson University, USA; ⁶Lawrence Livermore National Laboratory, Livermore, USA; ¹¹Colorado School of Mines, Golden, USA; ¹¹Institute of Physics, Zemun, Pregrevica Belgrade, Serbia; ¹²University of Štip, FYR Macedonia; ¹³Saitama University, Saitama, Japan; ¹⁴RIKEN Nishina Center, Wako, Tokyo, Japan; ¹⁵Niigata University, Niigata, Japan; ¹⁶Beihang University, Beijing, China; ¹¹Institute of Modern Physics, Lanzhou, China; ¹¹8University of Edinburgh, UK; ¹¹9University of Surrey, Guildford, UK; ²¹0The Australian National University, Canberra, Australia; ²¹TRIUMF, Vancouver, Canada; ²²Inst. des NanoSciences de Paris, CNRS UMR7588 and UMPC-Paris 6, France; ²³St. Petersburg State University, Russian Federation; ²⁴University of Istanbul, Turkey; ²⁵CNRS, IN2P3, CENBG, France; ²⁶IRFU, CEA, Université Paris-Saclay, France

Abstract

Bound-state beta-decay (β_b) accompanied by the emission of a monochromatic antineutrino, was first predicted by Daudel et al [1] in 1947 and then discussed in detail by Bahcall [2]. The first direct observation of the bound-state beta decay (β_b decay) was done in 1992 by Jung et al [3] with the use of bare ¹⁶³Dy⁶⁶⁺ ions stored in the heavy ion storage ring ESR at GSI. In the present study we aim at measuring the bound-state beta-decay rate of fully-ionized ²⁰⁵TI, which is needed to determine the matrix element for the electron capture decay from the 2.3 keV excited state in ²⁰⁵Pb to the ground state of ²⁰⁵TI. This matrix element is important for constraining of neutrino capture probability into the 2.3 keV state of ²⁰⁵Pb [4] and for modelling of the s-process [5] in the Hg-Pb region. The experiment proposal has been approved by the GSI program advisory panel. We aim at conducting the experiment in 2018, when the accelerator complex of GSI will restart its operation.

Preparation of bare ²⁰⁵Tl⁸¹⁺ beam and it's separation from the contaminant ²⁰⁵Pb⁸¹⁺:

Decay of 205Tl81+:

- •For the design value of stored bare Tl ions and a very cautiously estimated bound-state beta deacy half-life of 1 year, we expect about 40 bound-state beta decays within a storage time of 1 hour.
- ²⁰⁵Tl⁸¹⁺ and ²⁰⁵Pb⁸¹⁺ have a mass difference of 52 keV and cannot be directly resolved by mass spectrometry.
- After some waiting, a strong Ar internal gas jet is used to strip off the electron from Pb daughter ions.
- Experiment to be done similar to the one on ¹⁸⁷Os/¹⁸⁷Re [6].

[1] R. Daudel, M. Jean and M. Lecoin, J. Phys. Radium **8**, 238 (1947). [2] J. N. Bahcall, Phys. Rev. **124**, 495 (1961).

[3]M. Jung et al., Phys. Rev. Lett. **69**, 15 (1992).

[4]M.K. Pavicevic et al., Nucl. Instr. and Meth. **A 621**, 282 (2010). [5]J.B. Blake and D.N. Schramm, Astroph. J. **197**, 615-629 (1975).

[6]F. Bosch et al., Phys. Rev. Lett **77**, 5190 (1996).

Separation of ²⁰⁵Tl/²⁰⁵Pb:

²⁰⁵Pb⁸¹⁺ ions produced in the β_b decay of ²⁰⁵Tl⁸¹⁺ can be separated in magnetic rigidity by removing the bound electron from the ²⁰⁵Pb⁸¹⁺. For the latter an internal Ar gas-jet is switched on for a short time.

Particle detector Dipole magnet

Detection:

The ions can be identified either by a particle detector installed after the dipole magnet downstream the gas-jet or by non-destructive Schottky mass spectrometry. The latter has a very high sensitivity down to single stored ions.

